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Nature of the spin-glass state in the three-dimensional gauge glass
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~Received 3 May 2001; published 23 August 2001!

We present results from simulations of the gauge-glass model in three dimensions using the parallel tem-
pering Monte Carlo technique. Critical fluctuations should not affect the data since we equilibrate down to low
temperatures, for moderate sizes. Our results are qualitatively consistent with earlier work on the three- and
four-dimensional Edwards-Anderson Ising spin glass. We find that large-scale excitations cost only a finite
amount of energy in the thermodynamic limit and that those excitations have a surface whose fractal dimension
is less than the space dimension, consistent with a scenario proposed by Krzakala and Martin, and Palassini and
Young.
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I. INTRODUCTION

The ground-state structure of spin glasses is poorly un
stood. While there has been considerable work on Ising-t
spin-glass systems,1–4 models with a vector order paramet
symmetry have not yet been analyzed in much detail. H
we study the three-dimensional gauge glass since it
simple model with a vector order parameter in which
finite-temperature spin-glass transition5 has been well estab
lished.

There are two theories describing the spin-glass phase
‘‘droplet picture’’ ~DP! by Fisher and Huse6 and the replica
symmetry breaking~RSB! picture by Parisi.7,8 According to
the droplet picture, a cluster of spins of sizeL costs an en-
ergy proportional toLu whereu is positive. This implies that
in the thermodynamic limit, excitations which flip a finit
cluster of spins cost an infinite energy. In addition, the
excitations have a fractal surface with a fractal dimensionds
that is smaller than the space dimensiond. By contrast, RSB
follows the exact solution of the Sherrington-Kirkpatric
model in predicting that there are excitations which turn o
a finite fraction of the spins and which cost a finite amount
energy in the thermodynamic limit. The surface of these
citations is space filling,3 i.e. ds5d. Another difference be-
tween these models can be quantified by looking at the
tribution of the order parameter3,9–11 P(q). In the droplet
picture, according to the standard interpretation,12,13 P(q) is
trivial; i.e., there are only two peaks at6qEA in the thermo-
dynamic limit (qEA is the Edwards-Anderson order param
eter!. For finite systems of linear sizeL, there is a tail with
weight ;L2u down toq50. On the contrary, RSB predict
also a tail with a finite weight down toq50 independent of
system size.

Recently, there have been results by Krzakala a
Martin,1 as well as Palassini and Young2 ~referred to as
KMPY!, for Ising-type systems that find an intermediate p
ture: while large-scale excitations cost only a finite amo
of energy in the thermodynamic limit, their surface is frac
with ds,d. In this scenario, it is necessary to introduce tw
exponentsu andu8 to describe the system size dependen
of the excitation energy, whereLu is the typical energy of an
excitation of sizeL induced by a change in boundary cond
tions, andu8 describes the size dependence of the energ
0163-1829/2001/64~10!/104426~5!/$20.00 64 1044
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clusters thermally excited at fixed boundary conditions.
In this paper we test which of the above predictions ap

to the gauge glass by performing Monte Carlo simulatio
down to low temperatures for a modest range of sizes us
the parallel tempering Monte Carlo method,14,15 as previ-
ously done in Ref. 4 for the three- and four-dimension
Edwards-Anderson Ising spin glass. We find thatP(0) does
not decrease with increasing system size and, from data
ql , we deduce thatds,d, consistent with the existence o
KMPY excitations.

The layout of the paper is as follows: In Sec. II we d
scribe the model as well as the observables measured w
in Sec. III we discuss our equilibration tests for the para
tempering Monte Carlo method. Our results are discusse
Sec. IV. In Sec. V we summarize our conclusions and pres
some ideas for future work.

II. MODEL AND OBSERVABLES

The Hamiltonian of the gauge glass is given by

H52J(
^ i , j &

cos~f i2f j2Ai j !, ~1!

where the sum ranges over nearest neighbors on a sq
lattice in three dimensions of sizeN5L3L3L andf i rep-
resent the angles of theXY spins. Periodic boundary cond
tions are applied.J is a positive ferromagnetic coupling be
tween nearest-neighbor spins andAi j represents the line
integral of the vector potential directed from sitei to site j,

Ai j 5
2p

F0
E

r i

r j
A•dl, ~2!

andF05hc/(2e) is the flux quantum. TheAi j are quenched
random variables uniformly distributed between@0,2p#. In
this work we setJ51. Note that on average the gauge gla
is isotropic even though there are local quenched fluxes.

