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Dynamical properties of a gas of solitons in one-dimensional quantum antiferromagnets
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The influence of the soliton-magnon coupling on the dynamical properties of quantum antiferromagnets is
studied as a function of the external magnetic field and the temperature. The specific case of tetramethyl
ammonium manganese chloride is analyzed above and below the transition temperature. The existence of a
dissipative regime for the soliton motion is conjectured and its influence on the dynamical structure factor—
which might be experimentally detected—is reported.
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[. INTRODUCTION Several theoretical works have been devoted to studying
the soliton stochastic motion and its influence on the proper-
In the past few decades it has become well establisheties of the systems in different nonlinear theories. For in-
that the physical properties of some magnetic materialsstance, based on the fact that an incoming phdttomlinear
TMMC (tetramethyl ammonium manganese chloyide modes of the theodyproduces only a shift in the soliton
CsNiF; (caesium nickel fluride and CuC} 2NGCsHs position without changing its momentum, Wada and Schrief-
(dicloro-bis-piridine copper )| for instance, have essentially fer estimated the diffusion constant of an isolated domain
one-dimensional character above their transition temperawall interacting with a phonon thermal bathn the same
ture. In those kind of materials the distance between magspirit, Theodorakopoulos studied the kink-phonon interaction
netic ions along a given directiocmagnetic chain direction  within the framework of perturbation theory and described
is shorter than in the other directions. In such an arrangemeite dynamics of a noninteracting kink gas as it would be seen
the intrachain coupling constant is typically more than twoj, 4 light-scattering experimeftpn the other hand, a sto-
orders of magnitude stronger than the interchain couplingpasiic equation of motion for the sine-Gordon soliton in a
constant. Therefore, the system can be considered as a setf¢ ¢ magnons and the effects of the solitonic sector on the
weakly interacting magnetic chains. Due to the relative sim—Spin correlation function were presented by Federthe

glr'](g%irc:er?:i?rgag[))sgl'tsct)g:ﬁSorthsec;“etarﬁgﬁ\éiesﬁliﬁf:;O'Ralabove—mentioned works, the motion of the soliton is assumed
y ' ©d to be purely diffusive, which is in contradiction with the
magnets turn out to be the paradigm for the study of the

influence of the nonlinear modésolitons on the dynamical experimental results reported in Ref. 7 in which the damping
properties of such systems at finite temperatures. AIthougRrOCeSS also 'plays an |mp0rtant' rolg. : .
all real magnetic materials investigated are not perfectly one 1he damping of the magnetization carried by a soliton
dimensional, the assumption of the 1D behavior is shown t§/aS studied by Sassaki and Maki for antﬁerromggﬁdts.
be in good agreement with the experimental resisé® Ref. this case, the soliton-soliton collisions are responsible for the
1 and the references thergin appearance of the damping. However, in this scenario, the
In magnetic materials solitons or solitary-waves can begffects of soliton-magnon collisions give no contribution to
regarded as “kinks” or “twists” in the spin space moving the damping mechanism. Therefore, it would be important to
with constant speed and carrying a constant topologicahvestigate the contribution of the soliton-“phonon” colli-
charge defined by the values of the spin variables at infinitysions in the damping process in a more general context and,
For low-enough temperatures, when the linear madps-  derive a Langevin equation of motion in the strict sense. In
waveg are not excited, the magnetic system can be represrder to do that, the soliton center of mass must be treated as
sented in first approximation by a gas of noninteracting soli-a true dynamical variable. This would give us information
tons. Using this idea, Mikeska calculated the solitonabout the random force acting on the soliton and could be
contribution to the dynamical structure factor of the classicalsed to derive the fluctuation-dissipation theorem.
one-dimensional magnets.From both works we learn that In studying the dissipative stochastic motion of a soliton
the assumption of ballistic motion for solitons is the origin of due to its collisions with the linear moddsM) of the theory,
the “central peak” behavior observed in neutron scatteringwe have found a mechanism in which the soliton and the LM
experiments. A different situation could be found from themomenta are coupled. Therefore, our first goal will be the
guantum field theory point of view when the temperature isderivation of a soliton-LM interacting Hamiltonian. In prac-
raised. In this case the spin-way®W) modes are excited, tice, the specific form of this interaction can be obtained via
therefore not all of the degrees of freedom of the systenthe collective coordinate methbahen the classical Hamil-
contribute to the soliton formation and a residual interactiorntonian is quantized. From the interacting Hamiltonian we can
(which couples the center of mass of the soliton to the spineompute the reduced density operator for the soliton center
wave modesshows up leading to a stochastic motion for theof mass from which an equation of motion naturally arises.
soliton. As it will be seen, the soliton-LM coupling results in a dis-
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sipative regime described by a Langevin equation of motiorset of noninteracting antiferromagnetic chains with an addi-

for the soliton. tional spontaneous magnetization in thelirection. Explic-
The formulation presented here is general enough to bily,

