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Hopping in the glass configuration space: Subaging and generalized scaling laws
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Aging dynamics in glassy systems is investigated by considering the hopping motion in a rugged energy
landscape whose deep minima are characterized by an exponential density of statesr(E)5Tg

21exp(E/Tg),
2`,E<0. In particular we explore the behavior of a generic two-time correlation functionP(tw1t,tw)
below the glass transition temperatureTg when both the observation timet and the waiting timetw become
large. We show the occurrence of ordinary scaling behavior,P(tw1t,tw);F1(t/tw

m1), wherem151 ~normal
aging! or m1,1 ~subaging!, and the possible simultaneous occurrence of generalized scaling behavior,
tw
g @12P(tw1t,tw)#;F2(t/tw

m2) with m2,m1 ~subaging!. Which situation occurs depends on the form of the
effective transition rates between the low-lying states. Employing a ‘‘partial equilibrium concept,’’ the expo-
nentsm1,2 and the asymptotic form of the scaling functions are obtained both by simple scaling arguments and
by analytical calculations. The predicted scaling properties compare well with Monte Carlo simulations in
dimensionsd5121000 and it is argued that a mean-field-type treatment of the hopping motion fails to
describe the aging dynamics in any dimension. Implications for more general situations involving different
forms of transition rates and the occurrence of many scaling regimes in thet-tw plane are pointed out.

DOI: 10.1103/PhysRevB.64.104417 PACS number~s!: 75.10.Nr, 05.20.2y, 02.50.2r
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I. INTRODUCTION
The history of glass formation strongly affects the rela

ation dynamics of glassy materials.1,2 This dynamics is found
to become slower with the ‘‘age’’ of the system, that mea
with the timetw expired since the material was brought in
the glassy state. Such aging phenomena have been iden
in many systems and various dynamical probes. Promin
examples are shear-stress relaxations in structural glas3

thermoremanent magnetizations or ac susceptibility in s
glasses.4,5 Similar effects have been observed on the diel
tric constant of dipolar glasses,6,7 of structural glasses,8,9 and
on the structure factor of Lennard-Jones systems.10 More re-
cent experiments in colloidal gels11 or other ‘‘soft glassy ma-
terials’’ have been reported,12–16 and even electronic relax
ations in Anderson insulators were found to exhibit ag
effects.17 Aging is also expected for pinned systems~pinned
domain walls,18,6 pinned vortex lines19!, polymer melts,20

and granular materials~see, e.g., Refs. 21 and 22!.
From a theoretical point of view, several pictures ha

been proposed.23 The simplest one is based on doma
coarsening ideas,24 and is probably well suited to describ
aging in, say, disordered ferromagnets where a well-defi
order wants to establish across the system. However, in
glasses and even more evidently in glasses, the idea of s
long-range order that progressively invades the system is
from trivial. Mean-field models for spin glasses, which a
formally equivalent to the mode coupling theory of glasse23

do indeed lead to aging phenomena below the glass tra
tion. In this case, aging is of geometric origin:25 As time
grows, the system progressively exhausts the possibilitie
lowering its energy, and finds itself around saddle poi
from which it is more and more difficult to escape. Therm
activation is irrelevant in these models. Although this pictu
might be justified for supercooled liquidsabovethe mode-
coupling temperature,26 it certainly breaks down at lowe
temperature, where activated events become dominan
0163-1829/2001/64~10!/104417~15!/$20.00 64 1044
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this regime, one expects that a coarse-grained dynam
model of thermally activated hops between metastable st
is a proper description of the dynamics. In fact, recent m
lecular dynamics~MD! simulations support this view.27–29

Landscape models have been widely discussed in
past,30,31 but their relevance for aging phenomena was r
ognized later.32–35 These later developments were recen
extended to treat rheological phenomena.36

The ‘‘trap’’ models studied up to now lead to correlatio
or response functions that depend on the ratiot/tw of the
observation timet to the waiting timetw ~full aging!, or, for
long-range correlated energy landscapes, on the r
ln t/log tw .37 However, many experimental systems reve
subagingbehavior, that is, the relevant variable ist/tw

m with
m,1. Furthermore, it is possible that there exist, for giv
waiting timetw , various scaling regimes in timet, which are
governed bydifferent relaxation times}tw

ms , s51,2, . . . .
The occurrence of different scaling regions has recently b
conjectured on the basis of analytical results for mean-fi
spin-glass models.38,23So far, however, it was not possible t
illustrate intuitively these multiple time regimes by exact c
culations on simpler models~see, however, Ref. 39 for a
interesting discussion of these multiple time scales!. In this
paper we will discuss a model that allows us to demonst
explicitly the possible occurrence of subaging behavior a
multiple time scaling in a hopping model, where a po
jumps among the deep~free!-energy minimaEi of a complex
configuration space. Some of the results discussed in
paper already appeared in a Letter.40

II. HOPPING IN A RANDOM ENERGY LANDSCAPE

A. Model

Slow dynamics in glasses is often attributed to a therma
activated motion of a point~henceforth denoted as ‘‘par
©2001 The American Physical Society17-1
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RINN, MAASS, AND BOUCHAUD PHYSICAL REVIEW B64 104417
ticle’’ ! that jumps among metastable states in a rugged c
figuration space~see Fig. 1!. In a coarse-grained descriptio
only transitions between the deepest~free!-energy minimaEi
will govern the dynamics at long times. According
extreme-value statistics one may expect the distribu
c(E) of these deep minima to be exponential~which is the
behavior of the tail of a Gumbel distribution, see, e.g., R
41!. Indeed, mean-field theories of spin glasses42 and recent
results from molecular dynamics simulations43 suggest this
to be the case.

For simplicity, we consider the metastable states w
lowest energies to be arranged on a hypercubic latticed
dimensions and refer to them as ‘‘sites.’’ The lattice he
resembles an average finite connectivity of the mutually
cessible states. To each lattice sitei is assigned a random
energyEi drawn from a distribution

c~E!5
1

Tg
expS E

Tg
D ; 2`,E<0. ~1!

As discussed in a moment,Tg corresponds to a ‘‘glass tran
sition temperature’’ and we thus define

u[T/Tg ~2!

as the rescaled temperature. Also, energies are specifie
units of Tg . The particle can jump from one sitei to any of
the 2d nearest-neighbor sitesj with a hopping rate

wi , j5n expS 2
@aEj2~12a!Ei #

u D , ~3!

where the ‘‘attempt frequency’’n[1 sets our time unit, and
the parametera specifies how the energies of the initial an
target site contribute to the saddle point energy being
mounted during a jump. In order for thewi , j to obey detailed
balance,a can assume any real value, but in a sense o
weighting of the initial and target energy we restricta to the
range

0<a,1. ~4!

Note that the casea50 defines a trap model, where th
jump rates depend on the initial energy only, while the c
a51/2 defines a ‘‘force model,’’ where the jump rates a
determined by the energy difference between the two sit

FIG. 1. Sketch of a rugged energy landscape with various m
stable minima. Within a coarse-grained description, the slow
namics of the system may be attributed to effective ‘‘supertra
tions’’ between the deepest minima belonging to the shaded ar
10441
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Due to the existence of very deep traps, the system ex
its a ‘‘dynamical phase transition’’ at the glass transition te
peratureu51: in the high-temperature regimeu.1 the
Boltzmann distribution

c~E!e2E/u5e(121/u)E ~5!

is normalizable, while in the low temperature an equilibriu
state does not exist. In this latter situation the system is
ploring deeper and deeper traps as time proceeds and
overall dynamics ages.

For the trap model (a50) the dynamics is fully charac
terized by the trapping times

t[exp~E/u!, ~6!

with distribution

r~t!5ut212u, 1<t,`. ~7!

The absence of an equilibrium state foru,1 is reflected in
the fact that the mean-trapping time^t& becomes infinite.
For a.0 it is convenient to operate with thet defined in Eq.
~6! as well, although theset no longer have the meaning o
a trapping time. The hopping rate~3! can then be written as

wi , j5
t j

a

t i
12a

. ~8!