This model is often used to describe disordered highTc
superconductors16 in a magnetic field since, even though
lacks screening, it has the right order parameter symmet

The order parameter of the gauge glass is tradition
defined as
©2001 The American Physical Society26-1
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Q5
1

N (
i 51

N

@^eif i&8^e2 if i&8#av, ~3!

where we indicate thermal averages by angular brac
^•••& and averages of over the disorder by rectangu
brackets@•••#av. If we average over all possible global rot
tions of the spins, then the thermal averages in Eq.~3! van-
ish, so we need to work in an ensemble where global ro
tions of are not permitted~e.g., by applying a smal
symmetry breaking field along thef50 direction! for Eq. ~3!
to be sensible. This is indicated by the prime on the ther
average. In the simulation we evaluate the product of the
thermal averages by simulating two copies~replicas! of the
system with the same quenched disorder, and so Eq.~3! be-
comes

Q5@^q&8#av ~4!

where the microscopic spin overlapq is defined by

q5
1

N (
j 51

N

exp@ i ~f i
a2f i

b!#av, ~5!

wherea andb refer to the two replicas. In the constraine
ensemble, if we writeq([qx1 iqy) in terms of its real and
imaginary parts, then̂qy&850 and^q&85^qx&8.

In practice it is inconvenient to constrain the ensemble
applying a symmetry breaking field, so instead we perform
rotation of one replica relative to the other in order to ma
mizeqx ~and simultaneously setqy to zero!. It is easy to see
that qx in the rotated frame is justuqu ~which is invariant
under rotations!. We therefore take the spin order parame
to be uqu and its expectation value to be

Q5@^uqu&#av ~6!

~no prime now indicating an unconstrained thermal avera!,
which is to be compared with Eq.~4!. In the unconstrained
ensemble, the probability to get particular values forqx ,qy
only depends onuqu.

In addition, we will also study the link overlapql , defined
by

ql5
1

Nb
(
^ i , j &

cos@~f i
a2f i

b!2~f j
a2f j

b!#, ~7!

whereNb5Nd is the number of bonds (d53 is the space
dimension!. The sum ranges over all nearest-neighbor pa
of spins. Note that while a change inq induced by flipping a
cluster of spins is proportional to thevolumeof the cluster,
ql changes by an amount promotional to thesurfaceof the
cluster.

The weight inP(uqu) for small uqu varies asL2u8, where
u8 was introduced in Sec. I. In addition we expect the va
ance of the link overlap to fit to a form Var(ql);L2m l

where, as shown in Ref. 4,m l5u812(d2ds).

III. EQUILIBRATION

For the simulations we use the parallel tempering Mo
Carlo method14,15 as it allows us to study larger systems
10442
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lower temperatures. In this technique, one simulates sev
identical replicas of the system at different temperatures,
in addition to the usual local moves, one performs glo
moves in which the temperatures of two replicas~with adja-

FIG. 1. Moments of the overlap and link overlap, defined
Eqs.~5! and~7!, respectively, as a function of Monte Carlo sweep
Nsweep, that each of the replicas perform, averaged over the last
of the sweeps. Note that the moments seem to equilibrate rough
the same time and appear to be independent of the numbe
sweeps. The data shown are forL54 and T50.050, the lowest
temperature studied.

FIG. 2. Two-dimensional density plots ofPxy(qx ,qy) vs qx , qy

for L54. The horizontal~vertical! axis representsqx (qy). Dark
regions correspond to a region of high probability. Note that
different temperatures ranging from below to aboveTc the distribu-
tions are symmetric aroundq50 ~clockwise from top left: T
50.050, 0.166, 0.520, and 0.947!.
6-2
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cent temperatures! are exchanged. This method does not
low us to use the equilibration test first introduced by Bh
and Young17 because the system temperature does not
constant throughout the simulation. The equilibration test
short-range spin glasses simulated with parallel tempe
Monte Carlo introduced in Ref. 4 by Katzgraberet al. does
not work here either because the disorder is not Gaussian
ensure that the system is equilibrated, we therefore req
that different moments ofq and ql be independent of the
number of Monte Carlo steps,Nsweep. Figure 1 shows data
for several moments ofq andql as a function of Monte Carlo
steps. One can clearly see that the different moments sat
at the sameequilibration time. Here we show data for a
intermediate size (L54) since we can better illustrate th
procedure by calculating longer equilibration times. We a
require the acceptance ratios of the moves which intercha
temperatures to be at least 0.3 or higher and roughly cons
as a function of temperature.

TABLE I. Parameters of the simulations.Nsampis the number of
samples, i.e., sets of gauge fields,Nsweep is the total number of
sweeps simulated for each of the 2NT replicas for a single sample
andNT is the number of temperatures used in the parallel tempe
method.

