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Spin-other-orbit interaction and magnetocrystalline anisotropy
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We report the effect of the two-body, spin-other-orbit interaction on the magnetocrystalline anisotropy
energy of the 3d transition metals. The relevant energy differences were computed for bcc Fe, fcc Ni, and hcp
Co using a linearized augmented plane-wave method to solve the scalar relativistic Kohn-Sham equations in
the local spin-density approximation. The spin-other-orbit interaction was incorporated at the level of the
Hartree approximation. Special care was taken to guarantee the correctness of our numerical procedures. We
find that the spin-other-orbit interaction does indeed change the anisotropy energy, but the effect is too small to
account for the disagreement with experiment found in previous calculations for all three elements.
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I. INTRODUCTION

The energy of a crystal ferromagnet is usually low
when its magnetization points along a specific, hig
symmetry, crystallographic direction. Nevertheless, the
ergy cost per atom to align the magnetization along so
other direction can be remarkably small. For example,
measured magnetocrystalline anisotropy~MCA! energy

EMCA5E(0001)2E(101̄0) is only '60 meV per atom for
hcp Co. The corresponding quantity for bcc Fe and fcc N
even smaller,EMCA5E(001)2E(111)'1 meV per atom.1

The MCA is small2 in these itinerant systems because
energy cost to reorient the magnetization is a relativistic
fect. Indeed, the magnetization is aware of the lattice in b
Fe, Ni, and Co only because thespin-orbit interaction
couples the spin moment to the not-completely-quenched
bital moment at every atomic site in the crystal.3

The MCA energy is a ground-state quantity that fa
within the purview of density-functional theory.4 In the Har-
tree approximation~see below!, the theory actually involves
four densities: the charge density, the current density,
magnetization density, and the polarization density. None
less, current-density-functional calculations are s
immature5,6 and we are unaware of any first-principles c
culations of the electric polarization density in metals.7 In-
stead, most modern calculations8–13 of EMCA use the local-
spin-density approximation14 ~LSDA! for the exchange and
correlation parts of the energy functional.

The minuteness of the magnetocrystalline anisotropy
ergy presents special challenges to an LSDA electronic st
ture calculation. One issue is the accuracy of the met
used to perform integrations over the occupied portion of
Brillouin zone. Another issue is precisely how the spin-or
interaction is introduced. Most calculations use either
‘‘force theorem’’15 or a variational approach.8 For both, the
spin orbit interaction is introduced at the end after a s
consistent calculation~without spin-orbit! has been per-
formed. A third approach includes spin-orbit effects in a se
consistent manner.9

Figure 1 compares experimental data with results fr
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various high-quality LSDA calculations ofEMCA for the 3d
transition metals. The best case is iron, where the comp
values differ from experiment ‘‘only’’ by a factor of 2. The
result for cobalt is far worse, and for nickel, the sign is n
even correct. That is, the calculations predict the wrong e
axis. Nonetheless, with the exception of cobalt, we reg
the clustering of the various results plotted in Fig. 1 as e
dence that the computational issues can be brought u
reasonable control.

It is difficult to escape the conclusion that some essen
piece of physics is simply missing from the LSDA form o
the exchange-correlation energy functional. One possib
is ‘‘orbital polarization’’ of the sort that leads to Hund’s se
ond rule in atomic physics.16 An ad hocprocedure that mod-
els this phenomenon is known to improve orbital mome
calculations.17 The same procedure applied to the pres
problem does indeed improve the calculated value ofEMCA
for Fe, but not for Ni or Co.9 A related calculation18 exploits
the so-called LDA1U method to account for intra-atomi
correlation in an approximate manner. Good agreement

FIG. 1. Magnetocrystalline anisotropy for bcc Fe, hcp Co, a
fcc Ni. The present results (d) are compared with experimenta
results~-exp-! from Ref. 1 and previous calculations, Ref. 8 (3),
Ref. 9 (s), Ref. 10 (L), Ref. 11 (n), Ref. 12 (h), and Ref. 13
(1). Where more than one of a symbol are given for a material,
two refer tospdandspd f basis sets in linearized-muffin-tin-orbita
calculations. For Fe and Ni,EMCA5E(001)2E(111) and for Co

