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We propose a model of a spatially modulated collective charge €428 of superconducting cuprates.
[For a shorter version of this work, see A. H. Castro Net®roceedings of the MTSC 200D Supercondl3,
913 (2000].] The regions of higher carrier densitgtripes are described in terms of one-dimensiof{HD)
interacting fermions and the regions of lower density as a two-dimens{@balinteracting bosonic gas of
dy2_y2 hole pairs. The interactions among the elementary excitations are repulsive and the transition to the
superconducting state is driven by decay processes. Vibrations of the CCS and the lattice, although not
participating directly in the binding mechanism, are fundamental for superconductivity. The superfluid density
and the lattice have a strong tendency to modulation with wave vecides@) and (Om/a) implying a still
unobserved dimerized stripe phase in cuprates. The phase diagram of the model has a crossover from 1D to 2D
behavior and a pseudogap region where the amplitude of the order parameters are finite but phase coherence is
not established. We discuss the nature of the spin fluctuations and the unusual isotope effect within the model.
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[. INTRODUCTION short length(high energy scale that is associated with the

The experimental evidence for charge and spin inhomobehavior of the electrons at atomic distances. This piece of
geneities in superconducting cuprates has been accumulatiphysics is dominated by the strong local interactions that
in the past few year® It is believed that these inhomoge- lead to the Mott insulator and it is well described by models
neities are probably the result of strong competing electronef strongly correlated electrons such as the Hubbard or the
electron and electron-lattice interactions. The strong interad-J model. This is a “highly” quantum regime where quan-
tions can be hinted from the fact that cuprates are related tm fluctuations at atomic scales determine the physical re-
Mott insulators, not to metals. From the theoretical point ofsponse. Since the short length scale is usually smaller than
view the major problem has been the description of théhe size of systems studied numerically, these studies can
doped Mott insulator. It is this state that finally evolves intoprovide a good physical insight. Various analytical ap-
a superconducting state. The origin of the inhomogeneitieproaches to these strongly coupled models exist irf2D,
can be diverse. Disorder and the charge localization effectand although they can also provide insight into the main
that occur close to an insulating Mott state are natural posphysical aspects of the problem they are unreliable in dealing
sibilities. Furthermore, there is an emerging point of viewwith quantum fluctuations. In order to acquire intuition one
that inhomogeneities may be in the heart of the superconis forced to look at purely academic models that can be
ducting phase. The difficulty in describing the superconductsolved beyond mean field. This is the case of the various
ing state may be related with the fact that an important parstudies of the Ising-J model where quantum spin fluctua-
of the physics occurs in real space. This should be contrasteibns are suppressed by a large anisotropy in spin spime,
with a Fermi liquid description that is dominated by the spin-fermion models where the spins are treated classically
Fermi surface in momentum space. If the inhomogeneitiesr models with large number of componetft€©n the other
observed experimentally are essential for the description dfiand, the long wavelength physics of the problem is domi-
the superconducting state then a dual description in terms ofated by long-range interactions such as the Coulomb,
real and momentum space is certainly requfted. Casimirt! or entropic interactions that are essentially classi-

The search for a general principle or a specmbybe cal in origin}?!3 Analytical treatments of these interactions
hidden symmetry that facilitates the understanding of thesehave always been difficult even in statistical mechanical
materials is always desirable. It turns out that the intrinsicproblems in 1D. Therefore, from the theoretical point of
complexities of these systems are enormous. In fact, the exdew there are technical complications at all length scales.
perimental evidence seems to be that all the degrees of freédmny theoretical treatment that intends to start from the mi-
dom, charge, spin, lattice, participate in a fundamental wagroscopic picture from the beginning will encounter tremen-
in their physics. Unfortunately, we may have to sacrifice thedous difficulties.
simplicity of description that helped us to understand the In this paper we follow a semiphenomenological ap-
basic physics of many systems in the past. Besides the stromgoach. At the short length scales we have known for a long
local interactions that induce large charge fluctuations, longtime that doped Mott insulators have a big “aversion” to
range interactions associated with the insulating state cacharge homogeneity. This happens because there is a large
suppress the same degrees of freedom. We believe that it lisss of magnetic energy when charge delocalizes. Even be-
the interplay between these two forces that is fundamentdbre superconductivity was discovered in cuprate oxides the
for the understanding of the physics in these systems. In thisoncept ofstrings and quantum confinement of holes was
papef we assume that the physics in cuprates can be dividedell understood: when a hole moves in an antiferromagnet it
at least into two length scales. On the one hand there is theroduces a string of overturned spins with the energy grow-
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ing linearly with the length of the strintf. When the hopping in the case of 1D charged density way&DW). In fact, the
energy,t, is smaller than the antiferromagnetic exchanfje, CCS state described here has strong similarities with the me-
strings are the dominant processes in antiferromagfatts tallic 2D CDW states observed in Dichalcogenidethat
though higher energy delocalizing processes called Trugmahave very little resemblance with the 1D CDW states that are
loops are also possibfé. When two holes are injected into insulating®® This state is probably better described as com-
an antiferromagnet there is a gain in magnetic and kinetiénd from the quantum melting of an anisotropic Wigner crys-
energy if they move together instead of separately. Stringt! (or Bragg glasg” or from an exotic CDW stat In
are suppressed because the second hole heals the string geigssical statistical mechanics there are many analogues
erated by the first one. This picture of the diluted Mott insu-called liquid crystal phases: nematic, smectic, hexatic;‘%tc.
lator is generic. It can be obtained analytically in the IsingThese are phases with long-range orientational order in the
t-J model and is also observed in numerical simulations oflbsence of translational order. Another more mundane phase
the SU2) models as welf. Because of the tendency to seg- whe_re translational symmetry is brokgn in 2D is an aniso-
regate charge, Mott insulators are at the edge for phase seg&opic membranephase where translational order is broken
ration into hole-rich and hole-poor regioHsStill to this date  along the principal vectors of the latticé. .
there is a heated debate about the border to phase separation-€t Us consider a static charge modulated phase induced
in the phase diagram of theJ model*® More recently the ~@long they direction in the 2D system with periodicitya
concept ofstripesin the t-J model has emerged due to den- Wherea is the lattice spacing. The charge densitft), can
sity matrix renormalization groupDMRG) calculations by ~be written aswe use units such thdt=kg=1)
White and ScalapindWs).'° These simulations show clear
signs of charge order. In the WS picture when holes are o0
doped into the antiferromagnet they first form pairs that con- p(r):po+<CI>(r)>exp{ [ my
dense into lines of charge with magnetic anti-phase domain
walls (ADW). This condensation process, as shown in ana-
lytical approaches to the Isirtgd model$® and in other nu- Wherepg is the background density, aribl is the complex
merical studie$! has to do with the gain in kinetic energy of order parameter that can be rewritten in terms of an ampli-
a single hole due to the formation of an ADWmoreover, tude|[®| and phaser:
Trugman loops are suppressed in this 3s&hat is, for a
finite linear density of holegvanishing 2D densifythe gain 20
in kinetic energy by making a domain wall is enough to (@(r))=|¢>|exp[ —iN—u(r)]. (1.2
compensate for the loss of magnetic energy due to the for- a
mation of magnetic defects. We should stress that we are not
concerned with the problem of the phase diagram ofttdle The lines of constant phase at wave number (XNa) are
model because this phase diagram most certaialynotbe  described by
the phase diagram of cuprate oxides. There are many impor-
tant interactions in cuprates that are not included inttde >
. . . a

model. We argue below that coupling to the lattice, for in- ¢=—(y—u)=2mn, (1.3
stance, is relevant for the experimental phase diagram. We Na
assume that the tendency of the diluted Mott insulator to
form bound state pairs of holes is universal. wheren=0,=1,+2,... . In aninert backgroundsuch as a

Long-range interactions and their eventual screening areermi liquid) the local modulations of the density can lead to
probably the key to understand the phase diagram ofjaps at the Fermi surface but the system as a whole remains
cuprate$? At low doping, because of the existence of a largehomogeneous. In a Mott insulator this is not necessarily so.
charge gap in the Mott insulator, charge dynamics is supin the regions of low charge density the Mott insulator is
pressed and as a consequence dynamical screening as websentially untouched. In these regions it is energetically ad-
All the physics rests in the spin degrees of freedom. Thusyantageous for the system to form bound states of holes with
when a small concentration of hole is introduced into thed,> > symmetry(exactly like in a finite cluster or ladder
CuO, layers long-range interactions should play a majorwith a gain magnetic enerdy:*1*? In the regions where
role. These long-range interactions are effective in suppressharge density is large it is energetically more favorable for
ing the tendency to phase separation as stressed by Emehe system to have a gain of kinetic enéfyghat liberates
and Kivelson(EK) and collaboratofS=2° and lead to the the holes to move as single particles and create ADW. Thus,
generation of a finite length scalkep, associated with do- the formation of a charge ordered state has to be accompa-
main size”® In the absence of a lattice the long-range forcesnied by a change in the spin structure of the system with the
produce blobs or lakes of charge with characteristic kige  creation of incommensurate spin fluctuations. The mecha-
It turns out, however, that in transition metal oxides the couism of gain of energy(kinetic or magnetic depends
pling to the lattice is strong and therefore the symmetry ofstrongly on the amount of charge density. Moreover, defor-
rotations in real space is broken. Charge modulation is thergnations of amplitude of the order parameter of the CCS are
fore the final result of the tendency to phase separation analways energetically costly. Therefore, phase fluctuations are
strong lattice coupling. The formation of this charge modu-the low energy excitations in such systems. For a classical
lated phase isot the result of a Fermi surface singularity as smectic phase, for instance, the free energy is given by

+c.c., (1.1
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1 ) 1 whereup , is the lattice deviation from equilibrium position
FSZEJ d’r[B(d)us)®+K(dtug)?]= > ; wsUsil?, andwp  the phonon dispersion relation. In the leading order
(1.4 the coupling between the smectic and lattice is quadratic in
' the displacements and can be written as

whereB is transverse stiffness of the smectic afds the

splay elastic constant. Hefeand_L indicate the gradient of FC:; CiUxUp,—tc.C.y (1.6

the function in the directions parallel and perpendicular to

the ordering direction, respectively. Moreove,.ssyszkﬁ where Cy are the coupling constants. The problem of the
+KKk? is the classical smectic dispersion relation. A mem-CCS plus phonons can be solved exactly by a simple linear
brane phase, on the other hand, would be described tgpmbmatlon of the displacement fields. There are two

oy = VBIK+BZKZ whereB) (B,) are the longitudinal branches of excitations with frequency given by

