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Zero-field time correlation functions of four classical Heisenberg spins on a ring
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A model relevant for the study of certain molecular magnets is the rig=eft classical spins with equal
near-neighbor isotropic Heisenberg exchange interactions. Assuming classical Heisenberg spin dynamics, we
solve explicitly for the time evolution of each of the spins. Exact triple integral representations are derived for
the auto, near-neighbor, and next-nearest-neighbor time correlation functions for any temperature. At infinite
temperature, the correlation functions are reduced to quadrature. We then evaluate the Fourier transforms of
these functions in closed form, which are double integrals. At low temperatures, the Fourier transform func-
tions explicitly demonstrate the presence of magnons. Our exact results for the infinite-temperature correlation
functions in the long-time asymptotic limit differ qualitatively from those obtained assuming diffusive spin
dynamics. Whether such explicitly nonhydrodynamic behavior would be maintained forNarigess is dis-
cussed.
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[. INTRODUCTION Perhaps more interesting, however, is the question as to
whether the long-time asymptotic behavior of the two-spin
Recently, there has been a rapidly growing interest in the€orrelation functions at infinite temperature will be consis-
physics of molecular magnet$. These compounds can be tent with the results of a hydrodynamiclike theory, in which
synthesized as single crystals of identical molecular unitsthe exact equations governing the spin dynamics are approxi-
each containing several paramagnetic ions that mutually inmated by linear-diffusion-like equatiofisee Eq.(60)]. This
teract via Heisenberg exchange. The intermolec{daiole-  question has been the subject of much debate in the
dipole) magnetic interactions are in the great majority of literature;’">*and a solution of the spin dynamics for the
cases utterly negligible as compared to intramolecular magfour-spin ring might aid in our understanding of this more
netic interactions. Measurements of the magnetic propertiekindamental problem. Here we derive exact results that ex-
therefore reflect those of the common, individual moleculamplicitly demonstrate that the infinite-temperature, long-time
units of nanometer size. Their dynamics can be studied bgsymptotic limits of theN=4 two-spin correlation functions
inelastic neutron scattering, as well as by nuclear magnetiare nonhydrodynamic.
resonance and electron paramagnetic resonance experiments.The layout of the paper is as follows. In Sec. I, we give
Some of these molecular magnets are made of very smalhe notation, partition function, and derive the exact time
clusters of magnetic ions. The smallest clusters are dimers @volution of the individual spin vectors. In Sec. lll, we give
V4T (S=1/2) and of F&"(S=5/2) 3>*a nearly equilateral tri- the results for the time correlation functions. At infinite tem-
angle array of ¥ spins® a nearly square array of Rd  perature, these results can be expressed as single integrals,
(total spinj=9/2) ¢ a regular tetrahedron of & (S=3/2),/  but at finite temperatures, they are triple integrals. We also
a frustrated tetrahedral pyrochlore of*Th(S=5/2)8 and a  present our derivation of the Fourier transforms of the devia-
“squashed” tetrahedron of Bé spins>'® There has also tions of the correlation functions from their infinite time
been an example of a four-spin ring that is coupled to nearbsymptotic limits. Finally, we invite the reader to read our
rings, although the spin valueS€ 1/2) is small, and thus discussion and conclusions in Sec. IV, even if one has only a
requires a quantum treatméntin addition, larger rings, Minimal interest in the mathematical developments presented

most notably with 6, 8, or 10 Ré& spins, have been in Secs. Il and Ill. In this final section, we also discuss the
studied!?-1 nonhydrodynamic aspects of our exact results for the
In some of these systems, the spin value of an individualnfinite-temperature, long-time asymptotic behaviors of the
magnetic ion is large enough that the dynamics can b&vo-spin correlation functions, and raise the question as to
closely approximated by the classical theory, as long as on&hether such nonhydrodynamic features might be main-
does not go to temperatures that are too low. Thus, it idained for larger rings.
useful to study such systems theoretically, in order to inves-
tigate the types of dynamical spin behavior that can occur. Il. SPIN DYNAMICS
Such investigations can provide helpful physical insight, as
well as some guidance for systems that might be studied
experimentally. It will also be interesting to compare the We study the dynamics of four interacting spins on a ring.
classical results with those emerging from studies of theiEach spin can assume an arbitrary direction and interacts
guantum analogs, such as has been done for the dimer andly with its two nearest neighbors. We label the spins
the equilateral triangl&*® S1,S,, etc., wherd S| =1.

A. Notation and partition function
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The Hamiltonian for this system is thus The conservation 0B enables us to solve E(B) exactly.
Since S=S;3+ Sy, at all times, it is convenient to describe

4
B the motion in terms of the plane containing the three vectors
H= —3241 S'S+1 @) S, Si3, andS,,. We then write
=—(J12)(SP— S3,— S30), (2 Si3241) = Ci3.28+ Arz 2] X COL St ) —y sin(St/ 7) ], @
where S=S;, S;3=5+S;, Su=5+S;, and S=S;3 - - R
+S,,.% wheres is a unit vector parallel t&, andx andy are unit

The partition functiorZ=Trexp(—BH) can be written as  vectors normal tc satisfyingxx y=s, thus completing the
orthonormal basis set. The four constaisg, A,,, C13, and

4
da.\ 2 2 S13+ S, - 2 o L
z=( 11 f ashi f dSlsf dSzzJ 157920 s Co4 are obtained from the equatioS$,= Si;, S5,= S5, and
i=1J) 4w Jo 0 Sy Si3t+ Sy=S. We find
X exif a(S?— S23— 5,1, 3 S+ 2,- 52,
" Cor= g =5—Cu3 (10
B J’2d coshdax)—1 4
= e 4  and
anda = 8J/2. Equation4) was obtained previousf/,and an Azs=—A=[S5,~ C5,"2 (1

analysis of the integral was also presented. ) . )
We now determine the individual spin vectoBs. Be-

cause the four equations in Ed$) and (7) have the same
general structure, it suffices to focus on just one of them, say
The dynamics of the spins arise from the Heisenbergs,(t). We writeS, in terms of its componentS§,., S, and

B. Exact time evolution

equations of motion, S,,, and make use of the standard Fourier transf&(t)
N = [dw/2m exp(wt)S;(w). We also letS,.. =S,,*iS,,, and
ds 1 w.=w+S/7. We then obtain
ot =, 2 5SS (5)

(i)
where Sy, ;=S for any integeri. Our primary concern in
this paper is the cadé=4, for which Eq.(5) may be rewrit-