At first glance the model defined here seems to be sim
to the model considered earlier in Ref. 35. However, ther
an important difference. In the model studied in Ref. 35
disorder is of ‘‘annealed’’ type, i.e., the energy of each site
drawn anew fromc(E) after each jump. This can be viewe
as a mean-field treatment and simplifies the problem t
great extent. As will be shown in Sec. III, in the anneal
case one can map any parameters (u,a.0) to parameters
(u8,a50), that means thea parameter is irrelevant. In the
present model by contrast the energy disorder is ‘‘quench
and such a mapping is not possible. We will show that t
leads to the occurrence of much richer aging dynamics,
cluding subaging behavior and generalized scaling forms

B. Aging function

For studying aging properties we consider a quench fr
u5` to u,1 at time 0, then wait for some timetw@1 and
ask for the behavior of correlation functions followed durin
an observation timet after the waiting period. Since th
physical observables are functions of the coordinates of
configuration space, they will essentially decorrelate after
system has undergone a single transition from one d
minimum to another one. Hence, a ‘‘generic correlation fun
tion’’ in the model is to consider the probability that th
particle has not jumped betweentw and tw1t. We denote
this probability, after performing the disorder average,
P(tw1t,tw).

Let us note thatP(tw1t,tw) can also be regarded34 as the
spin-spin-correlation function of the generalize
Sherrington-Kirkpatrick model withp-spin interactions in
the limit p→`, which maps onto the random-energ

a-
-
i-
.

7-2
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HOPPING IN THE GLASS CONFIGURATION SPACE: . . . PHYSICAL REVIEW B64 104417
model.44 It can also be viewed as an incoherent intermed
scattering function at large wave numbers in diffusi
processes.35

A typical result for P(t1tw ,tw) from continuous-time
Monte Carlo simulations is shown in Fig. 2 for paramete
(d,u,a)5(10,1/4,3/8) and differenttw ~for details regarding
the simulation see Appendix A!. Indeed, we can identify a
pronounced aging phenomenon: The decay ofP(tw1t,tw)
with time t becomes slower and slower with increasing wa
ing time tw . The linear behavior of the curves at long tim
in the double-logarithmic plot indicates a commo
asymptotic power-law decay, and suggests that the var
curves may be collapsed onto a common master after re
ing the observation timet by a proper function of the waiting
time tw . The understanding of such scaling properties
P(t1tw ,tw) when botht andtw become large (t,tw@1) will
be the central issue in the following.

III. ANNEALED SITUATION

In the annealed case the model corresponds to
continuous-time random walk~CTRW! irrespective of the
value of a, since all timest j are drawn anew after eac
transition. The whole process can be characterized by a
tribution reff(teff) of effective trapping timesteff ~residence
times between two transitions!.

In order to calculatereff(teff), let us consider the particle
to be at sitei 50. Then

teff5
1

(
j 51

2d

w0,j

5
t0

12a

(
j 51

2d

t j
a

, ~9!

and the distribution is given by

FIG. 2. Aging function P(t1tw ,tw) for (d,u,a)
5(10,1/4,3/8) and different waiting timestw . The symbols refer to
waiting timestw523108(1), 53108 ~L!, 23109 ~l!, 53109

~h!, 131010 (j), 431010(s), 131011 (d), 331011 ~n!, and
131012 (m), respectively.
10441
e

s

-

us
al-

f

a

is-

reff~teff!5F)
i 50

2d E
1

`

dt ir~t i !GdS teff2
t0

12a

(
j 51

2d

t j
aD

5F)
i 50

2d E
1

`

dt ir~t i !G teff
a/(12a)

12a F (
j 51

2d

t j
aG1/(12a)

3dS t02teff
1/(12a)F (

j 51

2d

t j
aG1/(12a)D . ~10!

Thed function contributes ifteff( j 51
2d t j

a>1, i.e., there is no
restriction forteff>1/2d. Hence, forteff>1/2d:

reff~teff!5Ceffu8teff
212u8 , u8[

u

~12a!
, ~11!

whereCeff5^@( j 51
2d t j

a#2u8&, and^ . . . & denotes an averag
over 2d uncorrelated random numberst j distributed accord-
ing to Eq. ~7!. The CTRW theory applies with a rescale
temperatureu8, and the aging properties of this model ha
been worked out in Ref. 35.

Note in particular that foru8.1 no aging occurs, even i
the distribution~5! is not normalizable foru,1. This, how-
ever, is nothing to worry about, since in the annealed mo
the energies change after each hop and the distribution~5!
does not correspond to an equilibrium distribution. The d
namical phase transition in the annealed model is defined
the diverging mean waiting time of the distributionreff(teff)
that occurs foru8,1. The absence of aging for 0,12u
,a, that is whenu8.1 but 0,u,1, points to the fact that
the annealed model may not provide a valid mean-field
scription of the quenched model in any dimensiond.

In Fig. 3 the aging functionP(tw1t,tw) is shown for the
annealed model as resulting from simulations for two diff
ent parameters sets, (d,u,a)5(10,1/3,0) and (d,u,a)
5(10,1/4,1/4) that both refer to the sameu851/3. As ex-
pected, the aging functions for the two parameter sets
indistinguishable. Moreover, as predicted in Ref. 34,P(tw
1t,tw) scales with t/tw , P(tw1t,tw)5F(t/tw), where
F(u);12u12x for u!1 @see Fig. 3~b!# andF(u);u2x @see
Fig. 3~a!#. We will see in the following that this simple be
havior does not hold true any longer in the quenched ca
Nevertheless, sinceteff is the inverse hopping rate on a sit
the formulas~9! and~11! will still be useful in the following.

IV. PARTIAL EQUILIBRIUM CONCEPT „PEC…

Although full equilibrium cannot be reached in a syste
of infinite size, there should be some equilibration on a lo
scale that corresponds to the region of configuration sp
being explored by the system after the quench. This is
idea of the PEC.

In the present model we can translate this idea into
precise though approximate procedure for describing the
ing process. After the waiting timetw , the particle has vis-
ited S5S(tw) distinct sites and we will assume that on the
sites the system has equilibrated. Accordingly, the proba
7-3



h

RINN, MAASS, AND BOUCHAUD PHYSICAL REVIEW B64 104417
FIG. 3. Aging functions~a! P(t1tw ,tw) and its complement~b! 12P(t1tw ,tw) from simulations of the annealed model wit
parameters (d,u,a)5(10,1/3,0) ~lines! and (d,u,a)5(10,1/4,1/4)~points!. The waiting times range from 109 to 1012. The scaling is so
good that the various curves cannot be distinguished on the scale of the line thickness. The tick labels of the ordinate of part~a! refer also
to part ~b!.
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ity pj to find the particle on the sitej of the set of visited
sites is

pj~S!5
e2Ej /u

(
k51

S

e2Ek /u

5
t j

(
k51

S

tk

. ~12!

The probability for the particle to remain on sitej for a
time t is exp(2t(nj

wj,nj
)5exp(2ttj

a21(nj
tnj

a ), where the sum

over nj runs over all nearest-neighbor sites ofj. Since the
distinct visited sites form a Brownian path in the lattic
which, on a local scale, has a one-dimensional topology,
will consider exactly two of thenj sites to belong to the path
The remainingn22 sites are considered to be never visit
until tw . It will turn out ~see Sec. VII! that this assumption is
not very important and that the aging properties would
mainly the same if the Brownian path had a compact str
ture ~except for the asymptotics discussed in Sec. VII!.
According to the PEC, the aging functionP(tw1t,tw)
is now approximated by taking the average
exp(2ttj

a21(nj
tnj

a ) over all visited sitesj with the weightspj ,

P̃~ tw1t,tw![K (
j 51

S(tw)

t jexpS 2tt j
a21(

nj

tnj

a D
(
k51

S(tw)

tk
L . ~13!