(transversg compressibilities. In fact, because the charge 1

modulated state is composed of electrons we expect this . ,=-[wg,+wp = V(ws— wp W2+4[C %]

modulated phase to be quantum in nature, that igjantum T2 ' ’ '

liquid crystal® 17
Notice that such a smooth charge distribution as proposegading to a splitting of the vibrational modes. Therefore, the

in Eq. (1.1) is different from the stripe phases discussed inphonon spectrum should be directly affected by the presence

the context of insulating cuprates and nickelates. In insulatpf 3 CCS. Thus, in dealing with the fluctuations of the CCS

ing nickelates static charge order is observed in neutron scajge have to consider the renormalizations of such fluctuations

tering and many other experimerifsThe key point is that py the lattice. The full quantum mechanical problem can be

higherharmonicsof the fundamental Bragg peaks associatedquantized exactly like phonons in ordinary crystalline solids

with static order are observed in these systems. It impliegnd the vibrations of the CCS are described by
sharp, well defined and isolated domain wall structures in

real space. In superconducting systems where inelastic neu- +
tron scattering peaks are observed at equivalent positions Hv:kz Q4 kbo Dok, (1.9
there areno harmonics observed, even when the fundamental “
peaks are rather sharp. In L@aNd, Sty LU0, (LNSCO)  whereb,, (b;k) is the annihilationcreation operator for
where Tranquada and collaborators observed quasi-statifuantum vibrations of the CCS with momentumin the
peaks in neutron scattering there are no signs of highesrancha and energy,, .
harmonics® This experimental fact signals to a smooth  Although the description of the collective state is rather
variation of the charge-spin densities in the system. Thus, théimple because of its Gaussian nature, the description of its
idea of well-defined, non-interacting stripes is misleading ininternal degrees of freedotassociated with the short length
the context of superconductivity. Instead one should think okcale is more complex. In what follows we make ad hoc
the “stripes” as a complex collective state that is driven by assumption that the internal charge excitations of this collec-
competing local interactions and cooperative long-rangeive state can be divided into two main groups. First, in the
forces. regions where the charge density is laftfeat is, given by
The importance of the lattice degrees of freedom has beethe lines of constant phase in E@.3)] ADW exist due to the
experimentally verified in essentially all cuprate supercondocal gain in kinetic energy. These regions we call stripes.
ductors and their insulating relativé$3’ At this point in  These high density regions are characterized by single par-
time most of the theoretical approaches either focus oficle excitations(not bound statgsand they are essentially
electron-electron interactions and overlook the importance ofonfined to 1D lines because of the potential induced by
lattice degrees of freedom or mainly electron-phononstrings®® This highly anisotropic electronic fluid should be
interactions® disregarding the importance of the strong interacting because of the phase space constraints and in the
(short- and long-rangeinteractions in the problem. Some absence of tunneling between stripes it is described by a
mean-field approaches, however, have stressed the imparuttinger liquid®® In the regions of low densityin the
tance of electron-lattice interaction in the context ofmiddle of the antiferromagnetic laddgingle particle exci-
nickelates>**We believe that electron-electron and electron-tations are suppressed and bound states of holes are energeti-
lattice interactions are equally important because of chargeally more favorable. The simplest of them is a bound state
neutrality. Charge neutrality implies that a charge modulate@f a pair of holes withdy2_ 2 symmetry*! Larger bound state
state such as the one defined in Ef1) has to be strongly structures like quartets are unlikely to contribute because
coupled to the lattice. One would expect under general contheir quantum dynamics is exponentially suppregsednel-
siderations that fluctuations of the CCS to appear in the phang matrix elements decay exponentially with the number of
non spectrum. Indeed, consider the classical elastic latticgarticle. Moreover, we assume that this gas of bosons is
free energy: essentially isotropic and only weakly coupled to the stripe
fermions. The main reason for the weak coupling is related
with the “string healing” process that generates the pairs in
> wplup 2, (1.5 first pla(;e, that is, th.e bospns are essentially insensitive to the
K ' ’ magnetic structure including the ADW. We argue, however,

=

FP:E
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FIG. 1. Schematic plot of the density of states as a function of
energy. FIG. 2. Effective potential(a) V.(y) is the string potential gen-

erated by the antiferromagnetic background ®R¢ly) is the atomic
that it is the weak coupling between bosons and stripes thdotential generated by the lattiogs) resultant potential.
ultimately produces superconductivity in the system.

From the electronic point of view the situation is illus- changes), andJ, as shown in Fig. @).* While J'/J is a
trated in Fig. 1. The Mott insulating state can be described byhort length scale property and depends on the microscopic
a filled lower Hubbard bandL.H.B.) and an empty upper detail$® the ratio
Hubbard bandU.H.B.) that are separated by a large energy
scale. In between these two bands there is a single electron Jy
band associated with the stripe fermions that we call the a=3° (1.10
stripe band. The bound states of holes exist due to the trans- Y

fer of spectral weight from the L.H.B. to a level above it With gepends on the long wavelength properties and determines
energyE,/2 (wherek is the momentum of the boson as we the region of stability for antiferromagnetic ordérMore-
discuss below The binding energy of the holes is the energy gyer, the effective spin stifiness of the magnetic background
difference between the boson level and the top of the L.H.Bgepends directly om. Assuming thatl,=J in Fig. 3(b) (so
The binding energy can be seen as mediated by the exchanggyt the exchange along the direction of the stripes is not
of paramagnorfs and therefore is of the order of the char- modified it is easy to show thét
acteristic magnetic energy in the probléf# In the un-
doped system the characteristic energy is simply the ex-

ps(a)=Ja.

change constan but as doping increases the magnetic (1.13
energy scales are reduced driving the system from the Mott
insulator to a more ordinary Fermi liquid state. (a)T | tet]l t |

The measure of the magnetic energy is the spin stiffness,
ps, Of the magnetic background. A finite spin stiffness pro- l T l o T l T
duces the confining potential for the charge carriers of the Ji{
form? T l tieil 1t |

i
Vey)="2lyl (19 o

(modulusNa) as shown in Fig. @) [Vc(y+Na)=Vc(y)]. (b)
The total potential as seen by the holes is a superposition of l T l T l T l T l T l T
the atomic potential of the lattice Va(Y)[Va(y+a)
=Va(y)], and the magnetic confining potential of the T l T l T l T l T l T l
strings. In Fig. 2b) we show in a simple Kronig-Penney J i
picture the result of the superposition of these two potentials. Y l T l T l T l T l T l T
When the temperature is larger thapthe holes are essen-
tially deconfined. Since the hole pairs only exist at tempera- "'J
tures belowpg it is important to estimate this energy scale. In x
order to do so let us consider the situation in Fig) 3vhere FIG. 3. (a) Magnetic interactions in the presence of stripkis

the exchange within the antiferromagnetic regions isut  the exchange between spins in the antiferromagnetic laddeis
across the stripe it i3’ <J. At long wavelengths the problem the exchange across the strifgle) Effective magnetic model with
maps into a spatially anisotropic Heisenberg model with exspatially anisotropic couplings.
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This choice for the exchange constants was used in Ref. 4emperature scal€* (N)~ ps(N) above which no bosons ex-
and seems to explain well the data in LNS&Qn the low  ist [T*(N,,)=0]. So we relate the formation of the hole
hole doping regimex<0.02) another choice has to be madepairs as the “pseudogap” energy scale observed in many
since the magnetism is isotrofitlt is clear from Eq(1.11)  different experiment& Our theory, however, breaks down
that a decrease in reduces the spin stiffness and can lead towhenT>T*.
a quantum phase transition to a spin liquid sfat€he main In the noninteracting picturéwith no hybridization be-
problem is how to relate of the effective model of Fig.®) tween bosons and fermionse can have two possibilities. In
to the microscopic model of Fig.(8. We use a simple Fig. 1 the boson state is empty of holé#led with electrong
scheme and compare the classical ground state energies arfd the stripes are partially filled up to the chemical potential
the two problems. In the case of FigaBthe Hamiltonian is energy u. Because bosons and fermions are in thermody-
simply namic equilibrium we work in the grand-canonical ensemble
and keep the chemical potential fixed by letting the number
H :2 3.,S°S, (1.12 of particles fluctuate. Consider the case when
i

where J; ;=J in the antiferromagnetic ladders adg;=J’

across the ADW. Let us rewrit¢’ = vJ where 0<y<l isa The boson state is unoccupied and there are no bosons in the
microscopic quantity that depends on details of the problemsystem. As the chemical potential is redu¢etbre holes are
With this parametrization it is clear that the classical groundntroduced the stripes empty and further reduction of the

state energy can be written as chemical potential pins the energy at the boson level since as
more holes are added they can only produce bound states.
Eo=Ear(J) + (1~ 7)ISNstipedNs. (113 Thus, there is a continuous transfer of spectral weight from
where the L.H.B. to the boson level. On the other hand, if the bind-
ing energy of the holes increases nothing happens until
Ear(J)=—2J SZNsr,ins (1.19 =E/2. At this point there would be bosons and stripes co-

is the classical energy of an isotropic antiferromagnet WithexIStIng with each other. When the binding energy is in-

N, spins and exchangk N, is the number of sites in each creased further the chemical potential follows since bosons
'spinsSP 2. N . . become converted into stripe fermions. Once again the
direction (Ng is the total number of sit@SNgyipes= Ns/N is

h ber of stri i< th ion b ) . chemical potential is pinned at the boson level. Finally when
the number of stripes(is the separation between stripes in ye hog0n level reaches the top of the stripe band the stripes

lattice unitg, and Ngpins=Ng—NsX Ngiipesis the number of 516 completely filled and the ADW disappears. In fact, be-
spins not residing in stripepNgyne=N2(1—1/N)]. Thus ineti i isap-
spins— s »  cause of the loss of kinetic energy the domain wall disap

from Eq.(1.13 one gets pears even before this limit is reach@dTherefore, we as-
sume that
B0, 37 1.1
On the other hand, for the effective model shown on Fig.Moreover, itis clear from this picture that the spin degrees of
3(b) with the same number of sites we would have freedom that are responsible for the large magnetic response

in these systems leave on the L.H.B. and are separated in
Eo=—(I+J))S’Ni=—J(1+a)S?°NZ, (1.16  energy from the charge degrees of freedom. Therefore, the

. magnetism can be effectively “traced out” of the problem
where we used Ed1.10. Comparing Eqs(1.19 and(1.16 since it only leads to kinematic renormalizations of the vari-

we find ous parameter8n other words, the spins follow the chajge
3—vy The mechanism for superconductivity discussed in this
a=1— N (1.17%  work requires the coupling of stripe fermions via the ex-
change of bosons. One can think of this mechanism as the
This result implies from Eq(1.12) that exchange of stripe “pieces.” Coherence between the fermi-

ons requires the exchange of real bosons. The simplest
mechanism for exchange is the decay of the bogsimse

[, 3—v
ps(N)=JS"\/1~ N - (1.18 they are composite particlemto fermionic degrees of free-

. L ) . . dom at the stripes. This kind of mechanism can occur when
Notice that the spin §t|ﬁness vanishes at a critical dlstanc?w0 systems with very different ground states are separated
N, between stripes given by by an interface. In fact, it was proposed long ago that a

N.=3— mechanism of this sort could generate superconductivity at a
m V. (1.19 . . .
metal-semiconductor interface (also called exciton
Since 0< y<1 we see that 2 N,,<3 [quantum fluctuations superconductivity*° Although this kind of proposal has gen-
increase the value dfi,, (Ref. 44]. The binding energy of erated controversy in the paSthere are good indications
the hole pairs is proportional {& and no bosons can exist at that they may be good candidates in the case of cuptates.
zero temperature wheN<N,,. Moreover, we identify a Moreover, the process described here is similar to the “prox-
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imity effect” mechanism proposed by EK if we neglect re- and how they relate to the phase fluctuations of the CCS; in
tardation effects due to the boson motfdn®® One of our  Sec. VII the nature of the high temperature transition is dis-
main results is: if the stripes static, that is, if we disregard thecussed; Sec. VIII contains the results for the zero tempera-
fluctuations of the CCS, this process is suppressed Thilre transition; Sec. IX contains our conclusions.
“proximity effect” mechanism cannot happen with static
stripes and real bosons. Therefore, for coherence to be at- Il. ANTIFERROMAGNETIC BOSONS
tained, we have to introduce fluctuations of the CCS. This . . :

Consider the problem of two holes in an antiferromagnet.

makes our model radically different from the proximity ef- The energy is minimized by the formation a bound state that
fect proposed by EK since it involves distortions of the CCSmoves freely through the systeth® One can define an op-

and therefore of the lattice as well. Moreover, unlike BCS, .
the phonons are not part of the binding mechanism that jgrator that creates such a state at the top of the antiferromag-
netic vacuum that is given by

driven by the exchange of composite fermion pairs. Vibra-
tions, however, are fundamental for the superconductivity. A

natural consequence of the mechanism is that fluctuations of pl:i > W (A)Ct k2 oC k2 g (2.1
the order parameter are necessarily coupled to the fluctua- VS “q e AT

tions of the CCS and therefore vortices are coupled to dislo- h dest lect i h ith
cations of the stripe array. Because the superfluid density yherec,  destroys an elec rofereates a holawith momen-

low, the interactions between topological defects uItimatertuin 'I‘\Ia”‘;' ;pw;}prmecﬂo;vﬁ orl) in ﬂ_:_i annferrofmag_net. f
determines the phase diagram. Moreover, we claim that statid (Ns2)” is the area of the system. The wave function o

