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Properties of the pseudogap phase in high-Tc superconductors

A. A. Abrikosov
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

~Received 11 April 2001; published 23 August 2001!

Several physical properties of the pseudogap phase are calculated on the basis of the spatially inhomogenous
Franz-Millis model of superconducting fluctuations, consisting of small superconducting domains with uncor-
related supercurrents. The variation of this domain structure with time is supposed to be slow. A distribution
function of superfluid velocities is found based on the assumption of the dominant role of extended saddle
point singularities~‘‘hot spots’’!. The model is used for calculation of the spectral function, the inelastic
neutron scattering cross section, and the spin susceptibility entering the Knight shift. In all cases the calculated
curves are qualitatively close to experimental results.
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I. INTRODUCTION

The last major unsolved problem in the theory of high-Tc
superconducting cuprates~HTSC’s! is the pseudogap, o
more exactly, the pseudogap phase, which occurs in un
doped samples aboveTc . It was first observed, as a ‘‘spi
gap’’ in NMR experiments.1 Then the new phase was foun
to influence various thermodynamic and kinetic phenome
and finally, it clearly appeared in angle resolved photoem
sion spectroscopy~ARPES! experiments.2,3 All these obser-
vations led to a conclusion that in underdoped samples
certain temperature interval an unusual state appears, w
has properties of both, the normal and superconduct
phases. Although we call it ‘‘phase,’’ as other authors do, i
not really a phase~such as, e.g., the ‘‘vortex lattice’’!, since it
is not separated from the normal state by a phase transi
and hence, does not differ from it by symmetry. It is possib
however, to speak about a crossover around some temp
ture T* .

Most theorists agree that the pseudogap phase is du
fluctuations. There is, however, no agreement on their nat
Fluctuations can be of magnetic origin~spin fluctuations,
see, e.g., Ref. 4!, or of purely superconducting origin. Th
latter view was adopted in Refs. 5,6. In both approaches
superconductor was considered, as purely two-dimensio
and the hopping between the CuO2 layers was not taken into
account. This led to a problem in definingTc , where a defi-
nite phase transition takes place.

One of the arguments, why the pseudogap is formed o
in underdoped HTSC and not in conventional supercond
ors, or optimally doped and overdoped HTSC, was that
small electron concentration in underdoped samples ma
them more vulnerable to fluctuations~see Ref. 6!. This idea
contradicts the fact that very thorough ARPES experime7

showed that the volume of the Fermi surface is large
changes very little with doping. Hence the concentration
holes is always large.

In our work8 we proposed a solution of some of the
mysteries. Here we will elaborate these ideas. First of all,
would like to describe in more detail some of our gene
assumptions. The large Fermi surface in the metallic s
makes it extremely probable that the antiferromagnetic in
lating phase is a spin-density wave existing in sufficien
0163-1829/2001/64~10!/104521~10!/$20.00 64 1045
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pure samples at a proper electron concentration. I do not
it ‘‘half-filling,’’ since the Brillouin zone in the antiferromag-
netic phase is one half of that in the metallic phase, and
filled completely. Doping with oxygen decreases slightly t
electron concentration and simultaneously creates disor
Both changes are able to destroy the spin-density wave,
as a result, a larger Brillouin zone appears, which is close
half filling. After that the volume of the Fermi surface doe
not change significantly with further doping. So the situati
is radically different from doped semiconductors, where
crystalline lattice, and hence, the Brillouin zone does
change, and the dopant concentration defines the volum
the Fermi surface. Therefore, I find very misleading t
rather commonly used name for the metallic phase: ‘‘dop
Mott insulator.’’

If the concentration of carriers is large, and does n
change significantly with further doping, what prevents th
metal to become superconducting immediately after the tr
sition, and to have a high critical temperature, as the o
maly doped samples? The idea, which was proposed in
papers8,9 was based on the mechanism of interlayer conn
tion due to resonant tunneling through oxygen atoms in
CuO chains, or BiO and TlO planes. These oxygen atoms
not only ‘‘charge reservoirs’’ but also resonant centers c
necting the CuO2 planes. The concentration of these atom
contrary to the Fermi surface, is reduced drastically w
underdoping, and the less the connection, the more t
dimensional becomes the material. Low dimensionality
hances fluctuations and destroys superconductivity. Acco
ing to Refs. 8,9 this definesTc in strongly underdoped
samples and leads to its decrease with decreasing ox
concentration.