L Nsamp Nsweep NT

3 1.03104 6.03103 53
4 1.03104 2.03104 53
5 1.03104 6.03104 53
6 5.03103 2.03105 53
8 2.03103 1.23106 53

FIG. 3. Data for the overlap distributionP(uqu) at temperature
T50.050 for different system sizes. Note the logarithmic verti
scale. In this and other similar figures in the paper, we only disp
a subset of all the data points while the lines connect all the d
points in the set. Thus, the wiggles in the lines between neighbo
symbols are meaningful.
10442
-
t
ay
r
g

To
ire

ate

o
ge
nt

As another test for equilibration, we require the distrib
tion of qx ,qy , which we callPxy(qx ,qy), to be symmetric
about the origin. Figure 2 shows a density plot ofPxy(qx ,qy)
for L54 at different temperatures. We see clearly that
distributions do not depend on the angle from the origin,
required.

In Table I, we showNsamp ~number of samples!, Nsweep
~total number of sweeps performed by each set of spins!, and
NT ~number of temperature values!, used in the simulations
For each size, the largest temperature is 0.947 and the lo
temperature is 0.050. This is to be compared with5,18 Tc
'0.45. The set of temperatures is determined by requir
that the acceptance ratios for moves which exchange t
peratures be satisfactory for the largest size,L58, and for

g

l
y
ta
g

FIG. 4. Same as Fig. 3 but at temperatureT50.199.

FIG. 5. The distribution of the link overlap atT50.050 for
different sizes. Note the logarithmic vertical scale.
6-3
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simplicity the same temperatures also are used for
smaller sizes. We also want the distribution ofq at the high-
est temperature to show a Gaussian shape centered atq50
to ensure that all free-energy barriers have vanished so
system will randomize quickly. The lower-right image fo
T50.947@Tc in Fig. 2 shows this is the case. For all syste
sizes, the acceptance ratios for global moves are alw
greater than 0.3 for each pair of temperatures.

Since the gauge glass has a vector order parameter
metry, to speed up the simulation we discretize the angle
the spins toNf5512. This number is large enough to avo
any crossover effects to other models as discussed
Cieplak et al.19 To ensure a reasonable acceptance ratio
single-spin Monte Carlo moves, we pick the proposed n
angle for a spin within an acceptance window about the c
rent angle, where the size of the window is proportional
the temperatureT. By tuning a numerical prefactor we ensu
that the acceptance ratios for these local moves are
smaller than 0.2 for each system size at the lowest temp
ture simulated.

IV. RESULTS

Figures 3 and 4 show data forP(uqu) at T50.050 and
0.199, well below5 Tc'0.45. There is a clear peak for larg
uqu as well as a tail at smalluqu. The weight in the tail does
not decrease with increasingL, as would be expected in th
standard interpretations of the droplet theory. If anything,
weight actually increases somewhat for larger sizes.

Note thatP(uqu) decreases to zero, linearly, at very sm
uqu. This is clearly a phase space factor, since the the t
dimensional probability distributionPxy(qx ,qy), plotted in
Fig. 2, will not diverge for a finite system, andP(uqu)
52puquPxy(qx ,qy). In order to haveP(uqu) tend to a con-
stant foruqu→0, a prediction of RSB, the region ofuqu over
which P(uqu) drops linearly must tend to zero forL→`, and
alsoPxy(qx ,qy) must diverge as 1/uqu in this limit. There is

FIG. 6. Same as Fig. 5 but at temperatureT50.199.
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some evidence, particularly from Fig. 3, thatP(uqu) stays flat
down to smalleruqu for largerL, though the range of sizes i
too small to make a reliable extrapolation.

Figures 5 and 6 show data forP(ql). As with the distri-
butions ofuqu, there is a pronounced peak at largeql values.
The width of the distribution decreases with increasing s
tem size.

The variance ofP(ql) is shown in Fig. 7 for several low
temperatures. The data are consistent with a power law
crease where the~presumably effective! exponent varies
slightly with T. Extrapolating toT50 gives m l[u812(d
2ds)50.50160.04. Assumingu8'0 we find

d2ds50.2560.02, ~8!

implying that system-size excitations have a fractal surf
in the thermodynamic limit as predicted by the drop
picture.

V. CONCLUSIONS

To conclude, Monte Carlo simulations of the thre
dimensional gauge glass at low temperatures show that
structure of the spin-glass state in this particular mo
agrees qualitatively with previous results for Ising sp
glasses4 and is in agreement with the KMPY picture. Fro
the nontrivial form ofP(q) for a modest range of sizes w
infer that system-size excitations cost a finite amount of
ergy in the thermodynamic limit. From the variance of t
link overlap it appears that the surface of these excitation
fractal withd2ds50.2560.02. Work is in progress on othe
vector spin-glass models to see if they have the same fea
found here and for the Ising spin glass.

These results, however, involve a large extrapolation
the thermodynamic limit. There may exist a crossover len
at larger sizes to a different behavior such as the dro
theory or an RSB picture.

FIG. 7. Log-log plot of the variance ofql as a function of
system sizeL at several temperatures.
6-4
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