- - - 2 _ .
stripes[as the ones obtained in Hartree-Fock solutions of thdhe p,a'r"l’k(Q)’ IS normal|zeq[2q|\Ifk(q)| /S=1] and in
t-J and Hubbard modei&%® or DMRG (Ref. 19] should be principle depends on the relative and total momentum of the

insulating due to a 1D CDW instability along the stripe di- palir._Thishwave Luncti?n can be Ob.tain?d Vﬁriatt)iprflty b¥
rection. Diagonal stripes do not couple to the bosons becaus®ViNg the Bethe-Salpeter equation for the binding of two

they are oriented along the nodes of the boson wave fun 10les”® The_dependence of the wave funcj[ion on the total
tions momentum is due to the fact that on the lattice the symmetry

Among other things we explain why phonon anomaliesOf the bound state varies with its center of mass momentum

that have been observed in neutron scattéfingcur exactly and depends strongly on the microscopic details. For the

at the same position in the Brillouin zone where angle re-SY(2) t-J model it is known that thel,._,2 state has the

solved photoemissiGh (ARPES observes the opening of OWest energy’ wfg;le in the Isingt-J model thep-wave is
the pseudogafthat is, at ¢r/a,0) and (Om/a)]. Moreover, the gr_ound staté>>" The ma_ltter_of the fact is that treewave '
we show that the lattice distortions associated with the phoState is always the state with highest energy and the reason is
non anomalies are associated with the modulation of the sd@!y simple to understand: the strong local repulsion re-
perfluid densityperpendicularto the stripes. The theory also quires the wave function of the pair to be centered at differ-
predicts an isotope effect and the coexistence of commens nt sites. In other words;wave bound states are suppressed
rate and incommensurate spin fluctuations. The critical tem?Y the magnetism. Here we assume the pairs to ke,
perature for superconducting ordéy,, is determined by the symmetry. , . .
interplay between topological defects associated with the su- Itis easy to see that the operator defmed_ in@d IS not
perfluid bosongvortices and antivorticésand distortions of ~cOMPletely bosonic because of its composite nﬁ%?nce
the CCS(dislocation loops The transition at finite tempera- the electrons obey anticommutation relatiofs(q.C, o/}
tures is in the 3DXY universality class. We show that the = dg,q'Js,0) it iS €asy to show that commutation relations of
amplitude of the order parameters is finite at temperaturete bosons is given by
aboveT. up to T* in the pseudogap region. Moreover, at -
T=0 there is a quantum phase transition as a function of the [Px,P]= i =Dy (2.2
separation between stripds, that is directly related to the
hole concentrationx[ N~1/(2x)]. While the order param-
eters become finite foN<Ng, long-range order is only at- 1 ) )
tained atN=N,<Nsp. This quantum phase transition is in ~ Dkx=g > (W (ki2— )|y 1 g+ [P (kI2+) %Ny | o)
the 2DXY in a magnetic field universality class. Thus, there a 2.3
is a crossover region al=0, N;<N<Ng,, where topo- '
logical defects prevent long-range order to develop. Hereny, , is the number operator for holes th. , where

The paper is organized as follows: in the next section wen. . is the number operator for electron§ince the magni-
introduce the bosonic bound state of holes; in Sec. Ill weude of D  is proportional to density of holes in the anti-
present the Luttinger liquid representation of the stripe ferferromagnetD, \ is smaller thar, the total number of holes
mions; in Sec. IV we discuss the nature of the coupling bein the system. Moreover, the largest fraction of holes is ac-
tween bosons and stripe fermions and argue that vibrationalally residing in the stripes. Since E@.3) is much smaller
degrees of freedom should enter explicitly; in Sec. V wethan one, the violation of the bosonic commutation relations
solve the mean-field equations for the problem and detercan be disregarded and we can treat the bound states as real
mine the mean-field phase diagram; in Sec. VI we discusbosons. At this point it is convenient to count the number,
the phase fluctuations of the superfluid-superconducting staté,, of fermions. Assuming that there aMy/N stripes of

where
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size Ng (in lattice unitg the number of antiferromagnetic freely with hopping energyin both in thex andy directions
sites is (Ns—Ng/N) X Ng and the total number of fermions is and the Brillouin zone is defined for w/a<k, ,k,</a. In
the presence of the CCS the translation symmetry of the
N20 _ + + lattice perpendicular to the ordering vector is broken. Sup-
Ne=Ns(1~1/N) 2; PePict gf Vot (24 pose that the stripes are separated by a distsecd hen the
_ new Brillouin zone is given by—w/a<k,=<w/a and
where the factor of 2 comes from the composite nature of the_ m/(Na)<k,</(Na). Thus the original band has to be
bo;ons and the last term is the number of fermions in th?olded back into this zone and gaps open in the single par-
stripes(see t_’e'o‘.’)’- ) . ticle spectrum generating new bands.
The Hamiltonian of the composite bosons can be written When N1 the tunneling between stripes is suppressed
because of the large distance. A WKB estimate of the trans-
verse tunneling energy using the confining potentiab)

U .
Hp=>, (—Ek+2M)P§Pk+§ > N2, (2.5  gives
k i

as

. . . . ) pS( N ) 3/4N 3/4 ,
whereE, is the dispersion relation of the bosons and the t (N)~ o~ N\ 2mpg(N) 3.1)

local repulsion between pairs. In EQ.5) w is the chemical mbA4qL/2 '
potential for the electrons and it comes with a negative sign
because the chemical energy appears-a\ with the total ~Wheremis the hole mass. Observe that fé&-1 Eq.(1.18
number of electrons given in E¢R.4). shows thatpg~J/4 and therefore the stripe fermions have
Suppose there are no other interactions in the problerfrge gaps in their spectrum. Moreovey, is exponentially
(that is, stripe fermions and,z_,2 bosons do not interact ~ Suppressed at large and interstripe charge fluctuations are
The Hamiltonian(2.5) is the so-called Bose-Hubbard model. suppressed. A is decreased the confining potential gets
This problem has been studied to a great level of detail anweaker and eventually vanishes M, given in Eq.(1.19.
its phase diagram is well knowH.Let us consider the situ- Close toN, the system is essentially 2D and the confining
ation close to the minimum dE, at, sayk=K. Expanding potentialVc(y) can be treated as a perturbation of the atomic
close to this point one can rewrite the Hamiltonian for theone and small gaps of ordgg(N) open atm/(Na). At this
bosons as point, N—N,,, the bandwidth of the lowest band is simply
4t(1—cos@/N,))<4t. Exactly atN,, the stiffness vanishes
and the system becomes 2D since the holes can move freely,
that ist, (N>N,,) =t wheret is the hopping energy in the
(2.6) absence of the CCS. A simple and convenient way to param-

. . etrize the hopping in the transverse direction in the whole
wheretg is the hopping energy of the boson. The phase,, . meter raﬁge ?s

diagram is strongly dependent on the boson chemical poten-
tial, ug, that is given by t, (N)=te (N"Nm)/No, (3.2

U
H=2 | (~Exc+ 20Ny + 5 NP —tB<iEj> P/P,+H.c.,

mp=—2u+Eg. (2.7 where No=~N,/In[1/(1—cos@/N,))]. The hopping along

. . the stripest|, is not so sensitive to the distance between
In the absence of disorder the superfluid phases are separatg pes. It has been shofitthat for N— the hopping en-
from the Mp_tt insulator phases b_y lines of second orderergy is reduced front (as in the uniform systejrdue to the
phase transition. Ats=0 the Mott insulator phases extend q oqqing by strings to a value of the orderJsét. On the

n the' rangen—1< ug/U<n wheren IS a pOS.Itlve IN€YEr  4ther hand whem~1 one had|=t. Thus,t) is a smooth
that gives the number of bosons per site. Notice that becauspjon and its variation witiN can be ignored. The anisot-
of condition(1.20 we must always haveg=<0. Therefore, . in the hopping energies leads to anisotropies in the

the only allowed state for the bosons is the Mott insulatorg i syrface as well. Suppose the stripes are oriented along

with n=0, that is, the vacuum. For a finite valuetgfthere oy ayis The stripe fermion dispersion relation can be writ-
is a critical value of the hopping above which the systemi,, o5

becomes a superfluid. However, even a small amount of dis-

order suppresses the Mott insulator-superfluid transition by ex(N)=—2t; cogksa)—2t, (N)cogNk,a) (3.3
the creation of an insulating state. Disorder is unavoidable in ) ) o

these systems since the charge comes from counter-ions cftd it is strongly anisotropic as long gs-t, (this is always
of the CuQ planes. Thus, the conclusion is that if the bosongdrue forN>Np,). In the limit of N>1 the transverse compo-

are decoupled from the stripes the Bose system is in theent can be completely disregarded and the Fermi surface is
insulating Bose glass state. obtained by filling up all the states up kQ= =k wherekg

is the Fermi momenturfsee Fig. 4a)]. Moreover, the Fermi
surface is open alonk, since the system has no dispersion
in that direction. If the stripes are oriented along the diago-
As we have argued the single particle excitations at thenals on a square lattice then in momentum space the disper-
regions of high density of the CCS is due to the magneticsion looks like the one given in Fig(H). Then it is conve-
confinement® In the absence of the CCS the holes can movanient to rotate the orientation of the lattice by4 and to

lll. STRIPE FERMIONS
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wheres is the distance along the strigé the stripe is ori-

(a) ented along the axis thens=x, but if the stripe is diagonal
= then s= x?+y?) vg is the Fermi velocity andjg(s) and
= 2/ (Na) Y (s) are right and left moving electrons, respectively. The
ia k, original fermion operator is written as
-n/ (Na) ; .
Uo(S)= PR ()€ 5+ ,(s)€™F® (3.6
and these can be bosonized via the transform&tion
(b) o
/ S(8)= eTVTIR L o(9)
% YR, > a
k
/s ® The fields¢ can be described in terms @f, and 6, as

Pr.L.o(S)=d,(8)* 0,(s). The bosonic fields can be rewrit-
ten in terms of charge and spin bosonic modés:s
=(1N2) (¢, = ) and 6, = (1/()(9; 9,). If the aver-

FIG. 4. Momentum space picture for stri longitudinal; age density on the stripe ipo then we can Wr_lte
(b diagorl. pree peey ong S, 1 WS Uo(S) =alpot p) and dp=dub,I\7 in
bosonized form. The Hamiltonian of the problem forward
scattering read$

change the lattice spacing froato a/+/2. Introduction oft,

leads to a change in the curvature of the Fermi surface by an

amountsk, close to the Fermi points. He= > 5 f ds{K ,(ds0,)2+ K, }(9s¢,)%, (3.7)
As it has been noted in the context of organic m=ps

superconductof§ the strong anisotropy of the hopping pro- where K, are the Luttinger parametertslependent on the
duces strong dependence of the physical properties with tengiectron-electron interactionand
perature. At high temperatures, thatTs;t, (N), the uncer-
tainty on the transverse momentum is larger than the size of VE
the Brillouin zone,sk, > =/(Na), and the curvature of the VT
Fermi surface is blurred by thermal effects. In this case the g
motion of the electrons perpendicular to the stripes becomedre the charge and spin velocity. For the noninteracting sys-
incoherent and electrons become confined by thermal effectem we haveK ,=K =1. By the same token the action that
to a region of sizeNa. Thus, the motion of the electrons is describes the bosonized fermions is given by
essentially 1D and the 2D aspect of the stripe problem can be K
disregarded. In the opposite limk<t, (N), the curvature of N 2,2 2
the Fermi surface is larger than the thermal effects and 2D S‘% ZU,J dsf Arl(9:6,)"+0,(956,)°]
physics start to play a role. So there is a 1D to 2D crossover .
as a function of temperature that occursTat(N)~t, (N). _ 2, .2 2

In most of the paper we focus in the region whete _% ZKMUMJ dsf Arl(97¢) "+ 0L (0s$,)"]-
<N, so it makes sense to talk about stripes and the exis-
tence of a CCS. In this region the transverse hopping given (3.9
by (3.2 is exponentially small and the problem can be
treated as purely 1D. Consider a single isolatatic stripe
that we describe as a 1D electron gas with dispersjormhe
noninteracting Hamiltonian is simply

(3.8

Besides forward scattering we may also include a back-
scattering term:

o f dsyi ()l [(S)ym (S) i 1(s)+H.c.

