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Stripes, vibrations, and superconductivity

A. H. Castro Neto*
Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 13 March 2001; published 21 August 2001!

We propose a model of a spatially modulated collective charge state~CCS! of superconducting cuprates.
†For a shorter version of this work, see A. H. Castro Neto, inProceedings of the MTSC 2000@J. Supercond.13,
913 ~2000!#.‡ The regions of higher carrier density~stripes! are described in terms of one-dimensional~1D!
interacting fermions and the regions of lower density as a two-dimensional~2D! interacting bosonic gas of
dx22y2 hole pairs. The interactions among the elementary excitations are repulsive and the transition to the
superconducting state is driven by decay processes. Vibrations of the CCS and the lattice, although not
participating directly in the binding mechanism, are fundamental for superconductivity. The superfluid density
and the lattice have a strong tendency to modulation with wave vectors (p/a,0) and (0,p/a) implying a still
unobserved dimerized stripe phase in cuprates. The phase diagram of the model has a crossover from 1D to 2D
behavior and a pseudogap region where the amplitude of the order parameters are finite but phase coherence is
not established. We discuss the nature of the spin fluctuations and the unusual isotope effect within the model.

DOI: 10.1103/PhysRevB.64.104509 PACS number~s!: 74.72.2h, 74.80.2g, 74.20.2z
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I. INTRODUCTION

The experimental evidence for charge and spin inhom
geneities in superconducting cuprates has been accumul
in the past few years.2,3 It is believed that these inhomoge
neities are probably the result of strong competing electr
electron and electron-lattice interactions. The strong inte
tions can be hinted from the fact that cuprates are relate
Mott insulators, not to metals. From the theoretical point
view the major problem has been the description of
doped Mott insulator. It is this state that finally evolves in
a superconducting state. The origin of the inhomogenei
can be diverse. Disorder and the charge localization eff
that occur close to an insulating Mott state are natural p
sibilities. Furthermore, there is an emerging point of vie
that inhomogeneities may be in the heart of the superc
ducting phase. The difficulty in describing the supercondu
ing state may be related with the fact that an important p
of the physics occurs in real space. This should be contra
with a Fermi liquid description that is dominated by th
Fermi surface in momentum space. If the inhomogenei
observed experimentally are essential for the description
the superconducting state then a dual description in term
real and momentum space is certainly required.4

The search for a general principle or a special~maybe
hidden! symmetry that facilitates the understanding of the
materials is always desirable. It turns out that the intrin
complexities of these systems are enormous. In fact, the
perimental evidence seems to be that all the degrees of
dom, charge, spin, lattice, participate in a fundamental w
in their physics. Unfortunately, we may have to sacrifice
simplicity of description that helped us to understand
basic physics of many systems in the past. Besides the st
local interactions that induce large charge fluctuations, lo
range interactions associated with the insulating state
suppress the same degrees of freedom. We believe that
the interplay between these two forces that is fundame
for the understanding of the physics in these systems. In
paper1 we assume that the physics in cuprates can be div
at least into two length scales. On the one hand there is
0163-1829/2001/64~10!/104509~26!/$20.00 64 1045
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short length~high energy! scale that is associated with th
behavior of the electrons at atomic distances. This piece
physics is dominated by the strong local interactions t
lead to the Mott insulator and it is well described by mod
of strongly correlated electrons such as the Hubbard or
t-J model. This is a ‘‘highly’’ quantum regime where quan
tum fluctuations at atomic scales determine the physical
sponse. Since the short length scale is usually smaller
the size of systems studied numerically, these studies
provide a good physical insight. Various analytical a
proaches to these strongly coupled models exist in 2D5–7

and although they can also provide insight into the m
physical aspects of the problem they are unreliable in dea
with quantum fluctuations. In order to acquire intuition o
is forced to look at purely academic models that can
solved beyond mean field. This is the case of the vari
studies of the Isingt-J model where quantum spin fluctua
tions are suppressed by a large anisotropy in spin space,8 the
spin-fermion models where the spins are treated classica9

or models with large number of components.10 On the other
hand, the long wavelength physics of the problem is do
nated by long-range interactions such as the Coulo
Casimir,11 or entropic interactions that are essentially clas
cal in origin.12,13 Analytical treatments of these interaction
have always been difficult even in statistical mechani
problems in 1D. Therefore, from the theoretical point
view there are technical complications at all length sca
Any theoretical treatment that intends to start from the m
croscopic picture from the beginning will encounter treme
dous difficulties.

In this paper we follow a semiphenomenological a
proach. At the short length scales we have known for a lo
time that doped Mott insulators have a big ‘‘aversion’’
charge homogeneity.14 This happens because there is a lar
loss of magnetic energy when charge delocalizes. Even
fore superconductivity was discovered in cuprate oxides
concept ofstrings and quantum confinement of holes w
well understood: when a hole moves in an antiferromagne
produces a string of overturned spins with the energy gro
©2001 The American Physical Society09-1
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A. H. CASTRO NETO PHYSICAL REVIEW B 64 104509
ing linearly with the length of the string.15 When the hopping
energy,t, is smaller than the antiferromagnetic exchangeJ,
strings are the dominant processes in antiferromagnets~al-
though higher energy delocalizing processes called Trug
loops are also possible16!. When two holes are injected int
an antiferromagnet there is a gain in magnetic and kin
energy if they move together instead of separately. Stri
are suppressed because the second hole heals the string
erated by the first one. This picture of the diluted Mott ins
lator is generic. It can be obtained analytically in the Isi
t-J model and is also observed in numerical simulations
the SU~2! models as well.8 Because of the tendency to se
regate charge, Mott insulators are at the edge for phase s
ration into hole-rich and hole-poor regions.17 Still to this date
there is a heated debate about the border to phase sepa
in the phase diagram of thet-J model.18 More recently the
concept ofstripesin the t-J model has emerged due to de
sity matrix renormalization group~DMRG! calculations by
White and Scalapino~WS!.19 These simulations show clea
signs of charge order. In the WS picture when holes
doped into the antiferromagnet they first form pairs that c
dense into lines of charge with magnetic anti-phase dom
walls ~ADW!. This condensation process, as shown in a
lytical approaches to the Isingt-J models20 and in other nu-
merical studies,21 has to do with the gain in kinetic energy o
a single hole due to the formation of an ADW~moreover,
Trugman loops are suppressed in this case20!. That is, for a
finite linear density of holes~vanishing 2D density! the gain
in kinetic energy by making a domain wall is enough
compensate for the loss of magnetic energy due to the
mation of magnetic defects. We should stress that we are
concerned with the problem of the phase diagram of thet-J
model because this phase diagram most certainlycannotbe
the phase diagram of cuprate oxides. There are many im
tant interactions in cuprates that are not included in thet-J
model. We argue below that coupling to the lattice, for
stance, is relevant for the experimental phase diagram.
assume that the tendency of the diluted Mott insulator
form bound state pairs of holes is universal.

Long-range interactions and their eventual screening
probably the key to understand the phase diagram
cuprates.22 At low doping, because of the existence of a lar
charge gap in the Mott insulator, charge dynamics is s
pressed and as a consequence dynamical screening as
All the physics rests in the spin degrees of freedom. Th
when a small concentration of hole is introduced into
CuO2 layers long-range interactions should play a ma
role. These long-range interactions are effective in suppr
ing the tendency to phase separation as stressed by E
and Kivelson~EK! and collaborators23–25 and lead to the
generation of a finite length scale,LD , associated with do-
main size.26 In the absence of a lattice the long-range forc
produce blobs or lakes of charge with characteristic sizeLD .
It turns out, however, that in transition metal oxides the c
pling to the lattice is strong and therefore the symmetry
rotations in real space is broken. Charge modulation is th
fore the final result of the tendency to phase separation
strong lattice coupling. The formation of this charge mod
lated phase isnot the result of a Fermi surface singularity a
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in the case of 1D charged density waves~CDW!. In fact, the
CCS state described here has strong similarities with the
tallic 2D CDW states observed in Dichalcogenides27 that
have very little resemblance with the 1D CDW states that
insulating.28 This state is probably better described as co
ing from the quantum melting of an anisotropic Wigner cry
tal ~or Bragg glass!22 or from an exotic CDW state.29 In
classical statistical mechanics there are many analog
called liquid crystal phases: nematic, smectic, hexatic, et30

These are phases with long-range orientational order in
absence of translational order. Another more mundane ph
where translational symmetry is broken in 2D is an ani
tropic membranephase where translational order is brok
along the principal vectors of the lattice.12

Let us consider a static charge modulated phase indu
along they direction in the 2D system with periodicityNa
wherea is the lattice spacing. The charge density,r(r ), can
be written as~we use units such that\5kB51)

r~r !5r01^F~r !&expH i
2p

Na
yJ 1c.c., ~1.1!

wherer0 is the background density, andF is the complex
order parameter that can be rewritten in terms of an am
tude uFu and phaseu:

^F~r !&5uFuexpH 2 i
2p

Na
u~r !J . ~1.2!

The lines of constant phase at wave number 2p/(Na) are
described by

f5
2p

Na
~y2u!52pn, ~1.3!

wheren50,61,62, . . . . In aninert background~such as a
Fermi liquid! the local modulations of the density can lead
gaps at the Fermi surface but the system as a whole rem
homogeneous. In a Mott insulator this is not necessarily
In the regions of low charge density the Mott insulator
essentially untouched. In these regions it is energetically
vantageous for the system to form bound states of holes
dx22y2 symmetry~exactly like in a finite cluster or ladder!
with a gain magnetic energy.21,31,32 In the regions where
charge density is large it is energetically more favorable
the system to have a gain of kinetic energy20 that liberates
the holes to move as single particles and create ADW. Th
the formation of a charge ordered state has to be accom
nied by a change in the spin structure of the system with
creation of incommensurate spin fluctuations. The mec
nism of gain of energy~kinetic or magnetic! depends
strongly on the amount of charge density. Moreover, def
mations of amplitude of the order parameter of the CCS
always energetically costly. Therefore, phase fluctuations
the low energy excitations in such systems. For a class
smectic phase, for instance, the free energy is given by
9-2
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STRIPES, VIBRATIONS, AND SUPERCONDUCTIVITY PHYSICAL REVIEW B64 104509
FS5
1

2E d2r @B~] uuuS!21K~]'
2 uS!2#5

1

2 (
k

vS,kuuS,ku2,

~1.4!

whereB is transverse stiffness of the smectic andK is the
splay elastic constant. Hereuu and' indicate the gradient o
the function in the directions parallel and perpendicular
the ordering direction, respectively. Moreover,vS,k5Bkuu

2

1Kk'
4 is the classical smectic dispersion relation. A me

brane phase, on the other hand, would be described
vM ,k5ABuu

2kuu
21B'

2 k'
2 where Buu (B') are the longitudinal

~transverse! compressibilities. In fact, because the char
modulated state is composed of electrons we expect
modulated phase to be quantum in nature, that is, aquantum
liquid crystal.33

Notice that such a smooth charge distribution as propo
in Eq. ~1.1! is different from the stripe phases discussed
the context of insulating cuprates and nickelates. In insu
ing nickelates static charge order is observed in neutron s
tering and many other experiments.34 The key point is that
higherharmonicsof the fundamental Bragg peaks associa
with static order are observed in these systems. It imp
sharp, well defined and isolated domain wall structures
real space. In superconducting systems where inelastic
tron scattering peaks are observed at equivalent posit
there areno harmonics observed, even when the fundame
peaks are rather sharp. In La1.48Nd0.4Sr0.12CuO4 ~LNSCO!
where Tranquada and collaborators observed quasi-s
peaks in neutron scattering there are no signs of hig
harmonics.35 This experimental fact signals to a smoo
variation of the charge-spin densities in the system. Thus,
idea of well-defined, non-interacting stripes is misleading
the context of superconductivity. Instead one should think
the ‘‘stripes’’ as a complex collective state that is driven
competing local interactions and cooperative long-ran
forces.