Here^ . . . & denotes an average over (2d21)S(tw) uncorre-
lated random numberst j that are distributed according to Eq
~7!. We will see thatP̃(tw1t,tw) and P(tw1t,tw) exhibit
the same scaling properties, which in view of the gene
character ofP(tw1t,tw) ~cf. Sec. II B! are of primary inter-
est for us here. In quantitative terms both functions turn
10441
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to be different. SinceP̃(tw1t,tw) depends ontw only
throughS5S(tw), we will, in the following, also denote this
function byP̃(t,S).

As shown in Appendix B, the number of distinct visite
sitesS(tw) grows with increasing waiting timetw as

S~ tw!;tw
g , ~14a!

where

g5H du

d1~22d!u
for d,2

u for d.2.

~14b!

In d52 there are logarithmic corrections,S(tw)
;@ tw / ln tw#u.

V. SIMPLE SCALING ARGUMENTS

In this section we present simple arguments, why and h
P̃(tw1t,tw) is expected to scale. In particular we propo
the presence of two characteristic relaxation timest i(tw), i
51,2, that grow as power laws withtw

t i~ tw!;tw
m i , ~15!

wherem i are exponents depending onu anda.
The first characteristic relaxation timet1(tw) can be ob-

tained as follows. After the waiting timetw , the particle has
visitedS5S(tw) distinct sites and the occupation probabili
of these sites is dominated by the one for the site with low
energyEmin ~in the glassy phaseu,1 the extreme values ar
dominant!. The typical value ofE min can be estimated from
S*

2`
E minc(E)5Sexp(Emin).1, i.e.,

Emin~ tw!;2 ln S~ tw!;2g ln~ tw!, ~16!

or, in terms of the variabletmax corresponding toE min ,
7-4
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HOPPING IN THE GLASS CONFIGURATION SPACE: . . . PHYSICAL REVIEW B64 104417
tmax~ tw!5exp~2Emin /u!;S~ tw!1/u;tw
g/u . ~17!

Being at the site with energyEmin , the particle typically
encounters a situation as drawn in Fig. 4~a!: All neighboring
sites have energies close to zero and the characteristic es
time t1 from the site with energyEmin is the inverse hopping
rate given in Eq.~9!, t1(tw);tmax

12a;S(12a)/u;tw
g(12a)/u ,

i.e.,

m15
g~12a!

u
. ~18!

Hence, for botht and tw becoming large (t,tw@1) andL1

5t/tw
m1 being fixed we expectP̃(t,S) to become a function

of L1 only

P̃~ t,S!;F1~L1!, L15t/tw
m1 . ~19!

The second relaxation timet2(tw) is associated with rare
events depicted in Fig. 4~b!, which turn out to be importan
at small times. The deepest state on an interval of lengS
has a typical value determined by the fact that it should oc
with a probability 1/S. To obtain the scaling of the secon
deepest state withSwe note that for a distribution exhibiting
no peculiar long-time tails, the gap between the deepest
second-deepest state remains finite whenS→`. Accord-
ingly, with probability of order 1/S;tmax

2u one of the neigh-
boring sites can also have an energy comparable toEmin . In
this case the hopping rate specified in Eq.~8! yields t2

;tmax
12a/tmax

a ;S(122a)/u, i.e.,

m25
g~122a!

u
. ~20!

Clearly this is a relevant time growing withtw only for a
,1/2. Moreover, there is a further condition on the relevan
of t2. To see this, we may consider the formal short-tim
expansion ofP̃(t,S) from Eq.~13!. Using the fact that a sum
over randomt ’s raised to some power with an expone
larger thanu scales as the maximal term appearing in
sum ~Lévy statistics!, we can estimate

P̃~ t,S!5K (
m50

`
~2t !m

m! (
j 51

S

pjt j
2(12a)mS (

nj

tnj

a D mL
.11 (

m51

`
~2t !m

m! tmax
(12a)m @11tmax

2u tmax
am #. ~21!

FIG. 4. Jumps out of a valley with energyEmin after timetw : ~a!
a situation corresponding to the typical situation, where the ener
of the neighboring valleys have values close to zero;~b! a rare event
where at least one of the neighboring valleys has an energy of o
Emin .
10441
ape

r

nd

e

e

Here the first term in the rectangular brackets correspond
the typical situation, while the second term corresponds
the rare events and is weighted by a factortmax

2u ~we have
neglected constant prefactors!. Comparing these two terms
we see that, ifu,a, the latter term dominates forall m. In
this case we thus expect the scaling behavior of the form

S@12P̃~ t,S!#;F2~L2!, L25t/t2~ tw! ~22!

for times t,tw@1 andu,a,1/2.
For a,u to the contrary, the first term in the rectangul

brackets dominates for small 1<m<u/a, and t2(tw) is not
significant@note thatt2(tw) is smaller thant1(tw)]. The fact
that Eq.~21! is not a regular expansion in the scaling va
ablet/t1(tw)5t/tmax

12a ~for a.0) indicates thatF1(L1) does
not have an analytical behavior for smallL1. On the other
hand, the formal short-time expansion suggests a regular
haviorF2(L2);L2. An exact treatment of the PEC formul
~13! presented in Sec. VII, however, shows that this sho
be true only ind51. The smallL2 regime is in fact a subtle
one since it is very sensitive to rare events and the conn
tivity properties of the Brownian path.

We can furthermore deduce the asymptotic form
F1(L1) for L1→` andL1→0 by simple arguments as wil
be shown next. The behavior ofF2(L2) for large L2 then
follows from the fact that the largeL2 behavior of Eq.~22!
should match the smallL1 behavior of Eq.~19!, i.e. 1
2S21F2(t/tw

m2).F1(t/tw
m1) for 1!tw

m2!t!tw
m1 .

A. Limit L1\`

The particle leaves the site reached aftertw typically in a
time tw

m1 . In order to explore the behavior for largeL1

5t/tw
m1@1 we may assumet@tw@1 and ask, which events

give rise to a nonvanishingP̃(t,S). These arerare events,
where an unusual large inverse hopping rateteff>t1tw.t
has been encountered before the timetw has passed, or, sai
differently, before the particle has visitedS(tw) distinct sites.
The probability thatteff on one site is smaller thant is
P(t)5*0

t dteffreff(teff);12t2u/(12a) and the probability
that at least for one ofS5S(tw) sitesteff is larger thant is
12P S. Hence,

P̃~ t,S!;12P S512~12Q!S;S~ tw!Q~ t !, ~23!

whereQ(t)512P(t);t2u/(12a). InsertingS(tw) from Eq.
~14a! we thus obtain

F1~L1!;L1
2d , d[

u

12a
. ~24!

B. Limit L1\0

In the limit L1→0 corresponding to 1!t!tw
m1 , the typi-

cal situations govern the decay ofP̃(tw1t,tw). In these
typical situations, energiesE!Emin(tw) or Boltzmann fac-
tors t@tmax(tw) do not matter. Let us then consider a jum
of the particle from a site with energyE1 @Boltzmann factor
t15exp(2E1 /u)] to a neighboring site with energyE2

es

er
7-5
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RINN, MAASS, AND BOUCHAUD PHYSICAL REVIEW B64 104417
@Boltzmann factor t25exp(2E2 /u)], where 0<E1 ,E2

<Emin . On average such a jump occurs at a timet2
a/t1

12a .
The probability for the particle to be at a site with energy
an interval (E1 ,E11dE1) is c(E1)exp(2E1 /u)dE1

}t1
212ut1dt1 ~equilibrated initial site! and the probability for

the energy of a neighboring site to be in an interv
(E2 ,E21dE2) is c(E2)dE2}t2

212udt2 ~random target
site!. Hence the probabilityc(t)dt for the particle to leave
the site reached aftertw in a time interval (t,t1dt) can be
estimated by

c~ t,tmax!}E
1

tmax
dt1t1

2uE
1

tmax
dt2t2

212udS t2
t1

12a

t2
a D

5:f~ t,tmax!. ~25!

Normalizingc(t) on its supporttmax
2a <t<tmax

12a we obtain

c~ t,tmax!5
f~ t,tmax!

