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We report the effect of the two-body, spin-other-orbit interaction on the magnetocrystalline anisotropy
energy of the 8 transition metals. The relevant energy differences were computed for bcc Fe, fcc Ni, and hcp
Co using a linearized augmented plane-wave method to solve the scalar relativistic Kohn-Sham equations in
the local spin-density approximation. The spin-other-orbit interaction was incorporated at the level of the
Hartree approximation. Special care was taken to guarantee the correctness of our numerical procedures. We
find that the spin-other-orbit interaction does indeed change the anisotropy energy, but the effect is too small to
account for the disagreement with experiment found in previous calculations for all three elements.
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. INTRODUCTION various high-quality LSDA calculations d,ca for the 3d
transition metals. The best case is iron, where the computed
The energy of a crystal ferromagnet is usually lowestvalues differ from experiment “only” by a factor of 2. The
when its magnetization points along a specific, high-result for cobalt is far worse, and for nickel, the sign is not
symmetry, crystallographic direction. Nevertheless, the eneven correct. That is, the calculations predict the wrong easy
ergy cost per atom to align the magnetization along somexis. Nonetheless, with the exception of cobalt, we regard
other direction can be remarkably small. For example, théhe clustering of the various results plotted in Fig. 1 as evi-
measured magnetocrystalline anisotropy(MCA) energy dence that the computational issues can be brought under

Eyea=E(0001)— E(1010) is only ~60 weV per atom for '€asonable control.

hcp Co. The corresponding quantity for bee Fe and fec Ni is It is difficult to escape the conclusion that some essential
even sr.nallerE — E(001)— E(111y)~1 eV per atort piece of physics is simply missing from the LSDA form of
MCA K ", the exchange-correlation energy functional. One possibility

The MCA is smalf in these itinerant systems because theiS “orbital polarization” of the sort that leads to Hund's sec-

energy cost to reorient the magnetization is a relativistic ef'ond rule in atomic physic® An ad hocprocedure that mod-

fect. Indeed, the magnetization is aware of the lattice in bulk, s this phenomenon is known to improve orbital moment

Fe, Ni, and Co only because thgpin-orbit interaction  cqicylations” The same procedure applied to the present

couples the spin moment to the not-completely-quenched ok;roplem does indeed improve the calculated valu€géa

bital moment at every atomic site in the crystal. for Fe, but not for Ni or Cd.A related calculatiotf exploits
The MCA energy is a ground-state quantity that fallsthe so-called LDA-U method to account for intra-atomic

within the purview of density-functional theotyin the Har-  correlation in an approximate manner. Good agreement be-

tree approximatiorisee below; the theory actually involves

four densities: the charge density, the current density, the

magnetization density, and the polarization density. Nonethe- 0.5 Fe 20 Co 3 Ni

less, current-density-functional calculations are still * el

immaturé® and we are unaware of any first-principles cal- 00 O 2

culations of the electric polarization density in metals- %

stead, most modern calculatién¥’ of Eyca use the local- S oslxs 20 ;

spin-density approximatidfi (LSDA) for the exchange and < | x ©

correlation parts of the energy functional. o5 o .
The minuteness of the magnetocrystalline anisotropy en- 10 0 Opae-

ergy presents special challenges to an LSDA electronic struc- Lskexp- T exp— . e

ture calculation. One issue is the accuracy of the method

used to perform integrations over the occupied portion of the k|G, 1. Magnetocrystalline anisotropy for bce Fe, hep Co, and
Brillouin zone. Another issue is precisely how the spin-orbitfcc Ni. The present results®) are compared with experimental
interaction is introduced. Most calculations use either the&esults(-exp) from Ref. 1 and previous calculations, Ref. 8Y,
“force theorem™® or a variational approachFor both, the Ref. 9 ©), Ref. 10 (©), Ref. 11 (A), Ref. 12 (), and Ref. 13
spin orbit interaction is introduced at the end after a self{+). Where more than one of a symbol are given for a material, the
consistent calculationwithout spin-orbif has been per- two refer tospdandspdfbasis sets in linearized-muffin-tin-orbital
formed. A third approach includes spin-orbit effects in a self-calculations. For Fe and NEyca=E(001)—-E(111) and for Co
consistent mannér. Ewmca=E(0001)- E(1010). For Co, E(1010)=E(1120) in all
Figure 1 compares experimental data with results fromconverged calculations we have done.
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tween theory and experiment for the anisotropy energy wasgonic structure calculations for real systeffisTo second
reported with the choicedJ=3.5 eV for Fe andU order in the fine structure constant, it turns out that the self-
=4.0 eV for Ni. However, the authors fourtt],co(U) to be  consistent, mean-field Hamiltonidmcluding the usual sca-