The importance of the lattice degrees of freedom has b
experimentally verified in essentially all cuprate superc
ductors and their insulating relatives.36,37 At this point in
time most of the theoretical approaches either focus
electron-electron interactions and overlook the importanc
lattice degrees of freedom or mainly electron-phon
interactions38 disregarding the importance of the stron
~short- and long-range! interactions in the problem. Som
mean-field approaches, however, have stressed the im
tance of electron-lattice interaction in the context
nickelates.6,39 We believe that electron-electron and electro
lattice interactions are equally important because of cha
neutrality. Charge neutrality implies that a charge modula
state such as the one defined in Eq.~1.1! has to be strongly
coupled to the lattice. One would expect under general c
siderations that fluctuations of the CCS to appear in the p
non spectrum. Indeed, consider the classical elastic la
free energy:

FP5
1

2 (
k

vP,kuuP,ku2, ~1.5!
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whereuP,k is the lattice deviation from equilibrium positio
andvP,k the phonon dispersion relation. In the leading ord
the coupling between the smectic and lattice is quadratic
the displacements and can be written as

FC5(
k

CkukuP,2k1c.c., ~1.6!

where Ck are the coupling constants. The problem of t
CCS plus phonons can be solved exactly by a simple lin
combination of the displacement fields. There are t
branches of excitations with frequency given by

V6,k5
1

2
@vS,k1vP,k6A~vS,k2vP,k!214uCku2#

~1.7!

leading to a splitting of the vibrational modes. Therefore,
phonon spectrum should be directly affected by the prese
of a CCS. Thus, in dealing with the fluctuations of the CC
we have to consider the renormalizations of such fluctuati
by the lattice. The full quantum mechanical problem can
quantized exactly like phonons in ordinary crystalline sol
and the vibrations of the CCS are described by

HV5(
k,a

Va,kba,k
† ba,k , ~1.8!

whereba,k (ba,k
† ) is the annihilation~creation! operator for

quantum vibrations of the CCS with momentumk in the
brancha and energyVa,k .

Although the description of the collective state is rath
simple because of its Gaussian nature, the description o
internal degrees of freedom~associated with the short lengt
scales! is more complex. In what follows we make anad hoc
assumption that the internal charge excitations of this col
tive state can be divided into two main groups. First, in t
regions where the charge density is large@that is, given by
the lines of constant phase in Eq.~1.3!# ADW exist due to the
local gain in kinetic energy. These regions we call strip
These high density regions are characterized by single
ticle excitations~not bound states! and they are essentiall
confined to 1D lines because of the potential induced
strings.20 This highly anisotropic electronic fluid should b
interacting because of the phase space constraints and i
absence of tunneling between stripes it is described b
Luttinger liquid.40 In the regions of low density~in the
middle of the antiferromagnetic ladders! single particle exci-
tations are suppressed and bound states of holes are ene
cally more favorable. The simplest of them is a bound st
of a pair of holes withdx22y2 symmetry.31 Larger bound state
structures like quartets are unlikely to contribute beca
their quantum dynamics is exponentially suppressed~tunnel-
ing matrix elements decay exponentially with the number
particles!. Moreover, we assume that this gas of bosons
essentially isotropic and only weakly coupled to the str
fermions. The main reason for the weak coupling is rela
with the ‘‘string healing’’ process that generates the pairs
first place, that is, the bosons are essentially insensitive to
magnetic structure including the ADW. We argue, howev
9-3
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A. H. CASTRO NETO PHYSICAL REVIEW B 64 104509
that it is the weak coupling between bosons and stripes
ultimately produces superconductivity in the system.

From the electronic point of view the situation is illu
trated in Fig. 1. The Mott insulating state can be described
a filled lower Hubbard band~L.H.B.! and an empty uppe
Hubbard band~U.H.B.! that are separated by a large ener
scale. In between these two bands there is a single elec
band associated with the stripe fermions that we call
stripe band. The bound states of holes exist due to the tr
fer of spectral weight from the L.H.B. to a level above it wi
energyEk/2 ~wherek is the momentum of the boson as w
discuss below!. The binding energy of the holes is the ener
difference between the boson level and the top of the L.H
The binding energy can be seen as mediated by the exch
of paramagnons41 and therefore is of the order of the cha
acteristic magnetic energy in the problem.42,43 In the un-
doped system the characteristic energy is simply the
change constantJ but as doping increases the magne
energy scales are reduced driving the system from the M
insulator to a more ordinary Fermi liquid state.

The measure of the magnetic energy is the spin stiffn
rs , of the magnetic background. A finite spin stiffness p
duces the confining potential for the charge carriers of
form20

VC~y!5
rs

a
uyu ~1.9!

~modulusNa! as shown in Fig. 2~a! @VC(y1Na)5VC(y)#.
The total potential as seen by the holes is a superpositio
the atomic potential of the lattice,VA(y)@VA(y1a)
5VA(y)#, and the magnetic confining potential of th
strings. In Fig. 2~b! we show in a simple Kronig-Penne
picture the result of the superposition of these two potenti
When the temperature is larger thanrs the holes are essen
tially deconfined. Since the hole pairs only exist at tempe
tures belowrs it is important to estimate this energy scale.
order to do so let us consider the situation in Fig. 3~a! where
the exchange within the antiferromagnetic regions isJ but
across the stripe it isJ8,J. At long wavelengths the problem
maps into a spatially anisotropic Heisenberg model with

FIG. 1. Schematic plot of the density of states as a function
energy.
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changesJx andJy as shown in Fig. 3~b!.44 While J8/J is a
short length scale property and depends on the microsc
details20 the ratio

a5
Jx

Jy
~1.10!

depends on the long wavelength properties and determ
the region of stability for antiferromagnetic order.44 More-
over, the effective spin stiffness of the magnetic backgrou
depends directly ona. Assuming thatJy5J in Fig. 3~b! ~so
that the exchange along the direction of the stripes is
modified! it is easy to show that44

rs~a!5JS2Aa. ~1.11!

f
FIG. 2. Effective potential:~a! Vc(y) is the string potential gen-

erated by the antiferromagnetic background andVA(y) is the atomic
potential generated by the lattice;~b! resultant potential.

FIG. 3. ~a! Magnetic interactions in the presence of stripes:J is
the exchange between spins in the antiferromagnetic ladder;J8 is
the exchange across the stripe.~b! Effective magnetic model with
spatially anisotropic couplings.
9-4
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STRIPES, VIBRATIONS, AND SUPERCONDUCTIVITY PHYSICAL REVIEW B64 104509
This choice for the exchange constants was used in Ref
and seems to explain well the data in LNSCO.46 In the low
hole doping regime (x,0.02) another choice has to be ma
since the magnetism is isotropic.44 It is clear from Eq.~1.11!
that a decrease ina reduces the spin stiffness and can lead
a quantum phase transition to a spin liquid state.47 The main
problem is how to relatea of the effective model of Fig. 3~b!
to the microscopic model of Fig. 3~a!. We use a simple
scheme and compare the classical ground state energi
the two problems. In the case of Fig. 3~a! the Hamiltonian is
simply

H5(
i , j

Ji , jSi•Sj , ~1.12!

whereJi , j5J in the antiferromagnetic ladders andJi , j5J8
across the ADW. Let us rewriteJ85gJ where 0,g,1 is a
microscopic quantity that depends on details of the probl
With this parametrization it is clear that the classical grou
state energy can be written as

E05EAF~J!1~12g!JS2NstripesNs , ~1.13!

where

EAF~J!522JS2Nspins ~1.14!

is the classical energy of an isotropic antiferromagnet w
Nspinsspins and exchangeJ. Ns is the number of sites in eac
direction (Ns

2 is the total number of sites!, Nstripes5Ns /N is
the number of stripes (N is the separation between stripes
lattice units!, andNspins5Ns

22Ns3Nstripes is the number of
spins not residing in stripes@Nspins5Ns

2(121/N)#. Thus,
from Eq. ~1.13! one gets

E0

Ns
2JS2

5221
32g

N
. ~1.15!

On the other hand, for the effective model shown on F
3~b! with the same number of sites we would have

E052~Jx1Jy!S2Ns
252J~11a!S2Ns

2 , ~1.16!

where we used Eq.~1.10!. Comparing Eqs.~1.15! and~1.16!
we find

a512
32g

N
. ~1.17!

This result implies from Eq.~1.11! that

rs~N!5JS2A12
32g

N
. ~1.18!

Notice that the spin stiffness vanishes at a critical dista
Nm between stripes given by

Nm532g. ~1.19!

Since 0,g,1 we see that 2,Nm,3 @quantum fluctuations
increase the value ofNm ~Ref. 44!#. The binding energy of
the hole pairs is proportional tors and no bosons can exist a
zero temperature whenN,Nm . Moreover, we identify a
10450
45
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temperature scaleT* (N)'rs(N) above which no bosons ex
ist @T* (Nm)50#. So we relate the formation of the hol
pairs as the ‘‘pseudogap’’ energy scale observed in m
different experiments.48 Our theory, however, breaks dow
whenT.T* .

In the noninteracting picture~with no hybridization be-
tween bosons and fermions! we can have two possibilities. In
Fig. 1 the boson state is empty of holes~filled with electrons!
and the stripes are partially filled up to the chemical poten
energym. Because bosons and fermions are in thermo
namic equilibrium we work in the grand-canonical ensem
and keep the chemical potential fixed by letting the num
of particles fluctuate. Consider the case when

m.Ek/2.

The boson state is unoccupied and there are no bosons i
system. As the chemical potential is reduced~more holes are
introduced! the stripes empty and further reduction of th
chemical potential pins the energy at the boson level sinc
more holes are added they can only produce bound sta
Thus, there is a continuous transfer of spectral weight fr
the L.H.B. to the boson level. On the other hand, if the bin
ing energy of the holes increases nothing happens untm
5Ek/2. At this point there would be bosons and stripes c
existing with each other. When the binding energy is
creased further the chemical potential follows since bos
become converted into stripe fermions. Once again
chemical potential is pinned at the boson level. Finally wh
the boson level reaches the top of the stripe band the str
are completely filled and the ADW disappears. In fact, b
cause of the loss of kinetic energy the domain wall dis
pears even before this limit is reached.20 Therefore, we as-
sume that

2m2Ek>0. ~1.20!

Moreover, it is clear from this picture that the spin degrees
freedom that are responsible for the large magnetic respo
in these systems leave on the L.H.B. and are separate
energy from the charge degrees of freedom. Therefore,
magnetism can be effectively ‘‘traced out’’ of the proble
since it only leads to kinematic renormalizations of the va
ous parameters~in other words, the spins follow the charge!.

The mechanism for superconductivity discussed in t
work requires the coupling of stripe fermions via the e
change of bosons. One can think of this mechanism as
exchange of stripe ‘‘pieces.’’ Coherence between the fer
ons requires the exchange of real bosons. The simp
mechanism for exchange is the decay of the bosons~since
they are composite particles! into fermionic degrees of free
dom at the stripes. This kind of mechanism can occur wh
two systems with very different ground states are separa
by an interface. In fact, it was proposed long ago tha
mechanism of this sort could generate superconductivity
metal-semiconductor interface ~also called exciton
superconductivity!.49 Although this kind of proposal has gen
erated controversy in the past50 there are good indication
that they may be good candidates in the case of cuprat51

Moreover, the process described here is similar to the ‘‘pr
9-5
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A. H. CASTRO NETO PHYSICAL REVIEW B 64 104509
imity effect’’ mechanism proposed by EK if we neglect r
tardation effects due to the boson motion.23–25 One of our
main results is: if the stripes static, that is, if we disregard
fluctuations of the CCS, this process is suppressed
‘‘proximity effect’’ mechanism cannot happen with stat
stripes and real bosons. Therefore, for coherence to be
tained, we have to introduce fluctuations of the CCS. T
makes our model radically different from the proximity e
fect proposed by EK since it involves distortions of the CC
and therefore of the lattice as well. Moreover, unlike BC
the phonons are not part of the binding mechanism tha
driven by the exchange of composite fermion pairs. Vib
tions, however, are fundamental for the superconductivity
natural consequence of the mechanism is that fluctuation
the order parameter are necessarily coupled to the fluc
tions of the CCS and therefore vortices are coupled to di
cations of the stripe array. Because the superfluid densi
low, the interactions between topological defects ultimat
determines the phase diagram. Moreover, we claim that s
stripes@as the ones obtained in Hartree-Fock solutions of
t-J and Hubbard models52,53 or DMRG ~Ref. 19!# should be
insulating due to a 1D CDW instability along the stripe d
rection. Diagonal stripes do not couple to the bosons beca
they are oriented along the nodes of the boson wave fu
tions.