In Ref. 8 we introduced the crossover temperatureT* , as
the self-consistent BCS critical temperature. As we will s
below, the real crossover happens at a temperature, w
can be somewhat lower. In order to keep the usual notati
we call the BCS mean field critical temperatureT** . It
could be found formally for any dimensionality but for low
dimensional systems it does not define a phase transi
since fluctuations destroy superconductivity. Our view is t
T** defines some ‘‘hidden’’ scale which has no explic
physical manifestations. As well known, in ad-wave super-
conductor ordinary, nonmagnetic, impurities strongly su
©2001 The American Physical Society21-1
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A. A. ABRIKOSOV PHYSICAL REVIEW B 64 104521
press the BCS critical temperature. In the process of dop
disorder is introduced, and this leads to the decrease ofT** .
In the overdoped regionT** approachesTc ~the phase dia-
gram is presented in Fig. 1 of Ref. 8!.

In this work we will consider the well develope
pseudogap phase, i.e., the doping region, where the inte
betweenT** andTc is large. If the temperature is not clos
to Tc , we can neglect hopping between the planes, and c
sider a purely two-dimensional model. We will use the mo
of Franz and Millis,5 i.e., consider the metal, as an array
superconducting domains with different supercurrents. Le
ing the more detailed description of the model to the n
section we mention here only that we use a different dis
bution function for supercurrents reflecting the dominant r
of extended saddle point singularities in the electron sp
trum.

II. MODEL

As was said before, we will assume that the pseudo
phase is characterized by strong superconducting fluc
tions. At every given moment the metal consists of sm
domains with different phasesw of the order parameterC
5uCueiw. Of course, this structure varies with time but w
will assume that the characteristic measurement times
much shorter than the phase relaxation time. As far as
absolute value of the order parameter is concerned, we
suppose, the same, as in Refs. 5,6, that it does not vary
the whole sample, although it depends on temperature c
to T** .

According to experimental observations,10,11 Dmax grows
with T* roughly following the BCS relation. We will assum
that this relation holds forDmax andT** . If we neglect in-
terplane hopping, the phase itself never enters the formu
They contain only the gradient of the phase, which is p
portional to the superfluid velocity~we use units with\51!

vs5¹w/~2m!. ~1!

Therefore, we can use the idea of Ref. 5 that the whole p
consists of domains with different superfluid currents. In e
ery domain the variableiv in the Green functions transform
to iv2pvs due to the Doppler effect, wherep is the electron
momentum~this was derived in Refs. 5,6 and could be o
tained also from Ref. 12, sec. 19.2!.

Here we must make a remark. The true expression isiv
2 1

2 vq, wherev is the Fermi velocity, andq is the momen-
tum of Cooper pairs in a moving condensate. For an isotro
system both expressions are equivalent, provided thap
5mv and q52mvs . However, for a real energy spectru
the electron quasimomentum is not a uniquely defined qu
tity, contrary to the Fermi velocity, and the latter is rath
anisotropic in HTSC, becoming small in the vicinities
extended saddle point singularities in the electron ene
spectrum~‘‘hot spots’’!. As a result there is an increase of th
density of states in these regions, and that makes t
‘‘hot.’’ For a simple quadratic spectrum in the singular regi
10452
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we getv15(2m1 /m)1/2, wherem15m2«0 is the chemical
potential with respect to the bottom of the extended sad
point singularity.

As in the previous works~see Ref. 13, and reference
therein, we will assume that the singular regions, loca
close to~p, 0!, or (2p,0) ~we call them ‘‘a’’ !, and~0,p!, or
~0,2p! ~we call them ‘‘b’’ !, are the most important. Th
distribution function of superfluid velocities we will assum
as W5e2F/T, where F is the free energy. The Ginzburg
Landau free energy for the model with extended sad
points was derived in Ref. 14. Leaving only terms depend
on w, we get

F5
1

4m E dxdyF uCau2S ]wa

]x D 2

1uCbu2S ]wb

]y D 2G . ~2!

For ad-wave superconductorCa andCb differ only by their
sign, and this difference vanishes here. Therefore we de
uCau25uCbu25C0

2. The quantityC0
2, according to Ref. 14,

is proportional toDa
2, namely,

C0
2;n@Da~T!/T** #2, ~3!

wheren is the electron density in the singular region

n5
mv1Py0

2p2 . ~4!

HerePy0 is the length of the singularity in momentum spac
Using relation~1!, we substitute the phase gradients by co
ponents ofvs . The integration in the plane, can be replac
by the characteristic area of the domain, wherevs remains
constant. According to Ref. 15~see, also, Ref. 8!, the one-
dimensional coherence length is (Da

2v1 /T** 2T). The char-
acteristic area of a domain can be obtained, multiplying t
by 2p/Py0 .