E
tmax

2a

tmax
12a

dt8 f~ t8,tmax!

. ~26!

Since 12P̃(tw1t,tw) is the probability of the particle to
leave the site reached aftertw within the time interval@0,t),
we expect

12P̃~ tw1t,tw!;E
0

t

dt8 c~ t8,tmax~ tw!! ~27!

for t,tw@1 and t/tw
m1!1. Performing the integrals in Eq

~25! gives

f~t,tmax!5
12a

a2u
t ~a2u!/~12a!F S t

tmax
12aD 2 ~a2u!/[ ~12a!a]

21G .

~28!

Since t/tmax
12a;L1, we have, in the limitL1→0, to distin-

guish betweena.u anda,u, yielding

f~ t,tmax!;H 12a

a2u
t2~11u!/atmax

~12u!/a , a.u

12a

u2a
t211~12u!/~12a!, a,u.

~29!

Inserting this into Eqs.~26! and ~27! and using~17! then
gives

12F1~L1!;L1
« , L1→0. ~30a!

with

«5H «.[
u

a
, a.u

«,[
12u

12a
, a,u.

~30b!
10441
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As discussed above, by matching this smallL1 behavior
of F1(L1) to the largeL2 behavior ofF2(L2) we further-
more obtain fora.u

F2~L2!;L2
u/a , L2→`. ~31!

VI. TEST OF THE PEC

A. Scaling properties

In order to test the PEC, we performed simulations of
model ind51, 10, 100, and 1000 by means of a continuou
time Monte Carlo algorithm~see Appendix A for details of
the simulation procedure!. Averages were taken over 105 ~for
d51,10,100) and 104 ~for d51000) energy landscapes.

Figures 5~a! and 5~b! show, respectively,P(t1tw ,tw)
and 12P(t1tw ,tw) as a function of the scaled variab
L15t/tw

m1 @cf. Eqs.~18! and~19!# for (u,a)5(1/4,3/8), i.e.,
a case wherea.u. As expected from the PEC and the sca
ing arguments outlined in the previous section the data
lapse onto master curvesF1(L1) for all dimensionsd. In
particular we findF1(L1);L1

e, for L1→0 and F1(L1)
;L1

2d in agreement with Eqs.~30a,b! and~24!, respectively.
Correspondingly scaled data for (u,a)5(1/3,1/4), i.e., a

case wherea,u, are shown in Fig. 6. Again there is a goo
data collapse and the scaling functionsF1(L1) have the ex-
pected asymptotic behavior for small and largeL1. In par-
ticular we now findF1(L1);L1

e. with e. from Eq. ~30a!.
Moreover, fora.u, PEC and the scaling arguments pr

dict the presence of a second time scalet25tw
m2 @cf. Eq.~20!#

and an associated generalized scalingtw
g @12P(t1tw ,tw)#

;F2(t/tw
m2) @cf. Eqs.~22! and~14a!#. The occurrence of this

generalized scaling is verified in Fig. 7 ford51, 10, and
100. The master curves scaleF2(L2);L2

u/a for L2→` as
predicted by Eq.~31!. A critical reader may note that th
simulated data do not collapse at largeL2, the deviations
from scaling setting in at largerL2 for largertw . The reason
for this is that the limitstw→` andL25t/tw

m2→` must not
be commuted. One first has to take the limittw→` to obtain
the scaling functionF2(L2) and then has to consider th
asymptotic behavior for largeL2.

The behavior forL2→0 is not so clear. Ford.1, the
exact treatment of the PEC formula~13! yields F2(L2)
;L2

u/a also ~with a smaller prefactor in the scaling law!,
while for d51, F2(L2);L2 seems to be correct. In fact, fo
d51 the data in Fig. 7 are in fair agreement with a line
behavior. Ford510,100 the data also show some linear d
pendence for intermediateL2 values~see the dashed lines i
Fig. 7!, and in fact, such intermediate regime is predicted
occur based on the PEC formula~although it should be less
pronounced, see the discussion in Sec. VII F!. For very small
L2, however, we expectF2(L2);L2

u/a , although this
asymptotic regime can not be identified in Fig. 7. At best
can say that there is a change in curvature at very smallL2.
The true asymptotics, however, could not be obtained wit
reasonable CPU time.
7-6
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FIG. 5. First scaling function for a parameter set witha.u: ~a! P(tw1t,tw) and ~b! 12P(tw1t,tw) as a function oft/tw
m15L1 for

parameters (u,a)5(1/4,3/8) and different dimensionsd. The straight lines indicate the asymptotic behavior according to Eqs.~24! and~30!.
In order to make the graphs distinguishable,P(tw1t,tw) and 12P(tw1t,tw) have been multiplied by factors 4, 16, and 64 ford510, 100,
and 1000, respectively. In plot~b! also t/tw

m1 has been multiplied by factors 32, 4, 1, and 0.5 ford51, 10, 100, and 1000, respectively. Fo
d510 and d5100 the symbols refer to the same waiting times as in Fig. 2. Ford51 the symbols refer totw563106 (1), 2
3107 (L), 43107 (l), 13108 (h), 33108 (j), 63108 (s), 23109 (d), 43109 (n), and 131010 (m). For d51000 the
symbols refer totw563106 (l), 13107 (h), 33107 (j), 83107 (s), 23108 (d), and 43108 (n). The tick labels of the
ordinate of part~a! refer also to part~b!.
es
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Accounting for the existence of two different time scal
is very important to properly rescale the numerical resu
Had one assumed a single time scaletw

m , one would have
obtained an approximate data collapse with an effec
value of m intermediate betweenm1 and m2. This remark
might be of importance for analyzing experimental data:
assumption of a single time scale could lead to a system
underestimation of the true, asymptotic value ofm ~see the
discussion in Ref. 45!.
10441
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B. Full comparison with simulations

While the predictions of PEC regarding the scaling pro
erties and the asymptotic behavior of the scaling functio
are fulfilled, P(t1tw ,tw) and its PEC equivalentP̃(t
1tw ,tw) are different in quantitative terms. To see this, w
have computedP̃(t1tw ,tw) numerically according to Eq
~13! and compared it withP(t1tw ,tw) obtained from the
Monte Carlo simulations. As shown in Fig. 8 the scali
functions associated withP(t1tw ,tw) andP̃(t1tw ,tw) dif-
.
e as
FIG. 6. First scaling function for a parameter set witha,u: ~a! P(tw1t,tw) and ~b! 12P(tw1t,tw) as a function oft/tw
m15L1 for

(u,a)5(1/3,1/4) and different dimensionsd. The straight lines indicate the asymptotic behavior according to Eqs.~24! and~30!. In order to
make the graphs distinguishableP(tw1t,tw) and 12P(tw1t,tw) have been multiplied by factors 4 and 16 ford510 and 100, respectively
In plot ~b! also t/tw

m1 has been multiplied by factors 32 and 4 ford51 and 10, respectively. The symbols refer to the same waiting tim
for d51 in Fig. 5. The tick labels of the ordinate of part~a! refer also to part~b!.
7-7
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RINN, MAASS, AND BOUCHAUD PHYSICAL REVIEW B64 104417
fer by a factor in the scaling variable and the precise form
a transient region between the asymptotic regimes for sm
and large arguments.

In summary we can conclude that all predictions of t
PEC concerning the scaling properties can be corrobor
by the simulations. The PEC thus turns out to be a powe
tool to uncover the mechanisms of aging in quenched r
dom energy landscapes.

FIG. 7. Scaling functionF2(L2) for the same parameter set a
in Fig. 6: S@12P(tw1t,tw)# as a function of t/tw

m25L2 for
(u,a)5(1/4,3/8) andd51,10,100. The straight lines for largeL2

indicate the asymptotic behavior according to Eq.~31!, while the
solid (d51) and dashed lines (d510,100) for smallL2 correspond
to a linear behavior~see text!. The symbols refer to the same wai
ing times as in Fig. 5, with the additional waiting timetw53
3106. In order to make the graphs distinguishable,S@12P(tw

1t,tw)# has been multiplied by factors 10 and 5 ford51 and 10,
respectively.
a

10441
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VII. EXACT EVALUATION OF THE PARTIAL
EQUILIBRIUM FORMULA

In this part we show how the scaling arguments presen
in Sec. V can be validated by an exact evaluation of the P
formula ~13! in the limit of largeS ~large tw). The reader
who is not interested in these more mathematical derivatio
may skip this section and proceed with the Summary in S
VIII.

