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Nature of the spin-glass state in the three-dimensional gauge glass

Helmut G. Katzgraber and A. P. Young
Department of Physics, University of California, Santa Cruz, California 95064
(Received 3 May 2001; published 23 August 2p01

We present results from simulations of the gauge-glass model in three dimensions using the parallel tem-
pering Monte Carlo technique. Critical fluctuations should not affect the data since we equilibrate down to low
temperatures, for moderate sizes. Our results are qualitatively consistent with earlier work on the three- and
four-dimensional Edwards-Anderson Ising spin glass. We find that large-scale excitations cost only a finite
amount of energy in the thermodynamic limit and that those excitations have a surface whose fractal dimension
is less than the space dimension, consistent with a scenario proposed by Krzakala and Martin, and Palassini and
Young.
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[. INTRODUCTION clusters thermally excited at fixed boundary conditions.
In this paper we test which of the above predictions apply

The ground-state structure of spin glasses is poorly undeto the gauge glass by performing Monte Carlo simulations
stood. While there has been considerable work on Ising-typdown to low temperatures for a modest range of sizes using
spin-glass systems* models with a vector order parameter the parallel tempering Monte Carlo methtid?® as previ-
symmetry have not yet been analyzed in much detail. Hereusly done in Ref. 4 for the three- and four-dimensional
we study the three-dimensional gauge glass since it is &dwards-Anderson Ising spin glass. We find tR40) does
simple model with a vector order parameter in which anot decrease with increasing system size and, from data for
finite-temperature spin-glass transifidms been well estab- ¢;, we deduce thatl;<d, consistent with the existence of
lished. KMPY excitations.

There are two theories describing the spin-glass phase: the The layout of the paper is as follows: In Sec. Il we de-
“droplet picture” (DP) by Fisher and Hu$eand the replica scribe the model as well as the observables measured while
symmetry breakingRSB) picture by Parisi:® According to  in Sec. Il we discuss our equilibration tests for the parallel
the droplet picture, a cluster of spins of sizecosts an en- tempering Monte Carlo method. Our results are discussed in
ergy proportional td.? whereé is positive. This implies that, Sec. IV. In Sec. V we summarize our conclusions and present
in the thermodynamic limit, excitations which flip a finite some ideas for future work.
cluster of spins cost an infinite energy. In addition, these
excitations have a fractal surface with a fractal dimensign Il. MODEL AND OBSERVABLES
that is smaller than the space dimensibBy contrast, RSB
follows the exact solution of the Sherrington-Kirkpatrick ~ The Hamiltonian of the gauge glass is given by
model in predicting that there are excitations which turn over
a finite fraction of the spins and which cost a finite amount of
energy in the thermodynamic limit. The surface of these ex-
citations is space filling,i.e. ds=d. Another difference be-
tween these models can be quantified by looking at the diswhere the sum ranges over nearest neighbors on a square
tribution of the order parametet ! P(q). In the droplet lattice in three dimensions of siaé=L XL XL and ¢; rep-
picture, according to the standard interpretafiot’P(q) is  resent the angles of theY spins. Periodic boundary condi-
trivial; i.e., there are only two peaks atqg, in the thermo-  tions are applied] is a positive ferromagnetic coupling be-
dynamic limit (Qga is the Edwards-Anderson order param- tween nearest-neighbor spins aAg represents the line
etep. For finite systems of linear size there is a tail with ~ integral of the vector potential directed from sitéo sitej,
weight ~L ~? down toq=0. On the contrary, RSB predicts
also a tail with a finite weight down tq=0 independent of A :2_77 rJA. dl @)
system size. g )y, '

Recently, there have been results by Krzakala and
Martin! as well as Palassini and Youngreferred to as and®,=hc/(2e) is the flux quantum. Thé,; are quenched
KMPY), for Ising-type systems that find an intermediate pic-random variables uniformly distributed betwegh27]. In
ture: while large-scale excitations cost only a finite amounthis work we setl=1. Note that on average the gauge glass
of energy in the thermodynamic limit, their surface is fractalis isotropic even though there are local quenched fluxes.
with ds<<d. In this scenario, it is necessary to introduce two This model is often used to describe disordered High-
exponentsd and 6’ to describe the system size dependencesuperconductot§ in a magnetic field since, even though it
of the excitation energy, whete’ is the typical energy of an lacks screening, it has the right order parameter symmetry.
excitation of sizel induced by a change in boundary condi- The order parameter of the gauge glass is traditionally
tions, andf’ describes the size dependence of the energy adefined as

H=-32, cotdi == Ay), ®
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where we indicate thermal averages by angular bracket: B
(---) and averages of over the disorder by rectangular
brackety - - - ], If we average over all possible global rota-

tions of the spins, then the thermal averages in(Bpvan- 0.9
ish, so we need to work in an ensemble where global rota-
tions of are not permittede.g., by applying a small
symmetry breaking field along the=0 direction for Eq. (3)

