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Dynamical properties of a gas of solitons in one-dimensional quantum antiferromagnets
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The influence of the soliton-magnon coupling on the dynamical properties of quantum antiferromagnets is
studied as a function of the external magnetic field and the temperature. The specific case of tetramethyl
ammonium manganese chloride is analyzed above and below the transition temperature. The existence of a
dissipative regime for the soliton motion is conjectured and its influence on the dynamical structure factor—
which might be experimentally detected—is reported.
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I. INTRODUCTION

In the past few decades it has become well establis
that the physical properties of some magnetic materi
TMMC ~tetramethyl ammonium manganese chlorid!,
CsNiF3 ~caesium nickel fluride!, and CuCl2 2NC5H5
~dicloro-bis-piridine copper II!, for instance, have essential
one-dimensional character above their transition temp
ture. In those kind of materials the distance between m
netic ions along a given direction~magnetic chain direction!
is shorter than in the other directions. In such an arrangem
the intrachain coupling constant is typically more than t
orders of magnitude stronger than the interchain coup
constant. Therefore, the system can be considered as a
weakly interacting magnetic chains. Due to the relative s
plicity of obtaining solitonic or solitary-wave solutions i
one-dimensional~1D! systems, these quasi-one-dimensio
magnets turn out to be the paradigm for the study of
influence of the nonlinear modes~solitons! on the dynamical
properties of such systems at finite temperatures. Altho
all real magnetic materials investigated are not perfectly
dimensional, the assumption of the 1D behavior is shown
be in good agreement with the experimental results~see Ref.
1 and the references therein!.

In magnetic materials solitons or solitary-waves can
regarded as ‘‘kinks’’ or ‘‘twists’’ in the spin space movin
with constant speed and carrying a constant topolog
charge defined by the values of the spin variables at infin
For low-enough temperatures, when the linear modes~spin-
waves! are not excited, the magnetic system can be rep
sented in first approximation by a gas of noninteracting s
tons. Using this idea, Mikeska calculated the solit
contribution to the dynamical structure factor of the classi
one-dimensional magnets.2,3 From both works we learn tha
the assumption of ballistic motion for solitons is the origin
the ‘‘central peak’’ behavior observed in neutron scatter
experiments. A different situation could be found from t
quantum field theory point of view when the temperature
raised. In this case the spin-wave~SW! modes are excited
therefore not all of the degrees of freedom of the syst
contribute to the soliton formation and a residual interact
~which couples the center of mass of the soliton to the sp
wave modes! shows up leading to a stochastic motion for t
soliton.
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Several theoretical works have been devoted to study
the soliton stochastic motion and its influence on the prop
ties of the systems in different nonlinear theories. For
stance, based on the fact that an incoming phonon~the linear
modes of the theory! produces only a shift in the soliton
position without changing its momentum, Wada and Schr
fer estimated the diffusion constant of an isolated dom
wall interacting with a phonon thermal bath.4 In the same
spirit, Theodorakopoulos studied the kink-phonon interact
within the framework of perturbation theory and describ
the dynamics of a noninteracting kink gas as it would be s
in a light-scattering experiment;5 on the other hand, a sto
chastic equation of motion for the sine-Gordon soliton in
gas of magnons and the effects of the solitonic sector on
spin correlation function were presented by Fesser.6 In the
above-mentioned works, the motion of the soliton is assum
to be purely diffusive, which is in contradiction with th
experimental results reported in Ref. 7 in which the damp
process also plays an important role.

The damping of the magnetization carried by a solit
was studied by Sassaki and Maki for antiferromagnets.8 In
this case, the soliton-soliton collisions are responsible for
appearance of the damping. However, in this scenario,
effects of soliton-magnon collisions give no contribution
the damping mechanism. Therefore, it would be importan
investigate the contribution of the soliton-‘‘phonon’’ colli
sions in the damping process in a more general context
derive a Langevin equation of motion in the strict sense.
order to do that, the soliton center of mass must be treate
a true dynamical variable. This would give us informatio
about the random force acting on the soliton and could
used to derive the fluctuation-dissipation theorem.

In studying the dissipative stochastic motion of a solit
due to its collisions with the linear modes~LM ! of the theory,
we have found a mechanism in which the soliton and the
momenta are coupled. Therefore, our first goal will be
derivation of a soliton-LM interacting Hamiltonian. In prac
tice, the specific form of this interaction can be obtained
the collective coordinate method9 when the classical Hamil-
tonian is quantized. From the interacting Hamiltonian we c
compute the reduced density operator for the soliton ce
of mass from which an equation of motion naturally aris
As it will be seen, the soliton-LM coupling results in a di
©2001 The American Physical Society25-1
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sipative regime described by a Langevin equation of mot
for the soliton.

The formulation presented here is general enough to
used in any nonlinear theory with solitonic solution,10 and
therefore, can be applied to studying the specific case of
TMMC antiferromagnet. In this material the spin dynami
is described by two different equations depending on
temperature. For temperatures belowTN , the spin dynamics
is governed by a double sine-Gordon~2sG! equation and, for
T.TN , the spins evolve in time following a sine-Gordo
~sG! equation. Due to collisions with the LM of the theor
the solitonic solutions of those equations have different m
tional regimes, turning the TMMC into a suitable probe f
the investigation of the soliton dynamics.