EMCA5E(0001)2E(101̄0). For Co, E(101̄0)5E(112̄0) in all
converged calculations we have done.
©2001 The American Physical Society30-1
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tween theory and experiment for the anisotropy energy
reported with the choicesU53.5 eV for Fe and U
54.0 eV for Ni. However, the authors foundEMCA(U) to be
a very rapidly varying function for Ni~Ref. 18! and the
theory predicts the wrong easy axis ifU53.7 eV as recom-
mended by the most recent survey of a wide range
experiments.19

Given this state of affairs, it is not unreasonable to co
sider other effects that lie outside the LSDA. According
this paper reports electronic structure calculations ofEMCA
for bcc Fe, fcc Ni, and hcp Co that include the so-cal
‘‘spin-other-orbit’’ energy in the magnetic Hamiltonian. Th
contribution to the total energy is well known to emerge
an equal footing with the conventional ‘‘spin-same-orbit’’ e
ergy when one goes beyond mean-field theory in a rigor
relativistic many-body theory of bound electrons.20 A recent,
formal, many-body study addressed to condensed ma
problems examined the interplay between spin-same-o
and spin-other-orbit effects at the level of the random-ph
approximation.21

To our knowledge, the spin-other-orbit interaction h
been neglected in all previous MCA studies. Presumably,
is so because early Hartree-Fock calculations22 attributed
only about 10% of the spin-orbit parameterj to spin-other-
orbit effects in the free 3d ions.22 We embarked on the stud
reported here nevertheless because the relevance of thes
culations to LSDA wave functions in a hybridized solid w
not obvious to us. As it turns out, they do indeed provid
good estimate~Fig. 1!.

The remainder of this paper is organized as follows. S
tion II gives a simple classical argument to motivate the fo
of the spin-same-orbit and spin-other-orbit Hartree ene
functionals and potentials used in our LSDA calculatio
Section III describes the transformation of the formal the
into an efficient computational methodology and Sec. IV
ports our results in detail. Section V is a summary and c
clusion.

II. SPIN-ORBIT ENERGY AND MATRIX ELEMENTS

It is conventional to estimate spin-orbit effects in man
electron systems using the Hamiltonian23

HSO5
1

2m2c2(
i 51

N
1

r i

dV

dri
L i•Si . ~1!

This formula generalizes the spin-orbit term in the on
electron Pauli Hamiltonian~the nonrelativistic reduction o
the one-electron Dirac equation! to a system ofN noninter-
acting electrons that move in the central potentialV(r ). Pre-
vious calculations ofEMCA for the 3d transition metals8–13

employ Eq.~1! using the self-consistently computed LSD
potential in an atomic sphere forV(r ). Spin-orbit effects in
the interstitial volume are neglected and a spherically av
aged form ofHSO may or may not be included inV(r ).

The argument for using the LSDA potential inHSO is
heuristic and has no formal justification. A more systema
approach begins with quantum-field theory and ends wit
practical scheme to perform relativistic, many-body, el
10443
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tronic structure calculations for real systems.20 To second
order in the fine structure constant, it turns out that the s
consistent, mean-field Hamiltonian~including the usual sca
lar relativistic terms! should be supplemented by two-bod
terms of the sort first derived by Breit.24 For present pur-
poses, we need only the spin-orbit terms that emerge f
the nonrelativistic reduction of the Breit energy.25 The result
for an N-electron system is

2
e2

2m2c2

1

4pe0
(
i 51

N

(
j Þ i

N
~r i2r j !3pi

ur i2r j u3
•~Si12Sj !. ~2!

To gain some intuition, it is instructive to derive this e
pression semiclassically by writing down the spin-depend
energy terms that arise from the electric and magnetic in
actions among the electrons:

U52(
i 51

N

mi•B~r i !2(
i 51

N

di•E~r i !1(
i 51

N

vi•Si . ~3!