After that we can write the distribution function

W@vs#5expF2S qmm1Da
4~T!

T** 4T2 D vs
2G , ~5!

whereq;1. This differs from the function derived in Ref. 5
which was based on the idea of Kosterlitz-Thouless spo
neous vortices. Strictly speaking, thevsx

2 comes only from
wa , andvsy

2 only from wb but it is easy to understand that w
can drop the indices ‘‘a’’ and ‘‘ b’’ here. The coefficient at
mvs

2/T is generally of the order of unity, and it become
small atT→T** . This is the reason, why the fluctuations a
not small, and there is no real phase transition atT** .

Until now we used the Ginzburg-Landau theory, which
valid in the vicinity of the critical temperatureT** . It is well
known, however, that in the case of a short coherence len
it coincides with the London theory, and the latter can
used at any temperature. The main assumption of the Lon
theory is that in a superconductor the carriers~presently,
Cooper pairs! behave, as free particles, and the free energ
essentially their kinetic energy. This corresponds exactly
what was assumed above.

The distribution~5! is true, if nothing limitsvs . Actually,
this is not the general case. There exists the Landau crite
1-2
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PROPERTIES OF THE PSEUDOGAP PHASE IN HIGH- . . . PHYSICAL REVIEW B 64 104521
of superfluidityvs,D/p, which defines the critical curren
of very thin wires~see Ref. 12, Sec. 17.4!. In principle, at
larger velocities there could happen a phase transition to
normal state, or appear a resistive state with phase slip
ters ~see Ref. 12, Sec. 22.9!. Here the Landau limit is

vsc5Da~T!/~mv1!. ~6!

For now we use it only as a limitation, leaving a more d
tailed considerations of its consequences to Sec. V.

According to Eq.~5!, the characteristic average value
vs is

vsT;
T

mv1
S T**

Da~T! D
2

. ~7!

This should be compared withvsc . If vsT@vsc , most of the
volume is occupied by the normal phase. Therefore the c
dition vsT5vsc defines the crossover temperatureT* . From
Eqs.~6! and~7! we obtainDa

3(T);T** 2T. The correspond-
ing temperature is of the order ofT** but numerically it may
be several times less. Therefore we assume that

T* 5rT** , ~8!

with r ,1.

III. ARPES SPECTRAL DENSITY

In the paper16 it was shown that in the sum of the ARPE
spectrum with its reflection with respect to the Fermi ene
the Fermi function disappears, and the sum defines the s
tral density of electrons for a given energy and moment
close to the Fermi level. We will use this conclusion, since
permits a direct comparison of the theory with experimen
data. The spectral density is defined by the imaginary par
the retarded Green function

N~v,p!52
1

p
Im GR~v,p!. ~9!

We will introduce more convenient variables for the mome
tum, namely,j5v(p'2p0), and w—the angle along the
Fermi surface~we take a cylindrical Fermi surface with th
Fermi momentump0 , except for the small singular regions!.
The variablev is the energy with respect to the chemic
potentialm. The Doppler-shifted Green function was defin
in Ref. 5:

GR5S v2h2j1 iG2
D2~w!

v2h1j1 iG D 21

, ~10!

whereh5pvs , and D~w! is the absolute value of the sel
consistent superconducting gap.

If we assume, as in Ref. 13, thatD~w! is defined by its
values6Da in the singular regions, then we obtain@here we
take into account all four singular regions,d-wave symmetry,
and for definiteness we assumen51 in Eq. ~5! of Ref. 13#
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Da
5

Py0

4dp0
2 ln~Py0 /k!

„@sin2~w/2!1a#21

1$sin2@~p2w!/2#1a%212$sin2@~p/22w!/2#1a%21

2$sin2@~3p/22w!/2#1a%21
…. ~11!

Here d is the interlayer spacing,k is the reciprocal Debye
screening radius,Py0 is the length of the singular region, an
a is an interpolation constant, chosen so that atw50
D5Da . It is supposed thatD~w! is large only in the singular
regions, and therefore the small constanta is approximately
equal to the prefactor in formula~11!. Simplifying the ex-
pression~11! we get

D~w!

D1
5

cos 2w

11Q sin2 2w
; Q'

1

16a
'

dp0
2 ln~Py0 /k!

4Py0
@1.

~12!