To begin with, in Sec. II we review the models curren
applied to the spin dynamics of the TMMC compoun
above and below its transition temperature, and also the
responding classical field theories. Sections III and IV
devoted to the derivation of the soliton-magnon interact
Hamiltonian and to obtaining of the soliton reduced dens
operator. In Sec. V the calculation of the damping and dif
sion constants for the TMMC is presented. Finally, Sec. V
devoted to the study of the influence of the soliton damp
motion on the dynamical structure factor and, our conc
sions are presented in Sec. VII.

II. THE MODEL FOR TMMC

The antiferromagnet TMMC has extensively been stud
from the theoretical and experimental points of view. T
Hamiltonian describing the interacting 3D array of classi
spins in this material can be written as

H5(
j

H j2
1

2
J' (

iÞ i 8
(

j
Si , jSi 8, j , ~1!

where

H j5(
k

$JuuSj ,kSj ,k111A~Sj ,k
z !22gmBBSj ,k

x %. ~2!

The HamiltonianH j describes the nearest-neighbor intra
hain interaction between spins with an easy plane anisotr
(A.0) placed in an external magnetic field~B! in the x
direction. The spins will be treated as classical vectors
length S and the constantsJi and J' , both positive, corre-
spond to the antiferromagnetic and ferromagnetic excha
coupling constants, respectively. The second term on
right-hand side~rhs! of Eq. ~1! represents an interchain in
teraction between the spins, completing the description of
3D spin arrangement. Finally, the following values of ma
rial parameters will be used:Ji513.4 K, S55/2, A/Ji
50.0120.02, J' /Ji51.531025, andg52.01.

In order to start the classical description of the spin d
namics it is convenient to look at two main different situ
tions; namely, temperatures below and above the trans
temperature. For temperatures belowTN the system de-
scribed by Eq. ~1! displays long-range magnetic orde
Therefore the staggered magnetization is not zero and
system can be described in the mean field approximation
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set of noninteracting antiferromagnetic chains with an ad
tional spontaneous magnetization in they direction. Explic-
itly,

H5(
i

$JuuSiSi 111A~Si
z!22gmBBSi

x2gmBB'
MF~21! iSi

y%,

~3!

where

B'
MF5hJ'^~21! iSi

y&/gmB , ~4!

andh accounts for the presence of neighboring chains in
model. In the specific case of TMMC,h56. The intrachain
mean fieldB'

MF is usually replaced by its saturation valu
B'

S'22.3 Oe that results from the substitution ofSi
(y) in Eq.

~4! by its maximum value.
At this point, we can carry on with the classical descr

tion of the spin dynamics. In order to do that it is convenie
to change the spin variables to the following form

Se,o56S@sin~Q6u!cos~F6w!,
~5!

sin~Q6u!sin~F6w!, cos~Q6u!],

wheree ando stands for even and odd sites along a chai
Using the representation~5! a F-dependent part of the

Hamiltonian ~3! can be obtained~see Ref. 11 for details!.
Explicitly,

HF5 1
2 JiS

2E dzF 1

c2
~] tF!21~]zF!2

2
1

4
b2 sin2 F22b' sinFG , ~6!

where

c2541
2A

Ji
, b5

gmBB

JiS
, b'5

gmBB'
MF

JiS
, ~7!

and the time and length scales are (JiS)21 and the lattice
constant, respectively.

It should be stressed that the Hamiltonian~6! is an ap-
proximated description of the real TMMC system. To repr
duce the experimental results, magnon mass and solit
energy, for instance, quantum effects and the out-of-pl
component of the magnetization must be taken into acco
To go on with the classical description of theF-dependent
part of the original Hamiltonian~1! the equation of motion
associated to Eq.~6!,

1

c2
] ttF5]zzF1

b2

8
sin 2F1b' cosF ~8!

has to be solved. Although equation~8! is not completely
integrable it has solitonic solutions in the form of 2p
kinks~antikinks!,12 explicitly
5-2
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cosF562
Aa

11a sinh2 y
sinhy, ~9!

sinF512
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11a sinh2 y
, ~10!
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b'

b'1b2/4
, y5~z2z0!Ab'1b2/4, ~11!

andz0 is the position of the soliton center of mass.
On the other hand, for temperatures aboveTN the value of

b' is very small. In fact, in this situationb' can be set equa
to zero and a well-known solitonic solution for equation~8!
can be found: thep-kink~antikink! solution for the SG
equation,12 namely,
F5H 2 tan21 exp@6~z2z0!b/2#, for spin rotations from 0 top

2 tan21 exp@6~z2z0!b/2#1p, for spin rotations fromp to 2p.
~12!
nal
on-
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Even though both branches of Eq.~12! have the same basi
shape, energy, and magnitude of the topological charge
p jump in the solution is responsible for a particularly inte
esting behavior of thep solitons. Whenever a soliton co
lides with another soliton or antisoliton the magnetizati
carried by these solitons changes its sign. This spin flip gi
rise to magnetization damping as demonstrated in Ref. 8