a very rapidly varying function for NiRef. 18 and the lar relativistic term$ should be supplemented by two-body
theory predicts the wrong easy axidf=3.7 eV as recom- terms of the sort first derived by Bréit.For present pur-
mended by the most recent survey of a wide range ofposes, we need only the spin-orbit terms that emerge from
experiments? the nonrelativistic reduction of the Breit enerfgyThe result

Given this state of affairs, it is not unreasonable to confor an N-electron system is
sider other effects that lie outside the LSDA. Accordingly,

this paper reports electronic structure calculation&EQfa e? 1 % % (ri=r)Xp;
for bcc Fe, fcc Ni, and hep Co that include the so-called T 2méc2 ATey | 3 (§+25). (2

. . . . . . . =1 j#i ri—r;
“spin-other-orbit” energy in the magnetic Hamiltonian. This Iri=ril
contribution to the total energy is well known to emerge on  Tg gain some intuition, it is instructive to derive this ex-

an equal footing with the conventional “spin-same-orbit” en- pression semiclassically by writing down the spin-dependent

ergy when one goes beyond mean-field theory in a rigorougnergy terms that arise from the electric and magnetic inter-
relativistic many-body theory of bound electrdfisA recent,  actions among the electrons:

formal, many-body study addressed to condensed matter
problems examined the interplay between spin-same-orbit N N N
and spin-other-orbit effects at the level of the random-phase ~ U=—2, m;-B(r)— >, di-E(r)+ >, @-S. (3
approximatior?! =t =t ot
To our knowledge, the spin-other-orbit interaction hasThe first term counts the potential energy of the magnetic
been neglected in all previous MCA studies. Presumably, thiglipole momenim;=(g/m)S of theith electron in the mag-
is so because early Hartree-Fock calculatiérattributed netic field
only about 10% of the spin-orbit parameteto spin-other-
orbit effects in the free @ ions??> We embarked on the study 4o
reported here nevertheless because the relevance of these cal- B(ri)= e 2 qQuiX——x3
culations to LSDA wave functions in a hybridized solid was 7! Iri=rjl
not obvious to us. As it turns out, they do indeed provide aproduced by all the other electroffs.
good estimatéFig. 1). The second term in Eq3) is the potential energy of the
The remainder of this paper is organized as follows. Secelectric dipole momend,= —m; X v, /c? (acquired by a mag-
tion Il gives a simple classical argument to motivate the formnetic dipole that moves with velocity) in the electric field
of the spin-same-orbit and spin-other-orbit Hartree energy
functionals and potentials used in our LSDA calculations. q =T
Section Il describes the transformation of the formal theory E(r)=
into an efficient computational methodology and Sec. IV re-
ports our results in detail. Section V is a summary and conproduced by all the other electroffsThe last term is the

N
ri—l’j

4

®

clusion. electron-electron contribution to the change in rotational ki-
netic energy that occurs when the spin angular momentum of
Il. SPIN-ORBIT ENERGY AND MATRIX ELEMENTS each electron precesses around the orbital céhtere pre-

_ _ _ _ . _ cession is a relativistic effect that occurs because the elec-
It is conventional to estimate spin-orbit effects in many-trons accelerate one another. Specificdli, a; is the accel-

electron systems using the Hamiltorfidn eration of theith electron due to the other electrons, the
electron-electron contribution to the precessional angular ve-
1 1dVv locity is
e eSO
C Xy qE(r)Xy;
This formula generalizes the spin-orbit term in the one- ;= 2 om& | (6)

electron Pauli Hamiltoniarithe nonrelativistic reduction of

the one-electron Dirac equatipto a system oN noninter-  wheny;<c.