The first term counts the potential energy of the magne
dipole momentmi5(q/m)Si of the i th electron in the mag-
netic field

B~r i !5
m0

4p (
j Þ i

N

qvj3
r i2r j

ur i2r j u3
~4!

produced by all the other electrons.26

The second term in Eq.~3! is the potential energy of the
electric dipole momentdi52mi3vi /c2 ~acquired by a mag-
netic dipole that moves with velocityvi) in the electric field

E~r i !5
q

4pe0
(
j Þ i

N r i2r j

ur i2r j u3
, ~5!

produced by all the other electrons.26 The last term is the
electron-electron contribution to the change in rotational
netic energy that occurs when the spin angular momentum
each electron precesses around the orbital center.27 The pre-
cession is a relativistic effect that occurs because the e
trons accelerate one another. Specifically,28 if ai is the accel-
eration of thei th electron due to the other electrons, t
electron-electron contribution to the precessional angular
locity is

vi5
ai3vi

2c2
5

qE~r i !3vi

2mc2
, ~6!

whenv i!c.
With q52e and pi5mvi , it is easy to check that the

electric dipole term and the Thomas precession term~exactly
half as large as the dipole term but with the opposite si!
combine to give the usual spin-same-orbit term~proportional
to Si! in Eq. ~2!. The less-familiar spin-other-orbit term~pro-
portional to 2Sj ) in Eq. ~2! comes entirely from the magneti
dipole interaction.

Our interest is to incorporate the spin-same-orbit a
spin-other-orbit interactions into the Hartree part of t
Kohn-Sham energy functional. For this purpose, it is su
0-2
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SPIN-OTHER-ORBIT INTERACTION AND . . . PHYSICAL REVIEW B64 104430
cient to define reduced densities for charge, current, m
netic dipole moment~magnetization!, and electric dipole mo-
ment ~polarization! in terms of a set of two-componen
LSDA eigenfunctionsc is(r ) and their occupation number
f i :

n~r !5(
is

f ic is* ~r !c is~r !

j ~r !52 i(
is

f ic is* ~r !“ rc is~r !

m~r !5 (
iss8

f ic is* ~r !ŝc is8~r !

d~r !52 i (
iss8

f ic is* ~r !ŝ3“ rc is8~r !. ~7!

In terms of these quantities, the Hartree energy funct
equivalent to Eq.~2! is written

HSO5
a2Eha0

3

4 E d3r E d3r 8H n~r 8!d~r !•
r2r 8

ur2r 8u3

22j ~r !•m~r 8!3
r2r 8

ur2r 8u3J , ~8!

where a5e2/4pe0\c'1/137.0, Eh54pe0\2/me2

'27.21 eV, anda05me4/(4pe0)2\2'0.529 nm.
The variational derivative of Eq.~8! with respect to

c is(r ) yields four terms—one from each density in E
~7!—that enter the Kohn-Sham equations. The correspond
matrix elements for basis functionsx i(r ) and x j (r ) ~with
respective spin indicess i ands j ) are

^ĤSO& j i 5
a2Eha0

3

4 E d3r E d3r 8

3H 2Fn~r 8!
r2r 8

ur2r 8u3
G•@x i* ~r !ŝs is j

3 i“ rx j~r !#

1Fd~r 8!•
r2r 8

ur2r 8u3G @x i* ~r !x j~r !ds is j
#

12Fm~r 8!3
r2r 8

ur2r 8u3
G•@x i* ~r !i“ rx j~r !ds is j

#

22F j ~r 8!3
r2r 8

ur2r 8u3G•@x i* ~r !ŝs is j
x j~r !#J . ~9!

Of the four contributions to this matrix element, only the fir
spin-same-orbit piece appears in standard treatments of
orbit coupling. It is a single-particle-like term that cancels~in
part! the spin-orbit coupling due to the nuclear potential. T
second term in Eq.~9! is an alternate form of the first term
that appears here because we have used an explicit two-
representation of the total energy. The fourth and third te
10443
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are similarly equivalent contributions to the spin-other-or
interaction. It is the effect of the last two on the MCA ener
that is the main issue here.

III. METHOD OF CALCULATION

Collinear approximation.If the spins are described in
reference frame in which up and down are alongŝ, the Pauli
matrix can be written

ŝ5 ŝsz1ûsx1 v̂sy ~10!