[{a)]

to be sensible. This is indicated by the prime on the thermal a [(q2>]

average. In the simulation we evaluate the product of the twc N [< 4>]
thermal averages by simulating two copigsplicag of the 8 - q ]

system with the same quenched disorder, and sd3de- " [(ql)]
comes i g o }

[(ql )]

Q:[<q>,]av (4) X [<q;1'>]
where the microscopic spin overlapis defined by 0.7 Lol Lol L i

1 N 10° 103 104 10°
— i a B
4= 2 exHi(¢]~ bf)]a (5)
=1 sweep

wherea and 3 refer to the two replicas. In the constrained  FIG. 1. Moments of the overlap and link overlap, defined by
ensemble, if we writeg(=q,+iq,) in terms of its real and Egs.(5) and(7), respectively, as a function of Monte Carlo sweeps,
imaginary parts, theq,)’ =0 and(q)’=(qy)". Nsweep that each of the replicas perform, averaged over the last half
In practice it is inconvenient to constrain the ensemble byof the sweeps. Note that the moments seem to equilibrate roughly at
applying a symmetry breaking field, so instead we perform dhe same time and appear to be independent of the number of
rotation of one replica relative to the other in order to maxi-sweeps. The data shown are for-4 and T=0.050, the lowest
mize g, (and simultaneously sef, to zerg. It is easy to see temperature studied.
that g, in the rotated frame is jusig| (which is invariant

under rotations We therefore take the spin order parameterower temperatures. In this technique, one simulates several

to be[q| and its expectation value to be identical replicas of the system at different temperatures, and
_ in addition to the usual local moves, one performs global
Q=[(lal)]av ©) moves in which the temperatures of two repli¢asth adja-

(no prime now indicating an unconstrained thermal average
which is to be compared with E@4). In the unconstrained
ensemble, the probability to get particular values dgrq,
only depends onq|.

In addition, we will also study the link overlap , defined
by

1
A= & cod(¢ =) (of=¢)l. (D
b (i.]) —

whereN,=Nd is the number of bondsd=3 is the space

dimension. The sum ranges over all nearest-neighbor pairs

of spins. Note that while a change dninduced by flipping a

cluster of spins is proportional to thelumeof the cluster,

g, changes by an amount promotional to thefaceof the .
cluster.

The weight inP(|q|) for small|q| varies as. =%, where
0’ was introduced in Sec. |. In addition we expect the vari-
ance of the link overlap to fit to a form Vay()~L™#

where, as shown in Ref. 4,,=6'+2(d—d,). FIG. 2. Two-dimensional density plots &,(qy,dy) VSay, dy
for L=4. The horizontal(vertica) axis represents|, (q,). Dark
lll. EQUILIBRATION regions correspond to a region of high probability. Note that for

different temperatures ranging from below to abdyehe distribu-
For the simulations we use the parallel tempering Montaions are symmetric around=0 (clockwise from top left: T
Carlo method**° as it allows us to study larger systems at =0.050, 0.166, 0.520, and 0.947
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FIG. 3. Data for the overlap distributioR(|q|) at temperature FIG. 4. Same as Fig. 3 but at temperattire 0.199.

T=0.050 for different system sizes. Note the logarithmic vertical

scale. In this and other similar figures in the paper, we only display ~ As another test for equilibration, we require the distribu-
a subset of all the data points while the lines connect all the datgion of g, .0y, Which we callP,(qy,q,), to be symmetric
points in the set. Tr_]us, the wiggles in the lines between neighboring oyt the origin. Figure 2 shows a density ploPgf(dy,dy)
symbols are meaningful. for L=4 at different temperatures. We see clearly that the
distributions do not depend on the angle from the origin, as
required.

In Table I, we showNg,m, (number of samples Ngyeep

cent temperatur¢sare exchanged. This method does not al-
low us to use the equilibration test first introduced by Bhatt

and Yound’ because the system temperature dogs not Sta@(otal number of sweeps performed by each set of 3pérsl
constant throughout the simulation. The equilibration test forl\IT (number of temperature valyesised in the simulations.

short-range spin glasses simulated with parallel tempering, e4ch size, the largest temperature is 0.947 and the lowest
Monte Carlo introduced in Ref. 4 by Katzgrabetral. does temperature is 0.050. This is to be compared SWEHT
not work here either because the disorder is not Gaussian. 105 45 The set of temperatures is determined by reqcuiring

ehnsu(:l(_aﬁthat the system is eql:j'“br%ted.’ (\j/ve th((ajreforef r?]qwrﬁ]at the acceptance ratios for moves which exchange tem-
that different moments off and q; be Incepen ent of the peratures be satisfactory for the largest size;8, and for
number of Monte Carlo step®gyeep Figure 1 shows data

for several moments af andq, as a function of Monte Carlo
steps. One can clearly see that the different moments satura
at the sameequilibration time. Here we show data for an
intermediate sizel(=4) since we can better illustrate the
procedure by calculating longer equilibration times. We also 10
require the acceptance ratios of the moves which interchang
temperatures to be at least 0.3 or higher and roughly constar
as a function of temperature.