If the dampingG is small, the imaginary part ofGR is ad
function

2
1

p
Im GR5dS v2h2j2

D2~w!

v2h1j D
5vB

2d~h2v2«!1uB
2d~h2v1«!,

~13!

whereuB ,vB are the Bogoliubov transformation coefficien

uB
2,vB

25
1

2 S 16
j

« D
and

«5@j21D2~w!#1/2.

We will be mostly interested in the vicinities of ‘‘nodes,’’ i.e
regions far from the singularities. Therefore

h5pxvsx1pyvsy5p0~vsx cosw1vsy sinw!, ~14!

wherep05mv0 is the large Fermi momentum.
Expression~13! has to be averaged over the distributio

of velocities~5!. We will assume that the temperature is su
ficiently below T* , and the Landau criterion plays no rol
Then the limits for thevsx andvsy integrations can be taken
as infinite. Instead ofvsx ,vsy we will introduce variablesh
and z, where h is defined by Eq. ~14!, and z5p0
(2vsx sinw1vsycosw). Since this is a change of scale and
rotation, we get vsx

2 1vsy
2 5(h21z2)/p0

2 and dvsxdvsy

→dhdz/p0
2. Integrating overh and z and dividing by

*W@vs#dvsxdvsy , we get

2
1

p
^Im GR&5S A

p D 1/2

$vB
2@j,D~w!#exp@2A~v1«!2#

1uB
2@j,D~w!#exp@2A~v2«!2#%, ~15!

where

A5q
m1D4

mT** 4T2 , m5p0
22m, D[Da~T50!. ~16!
1-3
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A. A. ABRIKOSOV PHYSICAL REVIEW B 64 104521
Formula~15! is general, and describes the dependenc
the spectral function on energyv and momentum~j andw!.
In order to make the result more transparent we will consi
a particular case, namely, the momentum exactly at
Fermi surface, orj50. In this case formula~15! simplifies:

2
1

p
^Im GR&5

1

2 S A

p D 1/2

„exp$2A@v1D~w!#2%

1exp$2A@v2D~w!#2%…. ~17!

The example of the spectral density is presented in Fig
Here Fig. 1~a! are the curves for a fixedD51 and different
values ofA ~0.1–1.3!, i.e., for different temperatures, an
Fig. 1~b! are the curves for a fixedA51.3 but differentD~w!
~0.2–1!, i.e., for different anglesw. In the general case w
have a two-peaked curve resembling the experimental re
of Ref. 15.

There are many ways to define the pseudogap. The m
natural way is to define it, as a half-distance between
maxima of the curve~17!. The pseudogap disappears, wh

FIG. 1. Spectral density at the Fermi surface, as function
energy:~a! fixed D ~i.e., anglew! and different values ofA ~i.e.,
temperatures!; ~b! fixed A and differentD.
10452
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the two maxima merge together, and the corresponding c
dition is that the second derivative with respect tov vanishes
at v50. This happens at

uD~w!u5~2A!21/25S m

2qm1
D 1/2S D

T** D 2

T. ~18!

We see that with increasing temperature the pseudogap
appears in an increasing angular range around the no
This qualitatively fits the experimental data of Ref. 16.
course, our derivation fails close toT* and close to the rea
superconducting transition, where hopping between pla
becomes important.

IV. THE NEUTRON MAXIMUM

One of the most spectacular phenomena in the physic
HTSC’s is the maximum in the inelastic neutron scatter
cross section, as function of the loss of energy and mom
tum by the neutron. The maximum is sharp in the superc
ducting phase. However, a smooth maximum exists also
the pseudogap phase.17 In Refs. 18,19 we have calculated th
imaginary part of the electron spin susceptibility, as functi
of momentum and energy, which can be extracted from
inelastic spin-flip neutron scattering cross section. The ca
lations were done for the superconducting phase in the m
with the dominant role of extended saddle point singulariti
Fluctuations were not taken into account, and so, the co
sponding object was an optimally doped, or overdoped,
perconductor belowTc ~for simplicity we assumedT50).

Here we will do the calculation for the pseudogap pha
at temperatures lower thanT* ; therefore the Landau crite
rion will be neglected. We will analyze only the energy d
pendence and use the simplest model of Ref. 18. Since in
scattering process the electron hops from the vicinity of o
singularity to the other one, these vicinities are the m
important regions also in the present calculation. Theref
in formula ~16! for A m has to be replaced bym1 . After that
we haveA→A1 , where

A15q1S Da
2~T!

