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Properties of the pseudogap phase in higf-. superconductors
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Several physical properties of the pseudogap phase are calculated on the basis of the spatially inhomogenous
Franz-Millis model of superconducting fluctuations, consisting of small superconducting domains with uncor-
related supercurrents. The variation of this domain structure with time is supposed to be slow. A distribution
function of superfluid velocities is found based on the assumption of the dominant role of extended saddle
point singularities(“hot spots”). The model is used for calculation of the spectral function, the inelastic
neutron scattering cross section, and the spin susceptibility entering the Knight shift. In all cases the calculated
curves are qualitatively close to experimental results.
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[. INTRODUCTION pure samples at a proper electron concentration. | do not call
it “half-filling,” since the Brillouin zone in the antiferromag-
The last major unsolved problem in the theory of high- netic phase is one half of that in the metallic phase, and it is
superconducting cuprate@dTSC's) is the pseudogap, or filled completely. Doping with oxygen decreases slightly the
more exactly, the pseudogap phase, which occurs in undeelectron concentration and simultaneously creates disorder.
doped samples aboVE.. It was first observed, as a “spin Both changes are able to destroy the spin-density wave, and,
gap” in NMR experiment$. Then the new phase was found as a result, a larger Brillouin zone appears, which is close to
to influence various thermodynamic and kinetic phenomendahalf filling. After that the volume of the Fermi surface does
and finally, it clearly appeared in angle resolved photoemisnot change significantly with further doping. So the situation
sion spectroscopyARPES experiment$:® All these obser- is radically different from doped semiconductors, where the
vations led to a conclusion that in underdoped samples in arystalline lattice, and hence, the Brillouin zone does not
certain temperature interval an unusual state appears, whiaihange, and the dopant concentration defines the volume of
has properties of both, the normal and superconductinghe Fermi surface. Therefore, | find very misleading the
phases. Although we call it “phase,” as other authors do, it israther commonly used name for the metallic phase: “doped
not really a phasésuch as, e.g., the “vortex latticg”since it ~ Mott insulator.”
is not separated from the normal state by a phase transition, If the concentration of carriers is large, and does not
and hence, does not differ from it by symmetry. It is possible change significantly with further doping, what prevents this
however, to speak about a crossover around some tempernaetal to become superconducting immediately after the tran-
ture T*. sition, and to have a high critical temperature, as the opti-
Most theorists agree that the pseudogap phase is due maly doped samples? The idea, which was proposed in our
fluctuations. There is, however, no agreement on their naturg@aper8® was based on the mechanism of interlayer connec-
Fluctuations can be of magnetic origispin fluctuations, tion due to resonant tunneling through oxygen atoms in the
see, e.g., Ref. )4 or of purely superconducting origin. The CuO chains, or BiO and TIO planes. These oxygen atoms are
latter view was adopted in Refs. 5,6. In both approaches theot only “charge reservoirs” but also resonant centers con-
superconductor was considered, as purely two-dimensionahecting the Cu@ planes. The concentration of these atoms,
and the hopping between the Culdyers was not taken into contrary to the Fermi surface, is reduced drastically with
account. This led to a problem in definidg, where a defi- underdoping, and the less the connection, the more two-
nite phase transition takes place. dimensional becomes the material. Low dimensionality en-
One of the arguments, why the pseudogap is formed onlfances fluctuations and destroys superconductivity. Accord-
in underdoped HTSC and not in conventional superconducting to Refs. 8,9 this define3J, in strongly underdoped
ors, or optimally doped and overdoped HTSC, was that theamples and leads to its decrease with decreasing oxygen
small electron concentration in underdoped samples makencentration.
them more vulnerable to fluctuatiofsee Ref. & This idea In Ref. 8 we introduced the crossover temperatlife as
contradicts the fact that very thorough ARPES experinfentsthe self-consistent BCS critical temperature. As we will see
showed that the volume of the Fermi surface is large andbelow, the real crossover happens at a temperature, which
changes very little with doping. Hence the concentration ofcan be somewhat lower. In order to keep the usual notations,
holes is always large. we call the BCS mean field critical temperatufé* . It
In our worlé we proposed a solution of some of thesecould be found formally for any dimensionality but for low-
mysteries. Here we will elaborate these ideas. First of all, welimensional systems it does not define a phase transition,
would like to describe in more detail some of our generalsince fluctuations destroy superconductivity. Our view is that
assumptions. The large Fermi surface in the metallic stat&8** defines some “hidden” scale which has no explicit
makes it extremely probable that the antiferromagnetic insuphysical manifestations. As well known, indawave super-
lating phase is a spin-density wave existing in sufficientlyconductor ordinary, nonmagnetic, impurities strongly sup-
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press the BCS critical temperature. In the process of dopinge getv,=(2u,/m)*?, whereu,;=pu—g, is the chemical
disorder is introduced, and this leads to the decrea3é®f  potential with respect to the bottom of the extended saddle
In the overdoped regio** approached . (the phase dia- point singularity.
gram is presented in Fig. 1 of Ref).8 As in the previous workgsee Ref. 13, and references
In this work we will consider the well developed therein, we will assume that the singular regions, located
pseudogap phase, i.e., the doping region, where the intervalose to(sr, 0), or (— #,0) (we call them ‘a” ), and(0,), or
betweenT** andT, is large. If the temperature is not close (0,—m) (we call them ‘b”), are the most important. The
to T, we can neglect hopping between the planes, and cordistribution function of superfluid velocities we will assume
sider a purely two-dimensional model. We will use the modelas W=e ™', whereF is the free energy. The Ginzburg-
of Franz and Millis’ i.e., consider the metal, as an array of Landau free energy for the model with extended saddle
superconducting domains with different supercurrents. Leavpoints was derived in Ref. 14. Leaving only terms depending
ing the more detailed description of the model to the nexbn ¢, we get
section we mention here only that we use a different distri-