As it can be seen, the model for TMMC in the continuu
approximation leads us to different kinds of solitonic so
tions depending on the temperature. A 2sG soliton solu
given by Eqs.~9! and~10! for T,TN and a sG solution~12!
for temperatures aboveTN . As it was already mentioned, th
spin-flip mechanism aboveTN leads to a damping mecha
nism of the magnetization. However, as the soliton-mag
interaction does not change the sign of the magnetiza
carried by the soliton, magnons do not contribute to
damping process. It is important to notice that below
transition temperature the soliton or antisoliton collisions
not change the sign of the magnetization. Therefore, if
2p soliton displays damped motion, its origin must be as
ciated with another mechanism. As we will demonstrate,
study of the soliton dynamics from the quantum field the
retical point of view transforms the ballistic regime into
dissipative one due to its interaction with the spin waves
the next section we proceed to derive the specific form of
soliton-LM interaction using the well-known collective coo
dinate method.

III. SOLITON-MAGNON INTERACTING HAMILTONIAN

The quantum dynamics of our spin system~6! can be
analyzed by studying the quantum mechanics of the fi
theory described by the action

S@F#5JiS
2E E H 1

2c2
~] tF!22

1

2
~]zF!21U~F!J dtdz,

~13!

where
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U~F!5
b2

8
sin 2F1b' sinF. ~14!

To quantize the system described by Eq.~13! we need to
evaluate

G~ t !5trE DF exp
i

\
S@F#, ~15!

where the functional integral has the same initial and fi
configurations and tr means to integrate it over all such c
figurations. As the functional integral in Eq.~15! is impos-
sible to be evaluated for a potential energy density as in
~14! we must choose an approximation to do it. Since
magnetic moments on the manganese sites in the TMMC
large ~5/2!, the semiclassical limit will be chosen as the a
propriate one in our case. Within the functional integral fo
malism of quantum mechanics, the semiclassical limit is s
ply the stationary-phase method applied to Eq.~15! around
the solitonic solutions~9!, ~10! or ~12! in which we are in-
terested. When this is done we are left with an eigenva
problem that reads

H 2
d2

dz2
1U9~Fs!J cn~z2z0!5kn

2cn~z2z0!, ~16!

whereFs is denoting the solitonlike solution around whic
we are expandingF(z,t) and cn(z2z0) are the spin-wave
modes in the presence of the soliton.

Now one can easily show thatdFs /dz is a solution of Eq.
~16! with kn50. The existence of this mode is related to t
translation invariance of the system and causes a diverg
of the functional integral in Eq.~15! in the semiclassica
limit ~Gaussian approximation!. The way out of this problem
is the so-called collective coordinate method. This meth
consists basically in expanding the field configurations ab
Fs(z) as

F~z,t !5Fs„z2z0~ t !…1 (
n51

`

cncn„z2z0~ t !…, ~17!
5-3
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but promoting thec-numberz0 to a position operator. Using
expansion~17!, the second quantized version of Eq.~6! can
be written as

Ĥ5
1

2Ms
S P̂2(

mn
\gmnbn

1bmD 2

1( \Vnbn
1bn ,

~18!

whereVn[ckn .
In the Hamiltonian~18!, P̂ stands for the momentum ca

nonically conjugated toẑ0,

Ms5
2JiS

2a

c2 E
2`

1`

dzU„Fs~z!… ~19!

is the soliton mass and the coupling constantgmn is given by

gmn5
1

2i FAVm

Vn
1AVn

Vm
G E dzcm~z!

dcn~z!

dz
. ~20!

The operatorsb1 andb are respectively the creation an
annihilation operators of the linear excitations of the ma
netic system~magnons! in the presence of the soliton
The second term in Eq.~18! is the energy of the noninterac
ing linear-modes of the theory. On the other hand, the fi
term can be interpreted as the kinetic energy of the soli
Notice that

ż̂05
1

i\
@ ẑ0 ,Ĥ#5

1

Ms
S P̂2(

mn
\gmnbn

1bmD , ~21!

and soP̂ cannot be the soliton momentum because, sinc

Ṗ̂5
1

i\
@ P̂,Ĥ#50 ~22!

it is a constant of motion. From Eq.~21!, Msż̂0 can be in-
terpreted as the soliton momentum, and therefo
(mn\gmnbn

1bm is nothing but the momentum of the linea
modes field.

At this point we have reformulated the problem of so
tons and LM in the system in such a way that, the mom
tum associated with the soliton is now coupled to the line
modes momenta. This interaction suggests that the so
will behave as a Brownian particle due to its collisions w
the linear-modes. It is important to notice that in this form
lation both the stochastic and damped motions of the solit
have the same origin as it should be expected due to
fluctuation-dissipation theorem. On the other hand, as
population of magnons is a temperature-dependent quan
the soliton mobility will be strongly related to the temper
ture of the system and, its dynamics@determined by Eq.~18!#
will be nontrivial.