_ ot
HO_;;T (&= 1) Y 0¥ 34 =glf dscog\/8m¢p(s)), (3.10

As usual in the case of the 1D system we assume that th@hereg, is the coupling constant. In principle a Luttinger
physics is dominated by the excitations close to the Fermliquid can also include umklapp terms. The umklapp terms
points. Expanding the dispersion closettég (e kF:M) we  are only important at commensurate fillings and especially at
can write the above Hamiltonian as half-filling when they are responsible for the Mott-Hubbard
gap. However, half-filling for the stripes implies that there is
one electron per site, that is, the stripe is depopulated. This
_ t ot can only happen if the boson level crosses the chemical po-
Ho IUF; J' AS(Y,o(S) IR, o(S) = ¥1,4(S) 951 o(9)). tential and the stripe state becomes unstable. Throughout the
(3.5 paper we assume that the stripe state is stable and therefore
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away from half-filling. Experiments by Tranquada and col- mla dky (7/(Na) dk,
laborators in LNSCO indicate that the stripe filling is #4.  ¥n,o(X)= \/N_af o Ze'(kxerkynNa)%,k,
Thus, we disregard the umklapp processes. ~ e (N (312

The importance of the backscattering term can be readily '
understood by a simple perturbative renormalization groupvhere the anticommutation relations are preserved as
(RG) calculation. It is a simple exercise to show that if we [{¥n o(S),¥m.o' (X' )} =0X=X)0mbse ANA {Uyi, Wor o}
shrink the bandwidth of the stripe electrons frépto E,  =(2m)25(k—k’)].
—dE, the coupling constard, renormalizes according 1

IV. COUPLING BETWEEN STRIPE FERMIONS AND 2D
BOSONS

%:2(1_ Ko gi(l), (3.11 As we have discussed in the past two sections in the ab-

sence of coupling between stripe fermions and bosons the
ground state is insulating: a Bose-Mott insulator in the anti-
wherl “In(UE) Thus.g s rlevant ok, <1 and ro. _ STOMaGnels regons & COW st slng e srpes.
evant forKs>1. For repulsive interactions it turns out that . . ping )

ons we consider simple arguments based on conservation of

Ks<1 and therefore the interaction is irrelevant and the SYSthomentum and energy.

tem is described by a gapless Luttinger liquid. If interactions h d th f the el .
are attractiveK,>1 and the backscattering is relevant lead- . As we have argued, the nature of the elementary excita-
s tions in the problem depends strongly on their position in

ing 1o the opening of gspin gap signaling tendency to |reaI space. On the one hand, bound pair bosons are not
superconducting fluctuations. We have started from a repuéigenstates of the Luttinger liquid. On the other hand, Lut-

sive model and therefore we assume all the interactions ft S .
be repulsive throughout the paper. Although the backscatteﬁnger liquid bosons(collective sound wavgsare not el-

ing term is irrelevant it is well known that the slowest de- ementary excitations of the doped Mott insulator. Thus, the
9 . . . ) : simplest process that couples these two types of excitations
caying _cor.relatlon function for_a _repuls!vely Interacting Lut- is a decay process in which bosons are continuously trans-
tinger liquid is the CDW on€it is equivalent to the case formed in stripe fermions and vice versa
of K <1). :
P

If the CDW is commensurate with the lattices it seems Let us consider the case of static stripes. The relevant

to be in the case of LSCQhen the lattice pinning is strong coupling that conserves linear momentum can be written as
and the system becom_es msglaﬁﬁgf the _CDW is incom- Vi @DP g 1 Phe—q, (4.1)
mensurate then a Luttinger liquid state is possible but any
amount of disorder leads to CDW pinning driving the systemwhereV,(q) is the boson-stripe coupling that, by conserva-
again towards an insulating regime. This is certainly undetion of angular momentum, has._,> symmetry|[that is,
sirable from the phenomenological point of view since theseV,(0)=coska)—cosk.a)]. This is a four-fermion coupling
materials are still metallic at finite temperatures. Many ap4n terms of the original operatorisee Eq.(2.1)] and de-
proaches that start from a purely 1D description of the stripescribes a fermionic scattering process where in the final state
are confronted with this serious probléhiThese approaches two electrons always end up in a bound state. This kind of
usually invoke the introduction of long-range interactionscoupling looks unusual because there are only annihilation
among the stripes. It is hard to reconcile the long range ineperators and it corresponds to the vertex shown in F&. 5
teractions between different stripes with the short range init only occurs in this form because we use the electrons as
teracting within the stripes. For that to happen the dielectri@symptotic states in the scattering process. In fact,(£4d)
function of the material should be extremely anisotrgeic-  is similar to fermion-boson models that have appeared in the
perimentally it is known that this is not the c&8e We be- literature of superconductivity over the ye&?$*Notice that
lieve that once the long-range forces have done their work isince the boson is composed of holes the direction of the
creating the stripe array the final metallic state screens angurrent is invertedholes moving forward are equivalent to
long-range forces left, leading the system to purely local inelectrons moving backward and vice versehus to destroy
teractions. If the interstripe interactions remain long-rangea boson is equivalent to create two electrons in the antifer-
the ground state should be a Wigner cryStahstead of a romagnetic background. In the procé4sl) a pair of holes is
CDW and in both cases the stripes should be insulating. Weestroyed in the antiferromagnet while a pair of electrons
stick with the assumption that after the CCS is formed theérom the stripe hop into the antiferromagnetic mefiae
interactions between the elementary excitations discussegig. 5(b)].
here are local. The ground state is a CDW state and therefore Let us assume that the coupling between bosons and
insulating. In fact this is the picture that arises from mean-stripes is weak so that the important degrees of freedom only
field approaches to the stripe problem since in these mea®xist close to the chemical potential. Thus, when a boson hits
field studies the stripes are noninteractihg® a stripe there are two main process for decaying. In the first
In the case of the CCS state where there are an infinitene the two stripe fermions have opposite momentum, that
number of stripes we add a new index to the fermion operais, q~kgx andk —qg~ —kgx [as shown in Fig. &)]. Thus,
tor, ¥ ,(S), wheren labels the particular stripe. The Fourier linear momentum conservation impliks=0. Moreover, an-
transform of the electron operator can be defined as gular momentum cannot be conserved in the scattering pro-
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stripes is further reduced as compared to the longitudinal
(a) Pl case. Therefore, for diagonal stripes superconductivity is not
-k possible in our model because of the nature of the boson
o —————— wave function. In fact, recent neutron scattering experiments
k-PT observed diagonal stripes in the insulating phase of LSCO
while vertical and horizontal stripes are observed in the su-

perconducting phas@.Moreover, notice that for a given ori-

entation of the boson wave function, horizontakrtical
(b) — — stripes couple to the positivenegative lobe of the wave

-W function.

/ As we pointed out above we need a sik particle or
\ collective mode for the momentum transferred from the
2 D bosons. Moreover, since the bosons are spinless the particle
' \ — that carries the momentum cannot be a spin-wave or para-
_@_ magnon. The simplest choice is a vibrational mode: the bo-

AN son collides with the stripe, breaks into two fermions and
] ) ) ) produces a vibration. This vibration is due to the fluctuations
FIG. 5. Basic decaying processes for static strig@smomen- ¢ the smectic phase of the stripe array. Again, as we stressed
tum exchange(b) real space process where a boson decays int, o inysly, stripes are not isolated objects that are indepen-
stripe fermions. dent of each other. Long-range forces, like the Coulomb, the

cess because, relative to the stripe, the two outgoing holecé\,aSImIr or S.'”_‘p'y entropic repulsion keeps them apart and
generate a finite stiffness.

have zero angular momentum while the pair have finite an: Consider the coupling of the bosons with the stripe fermi-
gular momentum. Therefore, we need a sink of momentum. ns when the stri epflugtuates 2 distanckom its e ?,I”ib-
The other process corresponds to boson decay into two fer: P q

mion moving in the same direction, that ig=~kgx and k fium position. We write the local coupling as

—g~Kkgx. This process impliek, =2k andk,=0. This is

eq%ivalFent to a Eoson movﬁﬂg inxthe gntiferrgmagnetic ladder PNy (r) 8y —nNa-u(x,nNa), (4.2

parallel to the stripe. Since the boson wave function is rewhere we ensure that the coupling occurs at the position of

stricted to the antiferromagnetic region the amplitude of thighe stripes. If we assume that CCS fluctuations are small

coupling is suppressed. The conclusion from this argument isompared to the periodicity in the system, that|ig<Na,

that for a static stripe the decay processes have vanishinge stripes fluctuate in a distance scale much smaller than the

phase space. interstripe distance. We can expand the Dirac delta function.
Consider also the difference between longitudinal and di-The first term is just the static stripe problem we discussed

agonal stripes as shown in Fig. 6. For a longitudinal stripeabove and, as we argued, has no phase space. We therefore

the coupling between bosons and stripes is possible becaukeep the next term in the expansion leading to a coupling of

the stripes are oriented along the lobes of the bagan,> the form

wave function while in the diagonal case the stripes are ori-

ented along the nodes. Thus the coupling between diagonal —Vi(DNp,oP —ktq,1¥k—p-q,(Dp ot b’[pva), (4.3

(a) where\, ,%p,—0 whenp—0 is the stripe-vibration cou-
pling constant. The two processes associated with the inter-
action in Eq.(4.3) are shown in Fig. 7.
Before we study Eq(4.3) in detail it is worth investigat-
ing the problem via second order time dependent perturba-
tion theory. The transition probability between nonperturbed
states is given by

wam%g AV DNl 1= N (1= Ns pg)

SIP[(—Ex:Qp ot €q t € 1p g )t2]

—., (4.9
(_ Eki Qp’a-l" qu+ Ekx+ px_qx)

Whereﬁq is the Fermi-Dirac distribution function. Observe
that the probability amplitude only grows with time for states
such that

FIG. 6. Coupling of a,2_,2 boson wave function t¢a) longi- B _
tudinal and(b) diagonal stripes. Bkt Qpa= ~ €, € +p,—ap (4.5
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q)
-k | P
IIIIIIIIIIIIIIIIIIIIIIII" ‘ m
k-p—q]
g9
—k v l -p
IIIIIIIIIIIIIIIIIIIIIIII" X W
k—p—qT FIG. 9. Real space picture of the ordered ph@seindicates the

possible motion of the O atoms with doubling of the unit cell per-
pendicular to the stripe orientation. The difference in gray levels

FIG. 7. Scattering processes including vibrations. represents the modulation of the superfluid density.

where the plusminus sign implies absorptiofemission of  carried by the superfluid bosons is transferred to the lattice.
a vibration. Remembering that,~w we obtain the condi- Thys, there can be a double condensation: the superfluid den-
tion that —Eqy = oy o= —2u. Moreover, becausd,,  sity is modulated with finite wave vectdt and the CCS
vanishes ak,—0 the largest coupling between bosons anddeforms in order to follow the variation of the superfluid
stripes happens dinite momentum. Indeed, the coupling density. Therefore a condensation of the CCS at finite wave
increases as one goes towards the Brillouin zone edge. Thugector induces phonon anomalies at the same wave vector.
the largest coupling in the problem occurskat (0,m/a),  Thus, we expect phonon softening close ton{/@,) together
that is, perpendicularto the stripes. It may be somewhat with the condensation of bosons in the same point in mo-
surprising that the most important part of the physics occursnentum space. In the normal state the situation is depicted in
in a direction perpendicular to the orientation of the stripesFig. 8: there is no superfluidity and no lattice distortions. In
but this effect has been already observed in numerical simuhe ordered phase we expect the situation shown in Fig. 9
lations of spin-fermion models with stripe formatidhis ~ where the superfluid density is modulated with wavelength
result indicates that in the case of the boson condensation va 7 in the direction perpendicular to the stripes and the lat-
should expect it to occur close # (as photoemission ex- tice is distorted in the same direction with the same wave
periments indicaf¥) but not only that: we expect a CCS vector. Notice that there is a doubling of the unit cell in the
distortion at the same wave vector so that the momenturdirection perpendicular to the stripes and therefore the CCS
is dimerized. This effect is similar to the Peierls distortion in

L Joll NoN NoN NoN NoN Nej J
O O O O O O o
L Noll NolN NoN NoN NeN NeoX J
O O 0O O O O O
L Jell Noi Noj Noi NoN NoX

[ JoN NoX NoN NoN NeoN NeoX /
O O O O O O O
L Nl Noi Noj NoN NoN NeoX /|
O O O O O O O
L Jel NoN Noj NoN NoN NeoX /

1D systems or the Jahn-Teller effect where there is a lower-
ing of the symmetry with a simultaneous gain in enétyin
momentum space the situation is depicted in Fig. 10: phonon
anomalies and superfluidity should appear at same point on
the edge of the Brillouin zone.