bution function for supercurrents reflecting the dominant role 1 o[ IPa 2
F—m dxd |\I’a|

of extended saddle point singularities in the electron spec- X
trum.

ay

For ad-wave superconductol , andW¥, differ only by their
sign, and this difference vanishes here. Therefore we denote
II. MODEL |W,|2=|W,|>=W2. The quantity¥3, according to Ref. 14,
is proportional toAg, namely,
As was said before, we will assume that the pseudogap
phase is characterized by strong superconducting fluctua- WZ~n[AL(T)/T* ]2, 3)
tions. At every given moment the metal consists of small ) o ) )
domains with different phases of the order paramete¥ wheren is the electron density in the singular region
=|w|e'®. Of course, this structure varies with time but we
will assume that the characteristic measurement times are n .
much shorter than the phase relaxation time. As far as the 2

absolute \;ﬁlue of the Ordeé r}ara;mesettehr |£5_tcgncernefi, we W'“—|erePy0 is the length of the singularity in momentum space.
SUPPOSE, € Same, as In REIS. 5,0, that 1t does ot vary OV§fgin g ve|ation(1), we substitute the phase gradients by com-

the whole sample, although it depends on temperature CIOS;S?Onents ofvs. The integration in the plane, can be replaced

**
o™, . RTRE by the characteristic area of the domain, wheggemains
According to experimental obServations, Amayx grOWS ¢ ngiant According to Ref. 16ee, also, Ref.)8the one-

with T* roughly following the BCS relation. We will assume dimensional coherence length &%y, /T** 2T). The char-

. . *% in-
that this relation holds fol ma, and T™* . If we neglect in acteristic area of a domain can be obtained, multiplying this
terplane hopping, the phase itself never enters the formula%y 20/ P

yo-

They contain only the gradient of the phase, which is pro-"" \o " %o o can write the distribution function
portional to the superfluid velocitfwe use units withh=1)

2
G } ®

mu 1Py0

4

: ©)

1 quAgm) ,
V=Vl (2m). ® W[Vs]‘ex*{ (ﬁr v

whereq~ 1. This differs from the function derived in Ref. 5,
Therefore, we can use the idea of Ref. 5 that the whole plan&hich was based on the idea of Kosterlitz-Thouless sponta-
consists of domains with different superfluid currents. In ev-neous vortices. Strictly speaking, thé, comes only from
ery domain the variabliaw in the Green functions transforms ¢, andviy only from ¢, but it is easy to understand that we
to i w— pv due to the Doppler effect, whepeis the electron can drop the indices&” and “b” here. The coefficient at
momentum(this was derived in Refs. 5,6 and could be ob-mvﬁ/T is generally of the order of unity, and it becomes

tained also from Ref. 12, sec. 19.2 small atT—T** . This is the reason, why the fluctuations are
Here we must make a remark. The true expressidwis not small, and there is no real phase transitiofl *t.
—3vq, wherev is the Fermi velocity, and| is the momen- Until now we used the Ginzburg-Landau theory, which is