Among other things we explain why phonon anomal
that have been observed in neutron scattering36 occur exactly
at the same position in the Brillouin zone where angle
solved photoemission54 ~ARPES! observes the opening o
the pseudogap@that is, at (p/a,0) and (0,p/a)#. Moreover,
we show that the lattice distortions associated with the p
non anomalies are associated with the modulation of the
perfluid densityperpendicularto the stripes. The theory als
predicts an isotope effect and the coexistence of comme
rate and incommensurate spin fluctuations. The critical te
perature for superconducting order,Tc , is determined by the
interplay between topological defects associated with the
perfluid bosons~vortices and antivortices! and distortions of
the CCS~dislocation loops!. The transition at finite tempera
tures is in the 3DXY universality class. We show that th
amplitude of the order parameters is finite at temperatu
aboveTc up to T* in the pseudogap region. Moreover,
T50 there is a quantum phase transition as a function of
separation between stripes,N, that is directly related to the
hole concentrationx@N'1/(2x)#. While the order param-
eters become finite forN,Nsp long-range order is only at
tained atN5Nc,Nsp . This quantum phase transition is
the 2DXY in a magnetic field universality class. Thus, the
is a crossover region atT50, Nc,N,Nsp , where topo-
logical defects prevent long-range order to develop.

The paper is organized as follows: in the next section
introduce the bosonic bound state of holes; in Sec. III
present the Luttinger liquid representation of the stripe f
mions; in Sec. IV we discuss the nature of the coupling
tween bosons and stripe fermions and argue that vibrati
degrees of freedom should enter explicitly; in Sec. V
solve the mean-field equations for the problem and de
mine the mean-field phase diagram; in Sec. VI we disc
the phase fluctuations of the superfluid-superconducting s
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and how they relate to the phase fluctuations of the CCS
Sec. VII the nature of the high temperature transition is d
cussed; Sec. VIII contains the results for the zero tempe
ture transition; Sec. IX contains our conclusions.

II. ANTIFERROMAGNETIC BOSONS

Consider the problem of two holes in an antiferromagn
The energy is minimized by the formation a bound state t
moves freely through the system.31,43 One can define an op
erator that creates such a state at the top of the antiferrom
netic vacuum that is given by

Pk
†5

1

AS
(

q
Ck~q!c↑,k/22qc↓,k/21q , ~2.1!

wherecs,k destroys an electron~creates a hole! with momen-
tum k and spin projections (↑ or ↓) in the antiferromagnet.
S5(Nsa)2 is the area of the system. The wave function
the pair, Ck(q), is normalized@(quCk(q)u2/S51# and in
principle depends on the relative and total momentum of
pair. This wave function can be obtained variationally55 or by
solving the Bethe-Salpeter equation for the binding of t
holes.56 The dependence of the wave function on the to
momentum is due to the fact that on the lattice the symme
of the bound state varies with its center of mass momen
and depends strongly on the microscopic details. For
SU~2! t-J model it is known that thedx22y2 state has the
lowest energy31 while in the Isingt-J model thep-wave is
the ground state.43,57The matter of the fact is that thes-wave
state is always the state with highest energy and the reas
fairly simple to understand: the strong local repulsion
quires the wave function of the pair to be centered at diff
ent sites. In other words,s-wave bound states are suppress
by the magnetism. Here we assume the pairs to havedx22y2

symmetry.
It is easy to see that the operator defined in Eq.~2.1! is not

completely bosonic because of its composite nature.58 Since
the electrons obey anticommutation relations ($cs,q ,cs8,q8

† %
5dq,q8ds,s8) it is easy to show that commutation relations
the bosons is given by

@Pk ,Pk8
†

#5dk,k82Dk,k8 , ~2.2!

where

Dk,k5
1

S (
q

„uC~k/22q!u2nh,↑,q1uC~k/21q!u2nh,↓,q….

~2.3!

Here nh,s is the number operator for holes (12nc,s where
nc,s is the number operator for electrons!. Since the magni-
tude of Dk,k is proportional to density of holes in the ant
ferromagnet,Dk,k is smaller thanx, the total number of holes
in the system. Moreover, the largest fraction of holes is
tually residing in the stripes. Since Eq.~2.3! is much smaller
than one, the violation of the bosonic commutation relatio
can be disregarded and we can treat the bound states a
bosons. At this point it is convenient to count the numb
Ne , of fermions. Assuming that there areNs /N stripes of
9-6
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size Ns ~in lattice units! the number of antiferromagneti
sites is (Ns2Ns /N)3Ns and the total number of fermions i

Ne5Ns
2~121/N!22(

k
Pk

†Pk1(
k,s

ck,s
† ck,s , ~2.4!

where the factor of 2 comes from the composite nature of
bosons and the last term is the number of fermions in
stripes~see below!.

The Hamiltonian of the composite bosons can be writ
as

HP5(
k

~2Ek12m!Pk
†Pk1

U

2 (
i

Ni
2 , ~2.5!

whereEk is the dispersion relation of the bosons andU is the
local repulsion between pairs. In Eq.~2.5! m is the chemical
potential for the electrons and it comes with a negative s
because the chemical energy appears as2mN with the total
number of electrons given in Eq.~2.4!.

Suppose there are no other interactions in the prob
~that is, stripe fermions anddx22y2 bosons do not interact!.
The Hamiltonian~2.5! is the so-called Bose-Hubbard mode
This problem has been studied to a great level of detail
its phase diagram is well known.59 Let us consider the situ
ation close to the minimum ofEk at, say,k5K . Expanding
close to this point one can rewrite the Hamiltonian for t
bosons as

H5(
i

F ~2EK12m!Ni1
U

2
Ni

2G2tB(
^ i , j &

Pi
†Pj1H.c.,

~2.6!

where tB is the hopping energy of the boson. The pha
diagram is strongly dependent on the boson chemical po
tial, mB , that is given by

mB522m1EK . ~2.7!

In the absence of disorder the superfluid phases are sepa
from the Mott insulator phases by lines of second or
phase transition. AttB50 the Mott insulator phases exten
in the rangen21,mB /U,n wheren is a positive integer
that gives the number of bosons per site. Notice that beca
of condition ~1.20! we must always havemB<0. Therefore,
the only allowed state for the bosons is the Mott insula
with n50, that is, the vacuum. For a finite value oftB there
is a critical value of the hopping above which the syst
becomes a superfluid. However, even a small amount of
order suppresses the Mott insulator-superfluid transition
the creation of an insulating state. Disorder is unavoidabl
these systems since the charge comes from counter-ion
of the CuO2 planes. Thus, the conclusion is that if the boso
are decoupled from the stripes the Bose system is in
insulating Bose glass state.

III. STRIPE FERMIONS

As we have argued the single particle excitations at
regions of high density of the CCS is due to the magne
confinement.20 In the absence of the CCS the holes can mo
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freely with hopping energyt in both in thex andy directions
and the Brillouin zone is defined for2p/a,kx ,ky<p/a. In
the presence of the CCS the translation symmetry of
lattice perpendicular to the ordering vector is broken. S
pose that the stripes are separated by a distanceNa. Then the
new Brillouin zone is given by2p/a,kx<p/a and
2p/(Na),ky<p/(Na). Thus the original band has to b
folded back into this zone and gaps open in the single p
ticle spectrum generatingN new bands.

When N@1 the tunneling between stripes is suppress
because of the large distance. A WKB estimate of the tra
verse tunneling energy using the confining potential~1.9!
gives

t'~N!'
rS~N!3/4N3/4

m1/4a1/2
e2N3/2aA2mrS(N), ~3.1!

wherem is the hole mass. Observe that forN@1 Eq. ~1.18!
shows thatrS'J/4 and therefore the stripe fermions ha
large gaps in their spectrum. Moreover,t' is exponentially
suppressed at largeN and interstripe charge fluctuations a
suppressed. AsN is decreased the confining potential ge
weaker and eventually vanishes atNm given in Eq.~1.19!.
Close toNm the system is essentially 2D and the confini
potentialVC(y) can be treated as a perturbation of the atom
one and small gaps of orderrS(N) open atp/(Na). At this
point, N→Nm

2 , the bandwidth of the lowest band is simp
4t„12cos(p/Nm)…,4t. Exactly atNm the stiffness vanishes
and the system becomes 2D since the holes can move fr
that is t'(N.Nm)5t where t is the hopping energy in the
absence of the CCS. A simple and convenient way to par
etrize the hopping in the transverse direction in the wh
parameter range is

t'~N!5te2(N2Nm)/N0, ~3.2!

where N0'Nm / ln@1/„12cos(p/Nm)…#. The hopping along
the stripes,t uu , is not so sensitive to the distance betwe
stripes. It has been shown20 that for N→` the hopping en-
ergy is reduced fromt ~as in the uniform system! due to the
dressing by strings to a value of the order ofJ't. On the
other hand whenN'1 one hast uu5t. Thus, t uu is a smooth
function and its variation withN can be ignored. The anisot
ropy in the hopping energies leads to anisotropies in
Fermi surface as well. Suppose the stripes are oriented a
thex axis. The stripe fermion dispersion relation can be w
ten as

ek~N!522t uu cos~kxa!22t'~N!cos~Nkya! ~3.3!

and it is strongly anisotropic as long ast uu@t' ~this is always
true forN.Nm). In the limit of N@1 the transverse compo
nent can be completely disregarded and the Fermi surfac
obtained by filling up all the states up tokx56kF wherekF
is the Fermi momentum@see Fig. 4~a!#. Moreover, the Fermi
surface is open alongky since the system has no dispersi
in that direction. If the stripes are oriented along the diag
nals on a square lattice then in momentum space the dis
sion looks like the one given in Fig. 4~b!. Then it is conve-
nient to rotate the orientation of the lattice byp/4 and to
9-7
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change the lattice spacing froma to a/A2. Introduction oft'
leads to a change in the curvature of the Fermi surface b
amountdk' close to the Fermi points.

As it has been noted in the context of organ
superconductors60 the strong anisotropy of the hopping pr
duces strong dependence of the physical properties with
perature. At high temperatures, that is,T.t'(N), the uncer-
tainty on the transverse momentum is larger than the siz
the Brillouin zone,dk'.p/(Na), and the curvature of the
Fermi surface is blurred by thermal effects. In this case
motion of the electrons perpendicular to the stripes beco
incoherent and electrons become confined by thermal eff
to a region of sizeNa. Thus, the motion of the electrons
essentially 1D and the 2D aspect of the stripe problem ca
disregarded. In the opposite limit,T,t'(N), the curvature of
the Fermi surface is larger than the thermal effects and
physics start to play a role. So there is a 1D to 2D crosso
as a function of temperature that occurs atTcr(N)'t'(N).

In most of the paper we focus in the region whereN
,Nm so it makes sense to talk about stripes and the e
tence of a CCS. In this region the transverse hopping gi
by ~3.2! is exponentially small and the problem can
treated as purely 1D. Consider a single isolatedstatic stripe
that we describe as a 1D electron gas with dispersionek . The
noninteracting Hamiltonian is simply

H05(
k,s

~ek2m!ck,s
† ck,s . ~3.4!

As usual in the case of the 1D system we assume that
physics is dominated by the excitations close to the Fe
points. Expanding the dispersion close to6kF(e6kF

5m) we
can write the above Hamiltonian as

H05 ivF(
s

E ds„cR,s
† ~s!]scR,s~s!2cL,s

† ~s!]scL,s~s!…,

~3.5!

FIG. 4. Momentum space picture for stripes:~a! longitudinal;
~b! diagonal.
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wheres is the distance along the stripe~if the stripe is ori-
ented along thex axis thens5x, but if the stripe is diagona
then s5Ax21y2) vF is the Fermi velocity andcR(s) and
cL(s) are right and left moving electrons, respectively. T
original fermion operator is written as

cs~s!5cR,s~s!eikFs1cL,s~s!e2 ikFs ~3.6!

and these can be bosonized via the transformation40

cR,L,s~s!5
1

A2pa
e6 iApfR,L,s(s).