T** 2TD 2

, ~19!

and q1 is another constant of the order of unity. Since w
presumed that the temperature is lower thanT* , Da(T);D
;T** , andA1D2;(T** /T)2^1. We start with formula~1!
in Ref. 18. According to the preceding sections, we have
replace in all ‘‘a’’ Green functionsiv by iv2hx , and in the
‘‘ b’’ functions i (v2V) by i (v2V)2hy , where hx ,hy
5mv1(vsx ,vsy). This has to be averaged overhx and hy
with the weight

~A1 /p!exp@2A1~hx
21hy

2!#. ~20!

Summation over frequencies leads to a formula rese
bling Eq. ~2! in Ref. 18:

f

1-4
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x5E ~A1 /p!exp@2A1~hx
21hy

2!#dhxdhyE dpxdpy~2p!22d21

3H 1

4«a
F tanh

«a1hx

2T

~«a1ja!~«a1hx2V2hy1jb!2D2

~«a1hx2V2 id2hy!22«b
2 1tanh

«a2hx

2T

~«a2ja!~«a2hx1V1hy2jb!2D2

~«a2hx1V1 id1hy!22«b
2 G

1
1

4«b
F tanh

«b1hy

2T

~«b1jb!~«b2hx1V1hy1ja!2D2

~«b2hx1V1 id1hy!22«a
2 1tanh

«b2hy

2T

~«b2jb!~«b1hx2V2hy2ja!2D2

~«b1hx2V2 id2hy!22«a
2 G J .

~21!

Substitutingjb�2ja ,hy�2hx in the second term, we obtain

x5E ~A1 /p!exp@2A1~hx
21hy

2!#dhxdhyE dpxdpy~2p!22d21

3H 1

2«a
F tanh

«a1hx

2T

~«a1ja!~«a1hx2V2hy1jb!2D2

~«a1hx2V2 id2hy!22«b
2 1tanh

«a2hx

2T

~«a2ja!~«a2hx1V1hy2jb!2D2

~«a2hx1V1 id1hy!22«b
2 G J .

~22!
o

ve

ute
e

st
re
a-

unc-
l.
of
Performing the integration overpy we act in the same
way, as in Ref. 18. Since we are interested inx9, we leave
only the integration over half-circles around the poles. F
simplicity we consider only the case ofm150. Hence, we
may neglect the integration over negativejb and omitm1 in
the denominators. After that we pass from integration o
px to the integration overja leaving again only the positive
part. Everywhere we replace tanh(x/2T) by sgn(x). The result
is

x95E ~A1 /p!exp@2A1~hx
21hy

2!#dhxdhy

3
m

4pd H E d« sgn~«2V1h!sgn~«1hx!

3
@«1uj~«!u#@«2V1h1uj~«2V1h!u#2D2

uj~«!u3/2uj~«2V1h!u3/2

2E d« sgn~«1V2h!sgn~«2hx!

3
@«2uj~«!u#@«1V2h2uj~«1V2h!u#2D2

uj~«!u3/2uj~«1V2h!u3/2 J ,

~23!

whereh5hx2hy ,uj(«)u5(«22D2)1/2.
10452
r
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Since there is a separate dependence onhx , we will in-
troduce new variablesh and z5hx1hy . It is easy to see
that hx

21hy
25(1/2)(h21z2), and dhxdhy5(1/2)dhdz.

Substitutinghx5(h1z)/2, we can integrate overdz. After
that we have

E sgn@«1~h1z!/2#exp~2A1z2/2!dz

5~2p/A1!1/2F@~A1/2!1/2~2«1h!#, ~24!

whereF is the error function.
The integration limits over« in Eq. ~23! are defined so

that the j are real, i.e., their arguments have an absol
value larger thanD. The maximum appears, if one of th
arguments is larger thanD, and the other is smaller than2D
~as in Refs. 18 and 19; we call this partxm9 ). Since«.D, we
must have«2V1h,2D in the first term of Eq.~23!, and
«1V2h,2D in the second. Hence the limits for the fir
term areD,«,V2h2D, and for the second one they a
D,«,h2V2D. From here we can decide that the integr
tion over h in the first term is within limits2`,h,V
22D, and for the second it is withinV12D,h,`. We
will introduce instead of« a new variabler5«1(V2h)/2
in the first term of Eq.~23! and r15«1(h2V)/2 in the
second term. The corresponding integrands are even f
tions of r andr1 and the integration limits are symmetrica
This permits to pass to the integration over positive values
the corresponding variable. Eventually we get
1-5
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xm9 5
m