tum of Cooper pairs in a moving condensate. For an isotropigalid in the vicinity of the critical temperatuf®* . It is well
system both expressions are equivalent, provided fhat known, however, that in the case of a short coherence length
=mv and g=2mvs. However, for a real energy spectrum it coincides with the London theory, and the latter can be
the electron quasimomentum is not a uniquely defined quarused at any temperature. The main assumption of the London
tity, contrary to the Fermi velocity, and the latter is rathertheory is that in a superconductor the carri¢psesently,
anisotropic in HTSC, becoming small in the vicinities of Cooper pairsbehave, as free particles, and the free energy is
extended saddle point singularities in the electron energgssentially their kinetic energy. This corresponds exactly to
spectrum(“hot spots”). As a result there is an increase of the what was assumed above.

density of states in these regions, and that makes them The distribution(5) is true, if nothing limitsvg. Actually,
“hot.” For a simple quadratic spectrum in the singular regionthis is not the general case. There exists the Landau criterion
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of superfluidityvs<A/p, which defines the critical current A Pyo . .
of very thin wires(see Ref. 12, Sec. 17.4in principle, at 3~ = 2dpZIn(Poolr) ([(sir(¢/2)+a]
larger velocities there could happen a phase transition to the 2 0 yo
normal state, or appear a resistive state with phase slip cen- +{sir?[(7— @)I2]+a} " t—{sir?[(7/2— ¢)/2] +a} !
ters(see Ref. 12, Sec. 23.Here the Landau limit is
—{sir?[ (3m/2— ¢)I2]+a} ~1). (11)

vse=Aa(T)/(Muy). (6)  Hered is the interlayer spacings is the reciprocal Debye
) o ) screening radiusR, is the length of the singular region, and
For now we use it only as a limitation, leaving a more de-5 s an interpolation constant, chosen so that ¢at 0
tailed conglderatlons of its consequences to Sec. V. A=A,. Itis supposed thak(¢) is large only in the singular
According to Eq.(5), the characteristic average value of raginns and therefore the small constarié approximately
Us IS equal to the prefactor in formuléll). Simplifying the ex-
pression(11) we get

T T** 2
USTNm_vl(—Aa(T)) . (7) A(e)  cos2p Niwdpgln(Pyol")>1
A,  1+Qsir2¢’ =~ Ta" 4Py
This should be compared with,;. If vg7>vg., Mmost of the (12
volume is occupied by the normal phase. Therefore the con- ) ] ) ) R
dition vs1= v defines the crossover temperatiite. From If the dampingl” is small, the imaginary part &" is a6

Egs.(6) and(7) we obtainA3(T)~T** 2T. The correspond- function

ing temperature is of the order ®¢* but numerically it may 1 A2(p)
be several times less. Therefore we assume that — —ImGR= 5( w—np— & ———
T w—nté
* — **
™=rr, ®) =U§5(77—(1)—8)+Ué5(77—w+8),
with r<1. (13
whereug ,vg are the Bogoliubov transformation coefficients
Ill. ARPES SPECTRAL DENSITY 1 &
2 .2
. . Ug,vg=5| 1%x—
In the papel? it was shown that in the sum of the ARPES B:UBT2 ( &

spectrum with its reflection with respect to the Fermi energy,

the Fermi function disappears, and the sum defines the spec-

tral density of electrons for a given energy and momentum e=[£2+A2(p)]2

close to the Fermi level. We will use this conclusion, since it . ) ) L )
permits a direct comparison of the theory with experimentaWe.W'” be mostly mter_ested in the vicinities of “nodes,”i.e.,
data. The spectral density is defined by the imaginary part ofegions far from the singularities. Therefore

the retarded Green function .
N=PxUsxt PyUsy= pO(stCOS<P+UsyS|n(P)y (14

1 wherepy=muv, is the large Fermi momentum.
N(w,p)=——Im G (w,p). 9 Expression(13) has to be averaged over the distribution
of velocities(5). We will assume that the temperature is suf-
We will introduce more convenient variables for the momen-ficiently belowT*, and the Landau criterion plays no role.
tum, namely,é=v(p, —po), and ¢—the angle along the Thgn .th_e limits for thev, andvs,, integrations can pe taken,
Fermi surfacewe take a cylindrical Fermi surface with the as infinite. Instead oby,vsy, we will introduce variables;
Fermi momentunp,, except for the small singular regions and ¢, where 5 is defined by Eq.(14), and {=p,
The variablew is the energy with respect to the chemical (—vsxSing+vs,Cosg). Since this is a change of scale and a
potentialu. The Doppler-shifted Green function was definedrotation, we get v +v3,=(7*+¢?)/p; and dvgdvs,
in Ref. 5: —d#yd¢/p3. Integrating over» and ¢ and dividing by
JWIvsldvg,dus,, we get

