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Zero-field time correlation functions of four classical Heisenberg spins on a ring
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A model relevant for the study of certain molecular magnets is the ring ofN54 classical spins with equal
near-neighbor isotropic Heisenberg exchange interactions. Assuming classical Heisenberg spin dynamics, we
solve explicitly for the time evolution of each of the spins. Exact triple integral representations are derived for
the auto, near-neighbor, and next-nearest-neighbor time correlation functions for any temperature. At infinite
temperature, the correlation functions are reduced to quadrature. We then evaluate the Fourier transforms of
these functions in closed form, which are double integrals. At low temperatures, the Fourier transform func-
tions explicitly demonstrate the presence of magnons. Our exact results for the infinite-temperature correlation
functions in the long-time asymptotic limit differ qualitatively from those obtained assuming diffusive spin
dynamics. Whether such explicitly nonhydrodynamic behavior would be maintained for large-N rings is dis-
cussed.
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I. INTRODUCTION

Recently, there has been a rapidly growing interest in
physics of molecular magnets.1,2 These compounds can b
synthesized as single crystals of identical molecular un
each containing several paramagnetic ions that mutually
teract via Heisenberg exchange. The intermolecular~dipole-
dipole! magnetic interactions are in the great majority
cases utterly negligible as compared to intramolecular m
netic interactions. Measurements of the magnetic prope
therefore reflect those of the common, individual molecu
units of nanometer size. Their dynamics can be studied
inelastic neutron scattering, as well as by nuclear magn
resonance and electron paramagnetic resonance experim
Some of these molecular magnets are made of very s
clusters of magnetic ions. The smallest clusters are dimer
V41(S51/2) and of Fe31(S55/2),3,4 a nearly equilateral tri-
angle array of V41 spins,5 a nearly square array of Nd31

~total spinj 59/2),6 a regular tetrahedron of Cr31 (S53/2),7

a frustrated tetrahedral pyrochlore of Tb31 (S55/2),8 and a
‘‘squashed’’ tetrahedron of Fe31 spins.9,10 There has also
been an example of a four-spin ring that is coupled to nea
rings, although the spin value (S51/2) is small, and thus
requires a quantum treatment.11 In addition, larger rings,
most notably with 6, 8, or 10 Fe31 spins, have been
studied.12–14

In some of these systems, the spin value of an individ
magnetic ion is large enough that the dynamics can
closely approximated by the classical theory, as long as
does not go to temperatures that are too low. Thus, i
useful to study such systems theoretically, in order to inv
tigate the types of dynamical spin behavior that can oc
Such investigations can provide helpful physical insight,
well as some guidance for systems that might be stud
experimentally. It will also be interesting to compare t
classical results with those emerging from studies of th
quantum analogs, such as has been done for the dimer
the equilateral triangle.15,16
0163-1829/2001/64~10!/104424~16!/$20.00 64 1044
e

s,
n-

f
g-
es
r
y

tic
nts.
all
of

y

al
e

ne
is
s-
r.
s
d

ir
nd

Perhaps more interesting, however, is the question a
whether the long-time asymptotic behavior of the two-sp
correlation functions at infinite temperature will be cons
tent with the results of a hydrodynamiclike theory, in whic
the exact equations governing the spin dynamics are appr
mated by linear-diffusion-like equations@see Eq.~60!#. This
question has been the subject of much debate in
literature,17–23 and a solution of the spin dynamics for th
four-spin ring might aid in our understanding of this mo
fundamental problem. Here we derive exact results that
plicitly demonstrate that the infinite-temperature, long-tim
asymptotic limits of theN54 two-spin correlation functions
are nonhydrodynamic.

The layout of the paper is as follows. In Sec. II, we gi
the notation, partition function, and derive the exact tim
evolution of the individual spin vectors. In Sec. III, we giv
the results for the time correlation functions. At infinite tem
perature, these results can be expressed as single inte
but at finite temperatures, they are triple integrals. We a
present our derivation of the Fourier transforms of the dev
tions of the correlation functions from their infinite tim
asymptotic limits. Finally, we invite the reader to read o
discussion and conclusions in Sec. IV, even if one has on
minimal interest in the mathematical developments presen
in Secs. II and III. In this final section, we also discuss t
nonhydrodynamic aspects of our exact results for
infinite-temperature, long-time asymptotic behaviors of t
two-spin correlation functions, and raise the question as
whether such nonhydrodynamic features might be ma
tained for larger rings.

II. SPIN DYNAMICS

A. Notation and partition function

We study the dynamics of four interacting spins on a rin
Each spin can assume an arbitrary direction and inter
only with its two nearest neighbors. We label the sp
S1 ,S2, etc., whereuSi u51.
©2001 The American Physical Society24-1
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RICHARD A. KLEMM AND MARSHALL LUBAN PHYSICAL REVIEW B 64 104424
The Hamiltonian for this system is thus

H52J(
i 51

4

Si•Si 11 ~1!

52~J/2!~S22S13
2 2S24

2 !, ~2!

where S55S1 , S135S11S3 , S245S21S4, and S5S13
1S24.24

The partition functionZ5Tr exp(2bH) can be written as

Z5S )
i 51

4 E dV i

4p D E
0

2

dS13E
0

2

dS24E
uS132S24u

S131S24
SdS

3exp@a~S22S13
2 2S24

2 !#, ~3!

5E
0

2

dx
cosh~4ax!21

2a2x
, ~4!

anda5bJ/2. Equation~4! was obtained previously,24 and an
analysis of the integral was also presented.

B. Exact time evolution

The dynamics of the spins arise from the Heisenb
equations of motion,

dSi

dt
5

1

t (
j 51
^ i j &

N

Si3Sj , ~5!

where SN1 i5Si for any integeri. Our primary concern in
this paper is the caseN54, for which Eq.~5! may be rewrit-
ten as

dS1,3

dt
5

1

t
S1,33S24, ~6!

dS2,4

dt
5

1

t
S2,43S13, ~7!

which lead todS/dt50 and

dS13,24

dt
5

1

t
S13,243S. ~8!

The phenomenological classical spin precession rate 1/t can
be obtained from first principles, starting from a quantu
Heisenberg model whose classical counterpart is given
Eq. ~1!. In that case, 1/t5J/\. Since Eq. ~8! implies
d(S13

2 )/dt5d(S24
2 )/dt50, this equation describes the prece

sion of the vectorsS13 andS24 about the constant vectorS,
keeping their lengths invariant. Each individual spin e
ecutes a more complicated dynamics, precessing abou
particular S13 or S24 that describes the sum of its nea
neighbor spins, which is itself precessing about the cons
S. From well-known examples of rigid-body dynamics, w
thus expect that the motion of the individual spin vectors w
feature two frequencies, one for precession aboutS, and the
other for precession about eitherS6S24 or S6S13, respec-
tively.
10442
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The conservation ofS enables us to solve Eq.~8! exactly.
SinceS5S131S24 at all times, it is convenient to describ
the motion in terms of the plane containing the three vect
S, S13, andS24. We then write

S13,24~ t !5C13,24ŝ1A13,24@ x̂ cos~St/t!2 ŷ sin~St/t!#,
~9!

where ŝ is a unit vector parallel toS, and x̂ and ŷ are unit
vectors normal toS satisfyingx̂3 ŷ5 ŝ, thus completing the
orthonormal basis set. The four constantsA13, A24, C13, and
C24 are obtained from the equationsS13

2 5S13
2 , S24

2 5S24
2 , and

S131S245S. We find

C245
S21S24

2 2S13
2

2S
5S2C13 ~10!

and

A2452A135@S24
2 2C24

2 #1/2. ~11!