A13
0Sys(w)= 5[5+ (0-) =S (w4)] (12

and
ten as
Cl3 Al3
d 1 + =+— + - + ).
:;3:;51,%324, © 052 (0)=F——Su(0) = S(ws). (13
Solving for S, (w), and then replacing by -, we have
Bt lgxs )
dt 7S L AasSule)
Spelw2)=—c— = (14)

which lead todS/dt=0 and
ds, 1 Solving for S,¢(w), we find thatS,,(w) vanishes unless
324~ w=0,=S,,/7. Thus, we write
~Si324XS. ®

dt
= i _

The phenomenological classical spin precession ratedn S2s(@) =2 Sp500( @) + TASy0] €720 0= Spa/ 7)
be obtained from first principles, starting from a quantum +e 192085 w+ Syl 7)1, (15
Heisenberg model whose classical counterpart is given b\t/) . )
Eqéi(l). In th?t case, W=J/h. Since Eq.(8) implies °F inrealtime,
d(S;p)/dt=d(S5,)/dt=0, this equation describes the preces- _
sion of the vectorsS;; and S,, about the constant vect®; S25() =S50 ASpe0COSSpd/ 7 $20), (16
keeping their lengths invariant. Each individual spin ex-where the constantS,; and AS,, will be determined be-
ecutes a more complicated dynamics, precessing about thew, and ¢, is the arbitrary angle tha$, initially makes
particular S;5 or S,, that describes the sum of its near- with the plane containing, S;3, andS,,. We note, how-
neighbor spins, which is itself precessing about the constargver, that—S, must make the same initial angl,, with
S. From well-known examples of rigid-body dynamics, we this plane, since both spins have unit length, and their sum
thus expect that the motion of the individual spin vectors willS,, is contained within that plane. Analogousl$; and

feature two frequencies, one for precession al$@nd the  —S; both make the arbitrary initial angleb,o with that
other for precession about eith8r-S,, or St S5, respec- plane.
tively. From Eq.(14), we find,
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S, ()= %‘%Soequisth')'i‘ 2?§:A+Séso] Coot) =lo+11(t) +12(t) +15(1), (21)
“ v C1a)=(S)/B~ 1= 14(1), (22
X expFi[(S+ St/ 7+ ¢ ]}—M and
: 20 2[S—Cadl
X exp T i[(S— Spt/ 7= ol (17 Calt) =10+ 11(t) = 12(H) = I5(1), (23
where
SinceS,z(t)=1 for i=2,4, the amplitude§;so and ASi5o
satisfy . l<C24> 24
5 0 4 24/
g2 :
( 1sO (ASIZSO) ):1, (18)
C4 A2 ()= 1 a2
o _ l(t)—Z<A24cos{St/T)>, (25
which is independent ofp,q. Then, sinceS,(t)=Sy,(t)
—S,(t), we find 1/ A2
el i PR
5250=S4SO= 024/2 (19) |2(t)— 2 < 854[1 824/4]C05(S24t/7)> ' (26)
and and
A _
ASzSo=—AS450=£[1—S§4/4]1’2- (20) l3(t)== <[ sz“/ ]{[024+824]c05(8t/r)c05(824t/7)

In Eq. (20), we have made the arbitrary choice of assign-
ing the positive sign ta\ S, but that does not affect any of +2C4S;4sin(SY T)Sin(324t/7)}> : (27)
the results. Thus, we have now completely determined the
dynamics ofS,(t) and S,(t), except for the arbitrary phase (S?) and the functions in Eqg24)—(27) are triple integrals
¢, representing the angle th8(0) makes with the plane given in the Appendix.

containingS, S,4, andS;3. Similarly, S,(t) is obtained from We remark that the;(t) satisfy the conservation law
Eqgs.(16) and(17) by replacingA,4, Coa, Sy4, and¢,o with

Ai3, Ci3, Si3, and ¢, respectivelyS;(t) is then obtained Conl(t) + Con(t) + 2C1 A1) =(S(t) - S(0) /4= (S?) 14, (28)
fSrZo(rtn) Si(t) in the same way as,(t) was obtained from a temperature-dependent quantity. Hence, in the infinite time

limit, two of the three correlation functiong;(t) approach

the same limit
I1l. TIME CORRELATION FUNCTIONS

In this section, we utilize the exact results for the dynam- limy_o.Con(t) = limy_..Cos(t) =10, (29)
ics of the four spin vectors derived in the previous section tqt
obtain analytical formulas for the three distinct time correla-
tion functions. limy_..Cro(t) =(S?)/8— I, (30)

since the other terms vanish due to the infinite number of

oscillations of the integrand within the interval of integra-
There are three inequivalent correlation functions, whichtion. This is essentially a consequence of angular momentum

we denote by Co(t)=(S,(1)-S,(0)),  Cit)  conservatior®

=(Si(1)- S,(0)), and C,4(t) =(S(t) - S4(0)), where (- --)

A. General results

fTr[exp(.—,BH)- )z The§e are the_ Spif_]‘Spin aut(?correla- B. Reduction to quadrature at infinite temperature
tion function, the near-neighbor spin-spin correlation func- . o ,
tion, and the next-nearest-neighbor spin-spin correlation 1. Analytic results at infinite temperature and time

function, respectively. In evaluating these functions, we must |n the limitst,T—o, we can evaluate th&; i(1) analyti-
average over the initial conditions, which means not only thezally. From Eqgs(21), (23), and(22), we note that these three
averages oves, S,,, andS,3, but also over the initial angles functions are all given by th&— limit of |, and thel,(t)

$10and ¢y, Which are present in E¢3) in the integrations  fori=1, 2, and 3. We first consider the simplest of thége,
over the solid angle$); and (. We note that all of the which gives thet— o limit. We find,

correlation functions depend upon the temperature through

the parameter, but to keep the notation simple, we sup- lim Cop(t) = lim Cos(t) =3+ 8,4 (3D
press that dependence. LS o

We then find that the three correlation functions may be
written as and
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lim Cyo(t)=3— 84, (32 T
o= BJi2=0 — G2
where T —=C2  (a)
ORI Cogq
84=2In2—£5~0.062 115. (33 wel

At first sight, one might have intuitively expected that the &
three C;;(t) should be equal to each other 83—, and 04
since Iirrlbx<52)/4= 1, Eq.(28) would require each of them

to equal 1/4. This expectation is in fact the result predicted .|
by conventional diffusive spin dynamics in the infinite tem-
perature limit?® Moreover, for finite times that formalism
predicts that all of the correlation functions depart from their ¢ === . . . ” o
common infinite-time limit by terms that decay exponentially v

to zero. However, our present rigorous results, E§4)— .
(33), as well as Eqs(37)—(39) in the following, show that

these expectations are without foundation. Similar findings
apply for the following simpler systems: the classical dimer, o} (b)
equilateral triangle, and regular tetrahedf®or which the | \ Muller

exact time correlation functions are derived as one-
dimensional integrals for all times and temperatures.

pd2=0

0.6

——exact

Coxft)

2. One-dimensional integral representations os L

In this subsection, we give one-dimensional integral rep-
resentations for the three time correlation functions at infinite
temperature. One important advantage of these reduce
forms is that they allow us to easily derive analytical formu-
las for the leading corrections to the long-time asymptotic . . s s
values for finite times of each of the correlation functions. ~ ° ? v ’ "
Another important advantage is that it becomes possible to
obtain extremely accurate numerical values for the infinite- FIG. 1. (@ Plot of C;(t) (solid), Co(t) (dotted, and Cxy(t)
temperature correlation functions for all times. By compari-(dashedlvst/ 7 in the infinite temperature limi&=0. (b) Compari-
son, for finite temperature, accurate numerical evaluation ofon of the numerical resuits of Mer (Ref. 17 (dashegi with our
the three-dimensional integrals in E484)—(27) becomes a exfact resulFe{solld) for the infinite temperaturea=0) autocorre-
major challenge. lation functionC,(t).

We have found that the three functiohét) may be writ-

0.2

ten as

T—o

2
lim Iz(t)zf ds f,(s)cogst*),
0

T—oo

and

0 2

T—o

6
+ f ds hy(s)cogst*),
4

wheret* =t/7, and analytic forms for thé;(s), g;(s), and

2 4
lim Il(t)=j0 dsfl(s)cos(st*)Jrj2 ds gi(s)cogst*),

2 4
lim I3(t)=f ds f3(s)cos(st*)+f ds g(s)cogst*)

these infinite-temperature correlation functions to quadra-
ture. They are shown for9t/7<10 in Fig. 1a).