4pd S A1

2p D 1/2E
2`

V22D

exp@2A1h2/2#dhE
0

z2D

dr
z22r21D22@~z22r2!222D2~z21r2!1D4#1/2

@~z22r2!222D2~z21r2!1D4#3/4

3$F@~A1/2!1/2~V12r!#1F@~A1/2!1/2~V22r!#%2
m

4pd S A1

2p D 1/2

3E
V12D

`

exp@2A1h2/2#dhE
0

z12D

dr
z1

22r21D22@~z1
22r2!222D2~z1

21r2!1D4#1/2

@~z1
22r2!222D2~z1

21r2!1D4#3/4

3$F@~A1/2!1/2~V12r!#1F@~A1/2!1/2~V22r!#%, ~25!
d

re

r

this

-

-

ter-
wherez52z15(V2h)/2. It is easy to see that the secon
term transforms into the first one, if we substituteV by 2V
and change the integration variableh to 2h. Hence,xm9
5F(V)1F(2V), whereF(V) is the first term in Eq.~25!.

As it was said before, the real physical situation cor
sponds toA1D2>1. Let us first supposeA1D2@1. Then the
result will be a slight smear-out of formulas~7!,~8! from Ref.
18. The maximum will appear atV'2D, and since the im-
portanth will also be small, the upper limit of ther integra-
tion in the first integral of Eq.~25! will be small. This leads
to simplifications, and after performing the integration over
in the first term of Eq.~25! we get

F~V!5
ma

2pd S A1

2p D 1/2E
2`

V22D

3expS 2
A1h2

2 DA 2D

V22D2h
dh, ~26!

where

a5
@G~1/4!#2

4Ap
51.8541.

Introducing new variablesv5(A1/2)1/2V,d5(A1/2)1/2D
and passing to the integration overu5(A1/2)1/4(V22D
2h)1/2 we obtain forF(V)

F~V!5xm9 5
mG2~1/4!

23/2p2d
d1/2P~v22d!,

P~x!5E
0

`

exp@2~x2u2!2#du. ~27!

We wroteF(V)5xm9 , since the second term of Eq.~25! has
the relative order of magnitude exp@2A1 (V12D)2/2#!1. The
asymptotic formulas for the functionP(x) are

P~x!'5
S p

4xD 1/2

, x@1,

0.906410.6027x20.5468x2, uxu!1,

S p

8uxu D
1/2

exp~2uxu2!, x,0, uxu@1.

~28!
10452
-

The full plot of P(x) is presented in Fig. 2.
In order to have a better idea about the behavior ofxm9 at

intermediate values ofA1D2 we calculate it forA1D2!1,
although this case has no real physical relevance. For
case in Eq.~25! we can neglectD compared toz, although
not compared tor2z. Performing the integration with re
spect tor in the first term of Eq.~25! we obtain

F~V!5
mb

4pd S A1

2p D 1/2E
2`

V22D

dh exp@2A1h2/2#A 2D

V2h

3$F@~A1/2!1/2~2V2h!#1F@~A1/2!1/2h#%, ~29!

where

b52E
0

1 x2dx

~12x4!1/252&FE~1/& !2
1

2
F~1/& !G51.198.

Here E(k) and F(k) are complete elliptic integrals@in
‘‘ MATHEMATICA ’’ the notation ‘‘EllipticE@m# ’’ means
E(Am)#. We introduce the variablev5(A1/2)1/2V, take the
symmetric combinationF(V)1F(2V) and use the integra
tion variableu5(A1/2)1/4(V2h)1/2. After that we get

xm9 5
bm~2A1!1/4D1/2

2p3/2d
Q~v!,

FIG. 2. Shape of the maximum in the inelastic neutron scat
ing cross section aboveTc in the case of small fluctuations (A1D2

@1): functionP(v22d) @formula ~27!#.
1-6
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Q~v!5E
0

`

du exp~2v22u4!sinh~2vu2!

3F~u22v,u21v!, ~30!

whereF(x1 ,x2)5F(x2)2F(x1). The asymptotic forms of
the integralQ(v) are

Q~v!55
8v2

Ap
E

0

`

x2 exp~22x4!dx50.822v2, v!1

1

4
Ap

v
5

0.443

Av
, v@1.

~31!

The full curve forQ(v) is presented in Fig. 3. The curves
Figs. 2 and 3 resemble each other. From this one can
clude that for the intermediate caseA1D2;1 the curve will
have essentially the same features. On the other hand,
curves resemble the experimental data for the normal re
of underdoped samples~see Ref. 17, Fig. 9!. There the data
for different dopings were taken at the same temperat
Since theT** grows with underdoping, the same should
true for the location of the maximum, and such a trend,
deed, exists.