We now determine the individual spin vectorsSi . Be-
cause the four equations in Eqs.~6! and ~7! have the same
general structure, it suffices to focus on just one of them,
S2(t). We writeS2 in terms of its components,S2s , S2x , and
S2y , and make use of the standard Fourier transformS2i(t)
5*dv/2p exp(ivt)S2i(v). We also letS265S2x6 iS2y , and
v65v6S/t. We then obtain

vS2s~v!5
A13

2t
@S21~v2!2S22~v1!# ~12!

and

vS26~v!57
C13

t
S26~v!6

A13

t
S2s~v6!. ~13!

Solving for S26(v), and then replacingv by v7 , we have

S26~v7!5
A13S2s~v!

2C246vt
. ~14!

Solving for S2s(v), we find thatS2s(v) vanishes unless
v50,6S24/t. Thus, we write

S2s~v!52pS2s0d~v!1pDS2s0@eif20d~v2S24/t!

1e2 if20d~v1S24/t!#, ~15!

or in real time,

S2s~ t !5S2s01DS2s0cos~S24t/t1f20!, ~16!

where the constantsS2s0 and DS2s0 will be determined be-
low, and f20 is the arbitrary angle thatS2 initially makes
with the plane containingS, S13, and S24. We note, how-
ever, that2S4 must make the same initial anglef20 with
this plane, since both spins have unit length, and their s
S24 is contained within that plane. Analogously,S1 and
2S3 both make the arbitrary initial anglef10 with that
plane.

From Eq.~14!, we find,
4-2
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ZERO-FIELD TIME CORRELATION FUNCTIONS OF . . . PHYSICAL REVIEW B 64 104424
S26~ t !5
A24

C24
S2s0exp~7 iSt/t!1

A24DS2s0

2@S241C24#

3exp$7 i @~S1S24!t/t1f20#%2
A24DS2s0

2@S242C24#

3exp$7 i @~S2S24!t/t2f20#%. ~17!

SinceSi
2(t)51 for i 52,4, the amplitudesSis0 andDSis0

satisfy

S24
2 S Sis0

2

C24
2 1

~DSis0!2

A24
2 D 51, ~18!

which is independent off20. Then, sinceS4(t)5S24(t)
2S2(t), we find

S2s05S4s05C24/2 ~19!

and

DS2s052DS4s05
A24

S24
@12S24

2 /4#1/2. ~20!

In Eq. ~20!, we have made the arbitrary choice of assig
ing the positive sign toDS2s0, but that does not affect any o
the results. Thus, we have now completely determined
dynamics ofS2(t) andS4(t), except for the arbitrary phas
f20 representing the angle thatS2(0) makes with the plane
containingS, S24, andS13. Similarly, S1(t) is obtained from
Eqs.~16! and~17! by replacingA24, C24, S24, andf20 with
A13, C13, S13, andf10, respectively.S3(t) is then obtained
from S1(t) in the same way asS4(t) was obtained from
S2(t).

III. TIME CORRELATION FUNCTIONS

In this section, we utilize the exact results for the dyna
ics of the four spin vectors derived in the previous section
obtain analytical formulas for the three distinct time corre
tion functions.

A. General results

There are three inequivalent correlation functions, wh
we denote by C22(t)5^S2(t)•S2(0)&, C12(t)
5^S1(t)•S2(0)&, and C24(t)5^S2(t)•S4(0)&, where ^•••&
5Tr@exp(2bH)•••#/Z. These are the spin-spin autocorre
tion function, the near-neighbor spin-spin correlation fun
tion, and the next-nearest-neighbor spin-spin correla
function, respectively. In evaluating these functions, we m
average over the initial conditions, which means not only
averages overS, S24, andS13, but also over the initial angle
f10 andf20, which are present in Eq.~3! in the integrations
over the solid anglesV1 and V2. We note that all of the
correlation functions depend upon the temperature thro
the parametera, but to keep the notation simple, we su
press that dependence.

We then find that the three correlation functions may
written as
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C22~ t !5I 01I 1~ t !1I 2~ t !1I 3~ t !, ~21!

C12~ t !5^S2&/82I 02I 1~ t !, ~22!

and

C24~ t !5I 01I 1~ t !2I 2~ t !2I 3~ t !, ~23!

where

I 05
1

4
^C24

2 &, ~24!

I 1~ t !5
1

4
^A24

2 cos~St/t!&, ~25!

I 2~ t !5
1

2 K A24
2

S24
2 @12S24

2 /4#cos~S24t/t!L , ~26!

and

I 3~ t !5
1

2 K @12S24
2 /4#

S24
2 $@C24

2 1S24
2 #cos~St/t!cos~S24t/t!

12C24S24sin~St/t!sin~S24t/t!%L . ~27!

^S2& and the functions in Eqs.~24!–~27! are triple integrals
given in the Appendix.

We remark that theCi j (t) satisfy the conservation law

C22~ t !1C24~ t !12C12~ t !5^S~ t !•S~0!&/45^S2&/4, ~28!

a temperature-dependent quantity. Hence, in the infinite t
limit, two of the three correlation functionsCi j (t) approach
the same limit

limt→`C22~ t !5 limt→`C24~ t !5I 0 , ~29!

but

limt→`C12~ t !5^S2&/82I 0 , ~30!

since the other terms vanish due to the infinite number
oscillations of the integrand within the interval of integr
tion. This is essentially a consequence of angular momen
conservation.25

B. Reduction to quadrature at infinite temperature

1. Analytic results at infinite temperature and time

In the limits t,T→`, we can evaluate theCi j (t) analyti-
cally. From Eqs.~21!, ~23!, and~22!, we note that these thre
functions are all given by theT→` limit of I 0 and theI i(t)
for i 51, 2, and 3. We first consider the simplest of these,I 0,
which gives thet→` limit. We find,

lim
t→`
T→`

C22~ t !5 lim
t→`
T→`

C24~ t !5 1
4 1d4 ~31!

and
4-3
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RICHARD A. KLEMM AND MARSHALL LUBAN PHYSICAL REVIEW B 64 104424
lim
t→`
T→`

C12~ t !5 1
4 2d4 , ~32!

where

d45 8
45 ln 22 11

180'0.062 115. ~33!

At first sight, one might have intuitively expected that t
threeCi j (t) should be equal to each other ast,T→`, and
since lim

T→`
^S2&/451, Eq.~28! would require each of them

to equal 1/4. This expectation is in fact the result predic
by conventional diffusive spin dynamics in the infinite tem
perature limit.26 Moreover, for finite times that formalism
predicts that all of the correlation functions depart from th
common infinite-time limit by terms that decay exponentia
to zero. However, our present rigorous results, Eqs.~31!–
~33!, as well as Eqs.~37!–~39! in the following, show that
these expectations are without foundation. Similar findin
apply for the following simpler systems: the classical dim
equilateral triangle, and regular tetrahedron,26 for which the
exact time correlation functions are derived as o
dimensional integrals for all times and temperatures.

2. One-dimensional integral representations

In this subsection, we give one-dimensional integral r
resentations for the three time correlation functions at infin
temperature. One important advantage of these redu
forms is that they allow us to easily derive analytical form
las for the leading corrections to the long-time asympto
values for finite times of each of the correlation function
Another important advantage is that it becomes possibl
obtain extremely accurate numerical values for the infin
temperature correlation functions for all times. By compa
son, for finite temperature, accurate numerical evaluation
the three-dimensional integrals in Eqs.~24!–~27! becomes a
major challenge.