When we replace the denominator of Eq.~13! by
*0

`dl exp(2l(k51
S tk) and notice that all but three randomtk

are uncorrelated with thet j ,tnj
appearing in the numerato

of Eq. ~13!, we find

P̃~ t,S!5SE
0

`

dl^e2lt&S23g~ t;l!, ~32!

whereg(t;l) is defined by

g~ t;l![K t expF2tta21(
j 51

2d

t j
a2l~t1t11t2!G L

5E
1

`u dt

tu
e2ltE

1

`u dt1

t1
11u

e2lt1E
1

`u dt2

t2
11u

e2lt2

3expS 2t
t1

a1t2
a

t12a D F f S t

t12aD G 2(d21)

~33!

and

f ~z![E
1

` u dt

t11u
e2zta

5
u

a
zu/aGS 2

u

a
,zD . ~34a!

HereG(a,z)5*z
`dt e2tta21 denotes the incomplete Gamm

function. Note that 0< f (z)<1 and that forz→0
FIG. 8. P(tw1t,tw) and 12P(tw1t,tw) for (d,u,a)5(10,1/4,3/8) as a function of the scaling variablet/tw
m1 from Monte Carlo

simulations and the partial equilibrium formula, Eq.~13! ~PEC!. The symbols refer to waiting timestw5231011 (1), 631011 (L), 3
31012 (l), 131013 (h), 431013 (j), 231014 (s), 631014 (d), 331015 (n), and 131016 (m). The tick labels of the ordinate
of part ~a! refer also to part~b!.
7-8
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f ~z!512GS 12
u

a D zu/a2
u

u2a
z1O~z2!, ~34b!

where G(a)5G(a,0) is the Gamma function. Forz
→` (uargzu,3p/2)

f ~z!;
u

a

e2z

z
. ~34c!

In the limit S→` (tw→`), the asymptotic form of Eq
~32! is @see Eq.~C3!#

P̃~ t,S!;SE
0

`

dl e2luS̃g~ t;l!, ~35!

where

S̃[kS, k[G~12u!. ~36!

A. First scaling regime: F 1„L1…

By substitutingu5S̃1/ul in Eq. ~35! andv[t/S̃1/u in Eq.
~33! we obtain

P̃~ t,S!;
u

kE0

`

du e2uuE
S̃21/u

` dv

vu
e2uvE

1

`u dt1

t1
11u

e2ut1 /S̃1/u

3E
1

`u dt2

t2
11u

e2ut2 /S̃1/u
expS 2tS̃2~12a!/u

t1
a1t2

a

v12a D
3F f S tS̃2~12a!/u

v12a D G 2(d21)

. ~37!

When keeping

L1[tS̃2(12a)/u ~38!

fixed, Eq. ~37! has a well-defined limit forS̃→`. Before
taking this limit, however, let us note at this point that if w
would have considered alltnj

in Eq. ~13! to belong to the
Brownian path, we had obtained

P̃~ t,S!;
u

kE0

`

du e2uuE
S̃21/u

` dv

vu

3e2uv)
i 51

2d F E
1

`u dt i

t i
11u

expS 2
ut i

S̃1/u
2L1

t i
a

v12aD G
~39!

instead of Eq.~37!. Now, v2uexp(2uu2uv)) j51
2d utj

212u is an
integrable majorant for the integrand in both Eqs.~37! and
~39!. Hence, by Lebesgue’s theorem we obtain from b
equations the same scaling function

F1~L1![
u

kE0

`

du e2uuE
0

`dv

vu
e2uvF f S L1

v12aD G 2d

.

~40!
10441
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We can conclude that it makes no difference here whether
consider the path of distinct visited sites to have a one
mensional or a compact topology or anything in between.
required by normalization,F1(0)51.

B. Limit L1\`

When transforming to variablesj[L1
1/(12a)u and z

[l1
21/(12a)v in Eq. ~40!, we find

F1~L1!5L1
2u/(12a)u

kE0

`

dj e2L1
2u/(12a)juE

0

`

dz z2u

3e2jz f 2d~z2(12a)!.

Since the integrand in the limitL1→` is an integrable ma-
jorant for all L1, we can take theL1→` limit under the
integral to obtain

F1~L1!;c`L1
2u/(12a) for L1→`, ~41a!

where

c`[
u

kE0

` dz

z11u
f 2d~z2(12a)!. ~41b!

Note that this integral is well defined because of t
asymptotic behavior off (.) given in Eqs.~34b,c!.

C. Limit L1\0

SinceF1(L1)→1 for L1→0, it is convenient to conside

12F1~L1!5
u

kE0

`

du e2uuE
0

`dv

vu
e2uvF12 f 2dS L1

v12aD G .

~42!

For u,a it follows from Eqs.~34a–c! 12 f (x)2d52dG(1
2u/a)xu/aw,(x), where w,(x) is a bounded function,
w,(x),M , for 0<x,`, with w,(x)→1 for x→0.
Hence,

12F1~L1!52dGS 12
u

a D u

k
Lu/aE

0

`

du e2uuE
0

` dv

vu/a

3e2uvw,S L1

v12aD . ~43!

Since M ,v2u/aexp(2uv2uu) is an integrable majorant o
the integrand, we find

12F1~L1!;c,L1
u/a , L1→0, u,a, ~44a!

where
7-9
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c,[

2d uGS 12
u

a D
G~12u!

E
0

`

du e2uuE
0

` dv

vu/a
e2uv

5

2dGS 12
u

a D 2

GS 1

a D
G~12u!

. ~44b!

For u.a the v integral in Eq.~43! would become diver-
gent when taking theL1→0 limit in w,(L1 /v (12a)). We
thus transform thev variable in Eq.~42!, w[L1 /v12a, to
obtain

12F1~L1!5
uL1

~12u!/~12a!

~12a!k E
0

`

du e2uuE
0

` dw

w11~12u!/~12a!

3@12 f 2d~w!#expS 2
uL1

1/~12a!

w1/~12a! D . ~45!

From Eqs. ~34a–c! it follows for u.a that 12 f 2d(w)
5ww.(w) , wherew.(w) is a bounded function,w.(w)
,M . for 0<w,`, with w.(w)→(u2a)/2du for w→0.
Hence,M .exp(2uu)w(12u)/(12a) is an integrable majorant o
the integrand in Eq.~45! and we can take theL1→0 limit
under the integral, yielding

12F1~L1!;c.L1
~12u!/~12a!, L1→0, u.a, ~46a!

where

c.5

GS 1

u D
~12a!G~12u!

E
0

` dw

w11~12u!/~12a!
@12 f 2d~w!#.

~46b!

D. Second scaling regime:F 2„L2…

The second scaling regime is more difficult to extra
from Eqs.~32! and~33!. We start by taking advantage of th
normalizationP̃(t50,S);1 in order to write

12P̃~ t,S!;
u

kE0

`

du e2uuE
S̃21/u

` dv

vu
e2uvS )

j 51

2d E
1

`u dt j

t j
11u D

3expS 2
u

S̃1/u (
k51

n

tkD
3F12expS 2

L1

v12a (
j 51

2d

t j
aD G . ~47!

This corresponds to Eqs.~37! and ~39!, if the number of
neighboring sites belonging to the Brownian path isn, 2
<n<2d ~see the discussion in Sec. IV!.