5 ŝsz1
1

2
@~ û1 i v̂!~sx2 isy!1~ û2 i v̂!~sx1 isy!#

~11!

5F ŝS 1 0

0 21D 1~ û1 i v̂!S 0 0

1 0D 1~ û2 i v̂!S 0 1

0 0D G .
~12!

Here, the three directions

ŝ5~sinu cosf,sinu sinf,cosu! ~13!

û5~cosu cosf,cosu sinf,2sinu! ~14!

v̂5~2sinf,cosf,0!, ~15!

make up an orthonormal set. In this representation, magn
zation is

m~r !5 ŝ@n↑↑~r !2n↓↓~r !#1~ û1 i v̂!n↓↑~r !1~ û2 i v̂!n↑↓~r !

' ŝm~r !, ~16!

where

nss8~r !5(
i 8

f i 8c i 8s
* ~r !c i 8s8~r !. ~17!

The last step in Eq.~16! is the approximation that the spi
density is collinear everywhere in space. This is rigorou
true in the absence of spin-orbit coupling and spatially ro
ing magnetic fields. Spin-orbit coupling does generate n
collinear contributions, but these are small and have no
tationally invariant component around each atom. T
noncollinear parts of the spin do not affect the energy s
nificantly ~in this problem! but they do greatly complicate
the calculation of the exchange-correlation energy.

In the corresponding representation, the polarization is

d~r !5 ŝ3@ j ↑↑~r !2 j ↓↓~r !#

1~ û1 i v̂!3 j ↓↑~r !1~ û2 i v̂!3 j ↑↓~r !, ~18!

where

jss8~r !52 i(
i 8

f i 8c i 8s
* ~r !“ rc i 8s8~r !. ~19!

It is worth noting that the polarization is smaller than t
magnetization in absolute terms. However, unlike the m
0-3
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netization, the parts ofd(r ), which are off-diagonal in the
spin index, are comparable in magnitude to the diago
parts and cannot be ignored. This is not a significant com
cation because the polarization does not enter the excha
correlation energy in the local-spin-density approximation

Spherical approximation.The dominant contributions to
the spin-orbit interaction come from the spherical parts of
charge and spin densities. When the charge and spin d
ties are treated as spherical,n(r )'n(r ) and m(r )'m(r ),
the gradient of the Coulomb interaction in the spin-orbit co
pling energy can be replaced by

r2r 8

ur2r 8u3
52“ r

1

ur2r 8u
→4p

1

r 2 Q~r 2r 8! r̂Y00~V!Y00* ~V8!

5
r̂

r 2
Q~r 2r 8!. ~20!

With this replacement, the parts of the polarization and c
rent that contribute to the energy~8! are
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p~r !52E dV r̂•p~r ! ~21!

j ~r !5E dV ŝ• r̂3 j ~r !. ~22!

Integratingr j (r ) over r gives the orbital moment alongŝ. In
this approximation, the energy is

^Ĥso&Har52
a2Eha0

3

4 H 4pE
0

`

drd~r !E
0

r

dr8r 82n~r 8!

18pE
0

`

dr j ~r !E
0

r

dr8r 82m~r 8!J . ~23!

With atomiclike basis functions

x i~r !5f i~r !Yl imi
~V!, ~24!

the matrix elements~9! are
^ĤSO& i j 5
a2Eha0

3

4 H E
0

`

drf i~r !f j~r !
1

r F24pE
0

r

dr8r 82n~r 8!G F E dVYl imi
* ~V!LYl jmj

~V!G•ss is j

1E
0

`

drr 2f i~r !f j~r !F2E
r

`

dr8d~r 8!Gd l i l j
dmimj

ds is j
12E

0

`

drr 2f i~r !f j~r !F2E
r

`

dr8 j ~r 8!Gd l i l j
dmimj

ss is j

z

12E
0

`

drf i~r !f j~r !
1

r F24pE
0

r

dr8r 82m~r 8!G F E dVYl imi
* ~V!LYl jmj

~V!G• ŝds is jJ . ~25!
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The first term is the coupling between the orbital angu
momentum of an electron and its own spin. The fourth te
is the coupling between the orbital angular momentum of

electron and the spins, assumed to be aligned alongŝ, of the
other electrons. The second term acts as a spin-indepen
potential and the third term acts like a spin potential.