IV. EFFECTIVE SOLITON DYNAMICS

As we are interested in the average values of observa
just for the soliton we need to compute its reduced den
operator. This can be done by tracing the magnon coo
10442
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nates out in the density operator for the whole system~soli-
ton plus magnons!. Following closely Ref. 13 the soliton
density operator can be expressed as

r̂~x,y,t !5E E dx8dy8J~x,y,t;x8,y8,0!r̂s~x8,y8,0!,

~23!

whereJ is the Feynman-Vernon superpropagator. Explici

J5E
x8

x

DxE
y8

y

Dy expS i

\
S̄@x,y#1

1

\
FR@x,y# D , ~24!

where

S̄@x,y#5S0@x#2S0@y#1F I@x,y#, ~25!

and the action associated with the free soliton motion is

S0@x#5E
0

t

Ms

~ ẋ!2

2
dt, ~26!

with Ms given by Eq.~19!. It is convenient to notice that the
action S̄@x,y# for the soliton dynamics does not describe
free particle, and the whole information regarding t
soliton-magnon interaction is contained in the function
F I ,

F I5E
0

t

dt8E
0

t8
$@ ẋ~ t8!1 ẏ~ t8!#

3G I~ t82t9!@ ẋ~ t9!2 ẏ~ t9!#%dt9, ~27!

andFR,

FR5E
0

t

dt8E
0

t8
$@ ẋ~ t8!2 ẏ~ t8!#

3GR~ t82t9!@ ẋ~ t9!2 ẏ~ t9!#%dt9. ~28!

Here

G I~ t !5\Q~ t !(
mn

ugmnu2~N̄m2N̄n!sin~vn2vm!t, ~29!

GR~ t !5
1

2
\Q~ t !(

mn
ugmnu2~N̄m1N̄n12N̄mN̄n!

3cos~vn2vm!t, ~30!

with

N̄n5
1

exp~b\vn!21
, ~31!

Q(t)51(0) if t.0(,0) and the form ofgmn given by Eq.
~20!.

In order to understand the meaning of the reduced ac
for the soliton~25!, it is convenient to define the new var
ablesR5(x1y)/2 and r 5(x2y). In terms of these vari-
ables the equations of motion generated from the variatio
Eq. ~25! can be written as
5-4
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R̈~ t !1E
0

t

g~ t2t8!Ṙ~ t8!dt850, ~32!

r̈ ~ t !2E
0

t

g~ t2t8! ṙ ~ t8!dt850. ~33!

As it can be seen, Eqs.~32! and ~33! are nothing but the
equations for the mean value of the center of the wave pa
~R! associated with the soliton position and for the spread
of its width (r ). In Eq. ~32! it is explicit that the mean value
of the fluctuating force acting on the soliton is zero. At t
same time, equations~32! and ~33! tell us that the linear
modes act on the soliton not simply as a random force
also as a viscous medium, implying that the soliton motion
not purely diffusive.

The damping functiong(t2t8) in Eqs. ~32! and ~33! is
given by

g~ t !5
\Q~ t !

Ms
(
mn

ugmnu2~N̄m2N̄n!~vn2vm!

3cos~vn2vm!t. ~34!

Generally, in the analysis of a stochastic motion one is in
ested in time scales much longer than (vn2vm)21. In this
case, the damping function can be shown to reduce to
form14

g~ t !5gd~ t !, ~35!

where we denote byg the temperature-dependent quant
given by

g5
Mmg

2p\Ms
E

0

`

dER~E!
bE ebE

~ebE21!2
. ~36!

In Eq. ~36! R(E) is the reflection coefficient of the ‘‘poten
tial’’ U9(Fs) of the Schro¨dinger-like equation~16! andMmg
is the magnon mass. Therefore, within the collective coo
nate approach, the soliton dynamics is governed by the
in which the linear modes are scattered by the soliton po
tial.

To complete the description of the soliton motion we p
ceed to analyze the real part of the exponent~24!. In order to
do that, we will assume the long-time approximation wh
Eqs. ~25!–~30! are substituted in Eq.~24!. After some
manipulations the superpropagator for the soliton can
written as

J5E
x8

x

DxE
y8

y

Dy exp
i

\

3E
0

tS 1

2Ms
~ ẋ22 ẏ2!22Msg~xẋ2yẏ1xẏ2yẋ! Ddt8

3exp2
1

\E0

tE
0

t8
@x~ t8!2y~ t8!#

3aR~ t82t9!@x~ t9!2y~ t9!#dt8dt9 ~37!

with
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aR~ t82t9!5
2Msg

p E
0

`

v coth
\v

2kT
cosv~ t82t9!dv.

~38!

The superpropagator~37! has exactly the same form a
that obtained by Caldeira and Leggett in the study of
quantum Brownian motion.15 Therefore, as they demon
strated,\aR(t82t9) is nothing but the correlation of force
acting on the soliton or

^F~ t8!F~ t9!&5
2Msg

p E
0

`

v coth
\v

2kT
cosv~ t82t9!dv,

~39!

and it is directly related to the diffusive motion of the solito
as will be demonstrated later.

On the other hand, is not hard to verify that Eq.~39!
reproduce the usual correlation of forces for the Brown
motion in the high-temperature limit~classical regime!. In
fact, whenkT@\v,

^F~ t8!F~ t9!&54MsgkT lim
v→`

sinv~ t82t9!

p~ t82t9!

54MsgkTd~ t82t9!. ~40!