We remark that the infinite-temperature autocorrelation
function C,5(t) was obtained previously using a purely nu-
merical proceduré’ In Fig. 1(b), we have compared those
published results with our exact formula at infinite tempera-
ture. Although there was some distortion in the axes in the
published figure, using a pure rotation to account for this
distortion led to the excellent agreement between the numeri-
cal and exact results.

From Fig. Xa), the autocorrelation functio@,,(t) de-
creases from its initial valué,»(0)= 1, then undershoots its
aymptotic limit ; + 8,, and approaches this limit by oscillat-
ing about it for a rather long time. On the other hand, spins
on different sites are initially uncorrelated at infinite tem-
peratureC,5(0)=C,4(0)=0. At later limes, these functions
both overshoot their respective asymptotic limjts 5, and
3+ 6,4, and then oscillate about them. The oscillations of
C15(t) decay so rapidly that they are barely discernible in this

hs(s) are listed in the Appendix. The infinite-temperature figure. On the other hand, the oscillations’gj(t) are of the
correlation function€,,(t), Co4(t), andC5(t) are then sim- same amplitude and persist as long as do thogh4f), and
ply found by using Eqs(21)—(23). Thus, we have reduced are likewise easily seen in this figure. In addition, afteft)
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1

and(C,4(t) first become equal to each other, they braid about
each other in their approaches to the same aymptotic limit.
In order to see more clearly how this occurs, we have s}
found analytic expressions for the leading behaviors of the
correlation functions for long times3 7. We first consider
C1,(t). In this case, besides the constégtwe only need to £
evaluatdl 4(t). To do so, we integrate both terms in £§4) Q
by parts, treating cosf) as the variable to be integrated, éI
and f4(s) and g,(s) as the variables to be differentiated. =
From the results in the Appendix, it is seen tligs) and
g1(s) as well as their first three derivatives are continuous at
s=2. In addition, since the relevant integration endpoint val-
ues and derivatives at=0 ands=4 also make no contribu-
tion through third order in the repeated integrations by parts, : , , : ’ : '
the leading contribution to the aymptotic behavior arise from loxl
the nonvanishing?'(0) andgy (4). Thefinal result for the
leading behavior is given by

0.2

FIG. 2. Plot of lg(a)=Ilim_.Colt)=Ilim;_..Co¥t) and
(S?)18—1o(@)=lim_,..C1o(t), as a function of|a|, for the FM
1 1 3 («>0) and AFM (@< 0) cases.

lim Clz(t)—>z— o4t W[Z_Coi4t*)} (37

T—x

t>r C. Results for finite temperatures

oo At finite T, we evaluatd o(«) and({S?)(a) numerically.
On the other h t) andC,4(t) at infinite t - : 0 : . :
n the other handzy;(t) andCy(t) at infinite tempera- - |a|<1, breaking each integral into 100 intervals is suf-

ture also depend updi(t) andl;(t). Again, we integrate b e ) .
P pda(t) 3(1)- Ag g y ficient to obtain 0.1% accuracy. Note that this means there

parts in a similar fashion, treatinfy(s), f5(s), gs(s), and 6 i ) X
ha(s) as the variables to be differentiated. The leading non&'€ 10 intégration intervals overall. However, for low
vanishing contributions t6,,(t) andC,(t) from these inte- T(Ja|>1), the number of intervals necessary to obtain that

grations by parts are both of second order. Ft), the degree of accuracy increases.|At= 10, one needs to break
leading nonvanishing contribution comes from the nonvanllP €ach integration domain into 400 intervals, for instance.
ishing f5(0) and f}(2), the latter of which is a nontrivial In Fig. 2, we have plotted the infinite-time limit of the spin-
number. Forly(t), the leading nonvanishing contribution SPin correlation functionsy(«) 'and(SZ)/S—I.o(a) for both
arises fromf}(0), f5(2), andgj(2). Although bothf(s) the ferromagneti¢FM) and antiferromagnetiCAFM) cases.
and gs(s) have nontrivial values and derivatives at their AS @—0, one obtains the analytic limits given by E¢81)
matching poins=2, the difference between their derivatives and (32). However, in the lowT limit |a|—, bothl, and

is a trivial, but nonvanishing value. In addition, the functions(S”)/8—1,—0(1) for the AFM(FM) case, respectively. This
f3(s) andgs(s) both have nontrivial values and derivatives just tells us that af =0, all of the spins are aligned in the
at their matching poins=4, but these values and derivatives FM case, and in the AFM case, their sum is 0. We note that
are equal, and thus their contribution in second order to théor |a|<1, Io(«) obeys the inversion symmetry, equivalent
integration by parts vanishes. We thus obtain the long-timé0 dlo/dal,—o exists. We note that for the AFM case.

behaviors at infinite temperature, IimeClz(t) is negative fora<<—0.71. This just reflects the
. 1 1 X 1
TIer:CCZZ(t)—>Z+54+ W[S—(Z%S In2)cog 2t*)], 3
=7 /\/\/—\/—\/\/—\
(38) 0.8 F 2 1
and
0.8
. 1 1 . >
TIer!CCZ4(t)—>Z+54— W[S—(Z%S In2)cog 2t*)]. S
t>7 o4 0.5
(39
We note thatC;,(t) decays much more rapidlyx<@L/t*4) o2 Z=0
to its constant long-time limit than do eith€p,(t) or Co4(t) pJ2 =
(1/t*?). The long-time braiding of these functions about . . . . .
each other arises from the opposite signs of their oscillatory ° 2 4 v e 8 10
terms. Furthermore, at long timesg;,(t) oscillates with '
twice the frequency of the long-time oscillations ©f(t) FIG. 3. Plots ofC;,(t) vst/r for the a=BJ/2 FM cases 0, 0.5,
andCoy(t). 2, and 10, as indicated.
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09 F 10
0.89
08 |
2 ngs |
07
Lé’ 08 ":'L; 0.97 H
&)
05
086
04k 0.5
0.85
03 |
pJ2=0 —Cq2 ---Coo Ll Cog
0.2 L L L 0.94 L L L . L
0 5 10 16 20 0 5 10 15 20 25 30
t/t 743
FIG. 4. Plots ofCy(t) vst/ 7 for the = 8J/2 FM cases 0, 0.5, FIG. 6. Plot of Ci5(t) (solid), Cos(t) (dotted, and C,(t)
2, and 10, as indicated. (dashed vs t/7 for the low-temperature FM case= 3J/2=10.