The fieldsf can be described in terms offs andus as
fR,L,s(s)5fs(s)7us(s). The bosonic fields can be rewrit
ten in terms of charge and spin bosonic modes:fc,s

5(1/A2)(f↑6f↓) and uc,s5(1/A2)(u↑6u↓). If the aver-
age density on the stripe isr0 then we can write,
(s5↑,↓cs

†(s)cs(s)5a(r01dr) and dr5]sfr /Ap in
bosonized form. The Hamiltonian of the problem forforward
scattering reads40

HF5 (
m5r,s

vm

2 E ds$Km~]sum!21Km
21~]sfm!2%, ~3.7!

where Km are the Luttinger parameters~dependent on the
electron-electron interactions! and

vm5
vF

Km
~3.8!

are the charge and spin velocity. For the noninteracting s
tem we haveKr5Ks51. By the same token the action th
describes the bosonized fermions is given by

S5(
m

Km

2vm
E dsE dt@~]tum!21vm

2 ~]sum!2#

5(
m

1

2Kmvm
E dsE dt@~]tfm!21vm

2 ~]sfm!2#.

~3.9!

Besides forward scattering we may also include a ba
scattering term:

H1}E dscR,↑
† ~s!cL,↓

† ~s!cR,↓~s!cL,↑~s!1H.c.

5g1E dscos„A8pfs~s!…, ~3.10!

whereg1 is the coupling constant. In principle a Luttinge
liquid can also include umklapp terms. The umklapp ter
are only important at commensurate fillings and especiall
half-filling when they are responsible for the Mott-Hubba
gap. However, half-filling for the stripes implies that there
one electron per site, that is, the stripe is depopulated. T
can only happen if the boson level crosses the chemical
tential and the stripe state becomes unstable. Throughou
paper we assume that the stripe state is stable and ther
9-8
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away from half-filling. Experiments by Tranquada and c
laborators in LNSCO indicate that the stripe filling is 1/435

Thus, we disregard the umklapp processes.
The importance of the backscattering term can be rea

understood by a simple perturbative renormalization gro
~RG! calculation. It is a simple exercise to show that if w
shrink the bandwidth of the stripe electrons fromEc to Ec
2dEc the coupling constantg1 renormalizes according to40

]g1

] l
52~12Ks!g1~ l !, ~3.11!

wherel 5 ln(1/Ec). Thus,g1 is irrelevant forKs,1 and rel-
evant forKs.1. For repulsive interactions it turns out th
Ks,1 and therefore the interaction is irrelevant and the s
tem is described by a gapless Luttinger liquid. If interactio
are attractiveKs.1 and the backscattering is relevant lea
ing to the opening of aspin gap signaling tendency to
superconducting fluctuations. We have started from a re
sive model and therefore we assume all the interaction
be repulsive throughout the paper. Although the backsca
ing term is irrelevant it is well known that the slowest d
caying correlation function for a repulsively interacting Lu
tinger liquid is the CDW one~it is equivalent to the case
of Kr,1).

If the CDW is commensurate with the lattice~as it seems
to be in the case of LSCO! then the lattice pinning is stron
and the system becomes insulating.28 If the CDW is incom-
mensurate then a Luttinger liquid state is possible but
amount of disorder leads to CDW pinning driving the syst
again towards an insulating regime. This is certainly un
sirable from the phenomenological point of view since the
materials are still metallic at finite temperatures. Many a
proaches that start from a purely 1D description of the stri
are confronted with this serious problem.61 These approache
usually invoke the introduction of long-range interactio
among the stripes. It is hard to reconcile the long range
teractions between different stripes with the short range
teracting within the stripes. For that to happen the dielec
function of the material should be extremely anisotropic~ex-
perimentally it is known that this is not the case62!. We be-
lieve that once the long-range forces have done their wor
creating the stripe array the final metallic state screens
long-range forces left, leading the system to purely local
teractions. If the interstripe interactions remain long-ran
the ground state should be a Wigner crystal22 instead of a
CDW and in both cases the stripes should be insulating.
stick with the assumption that after the CCS is formed
interactions between the elementary excitations discus
here are local. The ground state is a CDW state and there
insulating. In fact this is the picture that arises from mea
field approaches to the stripe problem since in these m
field studies the stripes are noninteracting.52,53

In the case of the CCS state where there are an infi
number of stripes we add a new index to the fermion ope
tor, cn,s(s), wheren labels the particular stripe. The Fourie
transform of the electron operator can be defined as
10450
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cn,s~x!5ANaE
2p/a

p/a dkx

2p E
2p/(Na)

p/(Na) dky

2p
ei (kxx1kynNa)cs,k ,

~3.12!

where the anticommutation relations are preserved
@$cn,s(s),cm,s8(x8)%5d(x2x8)dn,mds,s8 and $cs,k ,cs8,k8%
5(2p)2d(k2k8)#.

IV. COUPLING BETWEEN STRIPE FERMIONS AND 2D
BOSONS

As we have discussed in the past two sections in the
sence of coupling between stripe fermions and bosons
ground state is insulating: a Bose-Mott insulator in the an
ferromagnetic regions and a CDW state along the stripes
order to determine the coupling between bosons and fe
ons we consider simple arguments based on conservatio
momentum and energy.

As we have argued, the nature of the elementary exc
tions in the problem depends strongly on their position
real space. On the one hand, bound pair bosons are
eigenstates of the Luttinger liquid. On the other hand, L
tinger liquid bosons~collective sound waves! are not el-
ementary excitations of the doped Mott insulator. Thus,
simplest process that couples these two types of excitat
is a decay process in which bosons are continuously tra
formed in stripe fermions and vice versa.

Let us consider the case of static stripes. The relev
coupling that conserves linear momentum can be written

Vk~q!P2kcq,↑ck2q,↓ , ~4.1!

whereVk(q) is the boson-stripe coupling that, by conserv
tion of angular momentum, hasdx22y2 symmetry @that is,
Vk(0)}cos(kya)2cos(kxa)#. This is a four-fermion coupling
in terms of the original operators@see Eq.~2.1!# and de-
scribes a fermionic scattering process where in the final s
two electrons always end up in a bound state. This kind
coupling looks unusual because there are only annihila
operators and it corresponds to the vertex shown in Fig. 5~a!.
It only occurs in this form because we use the electrons
asymptotic states in the scattering process. In fact, Eq.~4.1!
is similar to fermion-boson models that have appeared in
literature of superconductivity over the years.63,64Notice that
since the boson is composed of holes the direction of
current is inverted~holes moving forward are equivalent t
electrons moving backward and vice versa!. Thus to destroy
a boson is equivalent to create two electrons in the anti
romagnetic background. In the process~4.1! a pair of holes is
destroyed in the antiferromagnet while a pair of electro
from the stripe hop into the antiferromagnetic media@see
Fig. 5~b!#.

Let us assume that the coupling between bosons
stripes is weak so that the important degrees of freedom o
exist close to the chemical potential. Thus, when a boson
a stripe there are two main process for decaying. In the
one the two stripe fermions have opposite momentum,
is, q'kFx and k2q'2kFx @as shown in Fig. 5~b!#. Thus,
linear momentum conservation impliesk50. Moreover, an-
gular momentum cannot be conserved in the scattering
9-9
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A. H. CASTRO NETO PHYSICAL REVIEW B 64 104509
cess because, relative to the stripe, the two outgoing h
have zero angular momentum while the pair have finite
gular momentum. Therefore, we need a sink of moment
The other process corresponds to boson decay into two
mion moving in the same direction, that is,q'kFx and k
2q'kFx. This process implieskx52kF andky50. This is
equivalent to a boson moving in the antiferromagnetic lad
parallel to the stripe. Since the boson wave function is
stricted to the antiferromagnetic region the amplitude of t
coupling is suppressed. The conclusion from this argume
that for a static stripe the decay processes have vanis
phase space.

Consider also the difference between longitudinal and
agonal stripes as shown in Fig. 6. For a longitudinal str
the coupling between bosons and stripes is possible bec
the stripes are oriented along the lobes of the bosondx22y2

wave function while in the diagonal case the stripes are
ented along the nodes. Thus the coupling between diag

FIG. 5. Basic decaying processes for static stripes:~a! momen-
tum exchange;~b! real space process where a boson decays
stripe fermions.

FIG. 6. Coupling of adx22y2 boson wave function to~a! longi-
tudinal and~b! diagonal stripes.
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stripes is further reduced as compared to the longitud
case. Therefore, for diagonal stripes superconductivity is
possible in our model because of the nature of the bo
wave function. In fact, recent neutron scattering experime
observed diagonal stripes in the insulating phase of LS
while vertical and horizontal stripes are observed in the
perconducting phase.65 Moreover, notice that for a given ori
entation of the boson wave function, horizontal~vertical!
stripes couple to the positive~negative! lobe of the wave
function.

As we pointed out above we need a sink~a particle or
collective mode! for the momentum transferred from th
bosons. Moreover, since the bosons are spinless the pa
that carries the momentum cannot be a spin-wave or p
magnon. The simplest choice is a vibrational mode: the
son collides with the stripe, breaks into two fermions a
produces a vibration. This vibration is due to the fluctuatio
of the smectic phase of the stripe array. Again, as we stre
previously, stripes are not isolated objects that are indep
dent of each other. Long-range forces, like the Coulomb,
Casimir or simply entropic repulsion keeps them apart a
generate a finite stiffness.

Consider the coupling of the bosons with the stripe ferm
ons when the stripe fluctuates a distanceu from its equilib-
rium position. We write the local coupling as

P~r !c↑~r !c↓~r !d„y2nNa2u~x,nNa!…, ~4.2!

where we ensure that the coupling occurs at the position
the stripes. If we assume that CCS fluctuations are sm
compared to the periodicity in the system, that is,uuu!Na,
the stripes fluctuate in a distance scale much smaller than
interstripe distance. We can expand the Dirac delta funct
The first term is just the static stripe problem we discus
above and, as we argued, has no phase space. We ther
keep the next term in the expansion leading to a coupling
the form

2Vk~q!lp,aP2kcq,↑ck2p2q,↓~bp,a1b2p,a
† !, ~4.3!

wherelp,a}py→0 whenp→0 is the stripe-vibration cou-
pling constant. The two processes associated with the in
action in Eq.~4.3! are shown in Fig. 7.

Before we study Eq.~4.3! in detail it is worth investigat-
ing the problem via second order time dependent pertu
tion theory. The transition probability between nonperturb
states is given by

W~ t !' (
k,p,q,a

4uVk~q!u2ulp,au2~12n̄q!~12n̄k1p2q!

3
sin2@~2Ek6Vp,a1eqx

1ekx1px2qx
!t/2#

~2Ek6Vp,a1eqx
1ekx1px2qx

!2
, ~4.4!

where n̄q is the Fermi-Dirac distribution function. Observ
that the probability amplitude only grows with time for stat
such that

2Ek6Vp,a52eqx
2ekx1px2qx

, ~4.5!

to
9-10
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STRIPES, VIBRATIONS, AND SUPERCONDUCTIVITY PHYSICAL REVIEW B64 104509
where the plus~minus! sign implies absorption~emission! of
a vibration. Remembering thateq'm we obtain the condi-
tion that 2E0,ky

6V0,ky ,a522m. Moreover, becauselky

vanishes atky→0 the largest coupling between bosons a
stripes happens atfinite momentum. Indeed, the couplin
increases as one goes towards the Brillouin zone edge. T
the largest coupling in the problem occurs atK5(0,p/a),
that is, perpendicular to the stripes. It may be somewh
surprising that the most important part of the physics occ
in a direction perpendicular to the orientation of the strip
but this effect has been already observed in numerical si
lations of spin-fermion models with stripe formation.9 This
result indicates that in the case of the boson condensatio
should expect it to occur close toK ~as photoemission ex
periments indicate54! but not only that: we expect a CC
distortion at the same wave vector so that the momen

FIG. 8. Real space picture of the normal phase. Open circle
atoms; filled circles: Cu atoms; dashed line: equilibrium position
the stripes.

FIG. 7. Scattering processes including vibrations.
10450
d

us,

rs
s
u-

we

m

carried by the superfluid bosons is transferred to the latt
Thus, there can be a double condensation: the superfluid
sity is modulated with finite wave vectorK and the CCS
deforms in order to follow the variation of the superflu
density. Therefore a condensation of the CCS at finite w
vector induces phonon anomalies at the same wave ve
Thus, we expect phonon softening close to (0,p/a) together
with the condensation of bosons in the same point in m
mentum space. In the normal state the situation is depicte
Fig. 8: there is no superfluidity and no lattice distortions.
the ordered phase we expect the situation shown in Fig
where the superfluid density is modulated with wavelen
a/p in the direction perpendicular to the stripes and the
tice is distorted in the same direction with the same wa
vector. Notice that there is a doubling of the unit cell in t
direction perpendicular to the stripes and therefore the C
is dimerized. This effect is similar to the Peierls distortion
1D systems or the Jahn-Teller effect where there is a low
ing of the symmetry with a simultaneous gain in energy.66 In
momentum space the situation is depicted in Fig. 10: pho
anomalies and superfluidity should appear at same poin
the edge of the Brillouin zone.