We have found that the three functionsI i(t) may be writ-
ten as

lim
T→`

I 1~ t !5E
0

2

ds f1~s!cos~st* !1E
2

4

ds g1~s!cos~st* !,

~34!

lim
T→`

I 2~ t !5E
0

2

ds f2~s!cos~st* !, ~35!

and

lim
T→`

I 3~ t !5E
0

2

ds f3~s!cos~st* !1E
2

4

ds g3~s!cos~st* !

1E
4

6

ds h3~s!cos~st* !, ~36!

where t* 5t/t, and analytic forms for thef i(s), gi(s), and
h3(s) are listed in the Appendix. The infinite-temperatu
correlation functionsC22(t), C24(t), andC12(t) are then sim-
ply found by using Eqs.~21!–~23!. Thus, we have reduce
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these infinite-temperature correlation functions to quad
ture. They are shown for 0<t/t<10 in Fig. 1~a!.

We remark that the infinite-temperature autocorrelat
function C22(t) was obtained previously using a purely n
merical procedure.17 In Fig. 1~b!, we have compared thos
published results with our exact formula at infinite tempe
ture. Although there was some distortion in the axes in
published figure, using a pure rotation to account for t
distortion led to the excellent agreement between the num
cal and exact results.

From Fig. 1~a!, the autocorrelation functionC22(t) de-
creases from its initial valueC22(0)51, then undershoots its
aymptotic limit 1

4 1d4, and approaches this limit by oscilla
ing about it for a rather long time. On the other hand, sp
on different sites are initially uncorrelated at infinite tem
perature,C12(0)5C24(0)50. At later limes, these function
both overshoot their respective asymptotic limits1

4 2d4 and
1
4 1d4, and then oscillate about them. The oscillations
C12(t) decay so rapidly that they are barely discernible in t
figure. On the other hand, the oscillations ofC24(t) are of the
same amplitude and persist as long as do those ofC22(t), and
are likewise easily seen in this figure. In addition, afterC22(t)

FIG. 1. ~a! Plot of C12(t) ~solid!, C24(t) ~dotted!, and C22(t)
~dashed! vs t/t in the infinite temperature limita50. ~b! Compari-
son of the numerical results of Mu¨ller ~Ref. 17! ~dashed! with our
exact results~solid! for the infinite temperature (a50) autocorre-
lation functionC22(t).
4-4
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ZERO-FIELD TIME CORRELATION FUNCTIONS OF . . . PHYSICAL REVIEW B 64 104424
andC24(t) first become equal to each other, they braid ab
each other in their approaches to the same aymptotic lim

In order to see more clearly how this occurs, we ha
found analytic expressions for the leading behaviors of
correlation functions for long times,t@t. We first consider
C12(t). In this case, besides the constantI 0, we only need to
evaluateI 1(t). To do so, we integrate both terms in Eq.~34!
by parts, treating cos(st* ) as the variable to be integrate
and f 1(s) and g1(s) as the variables to be differentiate
From the results in the Appendix, it is seen thatf 1(s) and
g1(s) as well as their first three derivatives are continuous
s52. In addition, since the relevant integration endpoint v
ues and derivatives ats50 ands54 also make no contribu
tion through third order in the repeated integrations by pa
the leading contribution to the aymptotic behavior arise fr
the nonvanishingf 1-(0) andg1-(4). Thefinal result for the
leading behavior is given by

lim
T→`
t@t

C12~ t !→1

4
2d41

1

4t* 4 F3

4
2cos~4t* !G . ~37!

On the other hand,C22(t) andC24(t) at infinite tempera-
ture also depend uponI 2(t) andI 3(t). Again, we integrate by
parts in a similar fashion, treatingf 2(s), f 3(s), g3(s), and
h3(s) as the variables to be differentiated. The leading n
vanishing contributions toC22(t) andC24(t) from these inte-
grations by parts are both of second order. ForI 2(t), the
leading nonvanishing contribution comes from the nonv
ishing f 28(0) and f 28(2), the latter of which is a nontrivial
number. ForI 3(t), the leading nonvanishing contributio
arises fromf 38(0), f 38(2), andg38(2). Although both f 3(s)
and g3(s) have nontrivial values and derivatives at the
matching points52, the difference between their derivative
is a trivial, but nonvanishing value. In addition, the functio
f 3(s) andg3(s) both have nontrivial values and derivative
at their matching points54, but these values and derivative
are equal, and thus their contribution in second order to
integration by parts vanishes. We thus obtain the long-t
behaviors at infinite temperature,

lim
T→`
t@t

C22~ t !→1

4
1d41

1

60t* 2@52~2918 ln 2!cos~2t* !#,

~38!

and

lim
T→`
t@t

C24~ t !→1

4
1d42

1

60t* 2@52~2918 ln 2!cos~2t* !#.

~39!

We note thatC12(t) decays much more rapidly (}1/t* 4)
to its constant long-time limit than do eitherC22(t) or C24(t)
(}1/t* 2). The long-time braiding of these functions abo
each other arises from the opposite signs of their oscilla
terms. Furthermore, at long times,C12(t) oscillates with
twice the frequency of the long-time oscillations ofC22(t)
andC24(t).
10442
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C. Results for finite temperatures

At finite T, we evaluateI 0(a) and ^S2&(a) numerically.
For uau,1, breaking each integral into 100 intervals is su
ficient to obtain 0.1% accuracy. Note that this means th
are 106 integration intervals overall. However, for low
T(uau.1), the number of intervals necessary to obtain t
degree of accuracy increases. Atuau510, one needs to brea
up each integration domain into 400 intervals, for instan
In Fig. 2, we have plotted the infinite-time limit of the spin
spin correlation functionsI 0(a) and^S2&/82I 0(a) for both
the ferromagnetic~FM! and antiferromagnetic~AFM! cases.
As a→0, one obtains the analytic limits given by Eqs.~31!
and ~32!. However, in the lowT limit uau→`, both I 0 and
^S2&/82I 0→0(1) for the AFM~FM! case, respectively. This
just tells us that atT50, all of the spins are aligned in th
FM case, and in the AFM case, their sum is 0. We note t
for uau!1, I 0(a) obeys the inversion symmetry, equivale
to ]I 0 /]aua50 exists. We note that for the AFM case
lim

t→`
C12(t) is negative fora,20.71. This just reflects the

FIG. 2. Plot of I 0(a)5 limt→`C22(t)5 limt→`C24(t) and
^S2&/82I 0(a)5 limt→`C12(t), as a function ofuau, for the FM
(a.0) and AFM (a,0) cases.

FIG. 3. Plots ofC12(t) vs t/t for the a5bJ/2 FM cases 0, 0.5,
2, and 10, as indicated.
4-5
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RICHARD A. KLEMM AND MARSHALL LUBAN PHYSICAL REVIEW B 64 104424
fact that for the antiferromagnetic ring, the spins on neig
boring sites are anticorrelated at long times and for temp
tures that are not too large.