Note thatC,,(0)=1 andC,4(0)~0.95.

fact that for the antiferromagnetic ring, the spins on neigh-
boring sites are anticorrelated at long times and for temperasf the oscillations appear to diverge, but their amplitudes
tures that are not too large. become vanishingly small. Av=10, we have shown the

At finite T we also may evaluate thie(t) numerically  behaviors ofC;,(t) (solid), Cox(t) (dashed, andC,4(t) (dot-
from the triple integral forms, Eq$24)—(27). As for |5, we  ted) together in Fig. 6 for the extended time domais 0+
break each of the three integrals intb intervals. At the  <30. Throughout this domain, the decay of the oscillations
lowestT values consideredn(= — 20), it is necessary to take in all three correlation functions is small but discernible.
N=1000 to achieve sufficient accuracy. In Figs. 3—5, weHowever, careful inspection of the oscillating waveforms re-
have plotted the;; (t) for the FM case withw=0.5, 2, and  veals thatC,,(t) oscillates with twice the frequency of the
10, and compared with the analytic results fo+ 0. In each  other two, continuing the pattern that we have already seen
of these figures,C;,(t) decays to the equilibrium value for infinite temperature. Note tha},(t) appears to oscillate
(S?)18—1,(a) more rapidly tharC,,(t) andC,4(t) decay to  nearly as a simple cosine function, ta(t) andCyp4(t) have
their mutual equilibrium valuéy(«), while oscillating fora  a more complicated oscillatory behavior, with a fundamental
few periods about the latter. Asdecreases, all of thg;(0) frequency that is one-half that 6f,(t), and they are almost
increase monotonically, approaching unityTas:0. In addi- completely out of phase with respect to one another.
tion, the oscillations persist to much longer times. Also, as The corresponding results for the AMF case are shown in
seen in Figs. 3 and 6, asdecreaseq;;,(t) oscillates for an  Figs. 7-9, for whicha=—0.5, —2, and— 20, respectively.
increasing amount of time, an@,,(t) and C,4(t) oscillate  The last of thesex=—20, took weeks of computational
about it for an even longer period of time. time to obtain sufficient accuracy. In these cases, we pre-

At lower T, the amplitudes of the oscillations eventually sented theC;5(t), Cox(t), andC,4(t) data as solid, dashed,
reach a maximum, so that the oscillationsdp(t) for «  and dotted curves, respectively. We note that as the tempera-
=0.5,2,10 are distinctly noticeable. As—0, the lifetimes ture is lowered,C;,(0) decreases towards the valuel,

1 1

BJ/2=-0.5 —C12

08 |
08 \ AFM ———Co2
06 ......... 024

04

Coalt)

Gij(t)

L L L
0 5 10 15 20

tit t/t
FIG. 5. Plots ofC,,(t) vst/ 7 for the = J/2 FM cases 0, 0.5, FIG. 7. Plot of Cix(t) (solid), C,,(t) (dotted, and C,.(t)
2, and 10, as indicated. (dashed vs t/ 7 for the AFM casea= —0.5.
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0.6 [

Gij(t)

FIG. 8. Plot of Cix(t) (solid), Cos(t) (dotted, and Cyy(t)
(dashed vs t/ 7 for the AFM casex= —2.

PHYSICAL REVIEW B 64 104424

AY
08 %

BJ/2 = -2
AFM

——C1 i
0.8 |

0.6

0.4

Coo(t)

0.2

-0.2

-0.4

AFM

L 1 1 1 1
6 8 10 12 14

t/t

:
tzIBJ/2]"2]

FIG. 10. Plot of Coy(t) as a function of the scaled time
t/[ 7| BI/2|¥?], for the a= BJI2 AFM cases—0.5, —1, —2, —5,

—10, and— 20, correspondingly from top to bottom at large, as

indicated.

which would correspond to perfect AFM behavior. However,
C1(t) then increases witly, reaches a maximum, and then _
decreases to the asymptotic, infinite time limit. In addition, = —10 anda=—20, would nearly fall on top of each other if

asT is lowered,C,4(0) increases towards 1, approaching
C»5(0). Then, at some timé,, C,,(t;) first equalsCo(ty),

the oscillations were not present. Similar low-temperature
scaling behavior of’,,(t) is shown in Fig. 11, which also

and thereafter, the two functions are braided about eaciicludes the braiding oscillationg;,(t) exhibits a clearer

other. The braiding oscillations decrease in amplitud& &s

example of the scaling, as shown in Fig. 12, since it does not

decreased, so that the overgjl(t) all approach nonoscilla- contain any braiding oscillations. The major deviation from

tory uniform curves ag —0.

scaling occurs at very short times, although the differences

From numerical simulation studies of more complicatedbetween the curves at= — 10 anda= — 20 are not so large
mesoscopic classical systems, it h_as been_suggested that there. Sincel;,(0)=—1 in the zero-temperature limit, this
low-temperature AFM autocorrelation function should scale deviation from scaling probably arises from the fact that the

approaching uniform functions 6T%22” In fact, this behav-

T=0 limit has not yet been reached for such short times.

ior has been established by analytical means for the simpler At higher temperatures, the scaling property gradually
cases of the classical dimer, equilateral triangle, and regulasreaks down. This is clearly seen far=—0.5 in Figs. 11
tetrahedrorf**°To investigate whether such a scenario holdsand 12, for which the short-time values Gf,(t) andCy(t)

for this exactly solved four-spin system, in Fig. 10, we there-deviate greatly from the valugé and— 1) obtained respec-

fore plottedC,5(t) versust/[ 7|83/2|*?], which is propor-

tively in the low-temperature limiee— —o0. For C15(t), the

tional to tT*2 Indeed, the curves do scale, except for thedeviations are also rather large at long times. However, for
braiding oscillations, which are decreasing in magnitud€ as

decreases. Thus, curves for the lowest two temperatures,

0.8
06 F
04 F

02

Gij(t)

02|
0.4
0.6

-0.8

FIG. 9. Plot of Cix(t) (solid), C,4(t) (dotted, and C,,(t)
(dashed vs t/ 7 for the very low-temperature AFM case= — 20.

BJ/2 = -20
AFM

—Cie

---Caz

Coalt)

-0.4

L 1 1 L
20 25 30 35 40

744

indicated.
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tzlBJ/2[12]

FIG. 11. Plot of Coy(t) as a function of the scaled time
t/[ 7| BII2|Y?], for the a= BJI/2 AFM cases—0.5, —1, —2, —5,
—10, and— 20, correspondingly from top to bottom at large, as
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04 ; ; - ! ; where O (x) is the Heaviside step function, and we have
made the change of variablgs—x?+ w?+ 2xzw for ease of
computation.

We now evaluatd ;(w). As in the expression fof,(w),
Fourier transformation of the factor ce) replaces it with
(712)[ 8(s— w)+ 8(s+w)], and the second term does not
contribute to the integrals fow>0. However, since &s
<4, there are now two regions of integration over the vari-

AFM

02

02k

C1aft)

04 |

-1

st/ -2 1 ablesx andy. For 2<w=4, the only region of integration is
-5 the interior of the isosceles triangle with sides obeying
08 | 4 -10 g

=2, y=2, andx+y=w, and corners at their intersections.