used in any nonlinear theory with solitonic solutitthand

therefore, can be applied to studying the specific case of the 22 ME oy

TMMC antiferromagnet. In this material the spin dynamics H_zi {3)SiSi+1+A(S) —gueBS —gueB (-1)'S},

is described by two different equations depending on the 3

temperature. For temperatures bel®yy, the spin dynamics

is governed by a double sine-Gord@sG equation and, for where

T>Ty, the spins evolve in time following a sine-Gordon ‘

(sG) equation. Due to collisions with the LM of the theory BMF =73, ((—1)'9)/gusg, (4)

the solitonic solutions of those equations have different mo- ] ] o

tional regimes, turning the TMMC into a suitable probe for @nd 7 accounts for the presence of neighboring chains in the

the investigation of the soliton dynamics. model. In the specific case of TMMG;=6. The intrachain
To begin with, in Sec. Il we review the models currently mean fieldB!'" is usually replaced by its saturation value

applied to the spin dynamics of the TMMC compound,Bf~22.3 Oe that results from the substitution3$¥) in Eq.

above and below its transition temperature, and also the cof4) by its maximum value.

responding classical field theories. Sections Il and IV are At this point, we can carry on with the classical descrip-

devoted to the derivation of the soliton-magnon interactingion of the spin dynamics. In order to do that it is convenient

Hamiltonian and to obtaining of the soliton reduced densityto change the spin variables to the following form

operator. In Sec. V the calculation of the damping and diffu-

sion constants for the TMMC is presented. Finally, Sec. VI is Seo=EsiN(O £ #)cog P * o),
devoted to the study of the influence of the soliton damped (5)
motion on the dynamical structure factor and, our conclu- sSin(@ = @)si®+¢), cogO=0)],

sions are presented in Sec. VII.
wheree ando stands for even and odd sites along a chain.
Il. THE MODEL FOR TMMC Using the representatiofb) a ®-dependent part of the

) ) ~ Hamiltonian (3) can be obtainedsee Ref. 11 for details
The antiferromagnet TMMC has extensively been studiedexplicitly,

from the theoretical and experimental points of view. The

Hamiltonian describing the interacting 3D array of classical 1
spins in this material can be written as H‘I’:gJHSZJ dz] = (@)% +(9,D)?
c
1
H=2 Hi=50 2 2SS, (1) 1 _
j i+ ] —szstCI)—ZbismCD , (6)
where
where
Hi=2 {38, S k1t AS 02— 0ueBS' . () -
R 5 2A gugB gusBY
I . . . c=4+5-, b="3=, b =—"7c— (7)
The HamiltonianH; describes the nearest-neighbor intrac- [ [ [

hain interaction between spins with an easy plane anisotrop . _ .
(A>0) placed in an external magnetic fie(8) in the x gnd the time and_ length scales a#S) ! and the lattice
direction. The spins will be treated as classical vectors OFOTtStsTc:,LJIrc?St?ee(;ttl:/eeslie d that the Hamiltonik@ is an ap
length S and the constant; andJ, , both positive, corre- . e -
spond to the antiferromagr”1etic and ferromagnetic exchang L%)grqﬁ;eife;?xgrﬁ; Or]:'-ztshuelt;e?:]-la-Mn'\élr? ;y:égrgn-gosrgﬁ r(;)r;ic
coupling constants, respectively. The second term on thener for iﬂstance uantum, effe?:ts and the out-of-blane
right-hand side(rhs) of Eq. (1) represents an interchain in- om g())/'nent of the m:;l qnetization must be taken into accpount
teraction between the spins, completing the description of th o g% on with the claisical description of tHedependent :
D spin arrangement. Finally, the following val f mate- . S . ;
ﬁa| Sgaraar‘n:te?: \,\ﬁ”tbe Ssﬁ’dtg”i 1%.2 K,gsil g/zs OA/ J”ate part o_f tthtzI (tm?zmgl Hamiltoniaril) the equation of motion
~0.01-0.02, J, /3;=15x10°5, andg=2.01. associated to Ed6),

In order to start the classical description of the spin dy-
namics it is convenient to look at two main different situa-
tions; namely, temperatures below and above the transition
temperature. For temperatures beldw the system de-
scribed by Eg.(1) displays long-range magnetic order. has to be solved. Although equati@8) is not completely
Therefore the staggered magnetization is not zero and thategrable it has solitonic solutions in the form ofr2
system can be described in the mean field approximation askinks(antikinks,'? explicitly

1 b?
—zﬂtt¢=0zz¢+§5in 20 +b, cosd (8
c
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Ja b
cosd=+2————sinhy, 9 -t —(z—z)b. +b%/4 11
1+C¥Sinhzy y ( ) o bl+b2/4, y ( 0) 1 ’ ( )
andz, is the position of the soliton center of mass.
On the other hand, for temperatures ab®yehe value of
sinp=1— —————, (10 b, is very small. In fact, in this situatiob, can be set equal
1+ asintfy to zero and a well-known solitonic solution for equati@
can be found: them-kink(antikink) solution for the SG
where equation'? namely,
|
2 tan exd + (z—zy)b/2], for spin rotations from O tomr 12
1

- 2 tan Y exd + (z—zo)b/2]+, for spin rotations froms to 2.