1072 ' I =

P(ql)

TABLE I. Parameters of the simulation¥,,,is the number of
samples, i.e., sets of gauge fielddy, e is the total number of
sweeps simulated for each of thé&l2replicas for a single sample, 0.1
andN+ is the number of temperatures used in the parallel tempering
method.

L Nsamp Nsweep NT OO 1 E-

3 1.0x10* 6.0x 10° 53 =

4 1.0x10¢ 2.0x 10 53 0

5 1.0x 10* 6.0x 10* 53

6 5.0x 10° 2.0x10° 53

8 2.0x 10° 1.2x10° 53 FIG. 5. The distribution of the link overlap &t=0.050 for

different sizes. Note the logarithmic vertical scale.
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FIG. 7. Log-log plot of the variance of, as a function of

FIG. 6. Same as Fig. 5 but at temperattire 0.199. :
system size. at several temperatures.

simplicity the same temperatures also are used for th

sl Size. We 0 wan 1 GSTBUIONEAL 16 - o o Sl or gL hough e rane o e s
P . P : too small to make a reliable extrapolation.
to ensure that all free-energy barriers have vanished so the _. , I
. ; . . . Figures 5 and 6 show data f&{(q,). As with the distri-
system will randomize quickly. The lower-right image for . ;
butions of|q|, there is a pronounced peak at lagyevalues.

T.: 0.942T; in Fig. 2 shovys this is the case. For all SyStemThe width of the distribution decreases with increasing sys-
sizes, the acceptance ratios for global moves are alway[%m size

greater than 0.3 for each pair of temperaiures. The variance oP(q,) is shown in Fig. 7 for several low
Since the gauge glass has a vector order parameter symy;

; : . . ]emperatures. The data are consistent with a power law de-
metry, to speed up the simulation we discretize the angles A case where thepresumably effectie exponent varies
the spins ta\ ,=512. This number is large enough to avoid P y P

. slightly with T. Extrapolating toT=0 gives u;=6"+2(d
any crossover effects to other models as discussed by )=0.501+0.04. Assumingg’ ~0 we find

Cieplaket al’® To ensure a reasonable acceptance ratio for
single-spin Monte Carlo moves, we pick the proposed new
angle for a spin within an acceptance window about the cur-

rent angle, where the size of the window is proportional tojmplying that system-size excitations have a fractal surface

the temperaturé&. By tunin_ganumerical prefactor we ensure jn the thermodynamic limit as predicted by the droplet
that the acceptance ratios for these local moves are Ngjicture.

smaller than 0.2 for each system size at the lowest tempera-
ture simulated.

Some evidence, particularly from Fig. 3, tt|q|) stays flat

d—d,=0.25+-0.02, (8)

V. CONCLUSIONS

IV. RESULTS To conclude, Monte Carlo simulations of the three-
dimensional gauge glass at low temperatures show that the
Figures 3 and 4 show data fét(|q|) at T=0.050 and structure of the spin-glass state in this particular model
0.199, well below T.~0.45. There is a clear peak for large agrees qualitatively with previous results for Ising spin
lq| as well as a tail at smalb|. The weight in the tail does glasse$and is in agreement with the KMPY picture. From
not decrease with increasirig as would be expected in the the nontrivial form ofP(q) for a modest range of sizes we
standard interpretations of the droplet theory. If anything, thenfer that system-size excitations cost a finite amount of en-
weight actually increases somewhat for larger sizes. ergy in the thermodynamic limit. From the variance of the
Note thatP(|q|) decreases to zero, linearly, at very smalllink overlap it appears that the surface of these excitations is
|q|. This is clearly a phase space factor, since the the twofractal withd— ds=0.25+0.02. Work is in progress on other
dimensional probability distributiorP,,(q,,qy), plotted in  vector spin-glass models to see if they have the same features
Fig. 2, will not diverge for a finite system, anB(|q|) found here and for the Ising spin glass.
=2|q|Pyy(dx.qy). In order to haveP(|q|) tend to a con- These results, however, involve a large extrapolation to
stant for|qTa0, a prediction of RSB, the region ¢di| over  the thermodynamic limit. There may exist a crossover length
which P(|g|) drops linearly must tend to zero far—«, and  at larger sizes to a different behavior such as the droplet
alsoPyy(dy,qy) must diverge as id| in this limit. There is  theory or an RSB picture.
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