BJ/2 = 20
g - s : . - For O<w=2, the region of integration is the interior of the
lz|BJr2|12] pentagon with sides obeying=2, x=2, y—x=— o, y+X
FIG. 12. Plot of C;)(t) as a function of the scaled time =w,_andy=x+w. This interior region i_s symmetric_about
t/[ 7| B3I2|2), for the a= BJ/2 AFM cases— 0.5, —1, —2, —5, the line y=x, and can be broken up into two regions of
—10, and— 20, correspondingly from top to bottom at smidit, as  integration. The first region is the interior of a rectangle ro-
indicated. tated 45° about the axis normal to they plane, with sides

obeyingy =X+ andx+y=2*(2— ). The second region
all three correlation functions, even at=—0.5, the posi- is the interior of the isosceles triangle with sides obeyng
tions of the dip forC,,(t) andC,4(t) and the peak fo€,,(t) =2, x=2, andy= —x+4—o.

still scale. In the triangular integration regions, we maintain the in-
tegration variablex andy, keeping account of the integra-
D. Fourier transforms tion limits. However, in the rectangular integration region, it
is convenient to perform a rotation of the axes by 45°, letting
r=x-y, s=x+y, and incorporating the Jacobian, which re-
places the differential integration ardady with drds/2. We
thus have

We now evaluate the Fourier transformgw) of the
[i(t). SinceC,,(t) andC,y(t) both approach the constaht
#0 ast—o, and Cy,(t) approachegS?)/8—1,#0 in the
same limit, thel o# 0 or (S?)/8—1,+0 present in the respec-
tive Cj;(t) give rise to delta functions in terms of the angular

frequency o, in G;; j(w), equal to either Zl,5(w) or

2m((S?)/8—1 )6(w) which can be written down by inspec- Tl(w)= WTG((‘)_%)@M_“’)IZ dxfz dyp(x,y,;)
tion. We shall therefore evaluate the Fourier transform of the 16wZ w2 w—x
deviationssC;j (1) =C;j (1) —lim_...C;; (1),
N 7r0(2— ) K f YR D)
—_— X X
16(1)2 2— w 4—Xx— w y y @

8Cij(w)= J:dte_iwt5cij(t)- (40

177@(2 w)f f4 °y
Causality requires thaiC;j(— ) = 6G;; (). Thus, it suf- 16wZ

fices to evaluate théC;;(w) for @=0. We first evaluate X exp{al @?— (r?+s%)/2]}
T,(w), and letw= wr. For simplicity of notation, we replace
the integration variableS;3, S,4, andSby x, y, ands, re-
spectively. Since the only time-dependence within the ex-
pression forl,(t) appears in the factor cog(r), Fourier
transformation replaces this factor wifld(w—y/7)+ 6(w

+y/7)]/2, which can be written as7{(2)[ 8(y— o)+ 5(y

+w)]. The seconds function does not contribute to the F(x,y,0)=exf a(@2—x2—y2) ][ — o*+ 202(x2+y?)
Fourier transform forw>0, so we obtain fow=0, o
—(C=y?)?]. (43)

. 2—0)(1—w?4) (2 1 -
Iz(w)=7TT ( a:)( @ )f xdxj dze@ex?
8wZ 0 -1

X[ —w*+ 0?(r?+s%) —r?s?], (42)

where

Last, but by no means least, we evalubjéw). This is
easiest to do if we first use the trigonometric relations to

) , (41) rewrite EqQ.(27) in terms of cogy+s)t/7] and cof(y—9)t/7].
Then, after Fourier transformation, we obtain

~ _ (XZ_:UZ)Z
X X2+w2—2XZw—W
X+ w*+ 2XZw

104424-8
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f J (1 y2/4) x+y ds 1.2 T |_-“ T T T T T T
Xyl S U AN — 8C12 A
xexp[a(s2—x2—y2>]{[<y+s>2—x2]2 o8 [ N -8 ]
X[8(w+y—s)+8(w—y+s)]+[(y—s)? 06 - A 1
[(wt+y—=5)+d(w=y+s)]+[(y—9) N 5Co4
P (wty+s)+a@-y-9)]}. (44 T 1
For w=0, the term containing(w+y+s) vanishes, so we = A e

are left with three terms, which we examine separately. We©

denote them 5,,, wheren=1,2,3, corresponding to the order
in which the remaining’ functions appear in Eq44). The

first integrall s, is subject to the constraintx—y|sz)+y

<x-+y. These constraints imply both<=Ow<2 and restrict
the two-dimensional integration region to the interior of the

irregular quadrangle with sides obeyirg », y=2, x=2,
andy=(x— )/2. Hence, -1

0 0.5 1 1.5 2 25 3 35 4
T
~ 7T7'.(2 w) . ~ .
[3((w)=——Fs— f J dyG (X,y,— o), FIG. 13. Plots of the exact Fourier transford,(w) (solid),
(x=w) (45) 5622(w)_ (dashe} and 56_24(_0)_) (dotted of Cj(t) —lim,_...C;j(t),
as functions ofw 7, in the infinite-temperature limit=0.
where L . . . . .
region is the interior of the irregular quadrangle with sides
(1-y2i4) ) obeying x=4—Zu, y=2, x=2, and y=(w—x)/2. Alto-
G(x,y,2)= mexﬂa —2zy—x%)] gether, we writd 33(w) as
X[ (2y—12)2—x?]2. (46) - 777@ 2—w) (0+x)12 -
Bw)= ———— f f dyG(x,y,w)
~ (w—x)/2
The integration regime of the second integhg(w) is
subject to the constrainix—y|<y—w=x+y. These con- 777@(“’ 2)0(4—w) f“ “q f(“’*x)’z
straints imply 6= w=<2 and restrict the two-dimensional in- 162 (0=x)/2
tegration region to the interior of the irregular quadrangle ) )
with sides obeying=w, y=2, x=2, andy= (w+x)/2. We +f ~dxf~ dy|G(x,y,®)
therefore write 4o J(o=0)P2
. 770(0—4)0(6— )
~ 770 (2— )
=" [Cax[ " ayeoeya. 16z
(+x)/2 ) )
(47 X ﬁ dfo dyG(x,y, ). (48
w—4 (w—x)/2

Finally, the integration region on33(w) is subject to the

intgyx—y|<w—y<x+y. int im- : :
constraintsx—y|<w—y<x+y. The second constraint im plotted as functions of 7. In the figure labels, we drop the

plies thatw can be as large as 6. FoOR=2, the integra- jjqes for clarity. Note that these functions are rigorously zero
tion region is restricted to the interior of the trlangle with ¢, w7>6, but they are so small fop7>4 that they are

sides obeying/=(w—x)/2, y=(w+x)/2, andx=w. For 4  indistinguishable from zero fowr>4.1 in plots with O
$a)$6, the mtegratlon reglon is restricted to the interior Ofgwq-sﬁ_ In each Case,ﬁzlz(w) are the solid curves,
the triangle with sides obeying=2, x=2, andy=(o  §C,,(w) are the dotted curves, anil,(w) are the dashed

—x)/2. In the intermediate regime2w=<4, the integration curves. At infinite temperature, these are obtained from our
region is the interior of the irregular quadrangle with sidesexact formulas for thd;(s), gi(s), andhs(s) listed in the
obeyingy=(w—x)/2, y=(w+x)/2, y=2, andx=2. We Appendix by simply lettings— w7, and multiplying the
break this integration region up into two parts. One of theseverall results byr. For example,5Cixw)=— [ f,(w7)

parts is the interior of the isosceles trlangle with sides obey- g, (w7)]. The exact expressions for the thr% (w) are
ing y=(w—x)/2, y=(w+x)/2, andx=4—. The second plotted in Fig. 13. As a check on our computatlons we also

In Figs. 13—17, we present our results for tﬁ@\,j(w),

104424-9
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12 T T T T T T T T

1F — 0Cq2 .

\
\
s 1
osr . ‘ 8C T
‘ | ----0022
/
v
’l’ 1
’ \
i
i
t

—— 3C1 ]

06 | ----08C22 .
0.4
02

0

3Gij(w)
0Gij(w)

-0.2
I [ pr=05 -
-06 1

-0.8 | \ FM 4

=4 1 1 1 1 1 1 1 1 ] 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 35 4 0 0.5 1 1.5 2 25 3 35 4

FIG. 16. Plots of the Fourier transform&C,,(w) (solid),
5C,y(w) (dashet and 5Cyqw) (dotted of Cj;(t) —lim,_..Cy;(t),
as functions ofwr, for the AFM casesa=—0.5 and—1. The
bumps developing fonr=—1 atw7~2 are magnons.