GR=| w—n—&+il— A ) (10 1 o
K w—ntéFil) - ;(Im GR):(;> {v3[&,A(@)]exd —Alw+e)?]
where n=pvs, and A(g) is the absolute value of the self- +U2[EA(e)]exd —A(w—e)2]}, (15

consistent superconducting gap.
If we assume, as in Ref. 13, thA{y) is defined by its where
values* A, in the singular regions, then we obtdimere we A4
take into account all four singular regiortsyvave symmetry, _ M _ 2 _ _
and for definiteness we assume: 1 in Eq. (5) of Ref. 13 A=q uTe AT K Po2m, A=A,(T=0). (16
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the two maxima merge together, and the corresponding con-
1 R
- 7_'5 <ImG > dition is that the second derivative with respecttganishes
A=0.1 at w=0. This happens at
o 0.5 PREL: 2
. — -12_ _
-2 1 1 > @ |A(e)|=(2A) (qu) (T** ) T. (18

We see that with increasing temperature the pseudogap dis-
appears in an increasing angular range around the nodes.
This qualitatively fits the experimental data of Ref. 16. Of
course, our derivation fails close ¥ and close to the real
superconducting transition, where hopping between planes
becomes important.

IV. THE NEUTRON MAXIMUM

One of the most spectacular phenomena in the physics of
HTSC's is the maximum in the inelastic neutron scattering
cross section, as function of the loss of energy and momen-
tum by the neutron. The maximum is sharp in the supercon-
ducting phase. However, a smooth maximum exists also in
the pseudogap phaséln Refs. 18,19 we have calculated the
imaginary part of the electron spin susceptibility, as function
of momentum and energy, which can be extracted from the
inelastic spin-flip neutron scattering cross section. The calcu-
lations were done for the superconducting phase in the model
with the dominant role of extended saddle point singularities.
Fluctuations were not taken into account, and so, the corre-
sponding object was an optimally doped, or overdoped, su-
perconductor belowl ;. (for simplicity we assumed =0).

A=13 Here we will do the calculation for the pseudogap phase

(b) at temperatures lower thaf*; therefore the Landau crite-

rion will be neglected. We will analyze only the energy de-

FIG. 1. Spectral density at the Fermi surface, as function ofpendence and use the simplest model of Ref. 18. Since in the
energy:(a) fixed A (i.e., anglep) and different values oA (i.e.,  scattering process the electron hops from the vicinity of one
temperatures (b) fixed A and differentA. singularity to the other one, these vicinities are the most

important regions also in the present calculation. Therefore

Formula(15) is general, and describes the dependence aifh formula(16) for A u has to be replaced by . After that
the spectral function on energy and momentungé¢ and ¢). we haveA—A;, where
In order to make the result more transparent we will consider
a particular case, namely, the momentum exactly at the

i : imolifies: AXT)\?
Fermi surface, 0£=0. In this case formul@l5) simplifies: A1=Q1(T*a* ZT) , (19
1 1/2
- ;(Im GR)y= 5(;) (exp{—Alw+A(¢)]%} and q; is another constant of the order of unity. Since we
presumed that the temperature is lower tidn A, (T)~A
+exp{—Alo—A(@)]?D). (170  ~T**, andA;A%~(T**/T)?=1. We start with formula1)

in Ref. 18. According to the preceding sections, we have to

The example of the spectral density is presented in Fig. Ireplace in all ‘a” Green functions w by iw— 7, and in the
Here Fig. 1a) are the curves for a fixed =1 and different  “b” functions i(0—Q) by i(0—Q)—»,, where »,,7,
values ofA (0.1-1.3, i.e., for different temperatures, and =muv(vsy,vsy). This has to be averaged over and 7,
Fig. 1(b) are the curves for a fixed= 1.3 but differentA(¢)  with the weight
(0.2-1), i.e., for different anglesp. In the general case we
have a two-peaked curve resembling the experimental results
of Ref. 15.