Observe that due to the conservation of energiﬁovky
+2u= iQO,ky,a! the stability condition(1.20 is satisfied
only if emission is allowed. One can generate a boson by
creating two electrons at the stripe at the cost of absorption
of a vibration. This can be clearly seen in the diagram in Fig.
1 where in order to create a boson two electrons occupying
the boson state have to be excited to the Fermi surface by the
absorption of a vibration. Conversely, two holes from the
stripe hop into the antiferromagnetic ladder and form a bo-
son. Thus, our conclusion is that the most relevant coupling
in this problem is given by

FIG. 8. Real space picture of the normal phase. Open circles: O H.=— \V; N. P bl +H.c.
atoms; filled circles: Cu atoms; dashed line: equilibrium position of zq, «d palilai¥-kepq.
the stripes. (4.6
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Hp=§ [(—Ex+2u)PiPy—0p «P— 0 (Pl
U
+ = > N2,
295

. He=2 [Oubiby—gebi— 08,0l (5.3

w

He= 2 (ec— 1) ¥k oo

k,o

- k,p, _k+p-q, TH.C.,
Condensation k’zp’q 9s(K.P. Q) g, 1+ p-q,

Region
where
FIG. 10. Momentum space picture of the condensation region
for stripes oriented along the direction.
gp,k=2 V(DN g1 ¥ —k+p—q,1){Pp)
V. MEAN-FIELD THEORY P.d

In order to understand the phase diagram of this problem
it is illuminating to consider the mean-field solution. Let us Iak= > Vo D(P)X W1 Pork—q.1)» (5.9
rewrite the full Hamiltonian by collecting all the terms given P.g
in the previous section@ve neglect the interactions between
electrons in the stripe for the moment beinghe Hamil- gs(K,p,a) =V (@) N p(Py) (bp)

tonian is written as _ _ _
are the mean-field coupling constants. From &3) it be-

comes obvious the symmetry breaking processes in the or-
H=2 [(—Ex+2u)PiP+Qubiby] dered phase: spontaneous gauge symmetry breaking leading
K to superfluidity of the bosons, superconductivity of the fer-
U mions and spontaneous symmetry breaking of translational
_ i = 2 symmetry of the CCS.
+2 (e ot N - - .
gr (&= 1) Yot 2 2 ' Thus, for a transition to a nontrivial conducting state the
coupling\V is fundamental. The simplest conducting state is
_ E Vk(Q)?\pPk%,Tl/f—k+p—q,1bg+ H.c., (5.0 the superflwq state where the charged boso.ns cond.ense mto
K.p.q a macroscopic condensate. In accordance with the discussion
in the previous section, conservation rules tell us that the

where we have simplified the problem by considering alargest coupling occurs at the largest momentum perpendicu-
single polarization of the vibration field perpendicular to thelar to the stripes. Suppose the bosons condenise-&t, that

stripes. is, (Px)=(PL)=Ng. In order to conserve momentum in
Notice that the Hamiltonian is invariant under the gaugethe interaction in Eq(5.1) and preserve time reversal sym-
transformation metry one should also require the vibrations to condense,

that is,(b}) = (by )= Ny. Notice that the Cooper pairs have
zero center of mass momentum. This is equivalent to a static
distortion of the lattice with modulatioiK. Thus, at the
mean-field level, a transition to a superfluid state is accom-
b—betlev, (5.2  panied by a static lattice distortion. We notice here that the
choice of the largest coupling as the one that drives the sys-
Filent oy tem ir_1to the ordered state @s the traditio_nal one in mean-field
p—ipem BT theories. In fact, the doubling of the unit cell proposed here
also occurs in some largd treatments of theé-J models
implying the phase of the bosons and vibrations are coupledithout phonon$”®® Thus, this tendency of lowering the
through the fermionic degrees of freedom. This symmetry isnergy of the system by breaking the lattice symmetry seems
the one that is broken in the ordered state. to be quite generic.
In the mean-field theory we split the coupling term into  The solution of the bosonic problem is straightforward
three different pieces leading to a mean-field Hamiltonian obecause it only requires a shift of the boson operators by a
the form:Hyr=Hp+Hg+Hg, where constant:

P—Pe '¢s,
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dp .k
PP T o
Os.k
by—bx——~— 5.
K K QK ( 5)
implying that the actual CCS distortion is given by
V2Rd g k]
Su(K)= W, (5.6

whereMy is the mass associated with the vibrations.

PHYSICAL REVIEW B4 104509
0 U 042 0
f(T)=(—Ex+2u)og+ E(O'B) +Qyoy

1
t52 lla-m-edl-2n9], (514
where

1
ng=
efe+1

(5.195

is the quasiparticle occupation. We minimize E&.14
keeping the number of particles fixed. We obtain two equa-

The electronic problem can be also readily solved since itjions:
is a problem of electrons with a pairing potential. We can

write Hg as

Hs= ; (€— M)g Wi oo Dt 1 ¥—i, + H-C-},

(5.7)
where the superconducting gap is given by
Ay=r¢aZ\o30OV,(0) (5.9

A2a2a? V2
0 K \Y k
_ _
Ex+2u+Uog >3 Ek ektanI‘(,Bek/Z),

\zalold Vi
Q=2 XannBe/2) (5.16
2S k €k
and therefore
Qod=03(—Ex+2u+Uad)=U(ad)? (5.17

and therefore had,>_,» symmetry as the pairs that generatehat is, the superfluid and vibration density are tied to each

it in the first place. Here we have defined

N
ag=—SB,

N
03:% (5.9

other. The last line in Eq5.17 comes from the fact that we
expectU> —E¢ +2u. Using the above equation we reduce
the mean-field problem to a single equation

)\zazo'g Vﬁ
Q=—g ;e—ktank(ﬁek/Z).

(5.18

Notice that although the coupling constant tasvave

as the superfluid and distortion densities, respectively. Theymmetry the Fermi surface of an infinite array of 1D stripes
Hamiltonian (5.7) can be diagonalized by a Bogoliubov has no curvaturgas shown in Fig. &)] because the fermi-

transformation:

Y= cog ek)dk,T+ sin( Hk)dl,i )

' =cogByd] —sin(Bdc;,  (5.10
where
tan(26,) Bk (5.1
a = .
“ €k M
and
Hs=2 ed) k. (5.12
n kYo,
where
&= V(e p) A (5.13

is the quasiparticle dispersion.
The free energy per unit of areB(T), can be obtained in
a straightforward way:

ons do not propagate in the direction perpendicular to the
stripes. Thus, although the order parameter in (B has
dy2_y2 symmetry, the Fermi surface is fully gapped. The
bosons have a tendency to producgwaave superconductor
but the condensate only takes advantage of one of the lobes
of the boson wave function. Thus, the final result is an
swave state.

As we discussed in Sec. IX a trgdewave superconductor
can only develop if the system is made out of domains with
horizontal and vertical stripes or if one particle tunneling is
included [changing the fermion dispersion relation to Eq.
(3.3)]. The case for domains separated by boundaries is al-
most metallurgically unavoidable in cuprates. Because the
domains are usually large the superconducting properties of
the domains can be studied as if the domains are macro-
scopic superconductors. Furthermore, if interstripe tunneling
is included the Fermi surface becomes rounded leaving space
for a trued-wave state to develofalthough with a rather
anisotropic propertigs

Taking the geometry of the Fermi surface into account we
can simplify the above equation by using the fact that Eq.
(5.19 only depends ok, and therefore the sum ovky just
givesNg/N leading to a simpler equation
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FIG. 11. o3 as a function of M. FIG. 13. Critical value of the coupling constavit /t as a function of

IN.

)\Zvéaogfw/ad k tanH Be,/2)

K = —-—— —_—
N

5 = , (5.19  jump to zero. As one can see from the numerical solufign
o 47 K is of the order of the bandwidth of the stripe fermions and

whereV, is the strength of the coupling,(q) at the stripe  therefore very large. As we show below this is not the actual

and transition temperature because we have not included phase
fluctuations into the problem. Thuk;, (like T* defined in
e=(ex— u)2+ VN2 (03)2(—Ex+2u+Uad)/ Q. Sec. ) is a crossover temperature scale. We note Thgt

>T* that is the mean-field critical temperature is larger than

This equation can be solved numerically assumég=  the temperature scale above which makes sense to talk about

—tcosk.a). . . bosons and confinement. Therefofl,, is actually not ob-
We can now study the phase diagram as a function of thgervable since the theory brakes dowrT4t
couplingAV and the distance between strifés\We expect In order to understand the nature of the phase diagram we

the characteristic energy scales of the problem to be depeRimplify the problem by the introduction of a cutoff of the
dent on the distance between stripes. This is Certalnly true fQBrder of the inverse of the lattice Spacing and by linearizing

the case of antiferromagnetic order where the distance behe spectrum at the chemical potential. The integral simpli-
tween the stripes determines the strength of the quantumfes and aff=0 reduces to

fluctuations’* Thus we expect the phonon and boson spectra

to change with\, that is, there must be a continuous change w2 0 \/ﬁ
in the spectral weight with the interstripe distance. In this :7‘ VOaUBIn Ave+ V(Avp)"+Ag (5.20
paper, for simplicity, we assume that this change is small and K 27veN Ao ' '

the density of states does not change whtlisee, however,

Ref. 9. In Fig. 11 we ploto3 asia3 function of M for Ex WhereAOZVO)\Ug\/(_EK+2M+UUg)/QK gives the am-
=19, u=-08&, Q¢=12x10""t, U=4t, and AV  piitude of the gap. Notice that the transition at the mean-field
200-5t atT=0. Notice that.there Is g.dlscontlnuo.us Jump in level is of first order because the right-hand si&HS) of
og atNgy~6 and it grows in a quasilinear way withN/In - Eq. (5.20 vanishes as3—0 in contrast with the usual BCS
Fig. 12 we plotag as a function off/t for the same param- equation that contains only the logarithm and is finite in this
eters given above. Notice thaf is weakly dependent on the limit. Some analytical progress can be made in the limit of
temperature up td = Ts,~3.5 where it has a discontinuous largeU. The critical value ofN and the value of the super-
fluid fraction are given by

0.6
N N(1+\2) (V)

¢.5 Nsp~ —— (0 12) B0 231’

0.4
To.3 Q]klg(WUF/a)ZIS 522

00c™ 52 12 .
- C ()\V0)2/3U 1/3
0.1 that determines the zero temperature mean-field phase dia-
gram. As we vanN there is a critical value o¥, (that we
0 - - - - —— call V;) below which order is not possible. In Fig. 13 we plot

V. as a function of M. We find thatV.«N* with «>0.
This result demonstrates that as the stripes get further apart a
FIG. 12. ¢3 as a function off/t. larger coupling is required to stabilize long-range order.