FIG. 14. Plots of the Fourier transform&Ci,(w) (solid),
8Coxw) (dashed and 5Cyy(w) (dotted of Cjj(t) —lim,_..Cij(t),
as functions ofwr, for the FM casex=0.5

obtained these results by numerically evaluating dtig(t)
from the double integrals in the infinite-temperature limit, ) ~
and the results were found to agree to within three significanfll @€ continuous, and approach zero at laigesCyy(w)
figures. <0, anddéCoy(w)=0, but6C,4(w) has regions of both signs.

In this and in subsequent figures, we also checked thén Figs. 14 and 15, we present the data for the FM case, with
accuracy of our analytic formulas by the zero-time sum rule@=0.5 in Fig. 14, andv=1, 2, 5, and 10 in Fig. 15. As the

the ffjéaj(w)dwlw: 6Ci;(0). It is seen that the functions

T T T T T T T T
15 F N
It
et
1 / ;’g — 8C12 .
FA
S IR S
0.5 | ','/ ",' :,", ........ 8024 .
3z | - R XN
= o :
S
(2] .,
-05 |
1 FM
185 F
1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4

FIG. 15. Plots of the Fourier transform&Ci,(w) (solid),
8Coxw) (dashet and 5Cyy(w) (dotted of Cyj(t)—lim,_..Cy(t),

3Gij(w)

BJ/2 = -2, -5, 10

-10

T

FIG. 17. Plots of the Fourier transform&Ci,(w) (solid),
8C,iw) (dashed and 5Cyy(w) (dotted of Cjj(t) —lim,_..Cyj(t),

as functions ofw, for the FM cases=1, 2, 5, and 10. The peaks as functions ofwr, for the AFM casesx=—2, —5, and—10. The

developing successively near tor=2,4 with decreasingl are
magnons.

peaks foror~2 that successively sharpen with decreasingre
magnons.

104424-10
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temperature is lowered, the peakdf,,(») moves to higher 81 ,,/‘\" 10 ' ' ' ' ' 1
w values. MoreoversCy)(w) and 5C,4(w) approach each [\

other in the region Z wr=<4, but approach the opposite of S ‘ — 8C12 iy
each other in the regimesQw7<2. Thus, in the regime 2 ,’/ \\ \

<wr=4 of Fig. 15, these dashed and dotted curves combine 4} |/ 2\\\ ----0C2 1
to give a curve that appears to be dash-dotted. In addition, a I e \\

the temperature is lowered, the curves all develop into sharf 2 |} \\ ________ 8Co4 i
peaks atw7~2 and 4, which are asymmetric, dropping rap- —

idly to zero atw7=2 and 4, but having longer tails at lower =, ;& .. e

T values. More preciselyCi(w) becomes a single peak \ 7 h
atwr~4, whereas the other twa(,,( ») and 6C,4(») have 2 magnons/ ]
identical peaks atwr=~4, which are opposite to that of

8C1(w). But, they also have larger and sharper peaks al -4 AFM -
w7=~2, which are opposite in sign to each other. These peak:

at w7~2,4 arise from magnons. Hence, Fig. 15 provides a 4 BJ/2 =-0.5,-1,-2, -5, -10
simple explanation of the detail 6f;(t) for «=10 shown in

Fig. 6. sl -10 J

Curves for the AFM case are shown in Figs. 16 and 17. In . . L . . L
Fig. 16, we display the results far= — 0.5 and— 1 together, 3IBJ/2 |‘;/2
and in Fig. 17, the results fox=—2, —5, and —10 are o1
shown. As the temperature is lowered, the peak@py(w) FIG. 18. Plots of the Fourier transform&C,,(w) (solid),
moves to lower frequency, resulting in the slowing down 5¢,(w) (dashed and 5C4(w) (dotted of Cij(t) —lim_..C;; (1),
seen in the real-time curves. It develops into two peaks, @s functions of the scaled frequenoy|83/2) 2, for the AFM cases
large one at loww7, and a small one abr~2, which is an  a=-0.5,—1, -2, —5, and—10. The magnon peaks farr~2 do
antiferromagnetic magnon. Note that the magnon widthot scale, and are marked with arrows.

sharpens a¥ is lowered. SurprisinglypCz,(w) changes dra- proach a different finite value asymptotically, but it also os-

matically, mostly changing sign nearr~2, but the smalk ; . . i
o - : ~ cillates with twice the frequency, and the oscillations decay

behavior increases to join the smallbehavior of5C)(w),  in amplitude much more rapidly. Although the long-time
and the opposite of it in the region7~2. These peaks at 4gympiotic values of these functions vary with temperature,
wr~2 arise from antiferromagnetic magnons. In addition,the near-neighbor correlation function similarly differs from
6Cy(w) stays negative, and develops into a negative peak ahe other two functions for all temperatures.
low w, which is opposite to that 08C,y(w) and 5C,u(w). In addition, we were able to obtain the Fourier transforms

Finally, in order to elucidate the nature of the slowing of the deviations of the correlation functions from their infi-
down asT is lowered, in Fig. 18 we plotted our AFM results hite time asymptotic limits in terms of double integrals. At
for a=—0.5,—1, —2, —5, and— 10 together, as a function infinite temperature, exact analytic forms for these Fourier
of the scaled frequency 7| 8J/2|*2. We note that the posi- transforms were obtained. As the temperature is lowered,
tion of the low-frequency peak does indeed scale, but sinceaks in the Fourier transforms appeawat=2 for antifer-
the magnon appears at a fixed frequency, it does not scaleomagnetic coupling, and ai7= 2,4 for ferromagnetic cou-
The magnon is distinctly visible far=—2, —5, and—10in  pling. These peaks sharpen up as the temperature is lowered.
this figure, as noted by the arrows. Although the origin of these peaks is purely classical, they
correspond precisely to magnons, which are usually thought
of as quantum mechanical in origin. Here the magnons arise
from standing waves, such as those on a violin string. These

In this paper we have presented the exact solution for thetanding waves arise from the periodicity of the ring, as a
thermal equilibrium dynamics of four classical Heisenbergcombination of traveling waves moving both clockwise and
spins on a ring. For this system, there are three relevant timeounterclockwise in direction. For the antiferromagnetic
correlation functions, which are the autocorrelatiafy,), case, neighboring spins are opposite in direction at low tem-
near-neighbor@,,), and the next-nearest-neighbdhf) cor-  peratures, so that two full wavelengths fit into the ring. For
relation functions, respectively. Using our results, we wrotethe ferromagnetic case, one can have either two or four full
exact expressions for these three functions in terms of triplevavelengths in the ring, the latter corresponding to every
integrals. At infinite temperature, we reduced these triple inspin pointing in the same direction.
tegrals to single integrals. We also obtained analytic expres- In the quantum mechanical analog, the magnon energies
sions for the long-time, infinite-temperature behavior of theareE,=2J[ 1— cosk,a)], wherek,=2n#/L andL=4a. We
three correlation functions. We found that the near-neighbothus getEy=0, E;=2J, andE,=4J. These latter two val-
correlation functionCy,(t) is strikingly different from the ues correspond precisely tor=2,4.
autocorrelation and next-nearest-neighbor correlation func- In addition, for antiferromagnetic coupling, a second,
tions, C,5(t) and C,4(t), respectively. Not only does it ap- much larger peak in the Fourier transform functions appears

IV. DISCUSSION AND CONCLUSIONS

104424-11
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3 2

at increasingly lower frequency as the temperature is low- _ 1 85 [sin(t*)+sin(3t*)]
ered. This second peak is found to scale witlT '/, corre- lim Cyo(t) = + 573 ,
sponding to the TY? scaling of the low-temperature antifer- o
romagnetic time correlation functions. As remarked in Sec.