At finite T we also may evaluate theI i(t) numerically
from the triple integral forms, Eqs.~24!–~27!. As for I 0, we
break each of the three integrals intoN intervals. At the
lowestT values considered (a5220), it is necessary to tak
N>1000 to achieve sufficient accuracy. In Figs. 3–5,
have plotted theCi j (t) for the FM case witha50.5, 2, and
10, and compared with the analytic results fora50. In each
of these figures,C12(t) decays to the equilibrium valu
^S2&/82I 0(a) more rapidly thanC22(t) andC24(t) decay to
their mutual equilibrium valueI 0(a), while oscillating for a
few periods about the latter. AsT decreases, all of theCi j (0)
increase monotonically, approaching unity asT→0. In addi-
tion, the oscillations persist to much longer times. Also,
seen in Figs. 3 and 6, asT decreases,C12(t) oscillates for an
increasing amount of time, andC22(t) and C24(t) oscillate
about it for an even longer period of time.

At lower T, the amplitudes of the oscillations eventua
reach a maximum, so that the oscillations inC12(t) for a
50.5,2,10 are distinctly noticeable. AsT→0, the lifetimes

FIG. 4. Plots ofC22(t) vs t/t for the a5bJ/2 FM cases 0, 0.5,
2, and 10, as indicated.

FIG. 5. Plots ofC24(t) vs t/t for the a5bJ/2 FM cases 0, 0.5,
2, and 10, as indicated.
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of the oscillations appear to diverge, but their amplitud
become vanishingly small. Ata510, we have shown the
behaviors ofC12(t) ~solid!, C22(t) ~dashed!, andC24(t) ~dot-
ted! together in Fig. 6 for the extended time domain 0<t/t
<30. Throughout this domain, the decay of the oscillatio
in all three correlation functions is small but discernib
However, careful inspection of the oscillating waveforms
veals thatC12(t) oscillates with twice the frequency of th
other two, continuing the pattern that we have already s
for infinite temperature. Note thatC12(t) appears to oscillate
nearly as a simple cosine function, butC22(t) andC24(t) have
a more complicated oscillatory behavior, with a fundamen
frequency that is one-half that ofC12(t), and they are almos
completely out of phase with respect to one another.

The corresponding results for the AMF case are shown
Figs. 7–9, for whicha520.5, 22, and220, respectively.
The last of these,a5220, took weeks of computationa
time to obtain sufficient accuracy. In these cases, we p
sented theC12(t), C22(t), and C24(t) data as solid, dashed
and dotted curves, respectively. We note that as the temp
ture is lowered,C12(0) decreases towards the value21,

FIG. 6. Plot of C12(t) ~solid!, C24(t) ~dotted!, and C22(t)
~dashed! vs t/t for the low-temperature FM casea5bJ/2510.
Note thatC22(0)51 andC24(0)'0.95.

FIG. 7. Plot of C12(t) ~solid!, C24(t) ~dotted!, and C22(t)
~dashed! vs t/t for the AFM casea520.5.
4-6
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ZERO-FIELD TIME CORRELATION FUNCTIONS OF . . . PHYSICAL REVIEW B 64 104424
which would correspond to perfect AFM behavior. Howev
C12(t) then increases witht, reaches a maximum, and the
decreases to the asymptotic, infinite time limit. In additio
as T is lowered,C24(0) increases towards11, approaching
C22(0). Then, at some timet1 , C22(t1) first equalsC24(t1),
and thereafter, the two functions are braided about e
other. The braiding oscillations decrease in amplitude asT is
decreased, so that the overallCi j (t) all approach nonoscilla
tory uniform curves asT→0.

From numerical simulation studies of more complicat
mesoscopic classical systems, it has been suggested th
low-temperature AFM autocorrelation function should sca
approaching uniform functions oftT1/2.27 In fact, this behav-
ior has been established by analytical means for the sim
cases of the classical dimer, equilateral triangle, and reg
tetrahedron.24,26To investigate whether such a scenario ho
for this exactly solved four-spin system, in Fig. 10, we the
fore plottedC22(t) versus t/@tubJ/2u1/2#, which is propor-
tional to tT1/2. Indeed, the curves do scale, except for t
braiding oscillations, which are decreasing in magnitude aT
decreases. Thus, curves for the lowest two temperaturea

FIG. 8. Plot of C12(t) ~solid!, C24(t) ~dotted!, and C22(t)
~dashed! vs t/t for the AFM casea522.

FIG. 9. Plot of C12(t) ~solid!, C24(t) ~dotted!, and C22(t)
~dashed! vs t/t for the very low-temperature AFM casea5220.
10442
,

,

ch

the
,

er
ar
s
-

e

5210 anda5220, would nearly fall on top of each other
the oscillations were not present. Similar low-temperat
scaling behavior ofC24(t) is shown in Fig. 11, which also
includes the braiding oscillations.C12(t) exhibits a clearer
example of the scaling, as shown in Fig. 12, since it does
contain any braiding oscillations. The major deviation fro
scaling occurs at very short times, although the differen
between the curves ata5210 anda5220 are not so large
there. SinceC12(0)521 in the zero-temperature limit, thi
deviation from scaling probably arises from the fact that
T50 limit has not yet been reached for such short times

At higher temperatures, the scaling property gradua
breaks down. This is clearly seen fora520.5 in Figs. 11
and 12, for which the short-time values ofC24(t) andC12(t)
deviate greatly from the values~1 and21) obtained respec
tively in the low-temperature limita→2`. For C12(t), the
deviations are also rather large at long times. However,

FIG. 10. Plot of C22(t) as a function of the scaled tim
t/@tubJ/2u1/2#, for the a5bJ/2 AFM cases20.5, 21, 22, 25,
210, and220, correspondingly from top to bottom at larget/t, as
indicated.

FIG. 11. Plot of C24(t) as a function of the scaled tim
t/@tubJ/2u1/2#, for the a5bJ/2 AFM cases20.5, 21, 22, 25,
210, and220, correspondingly from top to bottom at larget/t, as
indicated.
4-7
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RICHARD A. KLEMM AND MARSHALL LUBAN PHYSICAL REVIEW B 64 104424
all three correlation functions, even ata520.5, the posi-
tions of the dip forC22(t) andC24(t) and the peak forC12(t)
still scale.

D. Fourier transforms

We now evaluate the Fourier transformsĨ i(v) of the
I i(t). SinceC22(t) andC24(t) both approach the constantI 0
Þ0 as t→`, and C12(t) approacheŝ S2&/82I 0Þ0 in the
same limit, theI 0Þ0 or ^S2&/82I 0Þ0 present in the respec
tive Ci j (t) give rise to delta functions in terms of the angu
frequency v, in C̃i j (v), equal to either 2pI 0d(v) or
2p(^S2&/82I 0)d(v), which can be written down by inspec
tion. We shall therefore evaluate the Fourier transform of
deviationsdCi j (t)5Ci j (t)2 limt→`Ci j (t),

d C̃i j ~v!5E
2`

`

dte2 ivtdCi j ~ t !. ~40!

Causality requires thatd C̃i j (2v)5d C̃i j (v). Thus, it suf-
fices to evaluate thed C̃i j (v) for v>0. We first evaluate
Ĩ 2(v), and letṽ5vt. For simplicity of notation, we replace
the integration variablesS13, S24, andS by x, y, ands, re-
spectively. Since the only time-dependence within the
pression forI 2(t) appears in the factor cos(yt/t), Fourier
transformation replaces this factor with@d(v2y/t)1d(v
1y/t)#/2, which can be written as (t/2)@d(y2ṽ)1d(y

1ṽ)#. The secondd function does not contribute to th
Fourier transform forv.0, so we obtain forv>0,

Ĩ 2~v!5
ptQ~22ṽ !~12ṽ2/4!