LAPW approximation.We now incorporate these effec
into a linearized-augmented-plane-wave~LAPW! electronic
structure code29 that solves the scalar relativistic Kohn-Sha
equations in the local-spin-density approximation.30 In the
LAPW method, space is broken into spheres around e
atom and the remaining interstitial region between atoms
the calculations described here, the spheres are chosen
as large as possible without overlapping. In the spheres
charge, potential, and wave functions are described in
atomic-like manner in terms of radial functions times sphe
cal harmonics, e.g., Eq.~24!. In the interstitial, these quanti
ties are described in terms of plane waves. While the
potential is used to describe the electrostatic and excha
correlation potentials, we make the spherical approxima
for the spin-orbit coupling. The spin-orbit coupling is sma
compared to these other energies and the non-spherical
rections are smaller still. Consistent with this approximati
r
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we ignore the spin-orbit interaction in the interstitial regio
We use a frozen-core approximation so that we can comp
anisotropies from the difference of valence energies on
order of 1000 eV instead of total energies on the order
40 000 eV.

The magnetocrystalline anisotropy energy~MAE! is the
difference in total energy when the magnetization points
two different high-symmetry directions. For hcp Co, w

computeEMCA5E(0001)2E(101̄0). For bcc Fe and fcc Ni,
we computeEMCA5E(001)2E(111). We compute the con
stituent energies in three different ways, discussed her
order of computational complexity. The first is based on
‘‘force theorem,’’ discussed extensively by Daalderopet al.8

In this approach, a self-consistent calculation with no sp
orbit coupling is used to determine the input potential. Th
the spin-orbit coupling is introduced and the eigenvalues
recomputed. The anisotropy is given by the difference in
eigenvalue sums for the different directions of the electro
spin. In this approach only the first and fourth terms in E
~25! play a role. When starting with a potential comput
with no spin-orbit coupling, the second and third terms
Eq. ~25! vanish because there is no current density or po
ization in the input state.
0-4
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TABLE I. Spin-orbit-coupling energy and magnetocrystalline anisotropy. Each column shows a dif
calculation of the spin-orbit coupling energy and the magnetocrystalline anisotropy, ft~force theorem!, var
~variational!, and sc~self-consistent!. All energies, given inmeV are relative to self-consistent results with n
spin-orbit coupling. The first three columns of numbers are computed including spin-other-orbit cou
and the last three columns are computed without it.

No spin-other-orbit coupling
DEft DEvar DEsc DEft DEvar DEsc

Fe ~001! 25511.65 25511.79 26010.50 25466.72 25466.92 25963.11
~111! 25511.17 25511.36 26009.91 25466.29 25466.54 25962.57
Diff. 20.47 20.43 20.59 20.43 20.38 20.53

Co ~0001! 27066.75 27067.14 27809.75 26997.60 26998.07 27734.88

(101̄0) 27070.80 27071.31 27807.67 27004.54 27005.13 27736.04

Diff. 4.05 4.17 22.07 6.93 7.06 1.16
Ni ~001! 28055.63 28056.19 28975.27 28034.93 28035.58 28952.55

~111! 28055.10 28055.65 28974.66 28034.41 28035.05 28951.95
Diff. 20.54 20.54 20.61 20.53 20.53 20.60
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The second method extends the first approach by com
ing the total energy variationally using the same input pot
tial as above. In this approach, both terms in Eq.~23! play a
role in addition to the terms that contribute in the previo
approximation. The anisotropy is given by the difference
the variational total energies. This approach requires sto
not only the eigenvalues, but also the eigenvectors so tha
densities can be computed once the Fermi level is de
mined.

Finally the third approach is to compute the energy fu
self-consistently with the spin-orbit coupling included.
this case, the second and third terms in Eq.~25! play a role
on the same footing as the other terms.