V. THE SPIN GAP

As was said in the introduction, the ‘‘spin gap’’ appears
the NMR experiments, as a gaplike feature in the tempe
ture dependence of the Knight shift and the spin relaxa
rate.1 Particularly, the Knight shift starts to decrease w
decreasing temperature high aboveTc . We will calculate
here the spin susceptibility, which defines the tempera
dependence of the Knight shift. The central idea of this c
culation is that the appearance of the normal regions is
mostly to the violation of the Landau criterion.

This requires some explanation. As we mentioned pre
ously, due to the ‘‘extended saddle point singularities,’’ t
most important electrons are, actually, one dimensional
the Appendix a calculation is presented for the ‘‘se
consistent’’ critical velocity in one dimension. From that ca

FIG. 3. Shape of the maximum in the inelastic neutron scat
ing cross section aboveTc in the case of large fluctuations (A1D2

!1): functionQ(v) @formula ~30!#.
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culation one can see that there are two possibilities. T
transition can be of the second order, and then the o
parameter gradually~but rather steeply! decreases with in-
creasing superfluid velocity, until it vanishes. Another opti
is that the current reaches a maximum at a finite value of
order parameter. In a thin wire this would mean the appe
ance of a resistive state with phase slip centers, where
order parameter vanishes periodically with time, and the
percurrent is then replaced by a normal current. Of course
fluctuations which we consider here the situation could
different, since they happen in a plane, but these two opti
give us an idea of a rough but simple model which can
scribe the consequences of the Landau criterion. We ass
that the order parameter does not depend on the super
velocity up to the Landau limit, and after that it vanish
discontinuously. The velocity distribution continues beyo
the Landau limit ~this simulates the resistive state!. This
model gives a rather realistic description of the Knight sh
as can be seen below.

Since the spin susceptibility is proportional to the dens
of states, and the latter is maximal in the singular regions
will consider only them, as it was done in Refs. 20 and 2
The contributions of the regions ‘‘a’’ and ‘‘ b’’ are equal for a
tetragonal metal, and so we consider only one of them
double the result. The susceptibility, divided bymB

2 ~square
of the Bohr magneton!, is

x@h#522T(
v

E d2p

~2p!2d

~ iv2h1j!21D2

@~ iv2h!22«2#2 . ~32!

Performing summation overv, and passing to the variablej,
we obtain

x@h#5
Py0

p2v1d E0

` dj

2T
$cosh22@~«2h!/2T#

1cosh22@~«1h!/2T#%, ~33!

wherePy0 is the width of the singular region. Dividing thi
by the value in the normal state~with «→j) and averaging
over h with the weight (A1 /p)1/2exp(2A1 h)2 ~see Sec. IV!
we get

FIG. 4. The relative spin susceptibilityx/xn as function ofT/D
in the case of small fluctuationsa@1 @formula ~35!#.

r-
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x/xn52~A1 /p!1/2E
0

`

dh exp~2A1h2!

3E
0

` dj

4T
$cosh22@~«2h!/2T#

1cosh22@~«1h!/2T#%. ~34!

According to our model, a substitution«→j should be done
in the integral overh.hc;Da(T) @see Eq.~6!#

The integral~34! contains twod-like functions. The width
of one of them isT, and of the other one isA1

21/2. According
to the definition~19!,

a5TA1
1/2;@Da~T!/T** #2 ~35!

this ratio is never large and close toT** it can be small. We
will consider temperaturesT,T** , and thereforeDa(T)
;D. Hence both, the ratio~35!, as well ashc /D, are for-
mally of the order of unity. Using the definition~35! and
switching to new variables, we will write formula~34! in the
form

x/xn5
2

Ap
H E

0

ahc /T

du exp~2u2!

3E
0

` dx

4
cosh22@~z2u/a!/2#1cosh22@~z1u/a!/2#

1E
ahc /T

`

du exp~2u2!J , ~36!

wherex5j/T, z5@x21(D/T)2#1/2 ~we have performed the
x-integration in the second term, usingD50). This is the

FIG. 5. The relative spin susceptibilityx/xn as function of
T/(ahc) for different values ofg5D/(ahc) in the case of large
fluctuations,a!1 @formula ~37!#.
10452
general formula depending on three adjustable parame
a, the temperature scale, e.g.,ahc and the ratioD/hc .