Observe that due to the conservation of energy,2E0,ky

12m56V0,ky ,a , the stability condition~1.20! is satisfied
only if emission is allowed. One can generate a boson
creating two electrons at the stripe at the cost of absorp
of a vibration. This can be clearly seen in the diagram in F
1 where in order to create a boson two electrons occupy
the boson state have to be excited to the Fermi surface by
absorption of a vibration. Conversely, two holes from t
stripe hop into the antiferromagnetic ladder and form a
son. Thus, our conclusion is that the most relevant coup
in this problem is given by

Hc52 (
k,p,q,a

Vk~q!lp,aPkcq,↑c2k1p2q,↓bp,a
† 1H.c.

~4.6!

O
f

FIG. 9. Real space picture of the ordered phase:du indicates the
possible motion of the O atoms with doubling of the unit cell pe
pendicular to the stripe orientation. The difference in gray lev
represents the modulation of the superfluid density.
9-11
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V. MEAN-FIELD THEORY

In order to understand the phase diagram of this prob
it is illuminating to consider the mean-field solution. Let
rewrite the full Hamiltonian by collecting all the terms give
in the previous sections~we neglect the interactions betwee
electrons in the stripe for the moment being!. The Hamil-
tonian is written as

H5(
k

@~2Ek12m!Pk
†Pk1Vkbk

†bk#

1(
k,s

~ek2m!ck,s
† ck,s1

U

2 (
i

Ni
2

2 (
k,p,q

Vk~q!lpPkcq,↑c2k1p2q,↓bp
†1H.c., ~5.1!

where we have simplified the problem by considering
single polarization of the vibration field perpendicular to t
stripes.

Notice that the Hamiltonian is invariant under the gau
transformation

P→P e2 iwB,

b→b e1 iwV, ~5.2!

c→c e1 i (wB1wV)/2

implying the phase of the bosons and vibrations are coup
through the fermionic degrees of freedom. This symmetr
the one that is broken in the ordered state.

In the mean-field theory we split the coupling term in
three different pieces leading to a mean-field Hamiltonian
the form:HMF5HP1HB1HS , where

FIG. 10. Momentum space picture of the condensation reg
for stripes oriented along theX direction.
10450
m

a

e

d
is

f

HP5(
k

@~2Ek12m!Pk
†Pk2gP,kPk2gP,k* Pk

†#

1
U

2 (
i

Ni
2 ,

HB5(
k

@Vkbk
†bk2gB,kbk2gB,k* bk

†#, ~5.3!

HS5(
k,s

~ek2m!ck,s
† ck,s

2 (
k,p,q

gS~k,p,q!cq,↑c2k1p2q,↓1H.c.,

where

gP,k5(
p,q

Vk~q!lp^cq,↑c2k1p2q,↓&^bp&,

gB,k5lk(
p,q

Vp~q!^Pp&^cq,↑cp1k2q,↓&, ~5.4!

gS~k,p,q!5Vk~q!lp^Pk& ^bp&

are the mean-field coupling constants. From Eq.~5.3! it be-
comes obvious the symmetry breaking processes in the
dered phase: spontaneous gauge symmetry breaking lea
to superfluidity of the bosons, superconductivity of the f
mions and spontaneous symmetry breaking of translatio
symmetry of the CCS.

Thus, for a transition to a nontrivial conducting state t
couplinglV is fundamental. The simplest conducting state
the superfluid state where the charged bosons condense
a macroscopic condensate. In accordance with the discus
in the previous section, conservation rules tell us that
largest coupling occurs at the largest momentum perpend
lar to the stripes. Suppose the bosons condense atk5K , that
is, ^PK&5^PK

† &5ANB. In order to conserve momentum i
the interaction in Eq.~5.1! and preserve time reversal sym
metry one should also require the vibrations to conden
that is,^bK

† &5^bK&5ANV. Notice that the Cooper pairs hav
zero center of mass momentum. This is equivalent to a st
distortion of the lattice with modulationK . Thus, at the
mean-field level, a transition to a superfluid state is acco
panied by a static lattice distortion. We notice here that
choice of the largest coupling as the one that drives the
tem into the ordered state is the traditional one in mean-fi
theories. In fact, the doubling of the unit cell proposed h
also occurs in some largeN treatments of thet-J models
without phonons.67,68 Thus, this tendency of lowering th
energy of the system by breaking the lattice symmetry se
to be quite generic.

The solution of the bosonic problem is straightforwa
because it only requires a shift of the boson operators b
constant:

n

9-12
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STRIPES, VIBRATIONS, AND SUPERCONDUCTIVITY PHYSICAL REVIEW B64 104509
PK→PK2
gP,K

2EK12m
,

bK→bK2
gB,K

VK
~5.5!

implying that the actual CCS distortion is given by

du~K !5
A2Re@gB,K#

MV
1/2VK

3/2
, ~5.6!

whereMV is the mass associated with the vibrations.
The electronic problem can be also readily solved sinc

is a problem of electrons with a pairing potential. We c
write HS as

HS5(
k

F ~ek2m!(
s

ck,s
† ck,s2Dkck,↑c2k,↓1H.c.G ,

~5.7!

where the superconducting gap is given by

Dk5lKa2AsB
0sV

0Vk~0! ~5.8!

and therefore hasdx22y2 symmetry as the pairs that genera
it in the first place. Here we have defined

sB
05

NB

S
,

sV
05

NV

S
~5.9!

as the superfluid and distortion densities, respectively.
Hamiltonian ~5.7! can be diagonalized by a Bogoliubo
transformation:

ck,↑5cos~uk!dk,↑1sin~uk!dk,↓
† ,

c2k,↑
† 5cos~uk!dk,↓

† 2sin~uk!dk,↑ , ~5.10!

where

tan~2uk!5
Dk

ek2m
~5.11!

and

HS5(
k

ekds,k
† ds,k , ~5.12!

where

ek5A~ek2m!21uDku2 ~5.13!

is the quasiparticle dispersion.
The free energy per unit of area,f (T), can be obtained in

a straightforward way:
10450
it

e

f ~T!5~2EK12m!sB
01

U

2
~sB

0 !21VKsV
0

1
1

S (
k

@~ek2m!2ek~122nk!#, ~5.14!

where

nk5
1

ebek11
~5.15!

is the quasiparticle occupation. We minimize Eq.~5.14!
keeping the number of particles fixed. We obtain two eq
tions:

2EK12m1UsB
05

lK
2 a2sV

0

2S (
k

Vk
2

ek
tanh~bek/2!,

VK5
lK

2 a2sB
0

2S (
k

Vk
2

ek
tanh~bek/2! ~5.16!

and therefore

VKsV
05sB

0~2EK12m1UsB
0 !'U~sB

0 !2 ~5.17!

that is, the superfluid and vibration density are tied to ea
other. The last line in Eq.~5.17! comes from the fact that we
expectU@2EK12m. Using the above equation we reduc
the mean-field problem to a single equation

VK5
l2a2sB

0

2S (
k

Vk
2

ek
tanh~bek/2!. ~5.18!

Notice that although the coupling constant hasd-wave
symmetry the Fermi surface of an infinite array of 1D strip
has no curvature@as shown in Fig. 4~a!# because the fermi-
ons do not propagate in the direction perpendicular to
stripes. Thus, although the order parameter in Eq.~5.8! has
dx22y2 symmetry, the Fermi surface is fully gapped. T
bosons have a tendency to produce ad-wave superconducto
but the condensate only takes advantage of one of the lo
of the boson wave function. Thus, the final result is
s-wave state.

As we discussed in Sec. IX a trued-wave superconducto
can only develop if the system is made out of domains w
horizontal and vertical stripes or if one particle tunneling
included @changing the fermion dispersion relation to E
~3.3!#. The case for domains separated by boundaries is
most metallurgically unavoidable in cuprates. Because
domains are usually large the superconducting propertie
the domains can be studied as if the domains are ma
scopic superconductors. Furthermore, if interstripe tunne
is included the Fermi surface becomes rounded leaving sp
for a true d-wave state to develop~although with a rather
anisotropic properties!.

Taking the geometry of the Fermi surface into account
can simplify the above equation by using the fact that E
~5.15! only depends onkx and therefore the sum overky just
givesNs /N leading to a simpler equation
9-13
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VK5
l2V0

2asB
0

N E
0

p/a dk

2p

tanh~bek/2!

ek
, ~5.19!

whereV0 is the strength of the couplingVk(q) at the stripe
and

ek5A~ek2m!21V0
2l2~sB

0 !2~2EK12m1UsB
0 !/VK.

This equation can be solved numerically assumingekx
5

2t cos(kxa).
We can now study the phase diagram as a function of

couplinglV and the distance between stripesN. We expect
the characteristic energy scales of the problem to be de
dent on the distance between stripes. This is certainly true
the case of antiferromagnetic order where the distance
tween the stripes determines the strength of the quan
fluctuations.44 Thus we expect the phonon and boson spe
to change withN, that is, there must be a continuous chan
in the spectral weight with the interstripe distance. In t
paper, for simplicity, we assume that this change is small
the density of states does not change withN ~see, however,
Ref. 9!. In Fig. 11 we plotsB

0 as a function of 1/N for EK
51.9t, m520.6t, VK51.231023t, U54t, and lV
50.5t at T50. Notice that there is a discontinuous jump
sB

0 at Nsp'6 and it grows in a quasilinear way with 1/N. In
Fig. 12 we plotsB

0 as a function ofT/t for the same param
eters given above. Notice thatsB

0 is weakly dependent on th
temperature up toT5Tsp'3.5t where it has a discontinuou

FIG. 12. sB
0 as a function ofT/t.

FIG. 11. sB
0 as a function of 1/N.
10450
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jump to zero. As one can see from the numerical solutionTsp
is of the order of the bandwidth of the stripe fermions a
therefore very large. As we show below this is not the act
transition temperature because we have not included p
fluctuations into the problem. ThusTsp ~like T* defined in
Sec. I! is a crossover temperature scale. We note thatTsp
@T* , that is the mean-field critical temperature is larger th
the temperature scale above which makes sense to talk a
bosons and confinement. Therefore,Tsp is actually not ob-
servable since the theory brakes down atT* .

In order to understand the nature of the phase diagram
simplify the problem by the introduction of a cutoffL of the
order of the inverse of the lattice spacing and by lineariz
the spectrum at the chemical potential. The integral sim
fies and atT50 reduces to

VK5
l2V0

2asB
0

2pvFN
lnS LvF1A~LvF!21D0

2

D0
D , ~5.20!

whereD05V0lsB
0A(2EK12m1UsB

0)/VK gives the am-
plitude of the gap. Notice that the transition at the mean-fi
level is of first order because the right-hand side~RHS! of
Eq. ~5.20! vanishes assB

0→0 in contrast with the usual BCS
equation that contains only the logarithm and is finite in t
limit. Some analytical progress can be made in the limit
largeU. The critical value ofN and the value of the super
fluid fraction are given by

Nsp'
ln~11A2!

2

~lV0!4/3

~pvF /a!1/3VK
2/3U1/3

,

s0,c'
VK

1/3~pvF /a!2/3

~lV0!2/3U1/3
~5.21!

that determines the zero temperature mean-field phase
gram. As we varyN there is a critical value ofV0 ~that we
call Vc) below which order is not possible. In Fig. 13 we pl
Vc as a function of 1/N. We find thatVc}Na with a.0.
This result demonstrates that as the stripes get further ap
larger coupling is required to stabilize long-range order.