Th

104509-14



STRIPES, VIBRATIONS, AND SUPERCONDUCTIVITY PHYSICAL REVIEW B4 104509

As pointed out by EK, the fact that the superfluid densitycalculation is that although the amplitudes of the two order
is so low implies large phase fluctuatiofisif one includes parameters appear at the same temperattirgas given by
the phase of the order parametgs in Eq.(5.2)] long-range  Eq. (5.17] the actual ordering temperatures can be different

order requires that because they depend on the phase stiffness of the relevant
_ degrees of freedom.
(P)=(IPxl){e"'*8)#0,
(b)={|bg|)}(e*1®v) %0, (5.22 VI. PHASE FLUCTUATIONS

where(|Py|)o /o3 and (|by|)ec /T are the amplitudes of As we discussed at the end of the previous section the
the order parameters. Thus, ordering also requiess®«) problem of phase fluctuations is fundamental for the descrip-
#0 with @=B,V. In our mean-field theory we have fixed tion of the ordered state. Therefore the topological excita-
arbitrarily ¢, =0. This is not correct since fluctuations of tions are fundamental for the determination of the properties
., especially in the 2D system, are fundamental for the?f the superconducting staet%.The_ simplest way to discuss
development of long-range order. In the next sections wdhe importance of phase fluctuations is by studying the par-
discuss the role of these fluctuations in determining the aclition function of the problem that can be written as

tual phase diagram. In other words, at high temperatures
bosons and superconducting stripe fermions are formed but
they are incoherent because of the existence of topological
defects: vortex-antivortex pairs in the superfluid and disloca-
tion loops of the distorted CCS. The interesting result of ouwhere

zZ= f DPDPDyD yDbDb e JedrLIPPiib bl (g 1)

sz d2r[E(r)[aTJrE(V)+2ﬂ]P(r)+%N2(r)+E(r)[a,+w(V)]b(r)}+2 deZ Yno([d,+ (V)

_M]wn,a(x)+fdxf dX,E En,a(x)l//n,cr(x)wo,a’(x_xl)En,o’(xr)‘l/n,a’(xr)]_2 deV(X,nNa)

’
o,

X{P(x,nNa)wnyT(x)zpnvl(x)F(x,nNa)+c.c.} (6.2

is the Lagrangian associated with Hamiltoni@nl) and 3 is the inverse temperature. Here we have redefinéd-V and
introduced the electron-electron interactiofg. . (x—x").
We redefine the fields in order to separate the problem into slow and fast variables:

P == (P, (Ne K T+P_ (e,

V2

=i2(b+(r)e‘”<"+b(r)e““) (6.3

5

and perform the same expansion as in the case of fermsaesEq.(3.6)].
Substituting Egs(3.6) and (6.3) into the Lagrangiar(6.2) we find many terms that oscillate fast. We disregards all the
oscillating terms and study slow modes only. The Lagrangian can be written as

b(r)

L= 2 LolPabu]+ 2 Lyl +Le, (6.4
where
10 ,[= v? u _ v?
LO[Pa'ba]ZEJ der Pa(r) 0T+EO_WB Pa(r)+ EN (r)+ba(r) BT‘FwO—M ba(l’) , (65)

where we have assumed th@tis alocal minimum in the energy of the bosons and vibrations. This assumption is supported
by studies of the-J modef? and from the fact that the vibration mode is at the edge of the Brillouin zone. Mgyas the
effective boson mass. The form of the noninteracting boson-vibration Lagrangian given above is required by Galilean invari-
ance of the problem in the long wavelength limit. Although anisotropies in the dispersion of the modes &laseotdd exist,

we disregard them since they are not fundamental in our discussion. Furthermore,
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dx — ) — . —
Ls[lﬁn]zjz{; [¢n,R,o(X)(ar+|UF(7X)‘//n,R,U(X)+wn,L,a(X)((yr_|vFax)¢n,L,(r(X)]+ 2, [Wk=0(¢n,R,o(X)¢n,R,a(X)
+ Lo () U Lo O W o (X iR o0 (X, 1) + Y (X)L (X, M) T [ Wie ot (i R o (X) 0, o (X)

+ U Lo () ¥ R DGR o M) YL (X, 1) + Yo (XN P o (X)) (6.6
is the isolated stripe Lagrangiallf is the Fourier transform of the electron-electron interagtemd

1 — —
LCZ_EEn: JdXV(Xan)[P+(Xvn)b+(Xan)+Pf(xrn)bf(xan)][‘/’n,R,T(X)‘//n,L,L(X)+wn,L,L(X)wn,R,T(X)]'FC-C- (6.7)

is the boson-stripe-vibration coupling.
Due to the symmetry we simplify the problem by changing to amplitude-phase modes via

P,=P_=\oge %,
b.=b_= oy e"ev (6.9

and use the bosonization technique described previously so that

L=2 Liolbnp dnslt 2 Lala @+ Lol ®.0,6,,¢c], (6.9
whereL g 0, ,, ¢n sl is given in Eq.(3.9). Furthermore,
L—de' £ g idage T oo n Va0 6.1
a r Iaaé)r¢a+ ao-a+7o-a+ 8Ma( oa) +2Ma( ¢a) ’ ( - @
W|th EB=EK, E\/:QK, UB=U, andUV=0 and
dx ) _
Le=—2>, JEV(x,nNa) Jogoye (BN ey(xnNa) = 2mbn ,0Dcog\[2 7, (X)) +C.C. (6.11)
n

Observe that the gauge symmetry discussed in the previous section is explicit in the Lagrangian. In order to gauge away the
phase fields we define a new bosonic fiéld

ee(X,NNa) + ¢y (x,nNa)

an,c(x): an,p(x) - \/E (612
so thatL - simplifies to
dx
Le=-2 f — V(x.NNa)Vogay cos(y2mby,o(X))COSV2 (X)) (6.13
and in the final Lagrangian we replaég by 6. and add a new term that reads
Kp 2 2 2
L|[¢>]=; dx) 7 —[(@Les(x,nNa) + oy(x,NNQ)])*+ v} (9, ¢a(x,NN@) + ¢y (x,NNA) ])°]
P
KP 2
+ [aT[QDB(XinNa)+QDV(X!nNa)]ﬁran,C(X)+UP(9X[(PB(X’nNa)+(PV(X!nNa)]axen,c(X)] . (614)
V2o,
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The physical interpretation of E¢6.12) is quite interesting. =
Observe that the fermion current along the stripe is 0.= §(n+m),
. 1 T
Jn(X)= \/—Eﬁxﬁn,p(x) $s="\/5(n—m), (6.189
1 1 wheren andm are integers. Thus, from E¢6.15 one sees
= —=0dy0n c(X) + —=dxep(X,NNa) that the only currents circulating along the stripes are the
Va ™2

Josephson currents due to the superfluid and CCS fluctua-
tions. Fluctuations around the mininB.18 are massiveal-

+ LgngV(X,nNa), (6.15 though a superfluid current still flowand a spin gap opens
2 in the spectrum. Indeed, a simple integration of E17)
gives
where the first term is just the normal current, the second
term is the superfluidosephsorturrent and the last term is Vr  V/[Ec 1o
a current that is driven by the dislocations in the CCS. More- Er E.|Eg '
over, observe that the bosonic fiedd is still coupled to the
phase fields through E¢6.14). Thus, the stripes carry along 1 1
both superfluid and CCS distortions. g= E( Kst |~ 1 (6.19
p

In order to proceed with the calculations we study the
phase fluctuations around the saddle point equations for th@hereVg andEg are the renormalized coupling constant and
complete action. At the saddle point we have= og, Oy bandwidth. Observe that the RG flow stops whég~Eg
=0 with «=B,V. This just gives the mean-field solution ~m where
given in Sec. V with the difference that at the saddle point

the stripe action readsve drop the subscript) AR AR
m~E¢| =— =V|— (6.20
Ec Ec
S= fﬂdex[ﬁ[[ﬁ 0(X, 7) 12+ 02 3, 0(x,7)]1%] gives the amplitude of the spin gawheng=1 the operator
0 2v, 7 P is marginal andn~ E_ exp[—E./V}). Since the stripe modes

are massive the coupling terms to the phase modes in Eq.

1 2, .2 2 (6.14 are suppressed.
i 2KSUS[[(?T¢S(X,T)] Fosloxdsxn ] The calcuﬁ'sion can proceed in the usual way by expand-
8 ing the action around the fluctuations of the amplitudes to
_f de dx Vcody2m8.(X))cos V2 pg(X)). second ordefthat is, we writeos,= ¢°+ dor, and integrate
0 over §o0). The final result reads

(6.16
>

1(8
. . . . . .. S= —f drf d?r
Equation(6.16) is the interacting version of the Hamiltonian 2J)o «=B\V
used in the previous section with= \/O'BU aVUV. The last term
in Eq. (6.16 is the Josephson coupling induced between dif- 4+ %[V%(r,r)]z

M Ka
|O'a(97.(,0a(r,7')+ Z[afqoa(rﬂ-)]z

+Kp

2
> afsoa(r.r))

ferent stripes by the bosons. A similar coupling was proposed 2mv Na| | «=Bv

for the case where stripes cross each ofhi€he effect of the 5

pairing term can be easily seen in a renormalization group +U,§ > 9ea(r,T) ] (6.20)
calculation in first order irV. Repeating the RG calculation a=B\V

done in Sec. lll we can easily show that the dimensionles\sNhere the factor of N appears because we have coarse-
coupling constant =V/E. renormalizes d8 PP

grained the fields in the direction perpendicular to the stripes.
The parameters that appear in E6.21) can be obtained
(). (6.17) directly from the symmetries of the original bosonic action
(6.2. The bosons obey periodic boundary conditions
[P(r,B)=P(r,0), b(r,B)=b(r,0)] while the fermions
Notice that the operator associated withis relevant when obey antiperiodic boundary conditions in the imaginary time
K+ K;1<4 and irrelevant otherwise. For a Hubbard modeldirection [(r,8)=—(r,0)]. Suppose we change the
with local repulsionUy it requires thatU,>1.8& for the  boundary conditions so thaP(r,B8)=P(r,0)exd—ide}.
operator to become irrelevant. Thus, even if the stripes aréErom Eq.(6.2 we can enforce the original boundary condi-
deep inside of a CDW state the couplivglrives the system tions if we reinterpret the problem as a shift in the chemical
into a superconductor. Whevis large then the last term of potential of the bosons from to ' = u—ide/(28).%° Be-
Eq. (6.16 acquires a expectation value and the bosonic fieldsause bosons and fermions are coupled, we are forced to
get pinned at their minima: impose new boundary conditions for the fermions, namely

2

1 K+1)
st
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(r,B)=—y(r,0)exdidse/2}. The whole action is invariant 4oy
under the change in the boundary conditions if we assume a Cv=

shift in the chemical potential. If the shift is infinitesimally
small we can calculate the change in the free energy due to |t is convenient to rewrite the actiof6.21) in Fourier

(6.26

rkyMy’

the change in the boundary conditions:

space:

IF So\ 1 °F Sp\? 1 — 2 Oa
~ —| — | — _ | - — A A - a @ k, + a +_
oF &M( '2,6’)+ 2 ap,z( '28 2p k§:1 a=§B:,v TatonPa(K,on) +| Ko reh M,
and sincedo/ B~ d.¢ we immediately find that 2.2 2 Ko
X[(1+)\0{)kx+ky] (Pa(krwn) + 27Tvaa.
2,2 _& _ N 2 21,2 * *
Nsa Us—ﬁ—'\'e' X (wptv k) es(k wn) ey (K wn) + @ (K, w,)
(92F X @V(kvwn)]] ’ (627}
Nia’kg=—, (6.23
I wherew,=2mn/B is the Matsubara frequency and
Whereﬁe is the average nurlber of electrons. Since the num- K
ber of holes isx we see thatrg=(1—x)/a2. Thus, we con- Ko R= Kyt Zm;—pNa’
clude thatog is the average planar density of electrons. ?
Notice that so far this is the first equation where the num- VM,
ber of holes appears explicitly. In principle the distance be- «~5-—Na (6.28

tween stripesN, andx should be related but in our theoly
is an input. When doping is increased the number of holes imre the renormalized compressibility and anisotropy intro-
each stripe and/or the distance between stripes can change.daced by the stripefwe used Eq(3.9)]. Notice that both

the normal state the stripes are in a CDW state and there isquantities return to unrenormalized values when the distance
gap to charge excitations because of commensurability. Sindsetween stripes diverges, that M;—«. As a result of the

the holes are injected into the system at high temperaturefactor \ , the superconductivity is anisotropic and the corre-
during the annealing of the alloy it seems reasonable to asation length,&, is direction dependent. It is easy to see that
sume that the CDW state is charge rigidcompressiblg  the ratio of the correlation lengths along tkendy direc-

that is, instead of increasing the doping of individual stripestions is given by

one would get more stripes but with the same linear doping,

ns. If this is the case then a simple relation exists between fxa 1 6.2
andN, namely, £ o 14N, 629
N 6.2 The key point of Eq(6.27) is that the topological excita-
x= N° (6.24 tions of the superfluid statghe vortice$ are coupled via the

stripe compressibility to the topological excitations of the
The value ofng is determined by the competition between cCs (the dislocations In a pictorial way consider first the
the gain in the kinetic energy along the stripe versus the losgrdered state depicted on Fig. 9. A defect of the ordered state
of energy due to the formation of the ADW°This is nota  is shown in Fig. 14 where a dislocation of the lattice distor-
problem we have addressed but DMRG calculaid@®d  tion leads to a local shift of the superfluid density. In doing
other approaches estimate that the minimization of the ensg the dislocation can produce vortices. The opposite situa-
ergy occurs ahs= 1/2 as proposed by the experiments per-tion is also possible: vortices shift the superfluid density and
formed in LNSCO® Notice that Eq(1.19 implies that the  drag the lattice with them. This unusual state of affairs is the
pseudogap temperature scalé,, vanishes for 1/6Xx=Xs,  result of the coupling of the CCS with the lattice and would
<1/4. Assuming thaKSp%0.2 we find thaty~0.5 and there not happen in ordinary superconductors.