Il C, this same property has been observed for the classic&ince lim__(S*)/3=1 for the three-spin ring.

dimer, equilateral triangle, regular tetrahedron, as well as For N=3 classical Heisenberg spins on a ring, it is

several more complex mesoscopic classical systém8.  straightforward to obtain the conservation equation for the
It is interesting to compare the long-time asymptotic re-correlation functions,

sults of the correlation functions at infinite temperature with
the known results for other Heisenberg rings. For a dimer,
with two Heisenberg spins interacting via Ed) with S;

=S, the infinite temperature limit of the autocorrelation and

(56)

(N+1)/2

Cpy(t)+2 nzz Cin(H)=(SHIN, (57)

near-neighbor correlation functions were given fortgf2°

1 1+200$2t*)L 3sin(2t*)

T'T}(}Ql(ﬂ =5 5% 2 T o3
_3[1—:gi2t*)] (49
:1—Tlim Cio(1), (50
where we have used the conservation law,
Cra(t) +Caot) = ()12, (51

and lim___(S?)/2=1 for the dimer.

and

N/2
cn<t>+2n§2 Cin(D)+Cy Nt 2y =(S?)IN,  (58)

for N odd and even, respectively.

We note that for ¥N=<4 at infinite temperature,
(S*/N=1. More generally, at infinite temperature, the
evaluation of(S?) for an N-spin ring maps onto that of the
mean square displacement of a chain of lerlgtduring a
random walk in three dimensions, and hence rigorously
lim___(S*)/N=1VN=1. We then note that the long-time

behavior of C14(t) at infinite temperature arises primarily
from the discontinuities in the derivatives of the functions
fi(s),0i(s),hi(s), etc. at the endpoints of the integration in-

For the case of three spins on a ring, it is not so trivial, buttervals. ForN= 2,4, the functions are finite and continuous

it is still much easier to evaluate the correlation functions abver the integration regions, but at least one of their first
large times and infinite temperature than for the four-spinderivatives is discontinuous at one or more of the integration
ring. The infinite-temperature aymptotic-limit result for the endpoints. In addition, for the particular odd-spin ring with

autocorrelation functioi®y;(t) was quoted previousRf and
its complete derivation for all temperatures was gitem

N=3, both the functions and their first derivatives are con-
tinuous at the integration endpoints, but the second deriva-

this case, reduction to quadrature is rather simple, and onéves are discontinuous at the endpoints. The mathematical

obtains a result for the three-spin ridig,,(t) analogous to
Eq. (34). At infinite temperaturé®

1 3
lim 5Cll(t)=f dsf4(s)cos{st*)+f dsg,(s)cogst*),
T—oo 0 1
(52

forms of the functiond;(s),g;(s),h;(s), etc. and their vari-
ous derivatives at the integration endpoints become increas-
ingly complicated with increasinfyl for N<4.

It would be interesting to find out whether this “pattern”
of matching the functions and their derivatives at the integra-
tion endpoints might be maintained for much lartjeralues.
Thus, at least two possible scenarios that might develop from

wheref,(s) andg,(s) are given in the Appendix. Thus, for attempting to generalize our results to much lafyeralues
the three-spin ring, the leading terms for long times werearise. Regardless of whethiris even or odd({;;(t) might

shown to bé®

1 sin(t* )+ sin(3t*
T—oo
t>7
where
5—9I3 ! 0.147188 54
P TUERET Y . (54
In analogy with Eq(28), it is then easy to see that
2C1At) +Cra(H) =(S?)/3, (55)

and hence that

behave fot*>1 as

N

1
— S5yt 2, a,cognt*)/tr?
N n=0

Ca(t)— 1 N (59

—+ 5yt 2, bysin(nt*)/t*,

N n=1
which would occur if the functions were finite and continu-
ous but with one or more discontinuous first derivatives, as
for N=2,4, or if they were finite but discontinuous at one or
more of the integration endpoints, respectively. Of course,
behavior such as fdl=3 could also be obtained for higher
N values, as well, as well as more complicated scenarios. We
note 5,=0, and we expect that Ii,qucSN:O.
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Numerical simulation data for thdl=4,6,8,10,50 auto- <§(t))=[1+exp(—2t*)]2/4 (65)
correlation functions were presented for<@ <10 by ) , ,
Miiller.l” Those results show that the oscillationsdpy(t) fori=1,...,4.Although the three correlation functions are

for N=4 are easily discernible out t =10. Hence, it ap- different, safisfying the conservation law, E8), and
pears unlikely that the autocorrelation functions would ap-C12{t) correctly reaches its asymptotic limit faster than do
proach their asymptotic limits more rapidly thart*. The either of t.he other two, they all go expopentlally tp th.e same
high accuracy of the numerical results is exemplified by the2Symptotic value 1/4, and do not exhibit any oscillations. In
excellent agreement between the result for4 and our addition, the_rms value of _e_ach |nd|V|duaI_sp|n magnitude
own exact analytical result,as shown in Fig. (). decays fror_n_|ts a;sumed initial value of unl_ty to ;/2. _

The main difference between rings with even and odd Generallzmg this treatment to a closed finite ring with
numbersN of spins lies in the long-time behaviors of the sites, as derived using E({SO), leads to the follqwmg re-
two-spin time correlation functions. For bofk even and sults. The corresponding time correlatlon_ functlo_ns all ap-
odd, the conservation law requires at least one offfhdor ~ Proach the same nonzero limithLfor long times, with cor-
n#1 to compensate for the leading long-time behavior of €Ction terms that rise or decay as expt*), where uy

C14(t). For oddN, we anticipate that all of the correlation — 1~ €0S(27/N). In addition, each rms individual spin mag-
functions will fall off with oscillatory corrections that have Nitude decays exponentially from its initial value of unity to
an amplitude of ordertt) ™ at large times, wheren is 1/NY2. These features are distinctly different from the exact

likely to be a small natural number. We then raise the ques'€Sults we have obtained for the four-spin ring, and others
tion for evenN, as to which, if any, of the correlation func- Nave obtained for the dimer and three-spin rihg, based
tions approaches its asymptotic limit more rapidly than the!Pon Heisenberg dynamics, E@). However, the diffusive
autocorrelation function does for long times. Based upon th@PProximation does suggest that fof divisible by 4,

N=2,4 examples, the answer to this question might depen%lv1+ nia(t) should approach its asymptotic limit faster than
upon whetheN/2 is even or odd. the other correlation functions, as occurs in the exact treat-