Unless we know the main features of the soliton moti
we need to proceed further and perform the functional in
grations in Eq.~24!. Following closely Ref. 15 we get a
closed expression for the time evolution of the soliton de
sity operator, namely,

J5S N~ t !

p\ D 2

exp
i

\ H FK~ t !2
Msg

2 G2

Rr

1FK~ t !1
Msg

2 G2

Rir i2L~ t !Rir 2N~ t !Rri J
3exp2

1

\
$A~ t !2r 21B~ t !rr i1C~ t !r i

2%, ~41!

where the time-dependent functions are given explicitly
Appendix A.

Now we have the tool we need to calculate the time
velopment of the reduced-density operator for the solit
We can assume, for instance, that initially the soliton cen
is at the origin and in a pure state described by an ini
momentump and a widths. The reduced-density operator i
this situation is

r̃~Ri ,r i ,0!5
1

A2ps2
exp

ipr i

\
exp2

Ri
21r i

2

8s2
, ~42!

which evolves in time as

r̃~R,r ,t !5E E dRidriJ~R,r ,t;Ri ,r i ,0!r̃~Ri ,r i ,0!.

~43!
5-5
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Substituting Eqs.~41! and ~42! in Eq. ~43! and makingr
[x2y50 we get the time development of the diagonal
ements of the reduced-density operator as

r̃~R,t !5
N~ t !

Ap~2s2K1
2~ t !1\C1~ t !!

exp

2F N2~ t !

2s2K1
2~ t !1\C1~ t !

S R2
p

2N~ t ! D
2G . ~44!

This expression shows that the soliton center evolves foll
ing the path

R~ t !5
p

2Msg
~12e22gt!, ~45!

which is nothing but the one of a classical damped parti
On the other hand, expression~44! gives us the width of the
wave packet at any time as

s2~ t !5^@R2R~ t !#2&5
2s2K1

21\C1

2N2~ t !
. ~46!

As shown in Ref. 15, this expression automatically obeys
fluctuation-dissipation theorem and allows us to calculate
diffusion constant for this Brownian particle, in the classic
limit

D52MsgkT. ~47!

Now, once we know the solitonic solutions at rest and
reduced-density operator for the soliton center of mass,
time-dependent soliton configurations can be obtai
straightforwardly as

Sx(y)~z~ t !2z0!5E
2`

1`

Sx(y)
„z2z02R~ t !…r̃~R,t !dR,

~48!

wherez0 denotes the initial position of the soliton center
mass andSx(y) are the components of the spin configuratio
at rest, given by

Sx56
1

cosh~z2z0!b/2
, Sy56tanh~z2z0!b/2 ~49!

for T.TN , and

Sx562
Aasinh~z2z0!b' /a

11a sinh2~z2z0!b' /a
,

~50!

Sy512
2

11a sinh2~z2z0!b' /a

for T,TN with a5b' /(b'1b2/4).
Up to this point we have demonstrated that the sup

propagator~24! describes the motion of a Brownian partic
in the strict sense. Then, to study the influence of this kind
dynamics on the properties of the system, we can use
time-dependent soliton configurations mentioned above
10442
-

-

.

e
e
l

e
e
d

s

r-

f
he
to

compute the dynamical structure factor of a set of random
distributed solitons. In order to do that we will calculate t
explicit values of the damping constant~basically the inverse
of the mobility! and the spreading of the width for temper
tures above and belowTN .

V. SOLITON MOBILITY

In order to compute the soliton mobility we need the e
plicit form of the potentialU9(Fs) involved in Eq.~16! to
evaluate the reflection coefficient that enters Eq.~36!. Let us
begin with the simpler case, namely, the situation in wh
the temperature is above the transition temperature.

A. Soliton mobility for TÌTN

Performing the calculation of thep-soliton mobility for
T.TN we simply setb' in the Hamiltonian~6! to zero the
and therefore, the equation of motion for theF-dependent
part of the spin degree of freedom~8! becomes a sG equatio
with solitonic solution~12!. In this case the potential in
volved in the Schro¨dinger-like equation~16! that determines
the fluctuations around the soliton solution have the form

U9~z!5j2~122 sech2 jz!, ~51!

where j5b/2. The spectrum of Eq.~51! contains a bound
state with zero energy,16

c05Ah

2
sech~jz!, k0

250, ~52!

which constitutes the translation mode of the soliton~Gold-
stone mode!, and a continuum of quasiparticles modes~mag-
nons! given by

cn~x!5
1

AL
Fkn1 i j tanh~jz!

kn1 i j Geiknz, ~53!

where

kn5
2np

L
2

d~kn!

L
, d~k!5arctanF 2jk

k22j2G . ~54!

On the other hand, the reflection coefficientR for a gen-
eral symmetric potential can be expressed in terms of
corresponding even- and odd-phase shifts17 by

R~E!5sin2@de~E!2do~E!#. ~55!

Now, re-expressing Eq.~53! in terms of parity eigenstates
is easy to prove that the potential~51! belongs to the class o
reflectionless potentials because its phase shifts are give

de,o~k!5arctan~j/k!, ~56!

that do not distinguish between odd and even parities. Th
fore no matter how high the temperature rises aboveTN the
damping coefficient is always zero and as a direct con
quence the interaction between soliton and magnons do
modify its motional regime. From this result we can co
clude that the damped motion observed above the trans
5-6
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temperature in Ref. 7 is due to some other mechanism;
could be the one proposed by Sassaki and Maki in Ref.