IV. RESULTS

Table I summarizes the results of a series of MAE cal
lations both with and without spin-other-orbit coupling. W
see immediately that the differences between the force th
rem calculations and the variational calculations are q
small. This is so because the initial calculation was done
high degree of self-consistency. The energy difference
creases by about 10% in magnitude when going to the f
self-consistent calculations.

Comparing the first three columns of Table I~spin-other-
orbit present! with the last three columns of Table I~spin-
other-orbit absent! shows that spin-other-orbit couplin
makes at most a 10% change in the computed MAE rela
to the experimental value. Indeed, the energy barely chan
at all if we neglect the spin-same-orbit coupling and ret
only the spin-other-orbit coupling. This is so because
~spin-other-orbit! m•B interaction in Eq.~3! is truly tiny un-
less the~spin-same-orbit! p•E coupling in Eq.~3! is also
present to generate a non-negligible orbital current~and
hence a non-negligible magnetic field! from the spin-
polarized electron population. Unfortunately, the effect is
large enough to resolve the disagreement between calc
tion and experiment.

Our final results for the MAE are plotted as solid dots
10443
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Fig. 1. Because the spin-other-orbit effect is small, they
in the same range as previous LSDA results,8–13 displayed in
Fig. 1. Thus, the anisotropy for Fe has the same sign as
experimental results but is a factor of 2 too small. The MA
for Ni has the wrong sign and is about an order of magnitu
too small. The Co prediction also agrees poorly with expe
ment. This is surprising because, according to conventio
wisdom, the~relatively! large uniaxial anisotropy of this sys
tem should be more accurately computed with the LS
than the smaller cubic anisotropies.

Evidently, it is important to establish that our calculatio
are numerically converged. Earlier calculations,8 based on
the linearized-muffin-tin-orbital~LMTO! method, showed
that the MAE for Co changed sign when the angular mom
tum cutoff for the wave functions increased froml 52 to l
53. Thus, it hasnot been established that LMTO calcula
tions with even anl 53 angular momentum cut-off are nu
merically converged for this problem. We did not find su
sensitivity in our LAPW calculations. These used angu
momentum cutoffs ofl 56 for the wave functions, charge
and potential in the atomic spheres and plane-wave cutoff
15 a0

22 for the wave functions and 60a0
22 for the charge

and potential in the interstitial region. While the total ener
changes by much more than 1026 eV when any of these
parameters is varied around these values, the differenc
energy between two different spin directions does not.

It is well known that the MAE is very sensitive to th
convergence of integrations over the Brillouin zone in rec
rocal space. We use the specialk-points method31 where the
integration is replaced by a sum over values on a discrete
of points in reciprocal space. These points are chosen
maintain the symmetry of the system by creating a set
points inside the Brillouin zone based on arbitrary sums
primitive reciprocal-lattice vectors that have been sca
down by some integer factor. For high-symmetry crys
structures like fcc and bcc, this scaling must be done with
same factor for each primitive reciprocal-lattice vector
maintain the symmetry. For structures with lower symme
like hcp, the scaling can be chosen differently for the out
0-5
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plane direction than the in-plane directions in order to cre
a more-uniform sampling.

The specialk-points method is poorly behaved for meta
lic systems unless it is augmented by some sort of smea
out of the Fermi level. For our work, we used a therm
broadening scheme where the occupancy of a state is g
by the Fermi function with some fictitious temperature32

Figure 2 illustrates our convergence tests for bothk-point
sampling and Fermi-surface smearing. The calculated M
is plotted as a function of Fermi-surface smearing for a se
of k-point samples. The differentk-point samples are labele
by the inverse of the scaling factor for each of the primiti
reciprocal-lattice vectors. For example, the curves for labe
320 for Fe and Ni use uniform meshes of 323

532 768 000 points in the full Brillouin zone. Symmetry r
duces the number of these points that are independent.
spins pointed in the~111! direction, the irreducible wedge o
the Brillouin zone is 12 times smaller than the full zone
that only 2 756 481 independent points were computed.
the scaling factor decreases by a factor of 2, the numbe
points in the full Brillouin zone decreases by a factor of

FIG. 2. Magnetocrystalline anisotropy for Fe, Ni, and hcp C
The bottom, middle, and top panels, respectively, show the dif
ence in energy between the~111! and ~001! directions for Fe and