There are many ways to define the pseudogap. The most
natural way is to define it, as a half-distance between the Summation over frequencies leads to a formula resem-
maxima of the curveél7). The pseudogap disappears, whenbling Eq. (2) in Ref. 18:

(Al m)exd — Ay 7+ n2)]. (20)
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x= | (Aumient ~Aun+ 2 lmcin, [ dp,dny(2m) 7t

eat Ny (eat &) (eat 9= Q- 77y+§b)_A2 ea— Nx (8a—&a)(ea— Q1+ 7ly—§b)—A2
X{—1|tanh - >— > +tanh - 72
€, 2T (eat mx—Q—id—ny) —ep 2T (ea= mxtQ+id+n) —ep
eptmy (ept&p)(ep— Mt QO+ 77y+§a)_A2 Ep™ Ny (ep=&p)(ept+ = Q— 77y—§a)—A2
+ — | tanh - >— 5 +tanh - 52 .
dgy, 2T (ep— pxt Q+id+ ) —ej 2T (eptny—Q—id—7ny)"—e;

21

Substitutingé,= — &, , 7y= — 7 in the second term, we obtain
x= | (Autmiexd ~Aua+ ) ldndn, [ dodp,2m) 7

tanh

eat mx (eat&a)(eat ny—Q— 77y+§b)_A2 +tanh8a_ Ny (ea—€a)(ea— 1+ Q+ 77y_§b)_A2
2T (eat mx—Q—i6—1ny)°—¢f s 2T (ea— mx+Q+i6+my)°—ef '

(22

Performing the integration oveps, we act in the same Since there is a separate dependenceypnwe will in-
way, as in Ref. 18. Since we are interestedyiy we leave  troduce new variables and {= 7.+ 7. It is easy to see
only the integration over half-circles around the poles. Forthat 72+ 715:(1/2)(,724-4“2), and dn,dn,=(1/2)d5d{.

simplicity we consider only the case @f;=0. Hence, we  sypstitutingz,= (7+ ¢)/2, we can integrate ovet{. After
may neglect the integration over negatiggeand omitu, in that we have

the denominators. After that we pass from integration over
py to the integration oveg, leaving again only the positive
part. Everywhere we replace tamf{T) by sgnk). The result

is f sgie+(n+ ¢)2]exp — A L%12)dL
= (27l ADVRD[ (A1) YA 22 + )], (24

X'~ | (Aatmrend - A n+ ) Tdndln,
where® is the error function.
The integration limits ovee in Eq. (23) are defined so
m . .
x—[ f de sgre —Q+ n)sgrie + 7,) that the ¢ are real, i.e., their arguments have an absolute
4md value larger thamA. The maximum appears, if one of the
arguments is larger thah, and the other is smaller thanA
[e+]|&(e)|[e—Q+p+|é(e—Q+7)|]—A2 (asin Refs. 18 and 19; we call this paft). Sincee >A, we
[€(e)[Fe(e—Q+ 7)) must haves — Q)+ »<—A in the first term of Eq(23), and
e+Q—7n<-—A in the second. Hence the limits for the first
term areA<e<Q — n—A, and for the second one they are
- f de sgrie +Q— n)sgre — ny) A<e<n—Q-A. From here we can decide that the integra-
tion over 7 in the first term is within limits—o <7<}
) —2A, and for the second it is withif) +2A <n<<w. We
[e—]é(e)|lle+Q—n—|&(e+Q—7n)[]-A will introduce instead of a new variablep=¢ + (Q — 7)/2
[£(e) [P é(e+Q—p)|?? ’ in the first term of Eq.(23) and p;=¢+(7—Q)/2 in the
second term. The corresponding integrands are even func-
(23)  tions of p andp; and the integration limits are symmetrical.
This permits to pass to the integration over positive values of
where 7= n,— n,,|&(e)|= (e~ A2 the corresponding variable. Eventually we get
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m [ A\ Y2 r0-2a a2 P AP-[(22 - p?)?-202%(2% 4 p?) + AT
Xm=—=| 5= f exp:—AanIZ]dnJ dp 222 225 2 79374
4md \ 27 0 [(z2—=p) —2A%(Z°+ p°)+ A7]

Al ) 1/2

4md\ 27

X{P[(A/)YAQ+2p) ]+ P[(A/) YA —2p) ]}~ i(
25— p?+ A2—[(Z—p?)2 = 2A%(Zi+ p?) + A*]H2
[(Z5-pH)2—2A%(Z]+p?) + A%

z1—A
0

xf exq—A1772/2]dnf dp
O+2A

X{D[(A/)MA(Q+2p)]+ P[(A/2) VA —2p)]}, (29

wherez=—z,=(Q— 7)/2. It is easy to see that the second The full plot of P(x) is presented in Fig. 2.