FIG. 13. Critical value of the coupling constantVc /t as a function of
1/N.
9-14
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As pointed out by EK, the fact that the superfluid dens
is so low implies large phase fluctuations.23 If one includes
the phase of the order parameters@as in Eq.~5.2!# long-range
order requires that

^PK&5^uPKu&^e2 iwB&Þ0,

^bK&5^ubKu&^e1 iwV&Þ0, ~5.22!

where^uPKu&}AsB
0 and ^ubKu&}AsV

0 are the amplitudes o
the order parameters. Thus, ordering also requires^e6 iwa&
Þ0 with a5B,V. In our mean-field theory we have fixe
arbitrarily wa50. This is not correct since fluctuations o
wa , especially in the 2D system, are fundamental for
development of long-range order. In the next sections
discuss the role of these fluctuations in determining the
tual phase diagram. In other words, at high temperatu
bosons and superconducting stripe fermions are formed
they are incoherent because of the existence of topolog
defects: vortex-antivortex pairs in the superfluid and dislo
tion loops of the distorted CCS. The interesting result of o
10450
e
e
c-
s
ut
al
-
r

calculation is that although the amplitudes of the two ord
parameters appear at the same temperatureT* @as given by
Eq. ~5.17!# the actual ordering temperatures can be differ
because they depend on the phase stiffness of the rele
degrees of freedom.

VI. PHASE FLUCTUATIONS

As we discussed at the end of the previous section
problem of phase fluctuations is fundamental for the desc
tion of the ordered state. Therefore the topological exc
tions are fundamental for the determination of the proper
of the superconducting state.69 The simplest way to discus
the importance of phase fluctuations is by studying the p
tition function of the problem that can be written as

Z5E DP̄DPDc̄DcDb̄Db e2*0
bdtL[ P̄,P,c̄,c,b̄,b] , ~6.1!

where
the

orted

invari-
L5E d2r H P̄~r !@]t1E~¹!12m#P~r !1
U

2
N2~r !1b̄~r !@]t1v~¹!#b~r !J 1(

n H E dx(
s

c̄n,s~x!@]t1e~¹!

2m#cn,s~x!1E dxE dx8 (
s,s8

c̄n,s~x!cn,s~x!Ws,s8~x2x8!c̄n,s8~x8!cn,s8~x8!J 2(
n
E dxV~x,nNa!

3$P~x,nNa!cn,↑~x!cn,↓~x!b̄~x,nNa!1c.c.% ~6.2!

is the Lagrangian associated with Hamiltonian~5.1! and b is the inverse temperature. Here we have redefinedlV→V and
introduced the electron-electron interactionsWs,s8(x2x8).

We redefine the fields in order to separate the problem into slow and fast variables:

P~r !5
1

A2
„P1~r !e2 iK•r1P2~r !eiK•r

…,

b~r !5
1

A2
„b1~r !e2 iK•r1b2~r !eiK•r

… ~6.3!

and perform the same expansion as in the case of fermions@see Eq.~3.6!#.
Substituting Eqs.~3.6! and ~6.3! into the Lagrangian~6.2! we find many terms that oscillate fast. We disregards all

oscillating terms and study slow modes only. The Lagrangian can be written as

L5 (
a56

L0@Pa ,ba#1(
n

LS@cn#1LC , ~6.4!

where

L0@Pa ,ba#5
1

2E d2r H P̄a~r !S ]t1E02
¹2

2MB
D Pa~r !1

U

2
N2~r !1b̄a~r !S ]t1v02

¹2

2MV
Dba~r !J , ~6.5!

where we have assumed thatK is a local minimum in the energy of the bosons and vibrations. This assumption is supp
by studies of thet-J model43 and from the fact that the vibration mode is at the edge of the Brillouin zone. Here,MB is the
effective boson mass. The form of the noninteracting boson-vibration Lagrangian given above is required by Galilean
ance of the problem in the long wavelength limit. Although anisotropies in the dispersion of the modes close toK should exist,
we disregard them since they are not fundamental in our discussion. Furthermore,
9-15
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LS@cn#5E dx

a H(s @c̄n,R,s~x!~]t1 ivF]x!cn,R,s~x!1c̄n,L,s~x!~]t2 ivF]x!cn,L,s~x!#1 (
s,s8

@Wk50„c̄n,R,s~x!cn,R,s~x!

1c̄n,L,s~x!cn,L,s~x!…„c̄R,s8~x,n!cR,s8~x,n!1c̄L,s8~x,n!cL,s8~x,n!…#1@Wk52kF
„c̄n,R,s~x!cn,L,s~x!

1c̄n,L,s~x!cn,R,s~x!…„c̄R,s8~x,n!cL,s8~x,n!1c̄L,s8~x,n!cR,s8~x,n!…#J ~6.6!

is the isolated stripe Lagrangian (Wk is the Fourier transform of the electron-electron interaction! and

LC52
1

2 (
n
E dxV~x,n!@P1~x,n!b̄1~x,n!1P2~x,n!b̄2~x,n!#@cn,R,↑~x!cn,L,↓~x!1cn,L,↓~x!cn,R,↑~x!#1c.c. ~6.7!

is the boson-stripe-vibration coupling.
Due to the symmetry we simplify the problem by changing to amplitude-phase modes via

P15P25AsBe2 iwB,

b15b25AsVe1 iwV ~6.8!

and use the bosonization technique described previously so that

L5(
n

L1D@un,r ,fn,s#1 (
a5B,V

La@sa ,wa#1LC@F,w,ur ,fs#, ~6.9!

whereL1D@un,r ,fn,s# is given in Eq.~3.9!. Furthermore,

La5E d2r F isa]twa1Easa1
Ua

2
sa

21
sa

21

8Ma
~¹sa!21

sa

2Ma
~¹wa!2G , ~6.10!

with EB5EK , EV5VK , UB5U, andUV50 and

LC52(
n
E dx

pa
V~x,nNa!AsBsVe2 i „wB(x,nNa)1wV(x,nNa)2A2pun,r(x)…cos„A2pfn,s~x!…1c.c. ~6.11!

Observe that the gauge symmetry discussed in the previous section is explicit in the Lagrangian. In order to gauge
phase fields we define a new bosonic fielduc :

un,c~x!5un,r~x!2
wB~x,nNa!1wV~x,nNa!

A2p
~6.12!

so thatLC simplifies to

LC52(
n
E dx

pa
V~x,nNa!AsBsV cos„A2pun,c~x!…cos„A2pfn,s~x!… ~6.13!

and in the final Lagrangian we replaceur by uc and add a new term that reads

LI@w#5(
n
E dxH Kr

4pvr
†„]t@wB~x,nNa!1wV~x,nNa!#…21vr

2
„]x@wB~x,nNa!1wV~x,nNa!#…2‡

1
Kr

A2pvr

†]t@wB~x,nNa!1wV~x,nNa!#]tun,c~x!1vr
2]x@wB~x,nNa!1wV~x,nNa!#]xun,c~x!‡J . ~6.14!
104509-16
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The physical interpretation of Eq.~6.12! is quite interesting.
Observe that the fermion current along the stripe is

j n~x!5
1

Ap
]xun,r~x!

5
1

Ap
]xun,c~x!1

1

pA2
]xwB~x,nNa!

1
1

pA2
]xwV~x,nNa!, ~6.15!

where the first term is just the normal current, the seco
term is the superfluidJosephsoncurrent and the last term i
a current that is driven by the dislocations in the CCS. Mo
over, observe that the bosonic fielduc is still coupled to the
phase fields through Eq.~6.14!. Thus, the stripes carry alon
both superfluid and CCS distortions.

In order to proceed with the calculations we study t
phase fluctuations around the saddle point equations for
complete action. At the saddle point we havesa5sa

0 , wa

50 with a5B,V. This just gives the mean-field solutio
given in Sec. V with the difference that at the saddle po
the stripe action reads~we drop the subscriptn)

S5E
0

b

dtdxH Kr

2vr
†@]tuc~x,t!#21vr

2@]xuc~x,t!#2
‡

1
1

2Ksvs
†@]tfs~x,t!#21vs

2@]xfs~x,t!#2
‡J

2E
0

b

dtE dx Ṽcos„A2puc~x!…cos„A2pfs~x!….

~6.16!

Equation~6.16! is the interacting version of the Hamiltonia
used in the previous section withṼ5AsB

0sV
0V. The last term

in Eq. ~6.16! is the Josephson coupling induced between
ferent stripes by the bosons. A similar coupling was propo
for the case where stripes cross each other.70 The effect of the
pairing term can be easily seen in a renormalization gr
calculation in first order inV. Repeating the RG calculatio
done in Sec. III we can easily show that the dimensionl
coupling constantv5V/Ec renormalizes as70

dv
dl

5F22
1

2 S Ks1
1

Kr
D Gv~ l !. ~6.17!

Notice that the operator associated withV is relevant when
Ks1Kr

21,4 and irrelevant otherwise. For a Hubbard mod
with local repulsionUH it requires thatUH.1.8t for the
operator to become irrelevant. Thus, even if the stripes
deep inside of a CDW state the couplingV drives the system
into a superconductor. WhenV is large then the last term o
Eq. ~6.16! acquires a expectation value and the bosonic fie
get pinned at their minima:
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uc5Ap

2
~n1m!,

fs5Ap

2
~n2m!, ~6.18!

wheren andm are integers. Thus, from Eq.~6.15! one sees
that the only currents circulating along the stripes are
Josephson currents due to the superfluid and CCS fluc
tions. Fluctuations around the minima~6.18! are massive~al-
though a superfluid current still flows! and a spin gap open
in the spectrum. Indeed, a simple integration of Eq.~6.17!
gives

VR

ER
5

V

Ec
S Ec

ER
D 12g

,

g5
1

2 S Ks1
1

Kr
D21, ~6.19!

whereVR andER are the renormalized coupling constant a
bandwidth. Observe that the RG flow stops whenVR'ER
'm where

m'EcS V

Ec
D 1/(12g)

5VS V

Ec
D g/(12g)

~6.20!

gives the amplitude of the spin gap~wheng51 the operator
is marginal andm'Ec exp$2Ec /V%). Since the stripe mode
are massive the coupling terms to the phase modes in
~6.14! are suppressed.

The calculation can proceed in the usual way by expa
ing the action around the fluctuations of the amplitudes
second order~that is, we writesa5sa

01dsa and integrate
over ds). The final result reads

S5
1

2E0

b

dtE d2r H (
a5B,V

F i s̄a]twa~r ,t!1
ka

4
@]twa~r ,t!#2

1
sa

Ma
@¹wa~r ,t!#2G1

Kr

2pvrNa F S (
a5B,V

]twa~r ,t! D 2

1vr
2S (

a5B,V
]xwa~r ,t! D 2G J , ~6.21!

where the factor of 1/N appears because we have coar
grained the fields in the direction perpendicular to the strip

The parameters that appear in Eq.~6.21! can be obtained
directly from the symmetries of the original bosonic acti
~6.2!. The bosons obey periodic boundary conditio
@P(r ,b)5P(r ,0), b(r ,b)5b(r ,0)# while the fermions
obey antiperiodic boundary conditions in the imaginary tim
direction @c(r ,b)52c(r ,0)#. Suppose we change th
boundary conditions so thatP(r ,b)5P(r ,0)exp$2idw%.
From Eq.~6.2! we can enforce the original boundary cond
tions if we reinterpret the problem as a shift in the chemi
potential of the bosons fromm to m85m2 idw/(2b).59 Be-
cause bosons and fermions are coupled, we are force
impose new boundary conditions for the fermions, nam
9-17
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c(r ,b)52c(r ,0)exp$idw/2%. The whole action is invarian
under the change in the boundary conditions if we assum
shift in the chemical potential. If the shift is infinitesimall
small we can calculate the change in the free energy du
the change in the boundary conditions:

dF'
]F

]m S 2 i
dw

2b D1
1

2

]2F

]m2 S 2 i
dw

2b D 2

~6.22!

and sincedw/b']tw we immediately find that

Ns
2a2s̄B5

]F

]m
5N̄e ,

Ns
2a2kB5

]2F

]m2
, ~6.23!

whereN̄e is the average number of electrons. Since the nu
ber of holes isx we see thats̄B5(12x)/a2. Thus, we con-
clude thats̄B is the average planar density of electrons.

Notice that so far this is the first equation where the nu
ber of holes appears explicitly. In principle the distance
tween stripes,N, andx should be related but in our theoryN
is an input. When doping is increased the number of hole
each stripe and/or the distance between stripes can chang
the normal state the stripes are in a CDW state and there
gap to charge excitations because of commensurability. S
the holes are injected into the system at high temperat
during the annealing of the alloy it seems reasonable to
sume that the CDW state is charge rigid~incompressible!,
that is, instead of increasing the doping of individual strip
one would get more stripes but with the same linear dop
ns . If this is the case then a simple relation exists betweex
andN, namely,

x5
ns

N
. ~6.24!