8ṽZ
E

0

2

xdxE
21

1

dze2aṽxz

3S x21ṽ222xzṽ2
~x22ṽ2!2

x21ṽ212xzṽ
D , ~41!

FIG. 12. Plot of C12(t) as a function of the scaled tim
t/@tubJ/2u1/2#, for the a5bJ/2 AFM cases20.5, 21, 22, 25,
210, and220, correspondingly from top to bottom at smallt/t, as
indicated.
10442
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where Q(x) is the Heaviside step function, and we ha

made the change of variabless2→x21ṽ212xzṽ for ease of
computation.

We now evaluateĨ 1(v). As in the expression forĨ 2(v),
Fourier transformation of the factor cos(st/t) replaces it with

(t/2)@d(s2ṽ)1d(s1ṽ)#, and the second term does n
contribute to the integrals forv.0. However, since 0<s
<4, there are now two regions of integration over the va

ablesx andy. For 2<ṽ<4, the only region of integration is
the interior of the isosceles triangle with sides obeyingx

52, y52, andx1y5ṽ, and corners at their intersection

For 0<ṽ<2, the region of integration is the interior of th

pentagon with sides obeyingy52, x52, y2x52ṽ, y1x

5ṽ, andy5x1ṽ. This interior region is symmetric abou
the line y5x, and can be broken up into two regions
integration. The first region is the interior of a rectangle r
tated 45° about the axis normal to thex-y plane, with sides

obeyingy5x6ṽ andx1y526(22ṽ). The second region
is the interior of the isosceles triangle with sides obeyingy

52, x52, andy52x142ṽ.
In the triangular integration regions, we maintain the

tegration variablesx and y, keeping account of the integra
tion limits. However, in the rectangular integration region,
is convenient to perform a rotation of the axes by 45°, lett
r 5x2y, s5x1y, and incorporating the Jacobian, which r
places the differential integration areadxdywith drds/2. We
thus have

Ĩ 1~v!5
ptQ~ṽ22!Q~42ṽ !

16ṽZ
E

ṽ22

2

dxE
ṽ2x

2

dyF~x,y,ṽ !

1
ptQ~22ṽ !

16ṽZ
E

22ṽ

2

dxE
42x2ṽ

2

dyF~x,y,ṽ !

1
ptQ~22ṽ !

16ṽZ
E

0

ṽ
drE

ṽ

42ṽ
ds

3exp$a@ṽ22~r 21s2!/2#%

3@2ṽ41ṽ2~r 21s2!2r 2s2#, ~42!

where

F~x,y,ṽ !5exp@a~ṽ22x22y2!#@2ṽ412ṽ2~x21y2!

2~x22y2!2#. ~43!

Last, but by no means least, we evaluateĨ 3(v). This is
easiest to do if we first use the trigonometric relations
rewrite Eq.~27! in terms of cos@(y1s)t/t# and cos@(y2s)t/t#.
Then, after Fourier transformation, we obtain
4-8
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ZERO-FIELD TIME CORRELATION FUNCTIONS OF . . . PHYSICAL REVIEW B 64 104424
Ĩ 3~v!5
pt

16ZE0

2

dxE
0

2

dy
~12y2/4!

y2 E
ux2yu

x1y ds

s

3exp@a~s22x22y2!#$@~y1s!22x2#2

3@d~ṽ1y2s!1d~ṽ2y1s!#1@~y2s!2

2x2#2@d~ṽ1y1s!1d~ṽ2y2s!#%. ~44!

For v>0, the term containingd(ṽ1y1s) vanishes, so we
are left with three terms, which we examine separately.
denote themĨ 3n , wheren51,2,3, corresponding to the orde
in which the remainingd functions appear in Eq.~44!. The
first integral Ĩ 31 is subject to the constraintsux2yu<ṽ1y

<x1y. These constraints imply both 0<ṽ<2 and restrict
the two-dimensional integration region to the interior of t
irregular quadrangle with sides obeyingx5ṽ, y52, x52,
andy5(x2ṽ)/2. Hence,

Ĩ 31~v!5
ptQ~22ṽ !

16Z E
ṽ

2

dxE
(x2ṽ)/2

2

dyG~x,y,2ṽ !,

~45!

where

G~x,y,z!5
~12y2/4!

y2~z2y!
exp@a~z222zy2x2!#

3@~2y2z!22x2#2. ~46!

The integration regime of the second integralĨ 32(v) is
subject to the constraintsux2yu<y2ṽ<x1y. These con-
straints imply 0<ṽ<2 and restrict the two-dimensional in
tegration region to the interior of the irregular quadran
with sides obeyingx5ṽ, y52, x52, andy5(ṽ1x)/2. We
therefore write

Ĩ 32~v!5
ptQ~22ṽ !

16Z E
ṽ

2

dxE
(ṽ1x)/2

2

dyG~x,y,ṽ !.

~47!

Finally, the integration region ofĨ 33(v) is subject to the
constraintsux2yu<ṽ2y<x1y. The second constraint im
plies thatṽ can be as large as 6. For 0<ṽ<2, the integra-
tion region is restricted to the interior of the triangle wi
sides obeyingy5(ṽ2x)/2, y5(ṽ1x)/2, andx5ṽ. For 4
<ṽ<6, the integration region is restricted to the interior
the triangle with sides obeyingy52, x52, and y5(ṽ
2x)/2. In the intermediate regime 2<ṽ<4, the integration
region is the interior of the irregular quadrangle with sid
obeying y5(ṽ2x)/2, y5(ṽ1x)/2, y52, and x52. We
break this integration region up into two parts. One of the
parts is the interior of the isosceles triangle with sides ob
ing y5(ṽ2x)/2, y5(ṽ1x)/2, andx542ṽ. The second
10442
e

f

s
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region is the interior of the irregular quadrangle with sid
obeying x542ṽ, y52, x52, and y5(ṽ2x)/2. Alto-
gether, we writeĨ 33(v) as

Ĩ 33~v!5
ptQ~22ṽ !

16Z E
0

ṽ
dxE

(ṽ2x)/2

(ṽ1x)/2
dyG~x,y,ṽ !

1
ptQ~ṽ22!Q~42ṽ !

16Z F E
0

42ṽ
dxE

(ṽ2x)/2

(ṽ1x)/2
dy

1E
42ṽ

2

dxE
(ṽ2x)/2

2

dyGG~x,y,ṽ !

1
ptQ~ṽ24!Q~62ṽ !

16Z

3E
ṽ24

2

dxE
(ṽ2x)/2

2

dyG~x,y,ṽ !. ~48!

In Figs. 13–17, we present our results for thed C̃i j (v),
plotted as functions ofvt. In the figure labels, we drop th
tildes for clarity. Note that these functions are rigorously ze
for vt.6, but they are so small forvt.4 that they are
indistinguishable from zero forvt.4.1 in plots with 0
<vt<6. In each case,d C̃12(v) are the solid curves
d C̃24(v) are the dotted curves, andd C̃22(v) are the dashed
curves. At infinite temperature, these are obtained from
exact formulas for thef i(s), gi(s), and h3(s) listed in the
Appendix by simply lettings→vt, and multiplying the
overall results byp. For example,d C̃12(v)52p@ f 1(vt)
1g1(vt)#. The exact expressions for the threed C̃i j (v) are
plotted in Fig. 13. As a check on our computations, we a

FIG. 13. Plots of the exact Fourier transformsdC̃12(v) ~solid!,

dC̃22(v) ~dashed!, anddC̃24(v) ~dotted! of Ci j (t)2 limt→`Ci j (t),
as functions ofvt, in the infinite-temperature limita50.
4-9
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RICHARD A. KLEMM AND MARSHALL LUBAN PHYSICAL REVIEW B 64 104424
obtained these results by numerically evaluating thedCi j (t)
from the double integrals in the infinite-temperature lim
and the results were found to agree to within three signific
figures.