term transforms into the first one, if we substit@eby —Q) In order to have a better idea about the behavioy,pfat

and change the integration variablgto —#. Hence,x;,  intermediate values oA;A? we calculate it forA;A?<1,

=F(Q)+F(—Q), whereF(Q) is the first term in Eq(25). although this case has no real physical relevance. For this
As it was said before, the real physical situation corre-case in Eq(25) we can neglecA compared ta, although

sponds toA;A2=1. Let us first supposA;A?>1. Then the not compared tgp—z. Performing the integration with re-

result will be a slight smear-out of formulé®),(8) from Ref.  spect top in the first term of Eq(25) we obtain

18. The maximum will appear & ~2A, and since the im-

portant will also be small, the upper limit of thg integra- mb [ A\ Y2 ra-2a 2A

tion in the first integral of Eq(25) will be small. This leads  F(Q)= ﬁ(?) f dyexd — A, 7%/2] VQT

to simplifications, and after performing the integration ower maNem 7

—0o0

in the first term of Eq(25) we get
ma [ A\ Y2 ro-2a
ro- (52 [

A, 7? 2A g )
xexp - — VQ—ZA—n 7, (26

[T(1/4)]?
a:—
47
Introducing new variablesw = (A;/2)*2Q, 5= (A,/2)*?A

and passing to the integration over=(A;/2)Y4(Q—2A
— 7)Y we obtain forF ()

where

=1.8541.

" mI‘Z( 1/4) 1/2
F(Q)mezm5 P(w—25),

P(x)=f exd — (x—u?)?]du. (27
0
We wroteF (Q) = xr,, since the second term of E@5) has

the relative order of magnitude gxpA, (Q+2A)%2]<1. The
asymptotic formulas for the functioR(x) are

1/2
, x>1,

T
4%

P(x)~{ 0.9064+0.602%—0.54682, |x|<1, (28

1/2
T ~Ix|?), x<0, |x>1
8[ exp( , , .

X{P[(A/2)"(20 = )]+ P[(A/2) 7]}, (29

where

1

E(IV2)~ 5

1 x2%dx
b=2f i = 2V2 F(1nM2)|=1.198.

0 (1=x7%)
Here E(k) and F(k) are complete elliptic integral$in
“MATHEMATICA” the notation “EllipticE[m]” means
E(y/m)]. We introduce the variable=(A,/2)*%Q, take the
symmetric combinatiofr (1) + F(—(2) and use the integra-
tion variableu= (A,/2)Y4(Q— )2 After that we get

bm( 2A1)1/4A 1/2
Xm= 5 g Qlw),

P(w -28)

: —  -28

FIG. 2. Shape of the maximum in the inelastic neutron scatter-
ing cross section abovE, in the case of small fluctuationg\{A?
>1): function P(w—26) [formula (27)].
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Q(w) X%

0.4 0.8
0.3¢% 0.6
0.2 0.4
0.1 0.2
1 2 3 4 5 5 ® 0.2 0.4 0.6 0.8 1 T/A

FIG. 3. Shape of the maximum in the inelastic neutron scatter- FIG. 4. The relative spin susceptibilify/ x,, as function ofT/A
ing cross section abovg, in the case of large fluctuationé\(A?  in the case of small fluctuationg>1 [formula (35)].
<1): functionQ(w) [formula (30)].
culation one can see that there are two possibilities. The

% ) transition can be of the second order, and then the order
Q(w)ZI duexp(— w?—u*)sinh 2wu?) parameter graduallybut rather steeplydecreases with in-
0 creasing superfluid velocity, until it vanishes. Another option
X D(UP— w,u’+ w), (30) s that the current reaches a maximum at a finite value of the

_ , order parameter. In a thin wire this would mean the appear-
where®(xy,x,) = ®(xz) — @ (xy). The asymptotic forms of 506 of 4 resistive state with phase slip centers, where the

the integralQ(w) are order parameter vanishes periodically with time, and the su-
percurrent is then replaced by a normal current. Of course, in
8(1)2 . . . . . .
= | x2exp(—2x%dx=0.82202, w<1 fluctuations which we consider here the situation could be
Jm Jo ' different, since they happen in a plane, but these two options
Qlw)= give us an idea of a rough but simple model which can de-
E \/E: 0.443 wo>1 scribe the consequences of the Landau criterion. We assume
4 Vo o' ' that the order parameter does not depend on the superfluid

(31)  velocity up to the Landau limit, and after that it vanishes
discontinuously. The velocity distribution continues beyond

The full curve forQ(w) is presented in Fig. 3. The curves in the Landau limit(this simulates the resistive statelThis

Figs. 2 and 3 resgmble eqch other. I;rom this one can Cofla o gel gives a rather realistic description of the Knight shift,

clude that for the intermediate ca8égA“~1 the curve will as can be seen below.