The value ofns is determined by the competition betwee
the gain in the kinetic energy along the stripe versus the
of energy due to the formation of the ADW.19,20This is not a
problem we have addressed but DMRG calculations19 and
other approaches estimate that the minimization of the
ergy occurs atns51/2 as proposed by the experiments p
formed in LNSCO.35 Notice that Eq.~1.19! implies that the
pseudogap temperature scale,T* , vanishes for 1/6,x5xsp
,1/4. Assuming thatxsp'0.2 we find thatg'0.5 and there
is a reduction of 50% of the antiferromagnetic exchan
across the stripe.

Moreover,kB is charge compressibility and the superflu
velocity is given by

cB5
4sB

kBMB
. ~6.25!

Since the fluctuations of the CCS have zero chemical po
tial one concludes immediately thats̄V50 andkV is related
to the sound velocity in the CCS that is given by
10450
a

to
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-
-
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cV5
4sV

kVMV
. ~6.26!

It is convenient to rewrite the action~6.21! in Fourier
space:

S5
1

2b (
k,n

H (
a5B,V

F2s̄avnwa~k,vn!1S ka,Rvn
21

sa

Ma

3@~11la!kx
21ky

2# D Uwa~k,vn!U2G1
Kr

2pvrNa

3~vn
21vr

2kx
2!@wB~k,vn!wV* ~k,vn!1wB* ~k,vn!

3wV~k,vn!#J , ~6.27!

wherevn52pn/b is the Matsubara frequency and

ka,R5ka1
Kr

2pvrNa
,

la5
vFMa

2psaNa
~6.28!

are the renormalized compressibility and anisotropy int
duced by the stripes@we used Eq.~3.8!#. Notice that both
quantities return to unrenormalized values when the dista
between stripes diverges, that is,N→`. As a result of the
factor la the superconductivity is anisotropic and the cor
lation length,j, is direction dependent. It is easy to see th
the ratio of the correlation lengths along thex and y direc-
tions is given by

jx,a

jy,a
5

1

11la
. ~6.29!

The key point of Eq.~6.27! is that the topological excita
tions of the superfluid state~the vortices! are coupled via the
stripe compressibility to the topological excitations of t
CCS ~the dislocations!. In a pictorial way consider first the
ordered state depicted on Fig. 9. A defect of the ordered s
is shown in Fig. 14 where a dislocation of the lattice dist
tion leads to a local shift of the superfluid density. In doi
so the dislocation can produce vortices. The opposite si
tion is also possible: vortices shift the superfluid density a
drag the lattice with them. This unusual state of affairs is
result of the coupling of the CCS with the lattice and wou
not happen in ordinary superconductors.

Although the theory described by Eq.~6.27! is quadratic,
the nature of the elementary topological excitations is
straightforward and we leave their discussion for a later p
lication. In this paper we consider a simpler problem of t
effective theory for each one of the phases. In order to do
we explore the quadratic nature of the action~6.27!.

VII. HIGH TEMPERATURES

Let us consider the problem atTc,T,T* so that the
amplitude of the order parameters is well developed
9-18
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phase coherence has not been established. It is obvious
Eq. ~6.21! that this effect is possible due to presence of s
gular solutions of the field equations, that is, due to the p
ence of vortex-antivortex pairs and CCS dislocations loo
At high temperatures we can disregard the time derivati
in Eq. ~6.21! since the imaginary time direction shrinks
zero and the phase fields become independent oft. The ef-
fective action reads

SH5
b

2E d2r H (
a5B,V

sa

Ma
@¹wa~r !#2

1
vF

2pNa S (
a5B,V

]xwa~r ! D 2J . ~7.1!

Equation~7.1! describes two 2DXY models coupled along
the x direction.

Let us look first at the effective field theory forwB by
tracing out thewV modes explicitly. This is equivalent to
calculate the renormalization of one of the modes by
Gaussian fluctuations of the other. Thus, in what follows
topological excitations of these fields are not direc
coupled to each other but only to their ‘‘spin waves.’’ Th
approach is valid in the weak coupling limit ofN@1. It is a
simple exercise to show that the effective action become

SB5
b

2 (
k

gB~k!uwB~k!u2, ~7.2!

where

gB~k!5k2
EBEVk21EC~EB1EV!kx

2

EVk21ECkx
2

~7.3!

is the effective phase propagator. We have defined

Ea5
sa

Ma
,

EC5
vF

2pNa
. ~7.4!

FIG. 14. Topological defect of the CCS.
10450
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-
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The superfluid order parameter correlation function can
calculated directly from the knowledge of Eq.~7.2!. Indeed,

^P†~r !P~0!&5sB^eiwB(r )e2 iwB(0)&5sB expH 2
1

2
GB~r !J ,

~7.5!

where

GB~r !5ReH 1

b (
k

12eik•r

gB~k! J ~7.6!

is the relevant correlation function. The problem is simplifi
when we realize that it is possible to write

1

gB~k!
5

1

EB1EV

1

k2

1
EV /EB

EV1EB

1

@11EC~EB
211EV

21!#kx
21ky

2

~7.7!

that is the sum of the correlation function for an isotropic 2
XY model plus the one for an anisotropic 2DXY model. The
integrals can be easily done in Eq.~7.6! and forxL,yL@1
whereL is a ultraviolet cutoff~of the order of the inverse o
the lattice spacing! we find

GB~x,y!'
EV /EB

2pb~EV1EB!A11EC~EB
211EV

21!

3 lnFLA x2

11EC~EB
211EV

21!
1y2G

1
1

2pb~EV1EB!
ln@LAx21y2#, ~7.8!

which, for each direction separately, can be written as

GB~s!'
1

2pbrB
ln~Lusu!, ~7.9!

wheres can be eitherx or y and

rB5~EB1EV!F11
EV /EB

A11EC~EB
211EV

21!
G21

. ~7.10!

This result can be interpreted as theeffective superfluid stiff-
nessof an isotropic 2DXY model. The error in making this
approximation is equivalent to an anisotropic change in
order parameter~that is irrelevant to the problem of phas
coherence discussed here!. An analogous calculation can b
done for the phase fieldwV and it is obvious that one ha
only to exchangeEV by EB in the expressions above in orde
to get
9-19
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rV5~EB1EV!F 11
EB /EV

A11EC~EB
211EV

21!
G21

~7.11!

that can be thought of as the effective stiffness of the C
fluctuations. An interesting consequence of our calculati
is that if MV→` then EV→0 and according to Eq.~7.11!
rV→0. The transition to the static CCS deformed phase
driven to zero temperature. Thus, while the system beco
a superfluid-superconductor atTc,B , at any finite tempera-
ture dislocations of the CCS do not allow for long-ran
order.

We conclude that the transition from the ordered
the disordered phase of the superfluid or/and the CCS
due to the unbinding of the topological excitatio
~Kosterlitz-Thouless!:71 vortex-antivortex pairs in the case o
the superfluid and dislocation loops of the modulated CC
The transition temperature to the ordered phase can be
mated directly from Eqs.~7.10! and ~7.11! by71

TKT,a'
p

2
ra ~7.12!

and the superconducting correlation length diverges as

ja~T!'a expH b

AT/TKT,a21
J , ~7.13!

whereb is a number of order of unit.
Although our calculation is completely 2D the transitio

described here only produces quasi-long-range order. T
long-range order occurs via the coupling between plan
Thus, the real transition into the ordered phase at finite t
peratures is of the 3D-XY type. In order to estimate the ac
tual transition temperature,Tc , we assume that the couplin
energy per unit of length,Uc , is small compared toTKT , and
therefore the 2D correlation length is well-developed wh
the system undergoes the phase transition. The trans
temperature is defined by the amount of energy require
destroy phase coherence between two regions of sizej2 in
different planes separated by a distancec,

Tc,a'cUc@ja~Tc,a!/a#2, ~7.14!

that is a transcendental equation forTc,a . Because of the
exponential dependence ofj with the temperature in Eq
~7.13! we can solve this equation to logarithmic accuracy

Tc,a'TKT,aS 11
4b2

ln2~TKT,a /cUc!
D . ~7.15!

This result indicates thatTc depends only weakly onc and it
is very close toTKT .

VIII. ZERO TEMPERATURE

WhenT→0 we can replace the sum over the Matsub
frequencies in Eq.~6.27! by an integral over frequency. Ob
serve that at small frequencies the dominant term in
~6.27! is the one that is linear in the frequency. Thus, as
the case of interacting bosons in 2D the universality of
10450
S
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transition is not 2DXY but 2DXY in a magnetic field.59 We
neglect all the quadratic terms in the frequency and re
only the linear one. Notice that this is equivalent to assu
that uvu!s̄B /kB,R,2pvrNas̄B /Kr . Thus, the effect of the
linear term is to introduce a high frequency cutoff given b

vc5
s̄B

kB,R
. ~8.1!

The equal time correlation function is

^P†~r ,0!P~0,0!&5expH 2
1

2 (
k,v

1

gB~k! U12eik•r2 i s̄BvU2J
'expH 2ReFvc(

k

12eik•r

gB~k! G J , ~8.2!

where the leading order term inv vanishes because the in
tegral is symmetric. Observe that this is the same resul
the previous section with the temperatureT replaced by
2vc . Thus, at zero temperature the system also has an
binding transition of topological excitations whenN5Nc so
that

vc~Nc!'
p

4
ra~Nc!. ~8.3!

Using Eqs.~6.24!, ~6.28!, and~8.1! we see that

vc~N!5

12
1

2N

kB1
Kr

2pvrNa

~8.4!

is a monotonically decreasing function of 1/N. On the other
hand, from Eq.~7.10!,

rB~N!5
sB~N!

MB

11
sV~N!MB

sB~N!/MV

11

sV~N!MB

sB~N!/MV

A11
vF

2pNa S MB

sB
0~N!

1
MV

sV
0~N!

D

,

~8.5!

that is a rather complicated expression in terms ofN. We
have seen from Eq.~5.17! that

sV~N!

sB~N!
@1 ~8.6!

since the electronic energies are much larger than the vi
tional ones. Assuming that this is the case we can write

rB~N!'
sB~N!

MB
A11

vF

2pNa

MB

sB
0~N!

, ~8.7!
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that is a monotonically increasing function of 1/N. Thus Eq.
~8.3! has a solution at 1/Nc provided that

vc~1/Nsp!.
p

4
rB~1/Nsp!, ~8.8!

otherwise there would be no solution and the system wo
be insulating. Notice thatNc,Nsp implying that at zero tem-
perature there is a regionNc,N,Nsp where superfluidity
exists even at zero temperature but without phase cohere
Observe that according to this theory~even at zero tempera
ture! there must be a region where bosons and stripes co
but no long-range order is possible.

Moreover, borrowing the results from Ref. 59 we find th
at N'Nc we must have the superconducting correlat
length diverging as

j~N!}S 1

N
2

1

Nc
D 2n

, ~8.9!

the superfluid density behaving as

sB~N!}S 1

N
2

1

Nc
D nz

, ~8.10!

and the boson compressibility given by

kB~N!}S 1

N
2

1

Nc
D n(22z)

, ~8.11!

wheren andz are the critical exponents that at the mean-fi
level are z51/n52. Moreover, close toNc the transition
temperature scales linearly with the superfluid density

Tc~N!}sB~N! ~8.12!

in complete agreement with the phenomenological Uem
relation observed in all superconducting cuprates.72

IX. CONCLUSIONS

In this paper we have proposed a model of a spati
modulated collective charge state of the cuprates where
elementary excitations change character in real space
pending on the local charge density. The problem is sim
fied by assuming that there are two main kind of excitatio
namely, Luttinger liquid degrees of freedom in the regions
high density~stripes! anddx22y2 bound state of fermions in
the regions of lower density~antiferromagnetic ladders!, that
continuously transform into each other. We have shown
as a consequence of momentum conservation vibration
the collective state should be present in order to prod
sufficient phase space for condensation. In the presenc
static or diagonal stripes superconductivity is not poss
because of the phase constraints of the former and thedx22y2

symmetry of the boson wave function in the latter~in agree-
ment with the experimental observations65!. Therefore, un-
like the BCS theory, phonons are not the basic mechanism
pairing but without vibrations superconductivity would n
be possible.