In this and in subsequent figures, we also checked
accuracy of our analytic formulas by the zero-time sum ru
the *0

`d C̃i j (v)dv/p5dCi j (0). It is seen that the function

FIG. 14. Plots of the Fourier transformsdC̃12(v) ~solid!,

dC̃22(v) ~dashed!, anddC̃24(v) ~dotted! of Ci j (t)2 limt→`Ci j (t),
as functions ofvt, for the FM casea50.5

FIG. 15. Plots of the Fourier transformsdC̃12(v) ~solid!,

dC̃22(v) ~dashed!, anddC̃24(v) ~dotted! of Ci j (t)2 limt→`Ci j (t),
as functions ofvt, for the FM casesa51, 2, 5, and 10. The peak
developing successively near tovt52,4 with decreasingT are
magnons.
10442
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all are continuous, and approach zero at largev. d C̃12(v)

<0, andd C̃22(v)>0, butd C̃24(v) has regions of both signs
In Figs. 14 and 15, we present the data for the FM case, w
a50.5 in Fig. 14, anda51, 2, 5, and 10 in Fig. 15. As the

FIG. 16. Plots of the Fourier transformsdC̃12(v) ~solid!,

dC̃22(v) ~dashed!, anddC̃24(v) ~dotted! of Ci j (t)2 limt→`Ci j (t),
as functions ofvt, for the AFM casesa520.5 and21. The
bumps developing fora521 at vt'2 are magnons.

FIG. 17. Plots of the Fourier transformsdC̃12(v) ~solid!,

dC̃22(v) ~dashed!, anddC̃24(v) ~dotted! of Ci j (t)2 limt→`Ci j (t),
as functions ofvt, for the AFM casesa522, 25, and210. The
peaks forvt'2 that successively sharpen with decreasingT are
magnons.
4-10
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ZERO-FIELD TIME CORRELATION FUNCTIONS OF . . . PHYSICAL REVIEW B 64 104424
temperature is lowered, the peak ind C̃22(v) moves to higher
v values. Moreover,d C̃22(v) and d C̃24(v) approach each
other in the region 2<vt<4, but approach the opposite o
each other in the regime 0<vt<2. Thus, in the regime 2
<vt<4 of Fig. 15, these dashed and dotted curves comb
to give a curve that appears to be dash-dotted. In addition
the temperature is lowered, the curves all develop into sh
peaks atvt'2 and 4, which are asymmetric, dropping ra
idly to zero atvt52 and 4, but having longer tails at lowe
vt values. More precisely,d C̃12(v) becomes a single pea
at vt'4, whereas the other two,d C̃22(v) andd C̃24(v) have
identical peaks atvt'4, which are opposite to that o
d C̃12(v). But, they also have larger and sharper peaks
vt'2, which are opposite in sign to each other. These pe
at vt'2,4 arise from magnons. Hence, Fig. 15 provide
simple explanation of the detail ofCi j (t) for a510 shown in
Fig. 6.

Curves for the AFM case are shown in Figs. 16 and 17
Fig. 16, we display the results fora520.5 and21 together,
and in Fig. 17, the results fora522, 25, and 210 are
shown. As the temperature is lowered, the peak ind C̃22(v)
moves to lower frequency, resulting in the slowing dow
seen in the real-time curves. It develops into two peaks
large one at lowvt, and a small one atvt'2, which is an
antiferromagnetic magnon. Note that the magnon wi
sharpens asT is lowered. Surprisingly,d C̃24(v) changes dra-
matically, mostly changing sign nearvt'2, but the smallv
behavior increases to join the smallv behavior ofd C̃22(v),
and the opposite of it in the regionvt'2. These peaks a
vt'2 arise from antiferromagnetic magnons. In additio
d C̃12(v) stays negative, and develops into a negative pea
low v, which is opposite to that ofd C̃22(v) andd C̃24(v).

Finally, in order to elucidate the nature of the slowin
down asT is lowered, in Fig. 18 we plotted our AFM resul
for a520.5, 21, 22, 25, and210 together, as a function
of the scaled frequencyvtubJ/2u1/2. We note that the posi
tion of the low-frequency peak does indeed scale, but si
the magnon appears at a fixed frequency, it does not s
The magnon is distinctly visible fora522, 25, and210 in
this figure, as noted by the arrows.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have presented the exact solution for
thermal equilibrium dynamics of four classical Heisenbe
spins on a ring. For this system, there are three relevant
correlation functions, which are the autocorrelation (C22),
near-neighbor (C12), and the next-nearest-neighbor (C24) cor-
relation functions, respectively. Using our results, we wr
exact expressions for these three functions in terms of tr
integrals. At infinite temperature, we reduced these triple
tegrals to single integrals. We also obtained analytic exp
sions for the long-time, infinite-temperature behavior of t
three correlation functions. We found that the near-neigh
correlation functionC12(t) is strikingly different from the
autocorrelation and next-nearest-neighbor correlation fu
tions, C22(t) and C24(t), respectively. Not only does it ap
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proach a different finite value asymptotically, but it also o
cillates with twice the frequency, and the oscillations dec
in amplitude much more rapidly. Although the long-tim
asymptotic values of these functions vary with temperatu
the near-neighbor correlation function similarly differs fro
the other two functions for all temperatures.

In addition, we were able to obtain the Fourier transfor
of the deviations of the correlation functions from their in
nite time asymptotic limits in terms of double integrals. A
infinite temperature, exact analytic forms for these Four
transforms were obtained. As the temperature is lowe
peaks in the Fourier transforms appear atvt52 for antifer-
romagnetic coupling, and atvt52,4 for ferromagnetic cou-
pling. These peaks sharpen up as the temperature is low
Although the origin of these peaks is purely classical, th
correspond precisely to magnons, which are usually thou
of as quantum mechanical in origin. Here the magnons a
from standing waves, such as those on a violin string. Th
standing waves arise from the periodicity of the ring, as
combination of traveling waves moving both clockwise a
counterclockwise in direction. For the antiferromagne
case, neighboring spins are opposite in direction at low te
peratures, so that two full wavelengths fit into the ring. F
the ferromagnetic case, one can have either two or four
wavelengths in the ring, the latter corresponding to ev
spin pointing in the same direction.

In the quantum mechanical analog, the magnon ener
areEn52J@12cos(kna)#, wherekn52np/L andL54a. We
thus getE050, E152J, andE254J. These latter two val-
ues correspond precisely tovt52,4.

In addition, for antiferromagnetic coupling, a secon
much larger peak in the Fourier transform functions appe

FIG. 18. Plots of the Fourier transformsdC̃12(v) ~solid!,

dC̃22(v) ~dashed!, anddC̃24(v) ~dotted! of Ci j (t)2 limt→`Ci j (t),
as functions of the scaled frequencyvtubJ/2u1/2, for the AFM cases
a520.5,21, 22, 25, and210. The magnon peaks forvt'2 do
not scale, and are marked with arrows.
4-11
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RICHARD A. KLEMM AND MARSHALL LUBAN PHYSICAL REVIEW B 64 104424
at increasingly lower frequency as the temperature is lo
ered. This second peak is found to scale withv/T1/2, corre-
sponding to thetT1/2 scaling of the low-temperature antife
romagnetic time correlation functions. As remarked in S
III C, this same property has been observed for the class
dimer, equilateral triangle, regular tetrahedron, as well
several more complex mesoscopic classical systems.26–28

It is interesting to compare the long-time asymptotic
sults of the correlation functions at infinite temperature w
the known results for other Heisenberg rings. For a dim
with two Heisenberg spins interacting via Eq.~1! with S3
5S1, the infinite temperature limit of the autocorrelation a
near-neighbor correlation functions were given for allt,28,29

lim
T→`

C11~ t !5
1

2
2

112cos~2t* !