After the transformationv→w5L1( j 51
2d t j

a/v (12a) this
can be rewritten as
10441
t

12P̃~ t,S!;
uL1

~12a!kE0

`

du e2uu
u2(a2u)S )

j 51

2d E
1

`u dt j

t j
11u D

3expS 2
u

S̃1/u (
k51

n

tkD S (
j 51

2d

t j
aD

3FL1u12a(
j 51

2d

t j
aG ~12u!/~12a!21

3E
0

t( j 51
2d t j

a dw~12e2w!

w11~12u!/~12a!

3expF 2S L1u12a(
j 51

2d

t j
a

w
D 1/(12a)G .

We now decompose this expression into the sum of two p
corresponding to a decomposition( j 51

2d t j
a5( j 51

n t j
a

1( j 5n11
2d t j

a in the second line. We can use the symme
with respect to$t j% in order to replace( j 51

n t j
a by nt1

a in the
first part and( j 5n11

2d t j
a by (2d2n)t2d

a in the second part.

After the transformationz5S̃21/ut1 in the first part, and the
transformationz5S̃21/ut2d in the second part one can, fo
u,a, again use Lebesgue’s theorem to perform the limiS
→` for fixed

L2[S̃a/uL15
t

S̃(122a)/u
, u,a,

1

2
. ~48!

This yields

S̃@12P~ t,S!#;F2~L2! ~49a!

F2~L2!5nF2
(1)~L2!1~2d2n!F2

(2)~L2!, ~49b!

where

F2
(1)~L2![

u2L2

~12a!kE0

`du e2uu

ua2u E
0

` dze2uz

z12(a2u)
h~L2u12aza!,

~50!

h~x![x~12u!/~12a!21E
0

`dw~12e2w!

w1112u/12a
exp@2~x/w!1/(12a)#,

~51!

and

F2
(2)~L2![

u2L2

~12a!kE0

`du e2uu

ua2u E
0

`dzh~L2u12aza!

z12(a2u)

5
u2L2

u/a

a~12a!kE0

`du e2uu

u12u/a E0

`dv h~v !

vu/a

5

GS 12
u

a D 2

GS 1

a D
G~12u!

L2
u/a . ~52!
7-10
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The restriction toa,1/2 in Eq. ~48! follows from the fact
that in order for the scaling regime to be relevant,t2

;S̃(122a)/u;tw
g(122a)/u should increase with increasingtw .

The functionh(x) has the asymptotic behavior

h~x!;H ~12a!G~a2u!, x→01

~12a!G~12u!x21, x→`.
~53!

The importance of the conditionu,a now becomes clear
since for thez integrand to be integrable in Eqs.~50! and
~52! for z→0, a2u has to be positive.

E. Limit L2\`

After the transformationz→v5L2u(12a)za, Eq. ~50!
gives

F2
(1)~L2!5

u2L2
u/a

a~12a!kE0

` du

u12u/a
e2uuE

0

` dv

vu/a

3exp@2uv1/aL2
21/au2(12a)/a#h~v !. ~54!

The limit L2→` can then be taken under the integral, yie
ing @cf. Eq. ~52!#

F2
(1)~L2!;F2

(2)~L2!. ~55!

Using Eqs.~49b! and ~52! we finally obtain

F2~L2!;c2
(`)L2

u/a , c2
(`)[

2dGS 12
u

a D 2

GS 1

a D
G~12u!

.

~56!

As required by matching,c2
(`)5c, @cf. Eq. ~44b!#.

F. Limit L2\0

Sinceh(x) is monotonously decreasing withx for x.0,
we can replaceh(L2u12aza) by h(0)5(12a)G(a2u) in
Eq. ~50!. Hence,

F2
(1)~L2!;c2L2 , ~57!

where

c2[
u2G~a2u!

k E
0

`du e2uu

ua2u E
0

` dz e2uz

z12(a2u)

5
u

12a

G~a2u!GS 122~a2u!

u D
G~12u!

. ~58!

This means that for smallL2 , F2(L2) should be dominated
by F2

(2)(L2), except for d.1 @where F2(L2)
52F2

(1)(L2)]. For a given~mean! value ofn we thus find

F2~L2!;c2
(0)L2

u/a , c2
(0)[S 12

n

2dD c2
(`) . ~59!

This L2→0 limit of the generalized scaling form depends
the number of neighbors being considered to belong to
10441
-

e

Brownian path~see the discussion in Sec. IV!. According to
Eq. ~57!, there can occur an intermediate regime, wh
F2(L2) depends linearly onL2. This intermediate regime
seems to be more pronounced for the ‘‘true dynamic
~see Fig. 7! than for the dynamics predicted by the PE
formula ~13!.

VIII. SUMMARY AND CONCLUSIONS

We have studied aging within the framework of a simp
hopping model mimicking a system that performs therma
activated transitions between the deep free-energy minim
its configuration space. Based on general arguments from
statistical theory of extremes we have chosen the free-en
density of states to exhibit an exponential tail. In order
effectively quantify the influence of the initial and target s
on the energy barrier to be surmounted during a transit
we introduced a parametera, 0<a,1, in the hopping rates
that turned out to strongly influence the aging properties.
have found that generically, subaging occurs in these mod
an effect related to the multiple visits of deep traps. We ha
also found that different time scales, corresponding to diff
ent scaling regions, appear in these models.

These aging properties can be understood from a P
that, despite not being an exact quantitative description, p
vides a powerful tool to study the scaling properties of t
aging dynamics. Based on the PEC we first motivated
occurrence of subaging behavior and generalized sca
forms in terms of simple scaling arguments. We then p
sented a detailed analysis of the PEC formula~13! and cal-
culated the aging functions following from Eq.~13! and their
asymptotics exactly. With respect to the scaling proper
the predictions could be confirmed by Monte Carlo simu
tions in d51, 10, 100, and 1000 dimensions.

The fact that even ford51000 the ‘‘quenched model’’ has
aging properties different from the ‘‘annealed model’’ stu
ied earlier in Ref. 35 is rather surprising, since the numbe
distinct visited sitesS in d.2 scales as the number of a
transitionsN between minima for largeN, S;N. From this
one tends to conclude that the system effectively explore
new minimum in each transition, which would correspond
the annealed situation. However, in the quenched situa
one can imagine that there is always somelocal equilibrium
established at the site with minimal energy reached after t
tw , and this local equilibration effect slows down the diffu
sion in configuration space on all time scales, i.e. instead
S;N;tw

u8 with u85min@1,u/(12a)# in the annealed situa
tion we haveS;N;tw

u in the quenched situation ford.2,
0,u,1.

The existence of a local equilibrium around the ‘‘dom
nant’’ site with minimal energy after timetw does not imply
that there must be a true equilibration on all visited sites a
is assumed in the PEC formula~13!. In fact, by studying the
disorder averaged participation ratiosYq(t)[^( j Pj (t)

q&,
wherePj (t) is the probability for the system to be at min
mum j at timet, we find that the PEC never becomes exac
the limit t→`, not even ind51 where each trap is visited
an infinite number of times. This behavior offers the pos
bility to define an effective temperature in the nonequil
7-11
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rium aging regime, which enters a modified fluctuatio
dissipation theorem, similar as it was found for mean-fi
spin-glass models.38 The role of an effective temperature
the landscape model considered here will be discus
elsewhere46 ~for recent progress in our understanding of th
problem coming from MD simulations, see Ref. 47!.

With respect to the applicability of the analysis outlin
above the question arises, whether the characteristics o
aging dynamics can be worked out also for general hopp
rates not exhibiting the specific form given in Eq.~3!. For the
PEC to be applicable, the system should have the tenden
approach equilibrium~that truly exists only foru.1), so
that one may require the jump rates to obey detailed bala
It is then indeed straightforward, by using the simple arg
ments presented in Sec. V, to extract all characteristic t
scalest j (tw) and to predict the scaling properties. A nece
sary ingredient for this procedure to work correctly, howev
is the robustness of the scaling relationS(tw);tw

g @cf. Eqs.
~14a,b!#. Preliminary results indicate that for ‘‘physica
choices’’ of the jump rates~meaning that the dependence
the energies of the initial and target site on the saddle p
energy is reasonable!, Eqs.~14a,b! always hold true.