acting electrons that move in the central potent@l). Pre- With g=—e and pj=mv;, it is easy to check that the

vious calculations oEyc, for the 3d transition metaf™®  electric dipole term and the Thomas precession t@xactly

employ Eq.(1) using the self-consistently computed LSDA half as large as the dipole term but with the opposite )sign

potential in an atomic sphere f&f(r). Spin-orbit effects in  combine to give the usual spin-same-orbit téproportional

the interstitial volume are neglected and a spherically averto S) in Eqg. (2). The less-familiar spin-other-orbit tertpro-

aged form ofHso may or may not be included ¥(r). portional to Z5;) in Eq. (2) comes entirely from the magnetic
The argument for using the LSDA potential Hgo is  dipole interaction.

heuristic and has no formal justification. A more systematic Our interest is to incorporate the spin-same-orbit and

approach begins with quantum-field theory and ends with &pin-other-orbit interactions into the Hartree part of the

practical scheme to perform relativistic, many-body, elecKohn-Sham energy functional. For this purpose, it is suffi-
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cient to define reduced densities for charge, current, magare similarly equivalent contributions to the spin-other-orbit
netic dipole momengmagnetizatiojy and electric dipole mo- interaction. It is the effect of the last two on the MCA energy
ment (polarization in terms of a set of two-component that is the main issue here.
LSDA eigenfunctionsy; ,(r) and their occupation humbers
fi: lIl. METHOD OF CALCULATION

Collinear approximation.f the spins are described in a
(=2 figfy (Do)

— reference frame in which up and down are alsnthe Pauli
matrix can be written

J(N=—=12 figf (DV (1) o= 07+ Uo"+ VoV (10

m(r)= X fidf, (N aie(r) =St @0 (- D0 0]

ioco’ (11)
A== 3 g exT i, . 0 R PR i FC S e
== iVig\)o io! . = +(u+ +(u—
P . So —1)TUFWIg o/ *UTMIg g
In terms of these quantities, the Hartree energy function o (12)
equivalent to Eq(2) is written Here, the three directions
athag r—r’ s=(sin 6 cos¢,siné sin ¢, cosé) (13
Hso=— derJd3r’ n(r’)d(r)-———
r=r’| U= (Ccos6 coS¢,cosd sin g, —sin ) (14)
r—r' -
—2j(r).m(r’)><| ,|3], (8) v=(—sin¢,co0s¢,0), (15
r—r

make up an orthonormal set. In this representation, magneti-

where  a=e?/4mehic~1/137.0, Ep =4meh?/me  zation is
~27.21 eV, anday=me"/(4mep)*h?~0.529 nm. A o o

The variational derivative of Eq(8) with respect to  m(r)=gn;(r)—n; (r)]+u+iv)n(r)+u—iv)n, (r)
Jis(r) yields four terms—one from each density in Eg. N
(7)—that enter the Kohn-Sham equations. The corresponding ~sm(r), (16)
matrix elements for basis functiong(r) and x;(r) (with — 1ae
respective spin indices; ando;) are

2E 3 Ny ()= fi’ ;k,(rr 1o (). 1
<|:|so>ji:aThaof d3rfd3r’ (r) ; P (D) i1 (1) (17)

dir'). —
r @ —_—
[r—r'|3

The last step in Eq(16) is the approximation that the spin
R density is collinear everywhere in space. This is rigorously
X (N 056 X1V x(1)] true in the absence of spin-orbit coupling and spatially rotat-
ing magnetic fields. Spin-orbit coupling does generate non-
collinear contributions, but these are small and have no ro-
X (D) X(F) 850 ] tationally invariant component around each atom. The
o noncollinear parts of the spin do not affect the energy sig-

nificantly (in this problem but they do greatly complicate

e (DiVoxi (18, ] the calculation of the exchange-correlation energy.
! A 7i9] In the corresponding representation, the polarization is

r—r’

n(r’)

[r—r'|3

!