In order to have an idea of the shape of this depende
we consider the limiting cases:a@1, anda!1. In the first
case we can neglect the second term in Eq.~36!, and in the
first term we put everywherea5`. This, actually, means
that fluctuations are negligible, and the Landau mechan
does not work. We get the usual superconducting formula
the region, whereD does not depend on temperature. T
corresponding plot ofx/xn(T/D) is presented in Fig. 4.

In the opposite case a!1 we can substitute
(1/4)cosh22@(z2u/a)/2# by d(z2u/a) and neglect
cosh22@(z1u/a)/2#. After that the result becomesx/xn
5R(T/ahc) ,

R~x!511u~12g!exp@2~g/x!2#F@~12g2!1/2/x#

2F~1/x!, ~37!

whereg5D/hc andF is the error function. The asymptoti
formulas forR(x) are

FIG. 6. Calculation of the critical current. Plot of ln(T** /T) as
function of x5D/(2T): ~a! at y5h/(2T)50.2; the minimum cor-
responds tox50, ~b! at y52; the minimum correspondsxÞ0.
R~x!'H u~12g!exp~2g2/x2!2~x/Ap!exp~21/x2!@u~12g!/~12g2!1/221#, x!1,

12~2/Apx!@12u~12g!~12g2!1/2#; x@1.
~38!
1-8
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The complete plot of the functionR(x) for several values of
g is presented in Fig. 5. Comparison with the experimen
results1 shows close resemblance.

VI. CONCLUSIONS

As was mentioned in Secs. III–V the results of theoreti
calculations based on the Franz-Millis model with the Gau
ian distribution function for one-dimensional fluctuations
qualitatively well the experimental observations. The num
of adjustable parameters is sufficient for a quantitative fit
this was not our goal. The model has some limitations. T
main of them is that we have not considered interplane h
ping, and this makes it inapplicable to temperatures clos
Tc .

Fluctuations exist also in the superconducting phase,
taking them into account is important. One of the examp
is that the energy of the neutron maximum in the superc
ducting state with underdoping varies proportional to the r
Tc , i.e., decreases, whereas the gap, measured by the m
mum in the ARPES spectrum increases. Both maxima
rather sharp. The deficiency of the model can be clearly
derstood from the fact that the hopping between planes le
to a Josephson energy depending on the phases of the
parameter at different planes, and not only on their gradie
Therefore, the description in terms of supercurrents is
more valid, if we approachTc . The construction of the
theory in this vicinity will be the subject of future work.
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APPENDIX: SELF-CONSISTENT CRITICAL CURRENT IN
ONE DIMENSION

In order to understand better the Landau criterion, we w
find here the critical current in the mean field approximatio

FIG. 7. The critical value ofhc /T** , as function of reduced
temperatureT/T** .
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when the current is directed along one of the axes~1,0! or
~0,1!. In this case we can consider the problem, as one
mensional. Introducing a moving Bose condensate, as
fore, we use a derivation similar to Ref. 12, Sec. 16.5. In t
way we obtain

ln
T**

T
5E

0

`

djS 1

j
tanh

j

2T
2

1

2«
tanh

«1h

2T

2
1

2«
tanh

«2h

2T D , ~A1!

where «5(j21D2)1/2. From this formula it is possible to
define the maximal value ofh at any temperature and th
corresponding value ofD. For this purpose we fix a certai
value of y5h/2T and calculate the right hand side of E
~A1!, as function ofx5D/2T. It will be either a monotonous
function ofx with a minimum atx50, or have a minimum at
some finite value ofx. Examples are given in Fig. 6:~a! y
50.2, ~b! y52. From the coordinates of the minimum w
defineDc/2T and ln(T** /T), and from that the correspondin
hc /T** andDc /T** . Figures 7 and 8 show both quantitie
as functions ofT/T** . One can clearly see that the pha
transition atT/T** .0.5645 is a second order transition, a
at lower temperatures it becomes a first order transition.

Another problem is connected with magnetic fluctuatio
Recent observations22,23 permitted us to establish the exis
tence of antiferromagnetic ordering in underdoped YBC
above the Nee´l temperature, both, in the superconducti
and in the pseudogap phase. Since the magnetic momen
small, and the magnetization fluctuates with time, this p
nomenon, has, probably, no influence on many propert
including those, calculated above, but it has to be explain
I think that it may provide a confirmation of the idea on th
nature of the metal-insulator transition described in the
troduction.

FIG. 8. The value ofDc /T** at the critical value of the current
as function of reduced temperature. At higher temperatures
zero, i.e., there is a second order phase transition, and at tem
tures below the tricritical point the finite value manifests a fi
order transition.
1-9
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