is a reduction of 50% of the antiferromagnetic exchange Although the theory described by E@.27) is quadratic,

across the stripe. the nature of the elementary topological excitations is not
Moreover, g is charge compressibility and the superfluid straightforward and we leave their discussion for a later pub-
velocity is given by lication. In this paper we consider a simpler problem of the
effective theory for each one of the phases. In order to do so
_ 4o we explore the quadratic nature of the actiém27).
cB—KBMB. (6.25

Since the fluctuations of the CCS have zero chemical poten- VIl HIGH TEMPERATURES

tial one concludes immediately thEt,zO andk,, is related Let us consider the problem &, <T<T* so that the
to the sound velocity in the CCS that is given by amplitude of the order parameters is well developed but
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The superfluid order parameter correlation function can be
calculated directly from the knowledge of EJ..2). Indeed,

(PT(r)P(0))=og(e'*eMe¢s(?) = g expl' - %GBU)] :
(7.5

where

1o 1-e¥r
GB(r)zRe[E; FRE ] (7.6)

is the relevant correlation function. The problem is simplified
when we realize that it is possible to write

FIG. 14. Topological defect of the CCS. L: ; i
gs(k) Eg+Ey k2

phase coherence has not been established. It is obvious from
Eq. (6.2]) that this effect is possible due to presence of sin- Ey/Eg 1
gular solutions of the field equations, that is, due to the pres- Ev+E 1. 1912 1.2
ence of vortex-antivortex pairs and CCS dislocations loops. v Ee [1+Ec(Bg + By Ikt ky
At high temperatures we can disregard the time derivatives (7.7
in Eqg. (6.21) since the imaginary time direction shrinks to ) ) ) ) _
zero and the phase fields become independent Ghe ef- that is the sum of the correlation function for an isotropic 2D

fective action reads XY model plus the one for an anisotropic 20¥ model. The
integrals can be easily done in E.6) and forxA,yA>1
,8 ) o, 5 whereA is a ultraviolet cutoff(of the order of the inverse of
f d°r P M—[V%(f)] the lattice spacingwe find
2 Ey/E
V B
+ 2'7TNa 2 ax(Pa(r) ] (7-1) GB(x,y)w

27mB(Ey+Eg) V1+Ec(Eg 1+ Ey Y
Equation(7.1) describes two 2DXY models coupled along

the x direction. x?

Let us look first at the effective field theory fasg by XIn| A PR +y?
tracing out thep, modes explicitly. This is equivalent to 1+Ec(Eg"+Ey")
calculate the renormalization of one of the modes by the 1
Gaussian fluctuations of the other. Thus, in what follows the — In[A m] (7.9
topological excitations of these fields are not directly 27TB(EV+ Eg)

coupled to each other but only to their “spin waves.” This o .
approach is valid in the weak coupling limit df>1. Itis a  Which, for each direction separately, can be written as
simple exercise to show that the effective action becomes

1
Gg(s)~ In(Als]), (7.9
B B 2
So=35 > 9s(K)lea(kII2 (7.2 mhrs
wheres can be eithex or y and
where
EgE k2+ Ec(Eg+Ey k2 ps=(Eg+Ey)| 1+ Ev/Es B (7.10
K)=k2—> B TV« 7.3 BT VT I+ EQEg i+ EY|
ge(k) E K2t EK2 (7.3 c(Eg"+Ey

This result can be interpreted as tiiéective superfluid stiff-
nessof an isotropic 2DXY model. The error in making this
approximation is equivalent to an anisotropic change in the

is the effective phase propagator. We have defined

Ea:ﬁ, order parametefthat is irrelevant to the problem of phase
M, coherence discussed hgrAn analogous calculation can be
done for the phase fielgh, and it is obvious that one has
UF only to exchangé&,, by Eg in the expressions above in order
Ec=—1— (7.4
27Na’ to get
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Eg/Ey -1 transition is not 2DXY but 2D XY in a magnetic field® We
py=(Eg+Ey)| 1+ (7.11) neglect all the quadratic terms in the frequency and retain
\/1+ Ec(Eg'+EyY only the linear one. Notice that this is equivalent to assume

hat|w|<og/kg r<2mv,Naog/K,. Thus, the effect of the

that can be thought of as the effective stiffness of the Ccinear term is o introduce a hiah' frequency cutoff aiven b
fluctuations. An interesting consequence of our calculation 9 q y 9 y

is that if My—oo then E,,—0 and according to Eq.7.11) —
py—0. The transition to the static CCS deformed phase is We=—r (8.1

driven to zero temperature. Thus, while the system becomes KBR
a superfluid-superconductor @t g, at any finite tempera-

2]
(Kosterlitz-Thouless’* vortex-antivortex pairs in the case of 2 T ] , (8.2
the superfluid and dislocation loops of the modulated CCS. k 98

- ; The equal time correlation function is
ture dislocations of the CCS do not allow for long-range g
The transition temperature to the ordered phase can be esihere the leading order term i vanishes because the in-

1-eX " —iogw

order. 1

We conclude that the transition from the ordered to(PT(r 0)P(0,0))= exp[ > k

the disordered phase of the superfluid or/and the CCS is ko g8(k)

due to the unbinding of the topological excitations 1—ekr
~exp{ Re{wc

H 71
mated directly from Eqs(7.10 and(7.11) by tegral is symmetric. Observe that this is the same result of
- the previous section with the temperatufereplaced by
ThT o=~ 5 Pa (7.12 2w.. Thus, at zero temperature the system also has an un-

binding transition of topological excitations whéh= N, so
and the superconducting correlation length diverges as that

(7.13 wc(Ne)~ %pa(Nc). (8.3

b
T~ -
ga( ) aexp{ T/TKT,a_l},

whereb is a number of order of unit. Using Eqgs.(6.24, (6.28, and(8.1) we see that

Although our calculation is completely 2D the transition 1
described here only produces quasi-long-range order. True 1——
long-range order occurs via the coupling between planes. w(N)= 2N 8.4)
Thus, the real transition into the ordered phase at finite tem- ¢ K,
peratures is of the 3DY type. In order to estimate the ac- kgt m

tual transition temperaturd,., we assume that the coupling

energy per unit of length) ., is small compared td;, and is a monotonically decreasing function ofNL/On the other
therefore the 2D correlation length is well-developed wherhand, from Eq(7.10,

the system undergoes the phase transition. The transition

temperature is defined by the amount of energy required to 14 ov(N)Mg

destroy phase coherence between two regions of &iza og(N) as(N)/My

different planes separated by a distacce pa(N)= ,

, Mg av(N)Mg

Tc,a%CUc[fa(Tc,a)/a] ) (7.14 oa(N)/My

that is a transcendental equation by ,. Because of the 1+

exponential dependence @f with the temperature in Eq. \/ UF Mg My

7.13 we can solve this equation to logarithmic accuracy: + +

(713 q g Y 27Nal o9(N)  o%(N)

TC,aNTKT,a 1+

INX(Tyr o /cUy) | (7.15 that is a rather complicated expression in termsNofWe

_ o ~ have seen from Ed5.17) that
This result indicates that, depends only weakly oaand it
is very close toT gt . oy(N)

ag(N)

>1 (8.9
VIIl. ZERO TEMPERATURE _ . . _
since the electronic energies are much larger than the vibra-

WhenT—0 we can replace the sum over the Matsubarajonal ones. Assuming that this is the case we can write
frequencies in Eq(6.27) by an integral over frequency. Ob-

serve that at small frequencies the dominant term in Eq. B( ) Mg
(6.27) is the one that is linear in the frequency. Thus, as in pg(N)~
the case of interacting bosons in 2D the universality of the

277Na O-B(N)’ 8.7
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that is a monotonically increasing function ofNL/Thus Eq. T
(8.3 has a solution at N, provided that
™ J-------
wc(l/Nsp)>ZPB(1/Nsp)y (8.9 Tl
\\~\\T*~ p
otherwise there would be no solution and the system would | <P>=0
be insulating. Notice thal, <N, implying that at zero tem- <Ibl>=0 <IPI>50
perature there is a regioN.<N<N, where superfluidity <Ibl>£0
exists even at zero temperature but without phase coherenc: <> e
Observe that according to this thedgven at zero tempera- Insulator <e'P>
ture) there must be a region where bosons and stripes coexis Lo 9y
but no long-range order is possible. f::;f:rgeﬁgzif:c éz@viég
Moreover, borrowing the results from Ref. 59 we find that Metal
at N~N. we must have the superconducting correlation To o
length diverging as <eV>H0
N, N/ N
1 v Mean-Field I/N
g( N) o N — N_ , (89) Transition
. . . FIG. 15. Phase diagram of the modeie symbols are explained
the superfluid density behaving as in the texy.
oa(N)=| = — i VZ, (8.10 low which dy2_y2 bound states can form due tq the confining
N N potential generated by the antiferromagnetic background.
T This energy scale is set by the magnetic forces and is of
en b S ; .

and the boson compressibility giv y order of the magnetic stiffness. Because of this constraint our

1 1\%2-2 theory is only valid below the crossover line. Observe that

KB(N)‘X(N— - : (8.1)  the point whereT* vanishes atN=N_, is not a quantum
[

critical point as some theories asstneit it sets the scale
wherev andz are the critical exponents that at the mean-fieldfor a crossover from 1D to 2D behavifgee Eq.(3.2)]. At
level arez=1/v=2. Moreover, close td\. the transition temperatures beloW* bosons and lattice deformations start
temperature scales linearly with the superfluid density to appear in the spectrum at-¢r/a,0) and (O #/a) but
these deformations are dynamic in nature since long range
Te(N)xog(N) (8.12 order can only be attained at low temperatures due to phase
in complete agreement with the phenomenological Uemurductuations. Thus, the actual phase transition is driven by
relation observed in all superconducting cuprdtes. topological defects of the superflui@ortex and antivortex
pairs and the CCS distortion@islocation loops We have
shown that at finite temperatures the transition to the ordered
state is in the 3DXY universality class but the transition
In this paper we have proposed a model of a spatialltemperatures for the superconductivity and static lattice dis-
modulated collective charge state of the cuprates where th@rtions can be very different because of the difference in the
elementary excitations change character in real space dstiffnesses of the phase modes. In fact, we argue that static
pending on the local charge density. The problem is simpli{attice distortions may be observable inside of the supercon-
fied by assuming that there are two main kind of excitationsducting phase at very low temperatures. Although dynamic
namely, Luttinger liquid degrees of freedom in the regions oflattice distortions have been observed at temperatures below
high density(stripes andd,2_,2 bound state of fermions in T [as given in Eq(7.15] we are not aware of observations
the regions of lower densitfantiferromagnetic laddersthat  of static distortions at low temperatur€sThe search for
continuously transform into each other. We have shown thasuch distortions would be a good test for this theory. At zero
as a consequence of momentum conservation vibrations eémperature we have shown that phase fluctuations prevent
the collective state should be present in order to produckong range order to appear until the distance between stripes
sufficient phase space for condensation. In the presence odaches the critical valug, [given in Eq.(8.3)] where phase
static or diagonal stripes superconductivity is not possiblecoherence is established. Réf<N<Nj, a crossover region
because of the phase constraints of the former and,thg>  appears in the phase diagram where incoherent bosons coex-
symmetry of the boson wave function in the latter agree- st with stripe fluctuations. The phase transition at zero tem-
ment with the experimental observatiés Therefore, un- perature is in the 2DXY in a magnetic field universality
like the BCS theory, phonons are not the basic mechanism aflass.
pairing but without vibrations superconductivity would not  So far the discussion has been based on the idea of infinite
be possible. 1D stripe segments. For this geometry it is not possible to
Our main result is the phase diagram in Fig. 15. Therehave a trued,2_,2 superconducting order parameter as it has
T*~pg(N), given in Eq.(1.18), is the temperature scale be- been experimentally observédecause the Fermi surface is