Our main result is the phase diagram in Fig. 15. Th
T* 'rs(N), given in Eq.~1.18!, is the temperature scale be
10450
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low which dx22y2 bound states can form due to the confini
potential generated by the antiferromagnetic backgrou
This energy scale is set by the magnetic forces and is
order of the magnetic stiffness. Because of this constraint
theory is only valid below the crossover line. Observe th
the point whereT* vanishes atN5Nm is not a quantum
critical point as some theories assume6 but it sets the scale
for a crossover from 1D to 2D behavior@see Eq.~3.2!#. At
temperatures belowT* bosons and lattice deformations sta
to appear in the spectrum at (6p/a,0) and (0,6p/a) but
these deformations are dynamic in nature since long ra
order can only be attained at low temperatures due to ph
fluctuations. Thus, the actual phase transition is driven
topological defects of the superfluid~vortex and antivortex
pairs! and the CCS distortions~dislocation loops!. We have
shown that at finite temperatures the transition to the orde
state is in the 3DXY universality class but the transitio
temperatures for the superconductivity and static lattice
tortions can be very different because of the difference in
stiffnesses of the phase modes. In fact, we argue that s
lattice distortions may be observable inside of the superc
ducting phase at very low temperatures. Although dynam
lattice distortions have been observed at temperatures b
Tc @as given in Eq.~7.15!# we are not aware of observation
of static distortions at low temperatures.37 The search for
such distortions would be a good test for this theory. At ze
temperature we have shown that phase fluctuations pre
long range order to appear until the distance between str
reaches the critical valueNc @given in Eq.~8.3!# where phase
coherence is established. ForNc,N,Nsp a crossover region
appears in the phase diagram where incoherent bosons c
ist with stripe fluctuations. The phase transition at zero te
perature is in the 2DXY in a magnetic field universality
class.

So far the discussion has been based on the idea of infi
1D stripe segments. For this geometry it is not possible
have a truedx22y2 superconducting order parameter as it h
been experimentally observed73 because the Fermi surface

FIG. 15. Phase diagram of the model~the symbols are explained
in the text!.
9-21
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flat. For a flat Fermi surface like the one shown in Fig. 4~a!
the superconductivity would haves-wave symmetry since
the whole Fermi surface would be gapped. In fact this
another major problem in approaches to the cuprate prob
starting with 1D stripes, that is, how can one get ad-wave
order parameter out of a 1D problem. In that aspect
theory indeed predicts as-wave order parameter for infinit
1D stripes. If the small transverse tunnelingt'(N) given in
Eq. ~3.1! is included, the fermion dispersion relation is mod
fied to Eq.~3.3! and a curvature is introduced in the Ferm
surface allowing for a very anisotropicd-wave state.25 Ob-
serve, however, that becauset' is exponentially small with
N, changes in the Fermi surface shape only becomes obs
able whenN'Nm where the system is essentially tw
dimensional. This is not sufficient to explain the isotrop
d-wave state that is observed in the underdoped cuprate

In reality, because of the presence of boundaries,
would expect domain formation with stripes running alo
the crystalographic directions@as it seems to be confirmed i
neutron scattering experiments in YBCO~Ref. 74!#. The ex-
istence of microscopic twins and tweeds in the lattice str
ture of these systems seem to be intrinsic to the strong la
constraints. This situation is quite similar to what occurs
some martensitic systems.75 We can think of the boundarie
as junctions between two superconductors. Since the bo
ary size,L, is very large~much larger than any of the supe
conducting length scales! each monodomain can be treat
as a separate superconductor that is coupled to other dom
through the boundary. Because the coherence length in t
systems is of the order of the lattice spacing, the superc
ducting order parameter can be continuously depressed
the boundary leading to a situation similar to
superconducting-normal-superconducting junction. As
can see in Fig. 6~a! a dx22y2 boson couples the positive lob
of the wave function to the horizontal stripes. Thus, wh
phase coherence is achieved the whole Fermi surface in
4~a! have the same phase sign@say, positive like in Fig. 6~a!#.
When the bosons cross the boundary and find a stripe
ented along the vertical direction the negative lobe of
wave function couples to the vertical stripe. This situation
shown in Fig. 16. Therefore adjacent domains have oppo
phases across the boundary as shown in Fig. 17. Thus, i

FIG. 16. Coupling generated by adx22y2 boson in the presenc
of vertical and horizontal stripes.
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superimpose the Fermi surfaces of the horizontal and ver
stripes we find a situation like in Fig. 18 where horizon
and vertical Fermi surfaces have opposite sign in th
phases. The situation is identical to ap-junction between
two superconductors76 but the phase difference between t
different domains is zero. It is the symmetry of the bos
that determines thed-wave superconductor order paramet
Notice that in the presence of boundaries the electronic
tion is actually 2D since stripe holes are being transfer
from vertical to horizontal stripes via the bosons. Thus, th
is true propagation along the diagonals. In the disorde
phase this propagation is not coherent and the system
mains essentially 1D. In the superconducting state, howe
the coherence between the domains is attained and quas
ticles can propagate along the diagonals as in a ordin
superconductor. Thus, our conclusion is that in the prese
of unavoidable microscopic boundaries no quasiparticle p
is possible in the pseudogap phase while in the superc
ducting state the quasiparticle peak should exist. This c
clusion is in agreement with the ARPES data.77 A conse-
quence of this mechanism is that the size of thed-wave order
parameter should change with the relative number of
mains. In samples where there are equal amounts of ver
and horizontal domains the superconducting order param

FIG. 17. Tunneling junction across a boundary between h
zontal and vertical stripes.

FIG. 18. Momentum space picture of the finald-wave state of
the electrons.
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STRIPES, VIBRATIONS, AND SUPERCONDUCTIVITY PHYSICAL REVIEW B64 104509
is symmetric@see Fig. 19~a!#. If there are more domains in
one direction than in another thed-wave order paramete
should be asymmetric with a larger lobe in one of the dir
tions as shown in Fig. 19~b!. In fact, ans-wave component
for the order parameter should also develop since for a m
odomain system we would predict a fullys-wave order pa-
rameter. We should also point out thatc-axis coupling can
lead to further increase of the condensation energy. In
hopping along thec axis can help to stabilize thed-wave
order parameter.78

AlthoughTc is weakly dependent on the boundaries in t
sample, the transport properties, the critical currents
fields depend strongly on them. Let us consider a sim
model for the junction between a vertical and a horizon
domain. The free energy for the junction is written as

dF52
I c

2e
cos~f!, ~9.1!

whereI c is the critical current andf is the phase difference
between domains. The critical current density is

Jc5
I c

Ll c
, ~9.2!

where l c is the distance between the CuO2 planes~for sim-
plicity we assume thatI c,a5I c,b5I c). In the presence of an
electromagnetic vector potentialA the Josephson current be
tween two different domains is simply given by

FIG. 19. ~a! Superconducting order parameter for equal amou
of vertical and horizontal domains;~b! superconducting order pa
rameter in the case where there is an excess of domains in
direction.
10450
-

n-

ct

d
le
l

I J52e
]dF

]f
5I c sinS f2
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F0
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C
dl•AD , ~9.3!

where C is the line that links the two domains andF0
5c/(2e) is the magnetic flux quantum. Choosing a gau
such thatf50 at the junction, assuming that the bounda
has widthd and that the variations of the order parame
across the boundary are negligible, we have from Eqs.~9.2!
and ~9.3!

J52
2pJcd

F0
A, ~9.4!

that leads to a penetration depth,lJ , given by

lJ5A cF0

8p2dJc

. ~9.5!

Moreover, the variation of the phase across the boundar
p/d but because this variation occurs in a length scale of
correlation length induced by the Josephson coupling,jJ ,
we expect that

jJ'd. ~9.6!

Thus, the Ginzburg-Landau parameter,kJ , is given by

kJ5
lJ

jJ
'A cF0

8p2d3Jc

, ~9.7!

leading to a critical field,Hc1,J , for the field strength that is
screened by surface currents given by

Hc1,J5
F0

4plJ
2

ln~kJ!'
pdJc

c
lnS cF0

8p2d3Jc
D . ~9.8!

Finally, the critical field for the penetration of one flux o
quanta through the boundary is of order

Hc2,J5
F0

2pjJ
2
'

F0

2pd2
. ~9.9!

Thus, we expectHc2,J to be much smaller than the uppe
critical field required for the extinction of long range order.
is clear that many macroscopic properties of the superc
ductor are determined by what happens at the internal bou
aries.

As we have argued the formation of the stripes is driv
by the gain in kinetic energy and therefore favors antiph
domain walls as shown in Fig. 3~a!. Thus, the magnetic fluc
tuations are incommensurate with the lattice as it has b
observed for a long time in all the cuprates.2 However, we
have found that there are lattice distortions that we can
sociate with the O motion as shown in Fig. 9. If the strip
are site centered then the distortion does not affect the
commensurate spin order since the Cu atoms are unaffe
However, if the stripes are bond centered~as some
numerical39 as well as analytical works79 indicate! then the
dimerization producescommensuratemagnetic response
This can be seen in a schematic way in Fig. 20 wher
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dislocation loop of the CCS produces excess of one magn
domain ~a domain with a given staggered magnetizatio!
over the other.80 Thus, for bond centered stripes the disloc
tion loops produce a dynamic commensurate response.
presence of dynamical commensurate spin fluctuations h
been observed in YBCO,81 but not in LSCO. It might well be
that stripes are bond centered in YBCO and site centere
LSCO. This would explain the difference between these t
materials in regards to the presence of commensurate
fluctuations at low temperatures.

It is clear from our theory that the vibrations are affect
by an isotope effect@see Eq.~5.6!#. Moreover, because a
static lattice distortion is involved we also expect the critic
temperature for the distortions,Tc,V , to be strongly affected
by changes of O isotopes~changes of O16 by O18). There is
strong evidence for the O isotope effect in LSCO and ot
cuprates that support our theory.82 Moreover, we expect the
isotope effect to be stronger at theT50 transition to the
superconducting state atN5Nc where the static lattice dis
tortions start to appear. However, the superconducting t
sition itself should be very weakly dependent on the isoto
effect because the binding mechanism only involves
lattice in a indirect way~in other words, the stiffness o
the superfluid is only weakly renormalized by the lattic!.
The experimental data in cuprates have indeed shown
unusual isotope effect where the critical superconduct
temperature is not correlated with isotope effect that
comes stronger at the quantum critical point associated w
superconductivity.83 In fact, optimally doped cuprates sho
very weak signs of the isotope effect. This has been use

FIG. 20. 1 sign indicates an up staggered magnetization and2
indicates a down staggered magnetization:~a! normal phase;~b!
dimerized phase;~c! topological defect of a bond centered stripe
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an argument against phonon mechanisms for supercondu
ity. In our theory atT50 a static lattice distortion appea
together with the superconductivity~see Fig. 15!. It is the
transition into this dimerized stripe phase that is stron
affected by the isotope effect, not the superconducting o
Thus, we can explain the unusual isotope effect in cupra
as a consequence of the unavoidable coupling between
tice and the superconducting condensate.

It is clear from the phase diagram shown in Fig.
that our theory does not describe the so-called overdo
region of the cuprates. When the distance between the st
becomes of the order of the lattice spacing the system
comes homogeneous. The antiferromagnetic correla
length, for instance, is short and the bound states disap
from the spectrum by merging with the lower Hubbard ba
~this coincides with the vanishing of the pseudogap ene
scale!. Beyond this point we believe there is a crossov
to a conventional BCS behavior with a well defined Fer
surface and therefore to Fermi liquid behavior in the norm
phase.84 This smooth crossover is possibly the same o
that occurs between a Bose-Einstein system and a B
superconductor.85

In summary, we have presented a model for a collec
electronic state of the cuprates where the elementary ex
tions change from place to place in real space. We show
the decaying processes among these elementary excita
produce superconducting correlations even when the inte
tions are repulsive. We show that thed-wave nature of the
order parameter is associated with thed-wave nature of
bosons that exist due to the magnetic confinement. We h
shown that phase fluctuations are responsible for the q
tum disorder and that the phase diagram depends strong
how vortices couple to dislocation loops. We have explain
various different experimental facts of the cuprates and p
dicted effects that might prove or disprove our theory.

Note added.After this paper was completed I becam
aware of Ref. 86, where electron-phonon coupling is d
cussed in the context of ARPES and neutron scattering
periments.
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