Finally, we turn to the unresolved question, vigorouslyment forN=4. It would be interesting to see if qualitatively

debated in the literature for over a decd@@® of whether ~Similar features are obtained for highéf values using

the largeN limit of the two-spin correlation functions for Heisgnberg dynamics. ) -

rings of classical Heisenberg spins, based on the dynamics of 'S nottzeworthy that as long ass sufficiently small com-
Eq. (5), will decay to zero with the leading behavior? for pared toN“/(27), the numerical results of the treatment for
long times. This asymptotic behavior can easily be derivedn€ N-SPin ring based upon E460) are virtually indistin-

for an infinite linear chain of classical spins whose dynamic&uiShable from the resglt, Ed61), for.the infinite. chain.
are governed by the following discretized version of a Ihis can be expected, since the rms distance achieved by the

continuous-spin hydrodynamics, corresponding random walker remains small compared to the
circumference of the ring, hence for all intents and purposes
ds the behavior should be the same as that of an infinite linear
ar = V(S+1+S5-1729). (60 chain. - o . .
Now our main point is that diffusive spin dynamics based
The parametey=D/a2, wherea is the lattice constant, and UPON Eq.(60), while conserving the components of the total
D is a spin-diffusion coefficient. The final result for the vec- SPin vector,does notpreserve the length of the individual
tor componeni of the two-spin correlation function for a SPIn vectors. However, this propertyS(t)[=1 for i
pair of spinsn lattice sites apart coincides with the probabil- =1, - - - N, is of course maintained at all times by Heisen-

ity distribution for a one-dimensional continuous-time ran-Perg dynamics, Eq(5). That is, the spin dynamics based
dom walk from the origir® upon Eq. (60) are fundamentally different in character from

those based upon Eq. (3)ot surprisingly, the present exact
(SH(0)S, (1)) =exp( —t* )1 ,(t*), (61)  results at infinite temperature, Eq84)—(36), displayed in
Fig. 1(a), along with the analytic expansions for long times,
where nowt* =2yt andl ,(z) is a modified Bessel function. Egs.(37)—(39), of the two-spin correlation functions fdy
For fixedn, the leading behavior for largds indeed propor- =4 spins based upon Heisenberg dynamics, (&y. differ

tional to (t*) 2. both quantitatively and qualitatively from the results, Egs.
For the four-spin ring with diffusive dynamics, E(0),  (62)—(65), that one obtains using diffusive dynamics from
one finds at infinite temperature, the four-spin version of Eq60). These fundamental differ-
ences only underscore the fact that the broader question, of
Coot) =[1+exp(—t*)]/4, (62 whether the time correlation functions derived from the
Heisenberg spin dynamics, Ep), will show at™*? long-
Coy(t)=[1—exp —t*)]%/4, (63)  time approach to their asymptotic limits, as does @&d), is
and acute and deserving of greater attention.
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APPENDIX

We first list the integral forms of the functiong, (S?),
and thel;(t) for arbitrary temperatures. We find,

112 2 X+y
2\ _ 3
($%) Zfo dxj0 dy |)Hl‘s dsH(x,y,s), (A1)
lo= 4ZJ dxf dyfk ‘sdsl-(x Y,S)K2(X,y,8),
(A2)
l(t)— dxf dyf sdsl—(xys)
X[y? —Kz(x,y,s)]cos(st*), (A3)

COiyt* )

(1) = f dxf

X flx_ySdSHX y. Sy’ —K3(xy,9)], (Ad)

1-y?/4
I3(t)_ZZJ dxf dy( y ) _|sds|—(xys)

X {[y?+ Kz(x,y,s)]cos(yt* ycog st*)

+2yK(x,y,s)sin(yt*)sin(st*)}, (A5)
where
H(x,y,s)=exd a(s?—x2—y?)], (AB)
24242
K(x,y,s)z%. (A7)

We now list the functiond;(s), gi(s), andh;(s) for the
correlation functions at infinite temperature. We find,

3

1(5)— 124 s?(s—2)%(s+4)— 2880(55 +48s—150),
(A8)
(s)= (4-9)° > (55341252 65— 8), (A9)
9 288
(4—5) 125+ 1153+ 55| s
f2(8)= Zg0s2 siiz—e
—(12— 1052+1534)In(2+s) (A10)
2—S

PHYSICAL REVIEW B 64104424

o Sino s3(40— SZ)I s
a,(s)tay(s)(2—s)in2+ 280 n ——
+a5(s)(2—5)2In(4—s?), (A11)
where
2 3
a;(s)= 115 200(61 264-2880G+ 19 16G°— 4160
+456* 4 188°), (A12)
1 2 3 4 5
az(S)I—W(96+4SS+60$ +3045°—31&"—23s
—4s%), (AL13)
and
as(s)= ! (4+4s+ 135+ 12s°) (A14)
S0 32087 '

s3(s?+32)

03(s)=b;(s)+by(s)In2+ 230

Ins+bs(s)In(s—2)

+by(s)In(s+2), (A15)

where

1
= (— 2 3
bi(s) 23040@( 17 280-28 496+ 60 003+ 21 80G

—56005* — 1485°+ 188s%), (A16)

(s+2) 2 3 4
by(s)=— Jaag2 ( 96+ 485— 608>+ 30457+ 318
—23s°+4s°), (A17)
(s—2)° 2 4
b3(s)=—m2—(96+965+ 1405%+ 1168+ s*+ 4s°),
(A18)
and
ba(s)=— ! (s—2)(s+2)*(6—9s+4s?)
4 384052 ’
(A19)
and finally,
ha(s)= (s=2) $3(23+4s)In 2(s-2) +2(92+ 465
8 3840 +2
5752)in| 32| ~ 10(8 + 45 352
s7)In - 0 s—3s?)In 52
48(s+2) (s—2)2
2 In 25+2) +cq(s), (A20)
where
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_ (3_6) 2 3 " _ 1
cqi(s)= m(2880+ 1615%—22 66&°+624% g7(4)=— 2 (A30)
+2675*—188°). A21 ,
) (A2D) F2(0)=1o(2)=hy(6)=h3(6)=0,  (A31)
For the three-spin ring,
1
s?(5—s? "(0)==
o) = ( ) (A22) f2(0) 5 (A32)
15
and o 7 2 |
(s_3y2 5(2)=— 3—0+ 15 2, (A33)
ga(s)= W(—3—23+ 9s’+4s%).  (A23)
B 3739 43 | (A34)
To obtain the leading long-time behavior of the 9= 7200 120"
IimTHwCij(t), we require the functiond;(s), gi(s), and
; At ; ; ; 7 3
h;(s) and their derivatives at the integration endpoists F(2)=0a(2)= — — =N 2 A35
=0,2,4,6(0,1,3 for the three-spin ringThe relevant quan- 3(2)=05(2) 15 57 (A35)
tities are
1
f1(0)=11(0)=01(4)=01(4)=01(4)=0, (A24) fa(0)=—7, (A36)
f1(2) (2) f1(2)/2 (212 L7 (A25) 1 11 29
1(2)=01(2)=—T; =0 = Tan’
180 N=gl(2)— — = =
f3(2)=052)= 7= 75" 35" 2 (A37)
2
fi(0)=3. (A26) 21 29
93(2)= 75~ 35" 2 (A38)
f1(2)=d7(2)= 43 A27
93(4)2 h3(4)= m'f' %In 2— ﬁ)ln 3, (A39)
3
(0= - 15 (A28) 4
f7(2)=g7(2 —21 A29 2(4)=hi(4)= > +57I 2 1233I 3 A40
1(2)=01(2)= g5 (A29) 93(4)=h3(4) = 5a+ 55IN2— 555In3. (A40)
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