+

!

r—r

lr—r'|3

+2|m(r’)x

r—r’ d(r)=sx[j1(r)—=j, (]

+F(UFIV)X] (D +(U=iv) X (1), (18

-2

j(r'yx

X (Do e xi(N]. (9
| r—r’ |3 i7]
Of the four contributions to this matrix element, only the first,\nare
spin-same-orbit piece appears in standard treatments of spin-
orbit coupling. It is a single-particle-like term that cancigis . ) .
pard the spin-orbit coupling due to the nuclear potential. The Joor(r)=—i 2 fir s (Vi (1), (19
second term in Eq(9) is an alternate form of the first term v
that appears here because we have used an explicit two-bodtyis worth noting that the polarization is smaller than the

representation of the total energy. The fourth and third termsnagnetization in absolute terms. However, unlike the mag-
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netization, the parts odi(r), which are off-diagonal in the N

spin index, are comparable in magnitude to the diagonal p(r)=—j dQr-p(r)

parts and cannot be ignored. This is not a significant compli-

cation because the polarization does not enter the exchange- .

correlation energy in the local-spin-density approximation. j(r)=f dQs-rxj(r). (22)
Spherical approximationThe dominant contributions to

the spin-orbit interaction come from the spherical parts of thqntegratingrj (r) overr gives the orbital moment alorg In

charge and spin densities. When the charge and spin dengk;is approximation, the energy is

ties are treated as spherical(r)~n(r) and m(r)~m(r),

(21)

the gradient of the Coulomb interaction in the spin-orbit cou- R a’Eal o r
pling energy can be replaced by (HsgHar= — 2 {477[ drd(r)J dr'r’?n(r’)
0 0
r—r' _ 1 "o QY *(Q' * r
|r—r’|3__ f|r_r,|ﬂ477r_f (r=r)rYol ) Yoo 2') +877J0 drj(r)jodr’r’zm(r’)}. (23
r With atomiclike basis functions
=—2(r—r’). (20
r
o o Xi(1)=¢i(r)Y)m(Q), (24)
With this replacement, the parts of the polarization and cur-
rent that contribute to the energ®) are the matrix element$9) are

fwdr i(r) '(r)l -4 frdr’r’zn(r') UdQY* (Q)LY (Q)}-
0 ¢| d)l r m 0 Iimi Ijmj a'u'iu'j

2 3
~ o Ehao
<HSO>ij:T[

J

+f:drr2¢i(r)¢j(r)[—frmdr’d(r’)}5|i|j5mim15(,ioj+ZJOwdrr2¢i(r)¢j(r)[—fdr’j(r’)}5|i|j5mimjoiiv.

* 1 -
+2fo drqﬁi(r)(ﬁj(r)r *S0qi0 1 - (25

—47Tjrdr’r’2m(r’)Hf dQY,’Tm,(Q)LYHmj(Q)
0 [

The first term is the coupling between the orbital angularwe ignore the spin-orbit interaction in the interstitial region.
momentum of an electron and its own spin. The fourth term\We use a frozen-core approximation so that we can compute
is the coupling between the orbital angular momentum of aranisotropies from the difference of valence energies on the