Moreover, it is possible also to consider some rand
distribution of the form of the jump rates~as it is expected to
occur when the dynamics in configuration space is map
onto a jump process by means of some quantitative analy!,
and to work out the aging features of such more reali
models. It turns out then, that in principle infinitely man
aging regimes can exists in the two-time planet,tw>0. A
thorough discussion of these issues, however, is beyond
scope of the present work.
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APPENDIX A: TECHNICAL DETAILS OF THE MONTE
CARLO SIMULATIONS

We use the standard continuous-time Monte Carlo al
rithm as discussed in detail, e.g., in Ref. 48 to simulate
stochastic process defined in Sec. II A. A special probl
arises for large dimensionsd@1, where it is not possible to
save the energies within a hypercube of even small lin
dimension. To resolve this problem, we use hash maps
for example, the hash map template provided by the S
dard Template Library of ISO–C11.

The hash function should be computable quickly and
the same time the sitesx being encountered must be mapp
to different hash values as often as possible. For dimens
d>10 we found

f ~x!5 (
n51

2d

nxn ~A1!
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to do a good job. For larged the RAM consumption of the
computer programs is the limiting factor when trying to a
cess longer timestw . While simulations ford<10 can easily
be performed on workstations, ford>100 computers with
4GB of RAM and more are necessary.

APPENDIX B: CONNECTION BETWEEN
THE ‘‘NUMBER OF DISTINCT VISITED SITES’’

AND THE WAITING TIME

For a50, i.e. the trap model, we use a scaling argum
discussed in Ref. 49 to derive the behavior ofS(tw) for large
tw . Then we show by a finite-size scaling argument that
d51 the behavior ofS(tw) for a50 is not expected to
change for 0,a,1. Furthermore, we give general arg
ments for the invariance of Eq.~14b! with respect toa for all
d. Finally we confirm Eqs.~14a,b! by Monte Carlo simula-
tions.

1. Trap model „aÄ0…

After N@1 transitions of the system, the typical elaps
time tw is

tw~N!.(
i 51

N

t i.N(
m

gm~N!

N
tmDtm

;NE
1

tmax(S(N))

dt t r~t!

;N@tmax„S~N!…# (12u), ~B1!

where gm(N) is the typical number oft j falling in some
interval tm2Dtm/2<tm<tm1Dtm/2, S(N) is the typical
number of distinct visited sites afterN jumps andtmax(S) is
the typical maximalt obtained after the system encounter
S distinct sites.

Sincetmax(S);S1/u and ~see, e.g., Ref. 50!

S~N!;H Nd/2, 1<d,2

N/ ln N, d52

N d.2,

~B2!

we find

tw~S!;H S[d1(22d)u]/du, 1<d,2

S1/uln S d52

S1/u, d.2.

~B3!

This yields Eqs.~14a,b! for a50.
We note that in the annealed model Eq.~B2! remains

valid, while tmax;N1/u, leading to S(tw);tw
du/2 for 1<d

,2,S(tw);tw
u / ln tw for d52, andS(tw);tw

u for d.2. Due
to our discussion in Sec. III, one can replaceu by u8
5min@1,u/(12a)# in these formulas to obtain the behavi
for 0<a,1.
7-12
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2. One dimension„0ÏaË1…

Let us consider a finite chain withL sites and site energie
distributed according to Eq.~1!. Then the mean-square dis
placement̂ Dx2(t)& of a particle performing a random wal
on this chain with the hopping rates given in Eq.~3! is ex-
pected to scale as

^Dx2~ t !&;H th for ^Dx2~ t !&!L2

D~L !t for ^Dx2~ t !&@L2 ~B4!

for large L. The diffusion coefficient D(L) can be
written as51

D~L !5
L2

(
j 51

L

~pj
(eq)wj , j 11!21

~B5!

with pj
(eq)5exp(2bEj)/(k51

L exp(2bEk)5tj /(ktk . The de-
nominator then reads, using Eq.~8!, ( i 51

L t i( j 51
L (t jt j 11)2a.

Since ^(t jt j 11)2a& exists ~for a.2u), the second sum
gives a contribution}L for largeL, while the first sum has
no finite average and is dominated by the maximumtmax
;L1/u. Thus we find

D~L !;
L2

L1/uL
;L121/u. ~B6!

At the crossover timetx , where^Dx2(tx)& changes its be-
havior in Eq.~B4!, we obtain from continuity

tx
h;D~L !tx;L2. ~B7!

This impliestx;L2/h and tx;L111/u yielding

h5
2u

11u
. ~B8!

SinceS(tw);^Dx2(t)&1/2, we finally obtain for 0<a,1

S~ tw!;tw
h/25tw

u/(11u) ~B9!

in agreement with Eqs.~14a,b!.

FIG. 9. Number of distinct visited sitesS(tw) for (u,a)
5(1/4,3/8) and different dimensionsd.
10441
3. General arguments

The very physical difference between the trap modela
50) and models with weighted rates (a.0) is the occur-
rence of forward-backward jump correlations. When the s
tem jumps from a site with low-energy to a site with ener
close to zero~such energies are most likely!, it has high
tendency to jump back fora.0. More generally, when the
system enters a region of connected low-energy sites, it w
before escaping this region, perform more and more jum
between the low energy sites the larger the value ofa is.
Once it leaves the region, it again has high tendency to ju
back to it.

One may regard a cluster of sites with deep energies
the surrounding shell of sites with higher energy as a ‘‘s
pertrap.’’ On a coarse-grained level with respect to time,
particle performs ‘‘superhops’’ between these supertra
Then the essential difference between thea50 and thea
.0 situation disappears, since there are no increased b
ward jump correlations between the superhops. One thus
pects thata only rescales the timetw of the S(tw) relation
but does not change its exponent. Indeed this is what
have shown more explicitly ind51 in the previous section
and there is no reason why the argument should fail in hig
dimensions.

It is worth noting that the same arguments also apply
P(t1tw ,tw), if one generalizes it to a quantityPn(t
1tw ,tw) that is defined as the averaged probability that
system after a waiting timetw does not leave a region o
radius n in configuration space. Clearly,P(t1tw ,tw)
5P0(t1tw ,tw), but for largern only superhops should lea
to a decrease inPn(t1tw ,tw). In fact we found that forn
>1 Pn(t1tw ,tw) shows normal aging, i.e.,Pn(t1tw ,tw)
;F1

(n)(t/tw) for a.0.

4. Monte Carlo results

Figures 9 and 10 showS(tw) from Monte Carlo simula-
tions in d51, 10, 100, and 1000 for parameter sets (u,a)
5(1/4,3/8) and (1/6,1/4), respectively. In all casesS(tw)
shows the behavior predicted by Eqs.~14a,b!.

FIG. 10. Number of distinct visited sitesS(tw) for (u,a)
5(1/6,1/4) and different dimensionsd.
7-13
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APPENDIX C: P̃„T,S… IN THE LIMIT S\`

To derive the largeS limit of Eq. ~32!,

P̃~ t,S!5SE
0

`

dl^e2lt&S23g~ t;l!, ~C1!

we need to consider the smalll limit of

^e2lt&5E
1

` udt

t11u
e2lt5uluG~2u,l!

512G~12u!lu1
u

12u
l1O~l2!

[e2w(l)lu
,

wherew(l) is a continuous function withw(l)→G(12u)
for l→0. Furthermore,̂ e2lt& has an upper bounde2alu

for l>0,

^e2lt&,e2alu
~C2!

with some constanta, 0,a<1, being independent ofl. To
prove this forl>1 we compare

e2alu
5E

1

`

dt@alut211ue2a(lt)u
#

with

^e2lt&5E
1

`

dt@ut212ue2lt#.

For u<a<1 andt>1 the first integrand is larger than th
second integrand for alll>1, thus the first integral is large
than the second integral. Sincee2alu

for fixed l is strictly
monotonously decreasing witha this remains valid also for
0,a,u. To prove property~C2! for l,1 we note that for
small argumente it is
d

gl

s.