Eﬁy\?essriz“n?kl)llﬁ ttr;]ee Seim:rifr?]g;ut;elsda(t): fg]reﬂ?éhne(;r;a;;dr’etwgseSince the spin susceptibility is proportional to the density

of underdoped sam Ie{spee Ref. 17, Fig. 9 There the datag Of states, and the latter is maximal in the singular regions we
un P amp -0, TG will consider only them, as it was done in Refs. 20 and 21.

for different dopings were taken at the same temperaturerhe contributions of the regionsa” and * b” are equal for a

. x ) .
Since theT™* grows with underdoping, the same should betetragonal metal, and so we consider only one of them and

ggg dfoé)zihs‘is'oca“on of the maximum, and such a trend, in-y. 1o the result. The susceptibility, divided pg (square

of the Bohr magnetonis
V. THE SPIN GAP d2p (iw— 77+ §)2+A2
As was said in the introduction, the “spin gap” appears in xlnl= _ZT% f (2m)%d [(io—n)°—€?]?"
the NMR experiments, as a gaplike feature in the tempera-
ture dependence of the Knight shift and the spin relaxatioPerforming summation oves, and passing to the variable
rate! Particularly, the Knight shift starts to decrease withwe obtain
decreasing temperature high aboVg. We will calculate

(32

here the spin susceptibility, which defines the temperature Py [=dé .

dependence of the Knight shift. The central idea of this cal- x[n]= mf o7 teosh “[(e = 7)/2T]
culation is that the appearance of the normal regions is due =70

mostly to the violation of the Landau criterion. +cosh (e + 5)/2T]}, (33

This requires some explanation. As we mentioned previ-
ously, due to the “extended saddle point singularities,” thewhereP,, is the width of the singular region. Dividing this
most important electrons are, actually, one dimensional. Iy the value in the normal statevith e — ¢) and averaging
the Appendix a calculation is presented for the “self- over 5 with the weight @, /) ?exp(—A, 7)? (see Sec. IY
consistent” critical velocity in one dimension. From that cal- we get

104521-7
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T/omC

1 2 3 4 5 6

FIG. 5. The relative spin susceptibility/y,, as function of
T/(an) for different values ofy=A/(an.) in the case of large
fluctuations,a<1 [formula (37)].

X/XnZZ(Allﬂ')llzf d7exp(—Ay7°)
0

X wﬁ{coshfz[(e— )12T]
0 4T g

+cosh [ (e + 7)/2T]}. (34)

According to our model, a substitutian— ¢ should be done
in the integral overp> 5.~ A4(T) [see Eq(6)]

The integral(34) contains twos-like functions. The width
of one of them isT, and of the other one i&; 2. According
to the definition(19),

a=TA~[Ay(T)IT** ]2 (35)

this ratio is never large and closeTé* it can be small. We
will consider temperature§ <T**, and thereforeA ,(T)

~A. Hence both, the rati¢35), as well asy./A, are for-
mally of the order of unity. Using the definitio(85) and
switching to new variables, we will write formul&4) in the

form
2 anclT
f duexp(—u?)
0

X/Xn:\/_;

* dx s _
xf Tcosh [({—ula)/2]+cosh ?[(¢{+ula)/2]
0

+fw duexp(—uz)], (36)

an T

wherex=¢/T, (=[x?+(A/T)?]*? (we have performed the
x-integration in the second term, usiig=0). This is the

0(1— y)exp — y2Ix2) — (xIm)yexp — 1K) 6(1— y)/(1— yH)¥2—1], x<1,
Cl1-eNmIL- 01— p(1- )Y x> 1.

PHYSICAL REVIEW B 64 104521

In (T**/T)
0.12 n/2T)=0.2

s A/2T)

0.04

@
In (T**/T)

n/(Q2T) =2

1 P 3 - AQ2T)
(b)

FIG. 6. Calculation of the critical current. Plot of ¢ /T) as
function of x=A/(2T): (a) aty=#/(2T)=0.2; the minimum cor-
responds tx=0, (b) aty=2; the minimum corresponds# 0.

general formula depending on three adjustable parameters:
«a, the temperature scale, e.g.y. and the ratioA/ 7.