2t* 2 1
3 sin~2t* !

2t* 3

2
3@12cos~2t* !#

4t* 4 ~49!

512 lim
T→`

C12~ t !, ~50!

where we have used the conservation law,

C11~ t !1C12~ t !5^S2&/2, ~51!

and lim
T→`

^S2&/251 for the dimer.

For the case of three spins on a ring, it is not so trivial,
it is still much easier to evaluate the correlation functions
large times and infinite temperature than for the four-s
ring. The infinite-temperature aymptotic-limit result for th
autocorrelation functionC11(t) was quoted previously,28 and
its complete derivation for all temperatures was given.26 In
this case, reduction to quadrature is rather simple, and
obtains a result for the three-spin ringdC11(t) analogous to
Eq. ~34!. At infinite temperature,26

lim
T→`

dC11~ t !5E
0

1

ds f4~s!cos~st* !1E
1

3

dsg4~s!cos~st* !,

~52!

where f 4(s) andg4(s) are given in the Appendix. Thus, fo
the three-spin ring, the leading terms for long times w
shown to be26

lim
T→`
t@t

C11~ t !5
1

3
1d32

@sin~ t* !1sin~3t* !#

t* 3 , ~53!

where

d35
9

40
ln 32

1

10
'0.147 188. ~54!

In analogy with Eq.~28!, it is then easy to see that

2C12~ t !1C11~ t !5^S2&/3, ~55!

and hence that
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lim
T→`
t@t

C12~ t !5
1

3
2

d3

2
1

@sin~ t* !1sin~3t* !#

2t* 3 , ~56!

since lim
T→`

^S2&/351 for the three-spin ring.

For N>3 classical Heisenberg spins on a ring, it
straightforward to obtain the conservation equation for
correlation functions,

C11~ t !12 (
n52

(N11)/2

C1n~ t !5^S2&/N, ~57!

and

C11~ t !12(
n52

N/2

C1n~ t !1C1,(N12)/2~ t !5^S2&/N, ~58!

for N odd and even, respectively.
We note that for 1<N<4 at infinite temperature

^S2&/N51. More generally, at infinite temperature, th
evaluation of^S2& for an N-spin ring maps onto that of the
mean square displacement of a chain of lengthN during a
random walk in three dimensions, and hence rigorou
lim

T→`
^S2&/N51;N>1. We then note that the long-tim

behavior of C11(t) at infinite temperature arises primaril
from the discontinuities in the derivatives of the functio
f i(s),gi(s),hi(s), etc. at the endpoints of the integration i
tervals. ForN52,4, the functions are finite and continuou
over the integration regions, but at least one of their fi
derivatives is discontinuous at one or more of the integrat
endpoints. In addition, for the particular odd-spin ring wi
N53, both the functions and their first derivatives are co
tinuous at the integration endpoints, but the second der
tives are discontinuous at the endpoints. The mathema
forms of the functionsf i(s),gi(s),hi(s), etc. and their vari-
ous derivatives at the integration endpoints become incr
ingly complicated with increasingN for N<4.

It would be interesting to find out whether this ‘‘pattern
of matching the functions and their derivatives at the integ
tion endpoints might be maintained for much largerN values.
Thus, at least two possible scenarios that might develop f
attempting to generalize our results to much largerN values
arise. Regardless of whetherN is even or odd,C11(t) might
behave fort* @1 as

C11~ t !→5
1

N
1dN1 (

n50

N

ancos~nt* !/t* 2

1

N
1dN1 (

n51

N

bnsin~nt* !/t* ,

~59!

which would occur if the functions were finite and contin
ous but with one or more discontinuous first derivatives,
for N52,4, or if they were finite but discontinuous at one
more of the integration endpoints, respectively. Of cour
behavior such as forN53 could also be obtained for highe
N values, as well, as well as more complicated scenarios.
noted250, and we expect that lim

N→`
dN50.
4-12
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Numerical simulation data for theN54,6,8,10,50 auto-
correlation functions were presented for 0<t* <10 by
Müller.17 Those results show that the oscillations inC11(t)
for N>4 are easily discernible out tot* 510. Hence, it ap-
pears unlikely that the autocorrelation functions would a
proach their asymptotic limits more rapidly than 1/t* 2. The
high accuracy of the numerical results is exemplified by
excellent agreement between the result forN54 and our
own exact analytical results,17 as shown in Fig. 1~b!.

The main difference between rings with even and o
numbersN of spins lies in the long-time behaviors of th
two-spin time correlation functions. For bothN even and
odd, the conservation law requires at least one of theC1n for
nÞ1 to compensate for the leading long-time behavior
C11(t). For oddN, we anticipate that all of the correlatio
functions will fall off with oscillatory corrections that hav
an amplitude of order (t* )2m at large times, wherem is
likely to be a small natural number. We then raise the qu
tion for evenN, as to which, if any, of the correlation func
tions approaches its asymptotic limit more rapidly than
autocorrelation function does for long times. Based upon
N52,4 examples, the answer to this question might dep
upon whetherN/2 is even or odd.

Finally, we turn to the unresolved question, vigorous
debated in the literature for over a decade,17–23 of whether
the large-N limit of the two-spin correlation functions fo
rings of classical Heisenberg spins, based on the dynamic
Eq. ~5!, will decay to zero with the leading behaviort21/2 for
long times. This asymptotic behavior can easily be deriv
for an infinite linear chain of classical spins whose dynam
are governed by the following discretized version of
continuous-spin hydrodynamics,

dSl

dt
5g~Sl 111Sl 2122Sl !. ~60!

The parameterg5D/a2, wherea is the lattice constant, an
D is a spin-diffusion coefficient. The final result for the ve
tor componentm of the two-spin correlation function for a
pair of spinsn lattice sites apart coincides with the probab
ity distribution for a one-dimensional continuous-time ra
dom walk from the origin,30

^Sl
m~0!Sl 1n

m ~ t !&5exp~2t* !I n~ t* !, ~61!

where nowt* 52gt andI n(z) is a modified Bessel function
For fixedn, the leading behavior for larget is indeed propor-
tional to (t* )21/2.

For the four-spin ring with diffusive dynamics, Eq.~60!,
one finds at infinite temperature,

C22~ t !5@11exp~2t* !#2/4, ~62!

C24~ t !5@12exp~2t* !#2/4, ~63!

and

C12~ t !5@12exp~22t* !#/4, ~64!

but
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^Si
2~ t !&5@11exp~22t* !#2/4 ~65!

for i 51, . . . ,4.Although the three correlation functions a
different, satisfying the conservation law, Eq.~28!, and
C12(t) correctly reaches its asymptotic limit faster than
either of the other two, they all go exponentially to the sa
asymptotic value 1/4, and do not exhibit any oscillations.
addition, the rms value of each individual spin magnitu
decays from its assumed initial value of unity to 1/2.