B. Soliton mobility for TËTN

When the temperature drops belowTN the potential gen-
erated by the 2sG soliton that enters the Schro¨dinger-like
equation~16! has the form

U9~Fs
2sG!5

1

l2 F122 sech2S z

l
1r D22 sech2S z

l
2r D

12 sechS z

l
1r D sechS z

l
2r D G , ~57!

where

l5
1

b'1b2/4
, coshr5

1

Aa
, a5

b'

b'1b2/4
. ~58!

As it can be seen, the second and third terms on the rh
Eq. ~57! are the potentials of the noninteractingp solitons
located atz/l56r whereas the last term describes the
teraction of the twop solitons atz/l56r, respectively.
Whenb@b' the third term in Eq.~57! is negligible and as a
result we are left with a pair ofp solitons that move withou
dissipation as forT.TN . As the strength of the external fiel
decreases thep solitons get closer and cannot be treat
independently anymore. In that situation of moderate fie
the relative motion of these solutions must be taken i
account. Now, in the limit of weak external field bothp
solitons overlap and, as its relative motion can be neglec
In this limit, the potential~57! can be handled in a perturba
tive fashion as shown below. Another important point ab
Eq. ~57! is that for all finite values ofl andr, the system is
translationally invariant and, consequently, has a zero-en
state

c0}sechS z

l
1r D1sechS z

l
2r D , ~59!

which is nothing but the Goldstone mode of the 2p soliton
for finite transverse magnetization and finite external fiel

In the limit of weak external fields (b'@b2/2), whenr
!1, the Shro¨dinger-like equation~16! can be written as

H 2
d2

dz2
1V~z!J cn~z!5kn

2cn~z!, kn
25kn

22
1

l2
2

r2

l2
,

~60!

where

V~z!5V0~z!1S r

l D 2

V1~z!, ~61!

with

V0~z!522 sech2S z

l D ~62!

and
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V1~z!528 tanh2S z

l D sech2S z

l D . ~63!

The potential~57! is now reduced to the sum of two con
tributions; one coming from the spontaneous staggered m
netization and, the other, from the presence of the weak
ternal field. The calculation of the even and odd phase sh
is reported in Ref. 18 and here we will only show the ma
results of the numerical solution of the Schro¨dinger-like
equation~60!. Figures 1 and 2 show the even- and odd-par
phase shifts for different values of the external field.

The values ofde anddo for k50 are in agreement with
the 1D version of Levinson’s theorem19 which establishes
that

de~k50!5p~ne2 1
2 !,

~64!
do~k50!5pno,

where ne and no are the number of even- and odd-pari
bound states.

As it can be seen in Fig. 1 the even-phase shift isp/2 at
the origin. This behavior is in complete agreement with t
existence of an even bound state corresponding to the G
stone mode. On the other hand, the odd-phase shiftdo(0)
5p, indicates the presence of an odd bound state. This re
was previously obtained by Kivsharet al.20 in the study of
the small-amplitude modes around the localized solution
the 2sG equation and shows that there is always an
bound state in this kind of system. Therefore, the spectrum

FIG. 1. The even phase shift as a function of the momentum
different values ofr. The continuous line corresponds tor50.14,
the dotted line tor50.31, and the dashed line tor50.50.
5-7
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~61! is composed by:~i! the c0 solution ~59! corresponding
to the translation mode of the soliton~Goldstone mode! ~ii !
an internal mode that appears when the system is pertu
by the external magnetic field and~iii ! the ck solutions that
constitute a continuum of modes and correspond to magn

In order to find the damping coefficient we must compu
the reflection coefficientR(k). This can be done by insertin
the numerical results of the even- and odd-phase shifts
the general expression~55!. In Fig. 3, we have plottedR for
different values of the perturbation parameterr for the whole
range ofk. Having done that, one can immediately integra
the functionR(k) in expression~36! that finally allows us to
describe the damping coefficient as a function of the te
perature~see Fig. 4!. As it can be seen, the damping coef
cient is linear for high temperatures. This result can be
tained directly from Eq.~36!. In fact, for T high enough the
damping constant can be approximated by

g.
Mmg

2p\Msb
E

0

`

dE
R~E!

E
}T, ~65!

which is linear inT, independently of the explicit form o
R(E). In the low-temperature regime we can write

g.
Mmg

2p\Ms
E

0

`

dER~E!bEe2bE, ~66!

whereE always presents a gap determined by the presenc
the magnetic field and/or the spontaneous staggered ma
tization. Here we shall not attempt to write an approxim
expression for Eq.~66! because the correct behavior of th

FIG. 2. The odd phase shift as a function of the momentum.
continuous line corresponds tor50.14, the dotted line tor50.31,
and the dashed line tor50.50.
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reflection coefficient was only numerically determined. As
is shown in Fig. 4, for low-enough temperatures, the dam
ing coefficient drops exponentially to zero due to the ex
tence of the gap. As the temperature increases the dam
coefficient rises following a power law behavior until it be
comes linear for high-enough temperatures. This strong t
perature dependence of the damping parameter, forT below
the transition temperature, will influence directly the corr
lation function between the magnetic solitons.