Even though both branches of Ed2) have the same basic b2
shape, energy, and magnitude of the topological charge, the U(®)=gsin2P+b, sind. (14)
7r jump in the solution is responsible for a particularly inter-
esting behavior of ther solitons. Whenever a soliton col- : ;
lides with another soliton or antisoliton the magnetizatione\/(;ll_l?h,iqtleJantlze the system described by ELB) we need to
carried by these solitons changes its sign. This spin flip gives
rise to magnetization damping as demonstrated in Ref. 8. i

As it can be seen, the model for TMMC in the continuum G(t):trf DD exp-J P, (15)
approximation leads us to different kinds of solitonic solu- h
tipns depending on the temperature. A 25G solitqn SOIUtior\1/vhere the functional integral has the same initial and final
given by Eqgs(9) and(10) for T.<TN and a sG 50"4“0'(‘12) configurations and tr means to integrate it over all such con-
for temperatures above, . As it was already mentioned, the

infl hani bV, leads t q : h figurations. As the functional integral in EGL5) is impos-
Spin-flip mechanism abovey 1eads 1o a damping Mecha- g, 0 14 phe evaluated for a potential energy density as in Eq.

.”'tsm OI. thedmagneutzatr:on. Hcl\;]veve.r, as fthtﬁ sollton-rr;ag?.o%i4) we must choose an approximation to do it. Since the
Interaction does not change the sign of Ihe magnetizatio agnetic moments on the manganese sites in the TMMC are

carried by the soliton, magnons do not contribute to thqarge(5/2), the semiclassical limit will be chosen as the ap-

damp|_ng process. It is Important to notice that b_el_ow thepropriate one in our case. Within the functional integral for-
transition temperature the soliton or antisoliton collisions do

: S > ~~malism of quantum mechanics, the semiclassical limit is sim-
not change the sign of the magnetization. Therefore, if th%ly the stationary-phase method applied to E) around

21 soliton displays damped motion, its origin must be assOine solitonic solutiong9), (10) or (12) in which we are in-
ciated with another mechanism. As we will demonstrate, th?erested. When this is aone we are left with an eigenvalue
study of the soliton dynamics from the quantum field theo—problem that reads

retical point of view transforms the ballistic regime into a
dissipative one due to its interaction with the spin waves. In

2
the next section we proceed to derive the specific form of the _ d_ HU(D) | ho(z2—29)=K2(2—25),  (16)
soliton-LM interaction using the well-known collective coor- dz spn o7 Pt o

dinate method.
whered is denoting the solitonlike solution around which

we are expanding(z,t) and ¢,(z—z,) are the spin-wave
Ill. SOLITON-MAGNON INTERACTING HAMILTONIAN modes in the presence of the soliton.
) ) Now one can easily show thdtb¢/dzis a solution of Eq.
The quantum dynamics of our spin systdf) can be (1) ith k,=0. The existence of this mode is related to the
analyzed by studying the quantum mechanics of the fieldrans|ation invariance of the system and causes a divergence
theory described by the action of the functional integral in Eq(15) in the semiclassical
limit (Gaussian approximationThe way out of this problem
is the so-called collective coordinate method. This method
S[‘D]:‘]HSZJ f [iz(&tq))z_ E(azd>)2+U(¢>) dtdz consists basically in expanding the field configurations about
2¢c 2 d(2) as
(13

<I><z,t>:<1>S(z—zo<t>>+n§1 Cntin(z—20(1)),  (17)

where
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but promoting thec-numberz, to a position operator. Using nates out in the density operator for the whole systsati-
expansion(17), the second quantized version of Ef) can  ton plus magnons Following closely Ref. 13 the soliton

be written as density operator can be expressed as
. 1 /. 2 A -
H: 2M (P_E hgmnb;bm +E hanrJ]rbni p(X,y,t)zf f dxldylkﬂx!yvt;xl1y,10)ps(x,vy,vo)l
S mn
(18) (23
whereQ,=ck, . where J is the Feynman-Vernon superpropagator. Explicitly
In the Hamiltonian(18), P stands for the momentum ca- X y i 1
nonically conjugated ta,, J=J,DXJ Dy ex;(%S[x,y]Jr g‘DR[X,y] , (29
x y
2.J||S2 where
M= dzU(<I> (2)) (19 B
° S[x,Y1=Solx] = Solyl+ @'[xy], (25

is the soliton mass and the coupling cons@pf is given by 414 the action associated with the free soliton motion is

. [q, dim(2) 2
Q_n+ Q_mJ'le//m(Z) dz (20 SolX]= J' () L, (26)

The operatord ™ andb are respectively the creation and \yith M, given by Eq.(19). It is convenient to notice that the
annihilation operators of the linear excitations of the mag- action S x,y] for the soliton dynamics does not describe a
netic system(magnons in the presence of the soliton. free particle, and the whole information regarding the