Ni, and the~0001! and the (011̄0) directions for Co. The curves
give the calculated results as a function of the Fermi broaden
parameter used in thek-space integration for different samplings
k space. An inset to each panel gives the number of divisions a
each reciprocal lattice vector as described in the text. All res
were computed from differences in the eigenvalue sums. The
rows close to the left axes indicate the zero-temperature experim
tal results.
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For Co, which is hcp, the scaling in the plane and out of
plane are independent. The first number associated with e
curve is the scaling factor for the two in-plane primitiv
reciprocal-lattice vectors, and the second number is the s
ing factor out of the plane. These pairs of numbers g
k-point samples that are as close to uniform as possible.

In the calculations presented in Table I and those d
cussed below we use the 80380380 k-point sample for Fe
and Ni and the 38338320 k-point sample for Co. These
samples are not converged for Fermi-surface smear
smaller than about 30 meV, which is the value we use for
calculations presented in Table I. These convergence t
suggest that the temperature dependence is not importan
low this point. We would like to stress that in calculations
which the electronic structure is modified, convergence te
need to be redone.

Finally, Fig. 3 summarizes the effect of Fermi level broa
ening for various MAE calculations for cobalt. The top pan
compares force theorem, variational, and self-consistent
culations. Similar calculations for Fe and Ni showed no d
ference between the three. The bottom panel shows the
ference when the Hartree central potential in Eq.~1! does
and does not include~as anad hoc procedure! the LSDA
exchange-correlation potential.

We conclude that the spin-other-orbit interaction make
discernible, but not overwhelming contribution to the anis
ropy. In particular, it is not enough to bring the LSDA-bas
calculations in agreement with experiment. In similar calc
lations for Fe and Ni, neither the exchange-correlation pot
tial nor the spin-other-orbit coupling changed the calcula
results beyond numerical precision.

.
r-

g

g
ts
r-
n-

FIG. 3. Magnetocrystalline anisotropy for hcp Co. In both pa
els, the solid curve is the~38,22! curve from Fig. 2. The top pane
compares calculations done comparing the force theorem~solid!,
the variational total energy~dotted!, and the fully self-consisten
total energy~symbols!. The bottom panel compares calculatio
with ~solid! and without~dotted and dashed! the contribution from
spin-other-orbit coupling. The dashed curve includes thead hoc
contribution from the exchange-correlation potential as is typica
used.
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V. CONCLUSION

In this work, we investigated the possibility that the he
tofore neglectedspin-other-orbit interactionmight be re-
sponsible for the disagreement between the measured
netocrystalline anisotropy energy of the 3d transition metals
and previous theory. To this end, we incorporated the s
other-orbit energy~in the Hartree approximation! into first-
principles, LSDA calculations of the anisotropy energy f
bcc Fe, fcc Ni, and hcp Co using the LAPW method. Taki
care to ensure numerical convergence and accuracy with
spect to Brillouin zone integrations, we found the effect
spin-other-orbit coupling to be far too small to bring prev
ous LSDA theory and experiment in accord. The case of
was particularly disappointing because the anisotropy ene
in this uniaxial system is ten times larger than the MAE
Fe and Ni. No significant difference was found if the calc
lation was performed using the force theorem, variationa
or self-consistently.

It seems unlikely to us that the various technical appro
mations common to this sort of total-energy calculati
-
,

e

.
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r
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y

e
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M
H.
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~frozen-core, spherical potentials in the atomic sphere,
glect of spin-orbit effects in the interstitial volume, scala
relativistic plus spin-orbit central potential! are to blame for
the disagreement between theory and experiment.
present work rules out the simplest sort of many-body effe
Earlier studies have implicated the approximate treatmen
both exchange16 and correlation18 built into the LSDA
exchange-correlation potential. We conclude that the is
remains unresolved and probably must await the deve
ment of a practical and justifiable extension of the local-sp
density approximation that can treat the angular momen
effects known to be important in atoms. Possibilities inclu
current-density functional schemes, exact-exchange
proaches, and generalizations of the orbital polarization
proach.
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