Le

10441
e2w(e)eu
1O~e!512G~12u!eu

,12aeu5e2aeu
1O~e2u!,

sinceG(12u).1 for u,1. We can deduce that it exists
finite interval (0,l0# where Eq.~C2! holds. Becausêe2lt&
is strictly monotonously decreasing it is^e2l0t&,1. When
choosinga0[2 ln^e2l0t&.0 it holds that

^e2lt&,e2a0lu
for 0,l<1

and the proof of Eq.~C2! is complete.
With the transformationl→u[S1/ul Eq. ~C1! gives

P̃~ t,S!5E
0

`

du expS 2w~uu/S!
S23

S
uuDS121/ugS t;

u

S1/uD .

When using Eq.~C2! we can estimate

expF2w~uu/S!
S23

S
uuG,expS 2a

S23

S
uuD,expS 2

a

2
uuD

for S.6 and from Eq.~33!,

S121/ug~ t;S21/uu!<S121/uE
1

`udt

tu
e2S21/uut

5S121/uulu21G~12u,S21/uu!

<uG~12u!uu21.

These estimations will allow us to use Lebesgue’s theor
when considering the limitS→` in Eqs.~37! and~47!. Thus
we can write asymptotically

P̃~ t,S!;S121/uE
0

`

du e2kuu
g~ t;S21/uu!

;SE
0

`

dl e2lukSg~ t;l!, ~C3!

where the shortcutk5G(12u) @cf. Eq. ~36!# has been used
v.

d.

x,
1Glasses and Amorphous Materials, edited by J. Zarzycki, Mate-
rials Science and Technology, Vol. 9~VCH, Weinheim, 1991!.

2G. Parisi, cond-mat/9910375~unpublished!.
3L. C. E. Struick,Physical Aging in Amorphous Polymers an

Other Materials~Elsevier, Houston, 1978!.
4E. Vincent, J. Hammann, M. Ocio, J. P. Bouchaud, and L. Cu

andolo, inComplex Behaviour of Glassy Systems, edited by M.
Rubi, Lecture Notes in Physics Vol. 492~Springer-Verlag, Ber-
lin, 1997!, pp. 184–219, and references therein.

5P. Nordblad, inSpin Glasses and Random Fields, edited by P.
Young ~World Scientific, Singapore, 1998!.

6F. Alberici, P. Doussineau, and A. Levelut, J. Phys. I7, 329
~1997!; F. Alberici, P. Doussineau, and A. Levelut, Europhy
Lett. 39, 329 ~1997!.

7J. P. Bouchaud, P. Doussineau, T. de Lacerda-Aroso, and A.
elut, cond-mat/0011190~unpublished!, and references therein.
i-

v-

8R. L. Leheny and S. R. Nagel, Phys. Rev. B57, 5154~1998!.
9L. Bellon, S. Ciliberto, and C. Laroche, Europhys. Lett.51, 551

~2000!.
10W. Kob and J. L. Barrat, Eur. Phys. J. B13, 319 ~2000!.
11L. Cipelliti, S. Mansley, R. C. Ball, and D. A. Weitz, Phys. Re

Lett. 84, 2275~2000!.
12C. Derec, A. Ajdari, G. Ducouret, and F. Lequeux, C. R. Aca

Sci. 1, 1115~2000!.
13M. Cloitre, R. Borrega, and L. Leibler~unpublished!.
14A. Knaebel, M. Bellour, J.-P. Munch, V. Viasnoff, F. Lequeu

and J. L. Harden, Europhys. Lett.52, 73 ~2000!.
15B. Abou, D. Bonn, and J. Meunier, cond-mat/0101327~unpub-

lished!.
16L. Bellon, S. Ciliberto, and C. Laroche, Europhys. Lett.53, 511

~2001!.
17A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Lett.5, 3402

~2001!.
7-14



ud

or

I.

e

0,

r-
ns
38

HOPPING IN THE GLASS CONFIGURATION SPACE: . . . PHYSICAL REVIEW B64 104417
18E. Vincent, V. Dupuis, M. Alba, J. Hammann, and J. P. Boucha
Europhys. Lett.50, 674 ~2000!.

19M. Nicodemi and H. J. Jensen, cond-mat/0103070~unpublished!.
20E. Pitard and E. Shaknovitch, cond-mat/9910431~unpublished!.
21A. Barrat and V. Loreto, Europhys. Lett.53, 297 ~2001!.
22D. Head, Phys. Rev. E62, 2439~2000!.
23J. P. Bouchaud, L. Cugliandolo, J. Kurchan, and M. Me´zard, in

Spin-glasses and Random Fields, edited by A. P. Young~World
Scientific, Singapore, 1998!, and references therein.

24A. J. Bray, Adv. Phys.43, 357 ~1994!.
25J. Kurchan and L. Laloux, J. Phys. A29, 1929~1996!.
26A. Cavagna, Europhys. Lett.53, 490 ~2001!.
27C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. Lett.85, 1464

~2000!.
28L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sci

tino, Phys. Rev. Lett.85, 5356~2000!.
29K. Broderix, K. K. Bhattacharya, A. Cavagna, A. Zippelius, and

Giardina, Phys. Rev. Lett.85, 5360~2000!.
30M. Goldstein, J. Chem. Phys.51, 3728~1969!.
31C. A. Angell, Science267, 1924~1995!.
32J. P. Bouchaud, J. Phys. I2, 1705~1992!.
33M. Feigel’man and V. Vinokur, J. Phys.~France! 49, 1731~1988!.
34J. P. Bouchaud and D. S. Dean, J. Phys. I5, 265 ~1995!.
35C. Monthus and J. P. Bouchaud, J. Phys. A29, 3847~1996!.
36P. Sollich, F. Lequeux, P. Hebraud, and M. Cates, Phys. Rev. L

70, 2020 ~1997!; P. Sollich, Phys. Rev. E58, 738 ~1998!; S.
Fielding, P. Sollich, and M. Cates, cond-mat/9907101~unpub-
lished!.
10441
,

-

tt.

37D. S. Fisher, P. Le Doussal, and C. Monthus, Phys. Rev. E59,
4795 ~1999!.

38L. Cugliandolo and J. Kurchan, J. Phys. A27, 5749~1994!.
39L. Berthier, J.-L. Barrat, and J. Kurchan, Phys. Rev. E63, 016105

~2001!.
40B. Rinn, P. Maass, and J. P. Bouchaud, Phys. Rev. Lett.84, 5403

~2000!.
41P. Embrechts, C. Klu¨ppelberg, and Th. Mikosch,Modelling Ex-

tremal Events~Springer, Berlin, 1997!.
42J. P. Bouchaud and M. Me´zard, J. Phys. A30, 7997~1997!.
43J. C. Scho¨n and P. Sibani, Europhys. Lett.49, 196 ~2000!.
44B. Derrida, Phys. Rev. B24, 2613~1981!.
45J. P. Bouchaud, inSoft and Fragile Matter, edited by M. E. Cates

and M. Evans~Institute of Physics, London, 2000!.
46E. Bertin, J. P. Bouchaud, and P. Maass~unpublished!.
47F. Sciortino and P. Tartaglia, Phys. Rev. Lett.86, 107 ~2001!.
48K. Binder and D. W. Heermann,Monte Carlo Simulations in Sta-

tistical Physics, Springer Series in Solid State Science, Vol. 8
2nd ed.~Springer, Berlin, 1992!.

49H. Harder, S. Havlin, and A. Bunde, Phys. Rev. B36, 3874
~1987!.

50B. D. Hughes,Random Walks in Random Environments~Claren-
don Press, Oxford, 1995!, Vol. I.

51R. Kutner, D. Knödler, P. Pendzig, R. Przenioslo, and W. Diete
ich, in Diffusion Processes: Experiment, Theory, Simulatio,
edited by A. Pekalski, Lecture Notes in Physics Vol. 4
~Springer-Verlag, Heidelberg, 1994!, p. 197.
7-15