The second term in Eq18) is the energy of the noninteract- ollton -magnon interaction is contained in the functionals
ing linear-modes of the theory. On the other hand, the firs 9

term can be interpreted as the kinetic energy of the soliton.
Notice that

gmn:E

t o .
@'~ [ av [qrxe)
. 1 0 0

2= ﬁ[zo,H] P=2 figmiby bm), (21)

XT!(t =t [x(t") —y(t") }dt’, (27
and soP cannot be the soliton momentum because, since and ®R,
~ 1 . .
P= E[P’H]:O (22 fdt’f {Ix(t")—y(t"]
it is a constant of motion. From E@21), MSEO can be in- XTR(t —t")[x(t") —y(t") T dt". (28
terpreted as the soliton momentum, and thereforeH ere
S i 9mnby by is nothing but the momentum of the linear-
modes field. | = =
At this point we have reformulated the problem of soli- r (t)zﬁ@)(t)% |Gmnl “(Nm= Np)sin(@,— om)t, (29)

tons and LM in the system in such a way that, the momen-

tum associated with the soliton is now coupled to the linear- 1

modes momenta. This interaction suggests that the soliton TRt)==hO(1) >, |Gmnl 2(Nm+ Ny + 2NN,y
will behave as a Brownian particle due to its collisions with 2 mn

the linear-modes. It is important to notice that in this formu-
lation both the stochastic and damped motions of the solitons
have the same origin as it should be expected due to thgith
fluctuation-dissipation theorem. On the other hand, as the
population of magnons is a temperature-dependent quantity, — 1

X cof w,— oy)t, (30

the soliton mobility will be strongly related to the tempera- Nn:exp(lgﬁwn)_ 1’ (32)
ture of the system and, its dynamicketermined by Eq.18)]
will be nontrivial. 0(t)=1(0) if t>0(<0) and the form ofy,, given by Eq.

(20).
In order to understand the meaning of the reduced action
for the soliton(25), it is convenient to define the new vari-
As we are interested in the average values of observablehlesR=(x+Yy)/2 andr=(x—y). In terms of these vari-
just for the soliton we need to compute its reduced densitybles the equations of motion generated from the variation of
operator. This can be done by tracing the magnon coordiEq. (25) can be written as

IV. EFFECTIVE SOLITON DYNAMICS
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. t . 2Mgy (= ho
R(t)+ | y(t—t")R(t")dt’=0, (32 aR(t’—t”)=—j o coth ——— cosw(t’' —t")dw.
0 m 0 2kT
(39
. t .
ri- fo y(t=t)r(t’)dt’=0. (33 The superpropagatdB7) has exactly the same form as

. _ that obtained by Caldeira and Leggett in the study of the
As it can be seen, Eq$32) and (33) are nothing but the quantum Brownian motioft Therefore, as they demon-

equations for the mean value of the center of the wave packetratedz ag(t’ —t") is nothing but the correlation of forces
(R) associated with the soliton position and for the spreadingcting on the soliton or

of its width (r). In Eq.(32) it is explicit that the mean value

of the fluctuating force acting on the soliton is zero. At the 2Mgy (= how
same time, equationé32) and (33 tell us that the linear  (F(t")F(t"))= - f  coth o — cosw(t’ —t")dw,
modes act on the soliton not simply as a random force but (39)
also as a viscous medium, implying that the soliton motion is
not purely diffusive. and it is directly related to the diffusive motion of the soliton,
The damping functiony(t—t') in Egs.(32) and (33) is  as will be demonstrated later.

given by On the other hand, is not hard to verify that E§9)

£ O(1) reproduce the usual correlation of forces for the Brownian

_ 20N N _ motion in the high-temperature limiclassical regime In
Y= = 2 |9mol*(Nn—No) (@ = wm) fact whenkTe o,
X cog wp— wom)t. (34 sine(t’ —t")

Generally, in the analysis of a stochastic motion one is inter- (F(t)F(t"))=4MsykT lim

w0 t'—t"
ested in time scales much longer than, ¢ w,,) " *. In this ™ )
case, the damping function can be shown to reduce to the =4MgykTS(t" —t"). (40)
form**
)= vt 35 Unless we know the main features of the soliton motion
¥()=yd(v), (35 we need to proceed further and perform the functional inte-
where we denote by the temperature-dependent quantity grations in Eq.(24). Following closely Ref. 15 we get a
given by closed expression for the time evolution of the soliton den-
sity operator, namely,
Mg fdeR(E) pEE™ (36) 2 2
Y= TE a2 N(t) i Mgy
27hM¢ o ePE_1)2 _ [ Y . _MisY
s ( ) —=| expr{|K()———| Rr
In Eq. (36) R(E) is the reflection coefficient of the “poten- )
tial” U"(®,) of the Schrdinger-like equatior{16) andM 4 Mgy o o ’
is the magnon mass. Therefore, within the collective coordi- KO+ 2 Riri—L(ORr =N(YRr,
nate approach, the soliton dynamics is governed by the way 1
g\a;/vmch the linear modes are scattered by the soliton poten- X exp— %{A(t)zrz_'_ B(t)rri+C(t)ri2}, (41)

To complete the description of the soliton motion we pro- ) _ _ o
do that, we will assume the long-time approximation whenAPPendix A.