electron and the spins, assumed to be aligned apnfjthe order of 1000 eV instead of total energies on the order of
other electrons. The second term acts as a spin-independetfi 000 eV.
potential and the third term acts like a spin potential. The magnetocrystalline anisotropy ener@yAE) is the
LAPW approximationWe now incorporate these effects difference in total energy when the magnetization pOintS in
into a linearized-augmented-plane-waitéAPW) electronic ~ two different high-symmetry directions. For hcp Co, we
structure cod® that solves the scalar relativistic Kohn-Sham computeE,,c, = E(0001)— E(1010). For bce Fe and fcc Ni,
equations in the local-spin-density approximatiBrin the  we computeEy,c,=E(001)— E(111). We compute the con-
LAPW method, space is broken into spheres around eacstituent energies in three different ways, discussed here in
atom and the remaining interstitial region between atoms. lmrder of computational complexity. The first is based on the
the calculations described here, the spheres are chosen to fierce theorem,” discussed extensively by Daalderipal®
as large as possible without overlapping. In the spheres, tha this approach, a self-consistent calculation with no spin-
charge, potential, and wave functions are described in aorbit coupling is used to determine the input potential. Then
atomic-like manner in terms of radial functions times spheri-the spin-orbit coupling is introduced and the eigenvalues are
cal harmonics, e.g., Eq@24). In the interstitial, these quanti- recomputed. The anisotropy is given by the difference in the
ties are described in terms of plane waves. While the fulkeigenvalue sums for the different directions of the electrons’
potential is used to describe the electrostatic and exchangsepin. In this approach only the first and fourth terms in Eq.
correlation potentials, we make the spherical approximatiori25) play a role. When starting with a potential computed
for the spin-orbit coupling. The spin-orbit coupling is small with no spin-orbit coupling, the second and third terms in
compared to these other energies and the non-spherical cdq. (25 vanish because there is no current density or polar-
rections are smaller still. Consistent with this approximation,ization in the input state.

104430-4



SPIN-OTHER-ORBIT INTERACTION AND . . . PHYSICAL REVIEW B54 104430

TABLE I. Spin-orbit-coupling energy and magnetocrystalline anisotropy. Each column shows a different
calculation of the spin-orbit coupling energy and the magnetocrystalline anisotrdfiyrcie theoreny var
(variationa), and sa(self-consistent All energies, given inueV are relative to self-consistent results with no
spin-orbit coupling. The first three columns of numbers are computed including spin-other-orbit coupling,
and the last three columns are computed without it.

No spin-other-orbit coupling

AEy AE,, AE,, AEy AE,, AE,,

Fe (001  —5511.65 —5511.79 —6010.50 —5466.72 —5466.92 —5963.11
(111 —-5511.17 —5511.36 —6009.91 —5466.29 —5466.54 —5962.57

Diff. -0.47 -0.43 ~0.59 -0.43 -0.38 ~0.53
Co (000)  —7066.75 —7067.14 —7809.75 —6997.60 —6998.07 —7734.88
(1010) —7070.80 —7071.31 —7807.67 —7004.54 —7005.13 —7736.04

Diff. 4.05 4.17 —2.07 6.93 7.06 1.16
Ni (00))  —8055.63 —8056.19 —8975.27 —8034.93 —8035.58 —8952.55
(111 —8055.10 —8055.65 —8974.66 —8034.41 —8035.05 —8951.95