IX. CONCLUSIONS
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FIG. 16. Coupling generated bydgz_,2 boson in the presence +

of vertical and horizontal stripes. FIG. 17. Tunneling junction across a boundary between hori-
. . . . zontal and vertical stripes.
flat. For a flat Fermi surface like the one shown in Fitp)4
:Ee Sv%p?rcgn?rl:ﬁt'v'% WOU\J\? hlzvxgwave syénrrnetfry tSItnh(i:e i superimpose the Fermi surfaces of the horizontal and vertical
€ whole e surtace wou € gapped. act this Sstripes we find a situation like in Fig. 18 where horizontal
anot_her major probl_em in app_roaches to the cuprate problergnd vertical Fermi surfaces have opposite sign in their
2izg'rng;\r';2] eltlgrsct)rllft)eosfl raltDls, ?(St\;:leﬁmanlr?nti;ftegsw?avc? ou hases. The situation is identical tomajunction between
P . P ) pect wo superconductof but the phase difference between the
theory indeed predicts sswave order parameter for infinite different domains is zero. It is the symmetry of the boson
1D stripes. If the small transverse tunnelindN) given in

Eq.(3.1) is included, the fermion dispersion relation is modi- that determines thd-wave superconductor order parameter.
9. (5.1 IS Included, : ISpersi lon ! " Notice that in the presence of boundaries the electronic mo-

fied to Eq.(3.3 and a curvature is introduced in the Fermi tion is actually 2D since stripe holes are being transferred

surfacehallowmg tfr(])rtabvery an_lsotroput-wa;_veil staté.”Op;h from vertical to horizontal stripes via the bosons. Thus, there
serve, however, that becauseis exponentially small wi is true propagation along the diagonals. In the disordered

N, changes in the Fermi surface shape only becomes Obserﬁfhase this propagation is not coherent and the system re-

a_ble whenNmN_m _where thg _system IS e_ssentla_lly tWO.' mains essentially 1D. In the superconducting state, however,
dimensional. This is not sufficient to explain the isotropic,,. - oherence between the domains is attained and quasipar-
d—V\llave sﬁte ttTat IS Obsir\;ﬁd in the under?og)oed guprates. ticles can propagate along the diagonals as in a ordinary

nldrea| y’t (;acauge fo ?. pres.t?]nc;a. 0 oun.anesl, Wguperconductor. Thus, our conclusion is that in the presence
would expect domain tormation with SIrpes running along ot 3y pidable microscopic boundaries no quasiparticle peak
the crystalographic directiorjgs it seems to be confirmed in is possible in the pseudogap phase while in the supercon-

neutron scattering experiments in YBGRef. 74]. The ex- ducting state the quasiparticle peak should exist. This con-

istence of microscopic twins and tweeds in the lattice strucy, «ion is in agreement with the ARPES d&taA conse-

ture of these systems seem to be intrinsic to the strong Iattic&uence of this mechanism is that the size ofdheave order
constraints. This situation is quite similar to what occurs in

» . .~ "'parameter should change with the relative number of do-
some m.artensmc systemsWe can think of thg boundaries ains. In samples where there are equal amounts of vertical
as Ju_nctlon§ between wo superconductors. Since the boun nd horizontal domains the superconducting order parameter
ary size,L, is very large(much larger than any of the super-
conducting length scalggach monodomain can be treated
as a separate superconductor that is coupled to other domains
through the boundary. Because the coherence length in these
systems is of the order of the lattice spacing, the supercon-
ducting order parameter can be continuously depressed near
the boundary leading to a situation similar to a Ly
superconducting-normal-superconducting junction. As we N
can see in Fig. @) ady2_,2 boson couples the positive lobe w
of the wave function to the horizontal stripes. Thus, when
phase coherence is achieved the whole Fermi surface in Fig.
4(a) have the same phase sigray, positive like in Fig. @)].
When the bosons cross the boundary and find a stripe ori-
ented along the vertical direction the negative lobe of the
wave function couples to the vertical stripe. This situation is
shown in Fig. 16. Therefore adjacent domains have opposite FIG. 18. Momentum space picture of the firthlvave state of
phases across the boundary as shown in Fig. 17. Thus, if wae electrons.
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(a) + =207 ) s —ZWJdIA 9.3
J—ea¢—03|n¢¢oc~ , .
where C is the line that links the two domains anBl,
=c/(2e) is the magnetic flux quantum. Choosing a gauge
- - such that¢p=0 at the junction, assuming that the boundary
has widthd and that the variations of the order parameter
across the boundary are negligible, we have from Eg®)
and (9.3
+ - ZWJCdA 0.4
(b) + that leads to a penetration deptty,, given by
N cd, ©5
’ 872dJ. .

- - Moreover, the variation of the phase across the boundary is
7r/d but because this variation occurs in a length scale of the
correlation length induced by the Josephson couplig,
we expect that

+ &y~d. (9.6

FIG. 19. () Superconducting order parameter for equal amountsThus, the Ginzburg-Landau parametey, is given by
of vertical and horizontal domaingb) superconducting order pa-
rameter in the case where there is an excess of domains in one A, cd,
direction. Kij=—~\|——, 9.7
& 872d3J,

is symmetric[see Fig. 1€8)]. If there are more domains in |eading to a critical fieldH., ;, for the field strength that is
one direction than in another thitwave order parameter screened by surface currents given by

should be asymmetric with a larger lobe in one of the direc-

tions as shown in Fig. 1B). In fact, ans-wave component @, mdJ, D,
for the order parameter should also develop since for a mon- Hero=_—5In(ky)~——In 2. 9.9
odomain system we would predict a fullywave order pa- 4mhj 8md*Jc

rameter. We should also point out thagxis coupling can  Finally, the critical field for the penetration of one flux of
lead to further increase of the condensation energy. In facjuanta through the boundary is of order

hopping along thec axis can help to stabilize thd-wave

order paramete?’ D, D,
Although T, is weakly dependent on the boundaries in the Heopg=——5~ > (9.9
sample, the transport properties, the critical currents and 2méy  2md

fields depend strongly on them. Let us consider a simplerpys we expect,,; to be much smaller than the upper
model for the junction between a vertical and a horizontalitica field required for the extinction of long range order. It

domain. The free energy for the junction is written as is clear that many macroscopic properties of the supercon-
ductor are determined by what happens at the internal bound-
c aries.
oF =— ECOS{ b), (9.1) As we have argued the formation of the stripes is driven

by the gain in kinetic energy and therefore favors antiphase
wherel , is the critical current and is the phase difference domain walls as shown in Fig(&. Thus, the magnetic fluc-
between domains. The critical current density is tuations are incommensurate with the lattice as it has been
observed for a long time in all the cuprafeslowever, we
have found that there are lattice distortions that we can as-
CZ'_C (9.2 sociate with the O motion as shown in Fig. 9. If the stripes
LI’ are site centered then the distortion does not affect the in-
commensurate spin order since the Cu atoms are unaffected.
wherel, is the distance between the Cu@lanes(for sim-  However, if the stripes are bond centerdds some
plicity we assume thalt, ,.=1.,=1.). In the presence of an numericaf® as well as analytical work8 indicate then the
electromagnetic vector potentialthe Josephson current be- dimerization producescommensuratemagnetic response.
tween two different domains is simply given by This can be seen in a schematic way in Fig. 20 where a
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t+++0----0++++ an argument against phonon mechanisms for superconductiv-
TITIoCIIIoNEEY (a) ity. In our theory atT=0 a static lattice distortion appears
++++0-——-—--0++++ together with the superconductivifgee Fig. 15b It is the
iiiio --=--0 iiii transition into this dimerized stripe phase that is strongly
°e----° affected by the isotope effect, not the superconducting one.
+++++0--0+++++ Thus, we can explain the unusual isotope effect in cuprates
tHA++O0 - -0+ ++++ as a consequence of the unavoidable coupling between lat-
+++++o--o0o+++++ (b) . ;
ft+ttommo+F++++ tice and the superconducting condensate. o
+++++0o--0+++++ It is clear from the phase diagram shown in Fig. 15
tH+++o--—o+++++ that our theory does not describe the so-called overdoped
F++++o0——0+++++ region of the cuprates. When the _distance_between the stripes
+++++0o--—0+++++ becomes of the order of the lattice spacing the system be-
tt++0----0++++ (C) comes homogeneous. The antiferromagnetic correlation
++++0-=-=-=-0++++ . - :
Ft+4+to——o+++++ length, for instance, is short and the bound states disappear
+++++o--o0o+++++ from the spectrum by merging with the lower Hubbard band

(this coincides with the vanishing of the pseudogap energy
scalg. Beyond this point we believe there is a crossover
to a conventional BCS behavior with a well defined Fermi
surface and therefore to Fermi liquid behavior in the normal
phasé* This smooth crossover is possibly the same one
dislocation loop of the CCS produces excess of one magnetibiat occurs between a Bose-Einstein system and a BCS
domain (a domain with a given staggered magnetization superconductdt’
over the othef? Thus, for bond centered stripes the disloca- In summary, we have presented a model for a collective
tion loops produce a dynamic commensurate response. Thaectronic state of the cuprates where the elementary excita-
presence of dynamical commensurate spin fluctuations haw@ns change from place to place in real space. We show that
been observed in YBC®,but not in LSCO. It might well be the decaying processes among these elementary excitations
that stripes are bond centered in YBCO and site centered iproduce superconducting correlations even when the interac-
LSCO. This would explain the difference between these twdions are repulsive. We show that tdewvave nature of the
materials in regards to the presence of commensurate spiiffder parameter is associated with tbevave nature of
fluctuations at low temperatures. bosons that exist due to the magnetic confinement. We have
It is clear from our theory that the vibrations are affectedshown that phase fluctuations are responsible for the quan-
by an isotope effecfsee Eq.(5.6)]. Moreover, because a tum disorder and that the phase diagram depends strongly on
static lattice distortion is involved we also expect the criticalhow vortices couple to dislocation loops. We have explained
temperature for the distortion3, \, to be strongly affected various different experimental facts of the cuprates and pre-
by changes of O isotopdshanges of & by 0'%). There is  dicted effects that might prove or disprove our theory.
strong evidence for the O isotope effect in LSCO and other Note addedAfter this paper was completed | became
cuprates that support our the§fyMoreover, we expect the aware of Ref. 86, where electron-phonon coupling is dis-
isotope effect to be stronger at tie=0 transition to the cussed in the context of ARPES and neutron scattering ex-
superconducting state &t=N_ where the static lattice dis- periments.
tortions start to appear. However, the superconducting tran-
sition itself should be very weakly dependent on the isotope
effect because the binding mechanism only involves the | would like to acknowledge fruitful conversations with
lattice in a indirect way(in other words, the stiffness of A. Bishop, D. Campbell, E. Carlson, H. Castillo, C. Chamon,
the superfluid is only weakly renormalized by the lattice A. Chernyshev, E. Dagotto, C. di Castro, T. Egami, E. Frad-
The experimental data in cuprates have indeed shown &kin, T. H. Geballe, N. Hasselmann, A. Lanzara, D. Mac-
unusual isotope effect where the critical superconductindg.aughlin, A. Moreo, L. Pryadko, D. Scalapino, Z. X. Shen,
temperature is not correlated with isotope effect that beC. Morais Smith, S. Sridhar, S. White, and Jan Zaanen. |
comes stronger at the quantum critical point associated witthank T. H. Geballe for pointing out Ref. 49. This work was
superconductivity® In fact, optimally doped cuprates show partially supported by a CULAR-LANL grant under the aus-
very weak signs of the isotope effect. This has been used gsces of the Department of Energy.

FIG. 20. + sign indicates an up staggered magnetization-and
indicates a down staggered magnetizati@: normal phaseib)
dimerized phase(c) topological defect of a bond centered stripe.
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