Egs. (25)—(30) are substituted in Eq(24). After some Now we have the tool we need to calculate the time de-
manipulations the superpropagator for the soliton can b¥€lopment of the reduced-density operator for the soliton.
written as We can assume, for instance, that initially the soliton center

is at the origin and in a pure state described by an initial

x y i momentunp and a widtho. The reduced-density operator in
J= L,DX fy/Dy expy this situation is

t 1. . . . . . . 2, .2
/ ~ 1 ipr; R+r:
><f S (X —Y?) = 2Mgy(xx—yy+xy—yx) | dt 0= PTi AR
0 ZMS s p(RI ,r|,0) Wexp h eXp— 80’2 ’ (42)
X exXp— %f;f;’[x(t,)_Y(t')] which evolves in time as
XaR(t/_t")[x(t”)_y(t")]dt,dt" (37) ;(R;r;t):f f dR|dr|\7(er!tyR| ,r|,0);;(R| 1r|50)'
with (43
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Substituting Eqs(41) and (42) in Eq. (43) and makingr compute the dynamical structure factor of a set of randomly
=x—y=0 we get the time development of the diagonal el-distributed solitons. In order to do that we will calculate the

ements of the reduced-density operator as explicit values of the damping constdbasically the inverse
of the mobility) and the spreading of the width for tempera-
~ N(t) tures above and beloWwy .
PR Gk rho D) P
o g
! ! V. SOLITON MOBILITY
2 2
— N"(V) ( __P ) . (44 In order to compute the soliton mobility we need the ex-
202K3(t) +hCy(t) 2N(t) plicit form of the potentialu”(®,) involved in Eq.(16) to
Thi . h that th lit ¢ | foll evaluate the reflection coefficient that enters B6). Let us
. |s;tr$xpret?15|on shows that the soliton center evolves 1o OWbegin with the simpler case, namely, the situation in which
Ing the pa the temperature is above the transition temperature.
p _
R(t) = 57— (1-e™2), (45) A. Soliton mobility for T>T,
sY

Performing the calculation of the-soliton mobility for
T>Ty we simply setb, in the Hamiltonian(6) to zero the
and therefore, the equation of motion for ttkedependent
part of the spin degree of freedai®) becomes a sG equation

which is nothing but the one of a classical damped particle
On the other hand, expressit¥) gives us the width of the
wave packet at any time as

2K24 50 with solitonic solution(12). In this case the potential in-
o2(t)=([R—R(1)]?) = 1 ! (46)  volved in the Schrdinger-like equatior{16) that determines
2N2(t) the fluctuations around the soliton solution have the form
As shown in Ref. 15, this expression automatically obeys the U"(2)=¢3(1—2 secR £2), (51)

fluctuation-dissipation theorem and allows us to calculate the _
diffusion constant for this Brownian particle, in the classicalwhere £=b/2. The spectrum of E¢(51) contains a bound
limit state with zero energy,

D=2MgykT. (47) Yo= \/g secli¢z), k3=0, (52

Now, once we know the solitonic solutions at rest and the _ . _
reduced-density operator for the soliton center of mass, thehich constitutes the translation mode of the solitGold-
time-dependent soliton configurations can be obtaine@gtone modg and a continuum of quasiparticles modesag-

straightforwardly as nonsg given by
+o ~ 1 |k, +iétanhéz)| .
SM(z(t)—z :J SM(z—z,—R(1))p(R,1)dR, = |0 > 5% laiknz
(2()=2z)= | SV(z=zo=RW)A(RY) n(X) T ot 5 (53)
(48)
_— " . where
wherez, denotes the initial position of the soliton center of
mass an(_SX(y) gre the components of the spin configurations - 2nm  8(K,) . 2¢k ”
at rest, given by =~ [+ dk=arcta e—g| (54)
1
X = im, = *+tanhz—z5)b/2 (49) On the other hand, the reflection coefficidatfor a gen-
0 eral symmetric potential can be expressed in terms of the
for T>Ty, and corresponding even- and odd-phase sHifty
§ Vasinh(z—zy)b, /a R(E)=sin[ 5o(E) — 84(E)]. (55)
=+
_21+ asint(z—zo)b, la’ Now, re-expressing Ed53) in terms of parity eigenstates it
(50) is easy to prove that the potenti&ll) belongs to the class of
2 reflectionless potentials because its phase shifts are given by
S=1-
1+asint(z—zy)b, /a 5%°(k)=arctari £/k), (56)
for T<Ty with a=b, /(b, +b?/4). that do not distinguish between odd and even parities. There-

Up to this point we have demonstrated that the superfore no matter how high the temperature rises abbyehe
propagaton(24) describes the motion of a Brownian particle damping coefficient is always zero and as a direct conse-
in the strict sense. Then, to study the influence of this kind ofjuence the interaction between soliton and magnons do not
dynamics on the properties of the system, we can use theodify its motional regime. From this result we can con-
time-dependent soliton configurations mentioned above talude that the damped motion observed above the transition
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temperature in Ref. 7 is due to some other mechanism; that

could be the one proposed by Sassaki and Maki in Ref. 8.