Diff. —-0.54 —0.54 ~0.61 -0.53 ~0.53 —0.60

The second method extends the first approach by compukEig. 1. Because the spin-other-orbit effect is small, they are
ing the total energy variationally using the same input potenin the same range as previous LSDA restiitS displayed in
tial as above. In this approach, both terms in &8) play a  Fig. 1. Thus, the anisotropy for Fe has the same sign as the
role in addition to the terms that contribute in the previousexperimental results but is a factor of 2 too small. The MAE
approximation. The anisotropy is given by the difference infor Ni has the wrong sign and is about an order of magnitude
the variational total energies. This approach requires storinghg small. The Co prediction also agrees poorly with experi-
not only the eigenvalues, but also the eigenvectors so that thent. This is surprising because, according to conventional
densities can be computed once the Fermi level is detefyisdom, the(relatively) large uniaxial anisotropy of this sys-
mined. tem should be more accurately computed with the LSDA
Finally the third approach is to compute the energy fullythan the smaller cubic anisotropies.
self-consistently with the spin-orbit coupling included. In  Eyidently, it is important to establish that our calculations
this case, the second and third terms in Ep) play a role  are numerically converged. Earlier calculatidnsased on
on the same footing as the other terms. the linearized-muffin-tin-orbita(LMTO) method, showed
that the MAE for Co changed sign when the angular momen-
tum cutoff for the wave functions increased frdm 2 to |
=3. Thus, it hasnhot been established that LMTO calcula-
Table | summarizes the results of a series of MAE calcutions with even arl =3 angular momentum cut-off are nu-
lations both with and without spin-other-orbit coupling. We merically converged for this problem. We did not find such
see immediately that the differences between the force thesensitivity in our LAPW calculations. These used angular
rem calculations and the variational calculations are quitenomentum cutoffs of =6 for the wave functions, charge,
small. This is so because the initial calculation was done to and potential in the atomic spheres and plane-wave cutoffs of
high degree of self-consistency. The energy difference ini15 agz for the wave functions and 6&52 for the charge
creases by about 10% in magnitude when going to the fullyand potential in the interstitial region. While the total energy
self-consistent calculations. changes by much more than 10 eV when any of these
Comparing the first three columns of Tabléspin-other-  parameters is varied around these values, the difference in
orbit present with the last three columns of Table($pin-  energy between two different spin directions does not.
other-orbit absent shows that spin-other-orbit coupling It is well known that the MAE is very sensitive to the
makes at most a 10% change in the computed MAE relativeonvergence of integrations over the Brillouin zone in recip-
to the experimental value. Indeed, the energy barely changeecal space. We use the spedigboints methot! where the
at all if we neglect the spin-same-orbit coupling and retainintegration is replaced by a sum over values on a discrete set
only the spin-other-orbit coupling. This is so because theof points in reciprocal space. These points are chosen to
(spin-other-orbit m- B interaction in Eq(3) is truly tiny un-  maintain the symmetry of the system by creating a set of
less the(spin-same-orbjtp-E coupling in Eq.(3) is also  points inside the Brillouin zone based on arbitrary sums of
present to generate a non-negligible orbital curréamid  primitive reciprocal-lattice vectors that have been scaled
hence a non-negligible magnetic figldrom the spin- down by some integer factor. For high-symmetry crystal
polarized electron population. Unfortunately, the effect is notstructures like fcc and bcc, this scaling must be done with the
large enough to resolve the disagreement between calculaame factor for each primitive reciprocal-lattice vector to
tion and experiment. maintain the symmetry. For structures with lower symmetry,
Our final results for the MAE are plotted as solid dots inlike hcp, the scaling can be chosen differently for the out of

IV. RESULTS
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2F T T T T
f  Fe — 320
s - % c
E 5
e =
&1 Q
=) o

% 3
I 5
o L .7 — 154,88 | -
g0 — 76,44 1 g
< -- 38,22 ] &%) [
i -~ 18,10 I ]
-100LL N B I | 20+ | | | | _
3l N T T ] 0 50 100 150 200 250
- Ni — 320 3 Broadening Parameter (10~ eV)
> 2§ -- 80 FIG. 3. Magnetocrystalline anisotropy for hcp Co. In both pan-
*2 12_ - 40 3 els, the solid curve is thé38,22 curve from Fig. 2. The top panel
— B i E compares calculations done comparing the force thedsatid),
u-% 3 5 E the variational total energydotted, and the fully self-consistent
0: e : i
g : E total energy(symbolg. The bottom panel compares calculations
—1E . , , E with (solid) and without(dotted and dashedhe contribution from
0 50 100 150 200 250 spin-other-orbit coupling. The dashed curve includes adehoc
Broadening Parameter (10” eV) contribution from the exchange-correlation potential as is typically

FIG. 2. Magnetocrystalline anisotropy for Fe, Ni, and hcp Co'used.

The bottom, middle, and top panels, respectively, show the differ
ence in energy between tti@11) and (001) directions for Fe and

Ni, and the(0001) and the (01D) directions for Co. The curves

For Co, which is hcp, the scaling in the plane and out of the
plane are independent. The first number associated with each
) ; i _curve is the scaling factor for the two in-plane primitive
give the calculated results as a function of the Fermi broadeninge ;¢4\ |attice vectors, and the second number is the scal-
T e e o neane o 1860r ot of the pane. These pars of rumbers give
pace. P 9 R—point samples that are as close to uniform as possible.