In order to have an idea of the shape of this dependence,
we consider the limiting cases>1, anda<<1. In the first
case we can neglect the second term in B6), and in the
first term we put everywhere=«. This, actually, means
that fluctuations are negligible, and the Landau mechanism
does not work. We get the usual superconducting formula for
the region, wherel does not depend on temperature. The
corresponding plot of/x,(T/A) is presented in Fig. 4.

In the opposite casea<<l we can substitute
(1/4)cosh 7 ((—ula)i2] by &({—ula) and neglect
cosh {({+u@)/2]. After that the result becomeg/xn
=R(T/an),

R(X)=1+ 6(1— y)exfd — (y/x)2]®[(1— y?)¥3x]
—d(1/x), 37)

wherey=A/7. and® is the error function. The asymptotic
formulas forR(x) are

(38)
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nC/T** Ac/T**
2+ 2
N\ ] 1.5 :
15N : :

: \: 0.5+

0.5 ST \
o-f L T/TH**

0 i T/T**

0 0.2 04 06 0.8 1 0 0.2 0.4 06 038 1
temperaturel/T** . as function of reduced temperature. At higher temperatures it is

zero, i.e., there is a second order phase transition, and at tempera-

y is presented in Fig. 5. Comparison with the experimentaPrder transition.

results shows close resemblance. .
when the current is directed along one of the ake§) or

(0,2). In this case we can consider the problem, as one di-
mensional. Introducing a moving Bose condensate, as be-
As was mentioned in Secs. IlI—V the results of theoreticalfore, we use a derivation similar to Ref. 12, Sec. 16.5. In this
calculations based on the Franz-Millis model with the Gaussway we obtain

ian distribution function for one-dimensional fluctuations fit

VI. CONCLUSIONS

qualitatively well the experimental observations. The number In s =fwd§ Etanhi— itanl etn

of adjustable parameters is sufficient for a quantitative fit but T 0 £ 2T 2e 2T

this was not our goal. The model has some limitations. The

main of them is that we have not considered interplane hop- _ itanl's_ 77) (A1)
ping, and this makes it inapplicable to temperatures close to 2¢ 2T )’

Te.

taking them into account is important. One of the example%

is that the energy of the neutron maximum in the superconc o ofy= /2T and calculate the right hand side of Eq.

ducting state with underdoping varies proportional to the rea A1), as function o= A/2T. It will be either a monotonous
T., i.e., decreases, whereas the gap, measured by the maﬁﬂ— : :

. ) . nction ofx with a minimum atx= 0, or have a minimum at
mum in the ARPES spectrum increases. Both maxima are - . R
. Some finite value ok. Examples are given in Fig. a) y
rather sharp. The deficiency of the model can be clearly un=" - . hl
0.2, (b) y=2. From the coordinates of the minimum we

derstood from the fact that the hopping between planes leads " .
to a Josephson energy depending on the phases of the OmczeflneACIZT and In{(T* /T), and from that the corresponding

r ** *% H H
parameter at different planes, and not only on their gradients7.7°/T andA./T** . Figures 7 and 8 show both quantities,
Therefore, the description in terms of supercurrents is n

s functions ofT/T** . One can clearly see that the phase

more valid, if we approachT,. The construction of the ransition afT/T** >0.5645 is a second order transition, and
, c-

theory in this vicinity will be the subject of future work.

at lower temperatures it becomes a first order transition.
Another problem is connected with magnetic fluctuations.

Recent observatiofs® permitted us to establish the exis-

tence of antiferromagnetic ordering in underdoped YBCO

This work was supported by the U.S. Department of En-2bove the Neetemperature, both, in the superconducting

ACKNOWLEDGMENT

ergy under Contract No. W-31-109-ENG-38. and in the pseudogap phase. Since the magnetic moments are
small, and the magnetization fluctuates with time, this phe-
APPENDIX: SELF-CONSISTENT CRITICAL CURRENT IN nomenon, has, probably, no influence on many properties,
ONE DIMENSION including those, calculated above, but it has to be explained.

| think that it may provide a confirmation of the idea on the
In order to understand better the Landau criterion, we willnature of the metal-insulator transition described in the In-
find here the critical current in the mean field approximation troduction.
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