B. Soliton mobility for T<Ty

When the temperature drops beldy the potential gen-
erated by the 2sG soliton that enters the Sdimger-like
equation(16) has the form

1 z z
” 2sGy _ _ - N ‘-
u"(P2 )—)\2{1 Zsecﬁ()\er Zsecﬁ()\ p)

z
+2 secl{erp secVﬁX—p”, (57
where
\ hp B (e9
=———, coshp=—, a=—7—.
b, +b?%/4 Ja b, +b%/4

As it can be seen, the second and third terms on the rhs of

Eq. (57) are the potentials of the noninteractimgsolitons
located atz/A = = p whereas the last term describes the in-
teraction of the twom solitons atz/A ==*p, respectively.

Whenb>b, the third term in Eq(57) is negligible and as a
result we are left with a pair ofr solitons that move without

dissipation as foll > Ty, . As the strength of the external field
decreases ther solitons get closer and cannot be treate
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FIG. 1. The even phase shift as a function of the momentum for

5.0

ddif‘ferent values ofp. The continuous line corresponds ge-0.14,

independently anymore. In that situation of moderate fieldd® dotted line ig=0.31, and the dashed line fo=0.50.
the relative motion of these solutions must be taken into

account. Now, in the limit of weak external field both

solitons overlap and, as its relative motion can be neglected.

In this limit, the potential57) can be handled in a perturba-

tive fashion as shown below. Another important point about

Eq. (57) is that for all finite values ok andp, the system is

z
X) sech

V,(z)=—8 tantt : (63

z
A
The potential57) is now reduced to the sum of two con-

tributions; one coming from the spontaneous staggered mag-

translationally invariant and, consequently, has a zero-energyetization and, the other, from the presence of the weak ex-

state

(59

N z

sech ,
which is nothing but the Goldstone mode of the 3oliton

for finite transverse magnetization and finite external field.
In the limit of weak external fieldsk( >b?/2), whenp

<1, the Shrdinger-like equatior{16) can be written as

z
womsecr( St

il 2 . p?
| - d—22+V(z) Un(2)=kopn(2), Kki=ko— S0
(60)
where
)2
V(2)=Vo(2) + N Vi(2), (61)
with
z
Vo(2)=—2 secﬁ(ﬂ 62)
and

ternal field. The calculation of the even and odd phase shifts
is reported in Ref. 18 and here we will only show the main
results of the numerical solution of the Sctimger-like
equation(60). Figures 1 and 2 show the even- and odd-parity
phase shifts for different values of the external field.

The values ofé, and §, for k=0 are in agreement with
the 1D version of Levinson’s theoréthwhich establishes
that

8%(k=0)=m(n®=3),
(64)
8°(k=0)=mn°,

where n® and n® are the number of even- and odd-parity
bound states.

As it can be seen in Fig. 1 the even-phase shiftrf2 at
the origin. This behavior is in complete agreement with the
existence of an even bound state corresponding to the Gold-
stone mode. On the other hand, the odd-phase sh{fd)
=1, indicates the presence of an odd bound state. This result
was previously obtained by Kivshat al?° in the study of
the small-amplitude modes around the localized solution of
the 2sG equation and shows that there is always an odd
bound state in this kind of system. Therefore, the spectrum of
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FIG. 2. The odd phase shift as a function of the momentum. The £ 3. Reflection coefficient as a function of the momentum.
continuous line corresponds fo=0.14, the dotted line tp=0.31,  The continuous line corresponds pe=0.14, the dotted line tp
and the dashed line to=0.50. =0.31, and the dashed line is fpr=0.50.

(61) is compo§ed byti) the o soll,!non (59 correspond_mg reflection coefficient was only numerically determined. As it
to the translation mode of the solité@oldstone mode(ii) s shown in Fig. 4, for low-enough temperatures, the damp-
an internal mode that appears when the system is perturb%qg coefficient dr07ps exponentially to zero due tyo the exis-
by the external magnetic field aridi) the iy solutions that  ance of the gap. As the temperature increases the damping
constitute a continuum of modes and correspond to magnoNggefficient rises following a power law behavior until it be-

In order to find the damping coefficient we must compute.,mes |inear for high-enough temperatures. This strong tem-

the reflecti_on coefficierik (k). This can be done by inse_rting perature dependence of the damping parametef teelow
the numerical results of the even- and odd-phase shifts intfye {ransition temperature, will influence directly the corre-

the general expressidb5). In Fig. 3, we have plotte® for  |ation function between the magnetic solitons.
different values of the perturbation parameidor the whole As we have seen, the interaction with magnons leads to
range ofk. Having done that, one can immediately integrateye gifferent soliton motional regimes depending on how
the fu_nctionR(k) in _expressi(_)r_(36) that finally .aIIows us to they are scattered by the solitonic potential. FaboveT,
describe the damping coefficient as a function of the teMyne 7 solitons have infinite mobility so, the magnons do not
perature(see Fig. 4. As it can be seen, the damping coeffi- ¢qniribyte to the damping process and below the transition
cient is linear for high temperatures. This result can be obggmperature the 2 solitons behave like Brownian particles
tained directly from Eq(36). In fact, for T high enough the ity 4 finite damping parameter. In the next section we will
damping constant can be approximated by investigate the influence of the soliton dissipative motion on
Mng = R(E) the dynamical structure factor.