Generalizing this treatment to a closed finite ring withN
sites, as derived using Eq.~60!, leads to the following re-
sults. The corresponding time correlation functions all a
proach the same nonzero limit 1/N for long times, with cor-
rection terms that rise or decay as exp(2mNt* ), wheremN
512cos(2p/N). In addition, each rms individual spin mag
nitude decays exponentially from its initial value of unity
1/N1/2. These features are distinctly different from the exa
results we have obtained for the four-spin ring, and oth
have obtained for the dimer and three-spin ring,28,26 based
upon Heisenberg dynamics, Eq.~5!. However, the diffusive
approximation does suggest that forN divisible by 4,
C1,11N/4(t) should approach its asymptotic limit faster tha
the other correlation functions, as occurs in the exact tre
ment forN54. It would be interesting to see if qualitativel
similar features are obtained for higherN values using
Heisenberg dynamics.

It is noteworthy that as long ast is sufficiently small com-
pared toN2/(2g), the numerical results of the treatment f
the N-spin ring based upon Eq.~60! are virtually indistin-
guishable from the result, Eq.~61!, for the infinite chain.
This can be expected, since the rms distance achieved b
corresponding random walker remains small compared to
circumference of the ring, hence for all intents and purpo
the behavior should be the same as that of an infinite lin
chain.

Now our main point is that diffusive spin dynamics bas
upon Eq.~60!, while conserving the components of the tot
spin vector,does notpreserve the length of the individua
spin vectors. However, this property,uSi(t)u51 for i
51, . . . ,N, is of course maintained at all times by Heise
berg dynamics, Eq.~5!. That is, the spin dynamics base
upon Eq. (60) are fundamentally different in character fro
those based upon Eq. (5). Not surprisingly, the present exac
results at infinite temperature, Eqs.~34!–~36!, displayed in
Fig. 1~a!, along with the analytic expansions for long time
Eqs. ~37!–~39!, of the two-spin correlation functions forN
54 spins based upon Heisenberg dynamics, Eq.~5!, differ
both quantitatively and qualitatively from the results, Eq
~62!–~65!, that one obtains using diffusive dynamics fro
the four-spin version of Eq.~60!. These fundamental differ
ences only underscore the fact that the broader question
whether the time correlation functions derived from t
Heisenberg spin dynamics, Eq.~5!, will show a t21/2 long-
time approach to their asymptotic limits, as does Eq.~61!, is
acute and deserving of greater attention.
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APPENDIX

We first list the integral forms of the functionsI 0 , ^S2&,
and theI i(t) for arbitrary temperatures. We find,

^S2&5
1

ZE0

2

dxE
0

2

dyE
ux2yu

x1y

s3dsH~x,y,s!, ~A1!

I 05
1

4ZE0

2

dxE
0

2

dyE
ux2yu

x1y

sdsH~x,y,s!K2~x,y,s!,

~A2!

I 1~ t !5
1

4ZE0

2

dxE
0

2

dyE
ux2yu

x1y

sdsH~x,y,s!

3@y22K2~x,y,s!#cos~st* !, ~A3!

I 2~ t !5
1

2ZE0

2

dxE
0

2

dy
~12y2/4!

y2 cos~yt* !

3E
ux2yu

x1y

sdsH~x,y,s!@y22K2~x,y,s!#, ~A4!

I 3~ t !5
1

2ZE0

2

dxE
0

2

dy
~12y2/4!

y2 E
ux2yu

x1y

sdsH~x,y,s!

3$@y21K2~x,y,s!#cos~yt* !cos~st* !

12yK~x,y,s!sin~yt* !sin~st* !%, ~A5!

where

H~x,y,s!5exp@a~s22x22y2!#, ~A6!

K~x,y,s!5
~s22x21y2!

2s
. ~A7!

We now list the functionsf i(s), gi(s), andhi(s) for the
correlation functions at infinite temperature. We find,

f 1~s!5
1

144
s2~s22!2~s14!2

s3

2880
~5s2148s2150!,

~A8!

g1~s!5
~42s!3

2880s
~5s3112s226s28!, ~A9!

f 2~s!5
~42s2!

480s2 F12s111s31s5lnS s2

42s2D
2~12210s21 15

4 s4!lnS 21s

22sD G , ~A10!
10442
-
r f 3~s!5a1~s!1a2~s!~22s!ln 21

s3~402s2!

480
lnS s

s12D
1a3~s!~22s!2ln~42s2!, ~A11!

where

a1~s!5
1

115 200
~61 264228 800s119 160s224160s3

145s41188s5!, ~A12!

a2~s!52
1

1920s2 ~96148s1608s21304s32318s4223s5

24s6!, ~A13!

and

a3~s!5
1

320s2 ~414s113s2112s3!, ~A14!

g3~s!5b1~s!1b2~s!ln 21
s3~s2132!

480
ln s1b3~s!ln~s22!

1b4~s!ln~s12!, ~A15!

where

b1~s!5
1

230 400s
~217 280228 496s160 000s2121 800s3

25600s421485s51188s6!, ~A16!

b2~s!52
~s12!

3840s2 ~296148s2608s21304s31318s4

223s514s6!, ~A17!

b3~s!52
~s22!2

3840s2 ~96196s1140s21116s31s414s5!,

~A18!

and

b4~s!52
1

3840s2 ~s22!~s12!4~629s14s2!,

~A19!

and finally,

h3~s!5
~s22!

3840 Fs3~2314s!lnS 2~s22!

s12 D12~92146s

257s2!lnS s22

4 D210~814s23s2!lnS 8

s12D
1

48~s12!

s2 lnS ~s22!2

2~s12! D G1c1~s!, ~A20!

where
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c1~s!5
~s26!

230 400s
~2880116 152s222 668s216242s3

1267s42188s5!. ~A21!

For the three-spin ring,

f 4~s!5
s2~52s2!

15
~A22!

and

g4~s!5
~s23!2

120s
~2322s19s214s3!. ~A23!

To obtain the leading long-time behavior of th
lim

T→`
Ci j (t), we require the functionsf i(s), gi(s), and

hi(s) and their derivatives at the integration endpointss
50,2,4,6 ~0,1,3 for the three-spin ring!. The relevant quan-
tities are

f 1~0!5 f 18~0!5g1~4!5g18~4!5g19~4!50, ~A24!

f 1~2!5g1~2!52 f 18~2!/252g18~2!/25
17

180
, ~A25!

f 19~0!5
2

9
, ~A26!

f 19~2!5g19~2!52
43

360
, ~A27!

f 1-~0!52
3

16
, ~A28!

f 1-~2!5g1-~2!5
21

80
, ~A29!
s
.

e

s.

.

,

at
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g1-~4!52
1

4
, ~A30!

f 2~0!5 f 2~2!5h3~6!5h38~6!50, ~A31!

f 28~0!5
1

6
, ~A32!

f 28~2!52
7

30
1

2

15
ln 2, ~A33!

f 3~0!5
3739

7200
2

43

120
ln 2, ~A34!

f 3~2!5g3~2!5
7

15
2

3

5
ln 2, ~A35!

f 38~0!52
1

4
, ~A36!

f 38~2!5g38~2!2
1

4
5

11

40
2

29

30
ln 2, ~A37!

g38~2!5
21

40
2

29

30
ln 2, ~A38!

g3~4!5h3~4!5
69

1600
1

177

80
ln 22

459

320
ln 3, ~A39!

and

g38~4!5h38~4!5
5

36
1

57

20
ln 22

1233

320
ln 3. ~A40!
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