each reciprocal lattice vector as described in the text. All results In the calculations presented in Table | and those dis-
were computed from differences in the eigenvalue sums. The ar- p

rows close to the left axes indicate the zero-temperature experimer?—ussec_j below we use the B‘BOX_ 80 k-point sample for Fe
tal results. and Ni and the 38 38%20 k-point sample for Co. These

samples are not converged for Fermi-surface smearings

plane direction than the in-plane directions in order to creatgemaller than about 30 meV, which is the value we use for the
a more-uniform sampling. calculations presented in Table I. These convergence tests

The speciak-points method is poorly behaved for metal- suggest that the temperature dependence is not important be-
lic systems unless it is augmented by some sort of smearinigw this point. We would like to stress that in calculations in
out of the Fermi level. For our work, we used a thermalwhich the electronic structure is modified, convergence tests
broadening scheme where the occupancy of a state is givareed to be redone.
by the Fermi function with some fictitious temperatdfe. Finally, Fig. 3 summarizes the effect of Fermi level broad-
Figure 2 illustrates our convergence tests for bkimoint  ening for various MAE calculations for cobalt. The top panel
sampling and Fermi-surface smearing. The calculated MAEompares force theorem, variational, and self-consistent cal-
is plotted as a function of Fermi-surface smearing for a seriesulations. Similar calculations for Fe and Ni showed no dif-
of k-point samples. The differeltpoint samples are labeled ference between the three. The bottom panel shows the dif-
by the inverse of the scaling factor for each of the primitiveference when the Hartree central potential in EL). does
reciprocal-lattice vectors. For example, the curves for labelednd does not includéas anad hoc procedurg the LSDA
320 for Fe and Ni use uniform meshes of 320 exchange-correlation potential.
=32 768 000 points in the full Brillouin zone. Symmetry re-  We conclude that the spin-other-orbit interaction makes a
duces the number of these points that are independent. Fdiscernible, but not overwhelming contribution to the anisot-
spins pointed in th¢111) direction, the irreducible wedge of ropy. In particular, it is not enough to bring the LSDA-based
the Brillouin zone is 12 times smaller than the full zone socalculations in agreement with experiment. In similar calcu-
that only 2 756 481 independent points were computed. Afations for Fe and Ni, neither the exchange-correlation poten-
the scaling factor decreases by a factor of 2, the number dfal nor the spin-other-orbit coupling changed the calculated
points in the full Brillouin zone decreases by a factor of 8.results beyond numerical precision.
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V. CONCLUSION (frozen-core, spherical potentials in the atomic sphere, ne-
glect of spin-orbit effects in the interstitial volume, scalar-
relativistic plus spin-orbit central potentjare to blame for

the disagreement between theory and experiment. The
ag- .

Sresent work rules out the simplest sort of many-body effect.

In this work, we investigated the possibility that the here-
tofore neglectedspin-other-orbit interactionmight be re-
sponsible for the disagreement between the measured m

gﬁ;ocrr)ést_aol l'giﬁg&?m?g%h?gzrgg of éh.(?] ;?nz':;czg dnlﬁ;alss .n_EarIier studies have implicated the approximate treatment of
otherrjor\lglit uener Xig.the Hzla\rtree ,aW r(I)ximaFiic)rinto first- Poth exchang® and correlatioff built into the LSDA

o 9 . pproxi exchange-correlation potential. We conclude that the issue
principles, LSDA calculations of the anisotropy energy forremains unresolved and probably must await the develop-
bee Fe, fec Ni, and hep Co using the LAPW method. Tak'ngment of a practical and justifiable extension of the local-spin-

care to ensure numerical convergence and accuracy with e nsity approximation that can treat the angular momentum

spect to Brillouin zone integrations, we found the effect 0fef“fects known to be important in atoms. Possibilities include

spin-other-orbit coupling to be far too small to bring previ- X . . § i
ous LSDA theory and experiment in accord. The case of C(§urrent density functional schemes, exact-exchange ap

. . - . roaches, and generalizations of the orbital polarization ap-

was particularly disappointing because the anisotropy energ roach
in this uniaxial system is ten times larger than the MAE for '
Fe and Ni. No significant difference was found if the calcu-
lation was performed using the force theorem, variationally, ACKNOWLEDGMENTS
or self-consistently.
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