Y= mmpl, S5 E T (65)

VI. DYNAMICAL STRUCTURE FACTOR

which is linear inT, independently of the explicit form of ) o .
R(E). In the low-temperature regime we can write The problem of the soliton contribution to the dynamical

structure factoDSPH above and below the transition tem-
Mmng (= . perature in the TMMC_ was studied by HoI%Within t_he
y= 27rﬁMJ0 dER(E)BEe 7%, (66)  ideal gas approximation, and therefore no diffusive or
damped processes were considered. The diffusive effects and
whereE always presents a gap determined by the presence tfie damping of the magnetization carried by a soliton in this
the magnetic field and/or the spontaneous staggered magneroblem forT aboveTy was reported in Ref. 8. As it was
tization. Here we shall not attempt to write an approximatementioned before, the mechanism responsible for the damp-
expression for Eq(66) because the correct behavior of the ing in this case can be attributed to the soliton-soliton colli-
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10 §(9,0)=08(q) 8(w) [ 1-ngF¥(0)]?
1 A= 2
whereng is the soliton density and
> 27 BE; BEw?
= G(q,w)= ex , 70
g (9, ) e p- 2 (70
Q
@ i d sin(qdo)
Qo5+ 1 F Q)= —5— : 71
% (@)= coshiqmdy1—a/8) 7y
c
'5_ s /// .
= - d sin(qdo)
. F(q)=—+ , 72
a (@=73 sinh(q7rd\1— a/8) (72
with
E.=2BgusS V1+4b, /b?>+4b, b~2sinh Y(bb; ¥%2)],
(73
__ e ] V1- 2 2 8
o'Oo.o 0.5 1.0 o="3g aln(——1+—\/1—a), d=5. (74
Temperature (K) @ @

FIG. 4. The damping coefficient in units afS as a function of ~ The correlations described by E(69) are induced by
the temperature for different values pf The continuous line cor-  single kinks moving from the origin to the positianin a
respond tg=0.14, the dashed line for=0.31, and the dotted line time interval from O tot. As expected, the Maxwellian ve-
for p=0.50. locity distribution used to describe ther2kink gas is di-
rectly reflected in the Gaussian dependence of the longitudi-

sions. However, as far as we know, the influence of the stof@l Structure factor with the frequency.
chastic motion of the TMMC solitons beloW,, in the With the previous results in mind we can go further on

dynamical properties of the system remains an open prob"-‘nd study the influence of the dissipative regime in the dy-

lem. Therefore, in this section we will investigate the depenl?@mical properties of theszkink gas. As it was shown be-

dence of the DSF of the TMMC with respect to the tempera_fore, below the transition temperature thé 2olitons move

ture and the magnetic field fol below the transition [N & dissipative regime according to

temperature.

We will assume that belowWy, the system is composed by SO (2(t) — 2g)= 1 fMSX(V)(z—z “R)
a dilute gas of 2r solitons that evolve in time according to 0 NZE I 0
Eq. (44). The longitudinal and transverse dynamical structure
factors can be defined as Cex (R—Pf(t)/Ms)zdR 75

P 2D !
Sllu):Lf fdtdzé(qZ*wt)(sXW)(o,O)SX(W(z,t)), where
(277)2 1 )
- _ a2yt
(67) f(t)= 27(1 e M), (76)

whereS‘™ corresponds to the time-dependent spin compo- Now, substituting Eqs(75) and (76) in the general ex-
nent in thex(y) direction given by Eqgs(75) and(50). pression(67) and taking the mean value we get

To begin with, let us recall the main results for the dy-
namical structure factor reported in Ref. 11. Using the model neS?
of noninteracting 2r-soliton gas in the ballistic regime, the Sl(g,w)= o IF(@)]?G(q,w), (77)

components parallel and perpendicular to the external mag-

netic field can be written as SH(g,0)=8(q) 8(w) S 1—NnFY(0)]?

+nSFY(9)[?G(q, ), (78

1
Il - 2| =X 2
SHG,) anss [F¥(@)[*G(a, @), (68) where the functiorG(q,w) is now given by
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G(q,w)=flex;{—

It is important to notice that when the diffusion and damp-
ing constants tend to zero in E(9), we can write

2

g“c
2EB

2

f2(t)— g°D|t| —i ot |dt.