As we have seen, the interaction with magnons leads
the different soliton motional regimes depending on h
they are scattered by the solitonic potential. ForT aboveTN
the p solitons have infinite mobility so, the magnons do n
contribute to the damping process and below the transi
temperature the 2p solitons behave like Brownian particle
with a finite damping parameter. In the next section we w
investigate the influence of the soliton dissipative motion
the dynamical structure factor.

VI. DYNAMICAL STRUCTURE FACTOR

The problem of the soliton contribution to the dynamic
structure factor~DSF! above and below the transition tem
perature in the TMMC was studied by Holyst11 within the
ideal gas approximation, and therefore no diffusive
damped processes were considered. The diffusive effects
the damping of the magnetization carried by a soliton in t
problem forT aboveTN was reported in Ref. 8. As it wa
mentioned before, the mechanism responsible for the da
ing in this case can be attributed to the soliton-soliton co

e FIG. 3. Reflection coefficient as a function of the momentu
The continuous line corresponds tor50.14, the dotted line tor
50.31, and the dashed line is forr50.50.
5-8
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sions. However, as far as we know, the influence of the
chastic motion of the TMMC solitons belowTN in the
dynamical properties of the system remains an open p
lem. Therefore, in this section we will investigate the dep
dence of the DSF of the TMMC with respect to the tempe
ture and the magnetic field forT below the transition
temperature.

We will assume that belowTN the system is composed b
a dilute gas of 2p solitons that evolve in time according t
Eq. ~44!. The longitudinal and transverse dynamical struct
factors can be defined as

S uu(')5
1

~2p!2E E dtdzei (qz2vt)^Sx(y)~0,0!Sx(y)~z,t !&,

~67!

whereSx(y) corresponds to the time-dependent spin com
nent in thex(y) direction given by Eqs.~75! and ~50!.

To begin with, let us recall the main results for the d
namical structure factor reported in Ref. 11. Using the mo
of noninteracting 2p-soliton gas in the ballistic regime, th
components parallel and perpendicular to the external m
netic field can be written as

S uu~q,v!5
1

2p
nsS

2uFx~q!u2G~q,v!, ~68!

FIG. 4. The damping coefficient in units ofJiS as a function of
the temperature for different values ofr. The continuous line cor-
respond tor50.14, the dashed line forr50.31, and the dotted line
for r50.50.
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S'~q,v!5d~q!d~v!S2@12nsF
y~0!#2

1
1

2p
nsS

2uFy~q!u2G~q,v!, ~69!

wherens is the soliton density and

G~q,v!5A2pbEs

q2c2
exp2

bEsv
2

2c2q2
, ~70!

Fx~q!5
ipd

2

sin~qds!

cosh~qpdA12a/8!
, ~71!

Fy~q!5
pd

2

sin~qds!

sinh~qpdA12a/8!
, ~72!

with

Es52BgmBS@A114b' /b214b'b22 sinh21~bb'
21/2/2!#,

~73!

s5
A12a

8
lnS 2

a
211

2

a
A12a D , d5

8

b
. ~74!

The correlations described by Eq.~69! are induced by
single kinks moving from the origin to the positionz in a
time interval from 0 tot. As expected, the Maxwellian ve
locity distribution used to describe the 2p-kink gas is di-
rectly reflected in the Gaussian dependence of the longit
nal structure factor with the frequency.

With the previous results in mind we can go further
and study the influence of the dissipative regime in the
namical properties of the 2p-kink gas. As it was shown be
fore, below the transition temperature the 2p solitons move
in a dissipative regime according to

Sx(y)
„z~ t !2z0…5

1

A4pDutu
E

2`

1`

Sx(y)~z2z02R!

3exp2
~R2p f~ t !/Ms!

2

2Dutu
dR, ~75!

where

f ~ t !5
1

2g
~12e22gt!. ~76!

Now, substituting Eqs.~75! and ~76! in the general ex-
pression~67! and taking the mean value we get

S i~q,v!5
nsS

2

2p
iFx~q!i2G~q,v!, ~77!

S'~q,v!5d~q!d~v!S2@12nsF
y~0!#2

1nsS
2uFy~q!u2G~q,v!, ~78!

where the functionG(q,v) is now given by
5-9
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G~q,v!5E
2`

`

expF2
q2c2

2Esb
f 2~ t !2q2Dutu2 ivt Gdt.

~79!

It is important to notice that when the diffusion and dam
ing constants tend to zero in Eq.~79!, we can write

G~q,v!5E
2`

`

expF2
q2c2

2Esb
t22 ivt Gdt

5A2pbEs

q2c2
exp2

bEsv
2

2c2q2
, ~80!

which is precisely the ballistic result~70!. On the other hand
to perform the time integration it is convenient to use t
expansion

expF2
q2c2

2Esb
f 2~ t !G5 (

n50

`
~21!n

n! S q2c2

2bEsg
2D n

3 (
m50

2n

~21!mCm
2ne22mgutu, ~81!

where

Cm
2n5

~2n!!

m! ~2n2m!!
. ~82!