(79

2:2

G(q,w)= flex;{ _ge

2EB

_ 27 BEg
- 92c? exp—

which is precisely the ballistic resulf0). On the other hand,

t2—iwt|dt

IBEst
2c2g?

(80

to perform the time integration it is convenient to use the

expansion
202 * —1)" 202 n
2EB n=0 N!' | 2BE?
2n
X >, (—1)™C2ne—2mitl - (81)
m=0
where
(2n)!
2n_
Cm_m!(2n—m)!' 82

Now, substituting Eqs(81) and(82) in Eq. (79) we get
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2.0

G(q,0)

1.0

0.0

0.0

FIG. 5. TheG(q,w) function forg=1 atT=0.5 K. The con-
tinuous line correspond to the ballistic case while the squares, tri-
angles, and dots correspond po=0.14, p=0.31, andp=0.50
cases, respectively.

o 2n n
B 2n(_1)n+m q2C2 . 5
e P T = G- [ |1-- 2<1—e‘“>21
, - 2EBy
4my+29°D , 89 X exp( — 2D |t] —i wt)dt, (85)
(2my+q°D)?+ w?
which together with qu77) and (78) define the dynamical that can be eas“y evaluated g|V|ng
structure factor in both directions, namely, parallel and per-
pendicular to the external magnetic field. In order to get a
better idea of the changes introduced by the soliton diffusive 24°D q° 24%D
and damped motion in the DSF, we show in.Fsga humeri- G(q,w)= —
cal evaluation of Eq(83) and the corresponding ballistic q'D*+w® 27By*\q'D+w?
behavior(69). As it can be seen, the damped/diffusive mo- 5 )
tion of the solitons(due to interaction with magnongor 2q°D+4y _ 2(q°D+2y)
temperatures beloW, , changes the behavior of the dynami- (°D+29)%+w? (g°D+ )%+ w? '
cal structure factor reducing and flattening the central peak in
any direction. On the other hand, as the external field be- (86)

comes weakefsmall p values G(q,w) tends to the ballistic
behavior as expected from the results of thesoliton dy-
namics.

Although the expressiofB3) is valid for all finite values
of g, it is helpful to study the behavior of E¢79) for small

momentum and get a simpler expression that can be easif®

compared to the experiments. Assuming that

Y
qQ< E\/ZﬁEs,

(84

Within the approximation of small momentum, the behav-
ior of S!I1)(q, w) with frequency, changes from the “Gauss-
ian” central peak to a “Lorentzian” dependence. Therefore,
the temperature is lowered beldwy, the central-peak
behavior is replaced by a flatter one in the frequency domain.
This result is a direct consequence of the dissipative regime
of the 27 soliton and, as the damping constaptcan be
controlled by changing the temperature and/or the magnetic

field, a possible indication of a nonballistic regime has been

the integral in Eq(79) becomes found.
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show that the magnetic solitons in the TMMC move as a
Brownian particle depending on the system temperature. APPENDIX CONSTANTS
Two different situations were analyzed separately; the first,
above the transition temperatuiig; where the s soliton Mgy hv
moves without dissipation. From this fact we can conclude A= f veotho—
that the soliton-magnon coupling does not affect the soliton
dynamics abovely and therefore do not contribute to the e 27
mechanism proposed by Sassaki and Mlaki explain the A (t)= f fsmwrcow(r 5)e?("*9 sinwsdrds
origin of the damped motion in such a situation. On the other sir? ot
hand, when the temperature is beldy any damping effect (A2)
should be related to the momentum-momentum coupling be-
tween the soliton and the magnons thermal bath since the
mechanism proposed in Ref. 8 is no longer valid.

The calculation of the transport properties of the &oli-
ton was performed from the microscopic basis and no phe-
nomenological assumptions were made. The damping and By(t)—
diffusion constants used to describe the soliton dynamics sm2 ot
obey the fluctuation-dissipation theorem and are X sinw(t—s)drds (A4)
temperature-dependent quantities, since the magnons must
be thermally activated in order to scatter the soliton. Al- Mgy hv
though the formulation used to compute the damping param- C(t)= f vcoth—=C (t)dv (A5)

- ; L T Jo 2KT
eter is valid for all values of the external magnetic field, we
have restricted ourselves to the study of weak fields in order

A, (t)dv (A1)

Mgy (@ hv
B(t)= Tf VCOthmB (t)ydv (A3)
0

ffsmwrco&z(r s)e?(7+s)

to avoid a more cumbersome treatment. Therefore, some C,(t)= J jSIHw(t—T)COSV(T s)e?("t9
more care is required in the case of moderate fields if one Sir ot

wants to employ more realistic values for the damping and

diffusion constants when comparing our results to the experi- Xsinw(t—s)drds (AB)
mental data. Nevertheless, the results presented in this work o y
are a clear evidence that the dissipation and/or diffusive ef- K(t)= Mcotwt L(t)= Mswe N(t) = Mswe
fects, coming from the soliton-magnon coupling, tend to flat- 2 2 sinwt 2 sinwt
ten off the central peak typical of the ballistic soliton motion. (A7)
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