Now, substituting Eqs.~81! and ~82! in Eq. ~79! we get

G~q,v!5 (
n50

`

(
m50

2n

Cm
2n~21!n1m

n! S q2c2

2Esbg2D n

3
4mg12q2D

~2mg1q2D !21v2
, ~83!

which together with Eqs.~77! and~78! define the dynamica
structure factor in both directions, namely, parallel and p
pendicular to the external magnetic field. In order to ge
better idea of the changes introduced by the soliton diffus
and damped motion in the DSF, we show in Fig. 5 a numeri-
cal evaluation of Eq.~83! and the corresponding ballisti
behavior~69!. As it can be seen, the damped/diffusive m
tion of the solitons~due to interaction with magnons! for
temperatures belowTN , changes the behavior of the dynam
cal structure factor reducing and flattening the central pea
any direction. On the other hand, as the external field
comes weaker~smallr values! G(q,v) tends to the ballistic
behavior as expected from the results of thep-soliton dy-
namics.

Although the expression~83! is valid for all finite values
of q, it is helpful to study the behavior of Eq.~79! for small
momentum and get a simpler expression that can be e
compared to the experiments. Assuming that

q!
g

c
A2bEs, ~84!

the integral in Eq.~79! becomes
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G~q,v!5E
2`

1`F12
q2

2Esbg2
~12e2gutu!2G

3exp~2q2Dutu2 ivt !dt, ~85!

that can be easily evaluated giving

G~q,v!5
2q2D

q4D21v2
2

q2

2pbg2 S 2q2D

q4D1v2

1
2q2D14g

~q2D12g!21v2
2

2~q2D12g!

~q2D1g!21v2D .

~86!

Within the approximation of small momentum, the beha
ior of S uu(')(q,v) with frequency, changes from the ‘‘Gaus
ian’’ central peak to a ‘‘Lorentzian’’ dependence. Therefo
as the temperature is lowered belowTN , the central-peak
behavior is replaced by a flatter one in the frequency dom
This result is a direct consequence of the dissipative reg
of the 2p soliton and, as the damping constantg can be
controlled by changing the temperature and/or the magn
field, a possible indication of a nonballistic regime has be
found.

FIG. 5. TheG(q,v) function for q51 at T50.5 K. The con-
tinuous line correspond to the ballistic case while the squares,
angles, and dots correspond tor50.14, r50.31, andr50.50
cases, respectively.
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VII. CONCLUSIONS

In this paper we have analyzed the magnetic soliton
namics from the quantum field theory point of view. We ha
shown that within this framework, the soliton momentum
coupled to the momentum of the linear excitations of t
system~magnons! giving a separate contribution from th
soliton-soliton collisions to the damping process. Our res
show that the magnetic solitons in the TMMC move as
Brownian particle depending on the system temperat
Two different situations were analyzed separately; the fi
above the transition temperatureTN where thep soliton
moves without dissipation. From this fact we can conclu
that the soliton-magnon coupling does not affect the soli
dynamics aboveTN and therefore do not contribute to th
mechanism proposed by Sassaki and Maki8 to explain the
origin of the damped motion in such a situation. On the ot
hand, when the temperature is belowTN any damping effect
should be related to the momentum-momentum coupling
tween the soliton and the magnons thermal bath since
mechanism proposed in Ref. 8 is no longer valid.

The calculation of the transport properties of the 2p soli-
ton was performed from the microscopic basis and no p
nomenological assumptions were made. The damping
diffusion constants used to describe the soliton dynam
obey the fluctuation-dissipation theorem and a
temperature-dependent quantities, since the magnons
be thermally activated in order to scatter the soliton. A
though the formulation used to compute the damping par
eter is valid for all values of the external magnetic field, w
have restricted ourselves to the study of weak fields in or
to avoid a more cumbersome treatment. Therefore, so
more care is required in the case of moderate fields if
wants to employ more realistic values for the damping a
diffusion constants when comparing our results to the exp
mental data. Nevertheless, the results presented in this w
are a clear evidence that the dissipation and/or diffusive
fects, coming from the soliton-magnon coupling, tend to fl
ten off the central peak typical of the ballistic soliton motio
nar

hys
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APPENDIX CONSTANTS

A~ t !5
Msg

p E
0

V

n coth
\n

2KT
An~ t !dn ~A1!

An~ t !5
e22gt

sin2 vt
E

0

tE
0

t

sinvt cosn~t2s!eg(t1s) sinvsdtds

~A2!

B~ t !5
Msg

p E
0

V

n coth
\n

2KT
Bn~ t !dn ~A3!

Bn~ t !5
2e2gt

sin2 vt
E

0

tE
0

t

sinvt cosn~t2s!eg(t1s)

3sinv~ t2s!dtds ~A4!

C~ t !5
Msg

p E
0

V

n coth
\n

2KT
Cn~ t !dn ~A5!

Cn~ t !5
1

sin2 vt
E

0

tE
0

t

sinv~ t2t!cosn~t2s!eg(t1s)

3sinv~ t2s!dtds ~A6!

K~ t !5
Msv

2
cotvt L~ t !5

Msve2gt

2 sinvt
N~ t !5

Msvegt

2 sinvt
~A7!
o
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