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Hopping in the glass configuration space: Subaging and generalized scaling laws
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Aging dynamics in glassy systems is investigated by considering the hopping motion in a rugged energy
landscape whose deep minima are characterized by an exponential density ob@t@s’!’&lexp(E/Tg),
—w<E=<O0. In particular we explore the behavior of a generic two-time correlation fundfion,+1,t,,)
below the glass transition temperattirg when both the observation tinteand the waiting time,, become
large. We show the occurrence of ordinary scaling behaﬂ@tw+t,tw)~Fl(t/t\‘l‘vl), whereu,;=1 (normal
aging or w,<1 (subaging, and the possible simultaneous occurrence of generalized scaling behavior,
t{,[l—H(tW+t,tW)]~Fz(t/t\’,‘vz) with w,< 4 (subaging. Which situation occurs depends on the form of the
effective transition rates between the low-lying states. Employing a “partial equilibrium concept,” the expo-
nentsu, , and the asymptotic form of the scaling functions are obtained both by simple scaling arguments and
by analytical calculations. The predicted scaling properties compare well with Monte Carlo simulations in
dimensionsd=1-1000 and it is argued that a mean-field-type treatment of the hopping motion fails to
describe the aging dynamics in any dimension. Implications for more general situations involving different
forms of transition rates and the occurrence of many scaling regimes intthplane are pointed out.
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[. INTRODUCTION this regime, one expects that a coarse-grained dynamical

The history of glass formation strongly affects the relax-model of thermally activated hops between metastable states
ation dynamics of glassy materiaté This dynamics is found is a proper description of the dynamics. In fact, recent mo-
to become slower with the “age” of the system, that meansecular dynamicsMD) simulations support this viefV.2°
with the timet,, expired since the material was brought into Landscape models have been widely discussed in the
the glassy state. Such aging phenomena have been identifipdst®®>! but their relevance for aging phenomena was rec-
in many systems and various dynamical probes. Prominemignized latef?~*° These later developments were recently
examples are shear-stress relaxations in structural gfassesxtended to treat rheological phenoméha.
thermoremanent magnetizations or ac susceptibility in spin The “trap” models studied up to now lead to correlation
glasse$:® Similar effects have been observed on the dielecor response functions that depend on the rattq, of the
tric constant of dipolar glassés,of structural glasses’and  observation time to the waiting timet,, (full aging), or, for
on the structure factor of Lennard-Jones syst&hMore re-  long-range correlated energy landscapes, on the ratio
cent experiments in colloidal géfsor other “soft glassy ma-  Int/logt,,.>” However, many experimental systems reveal
terials” have been reported; *® and even electronic relax- subagingbehavior, that is, the relevant variabletis{, with
ations in Anderson insulators were found to exhibit agingu<1. Furthermore, it is possible that there exist, for given
effects’’ Aging is also expected for pinned systefpinned  waijting timet,,, various scaling regimes in timewhich are
domain walls;*® pinned vortex lineS), polymer melts;’ governed bydifferent relaxation timesxt“s, s=1,2,....

anclzl: granulzi;] matet:_rlallgee_, te.gf., Refs. 21 an?)z_zt h The occurrence of different scaling regions has recently been
rom a theoretical point of view, several pictures a.veconjectured on the basis of analytical results for mean-field
been proposetf The simplest one is based on domain-

o idecZ and | babl | suited to describ spin-glass modef®?So far, however, it was not possible to
coarsening 1deas, and 1S probably Well suiled 1o describe g, gy410 intuitively these multiple time regimes by exact cal-
aging in, say, disordered ferromagnets where a well-define

q i1 tablish h ; ¥ ) Culations on simpler modelsee, however, Ref. 39 for an
order wants to establish across the system. HOwever, in SIOmteresting discussion of these multiple time scalés this

lglasses and e(;/entrr]nct)re ewdenply Im _glas;es,t';]he |deta of .sof 3per we will discuss a model that allows us to demonstrate
ong-range order that progressively Invades tne system 1S xplicitly the possible occurrence of subaging behavior and

from trivial. Mean-field models for spin glasses, which aremultiple time scaling in a hopping model, where a point
formally equivalent to.the mode coupling theory of glasSes, jumps among the dedfree-energy minimeE; of a complex
do indeed lead to aging phenomena below the glass tran 6'0nfiguration space. Some of the results discussed in this

tion. In this case, aging is_of geometric origihAs _tir_n_e_ &aper already appeared in a Leffer.
grows, the system progressively exhausts the possibilities

lowering its energy, and finds itself around saddle points

from which it is more and more difficult to escape. Thermal II. HOPPING IN A RANDOM ENERGY LANDSCAPE
activation is irrelevant in these models. Although this picture
might be justified for supercooled liquidovethe mode-
coupling temperatur® it certainly breaks down at lower Slow dynamics in glasses is often attributed to a thermally
temperature, where activated events become dominant. kctivated motion of a pointhenceforth denoted as “par-

A. Model
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E Due to the existence of very deep traps, the system exhib-
its a “dynamical phase transition” at the glass transition tem-
\/A ﬁ M perature 6=1: in the high-temperature regime¢>1 the
. ,(kw V"/\\v Boltzmann distribution
\[/ \f\/ U lﬂ(E)e_E/HZ e(1—1/0)E (5)

is normalizable, while in the low temperature an equilibrium
FIG. 1. Sketch of a rugged energy landscape with various metastate does not exist. In this latter situation the system is ex-
stable minima. Within a coarse-grained description, the slow dyploring deeper and deeper traps as time proceeds and the
namics of the system may be attributed to effective “supertransigverall dynamics ages.
tions” between the deepest minima belonging to the shaded area. For the trap model¢=0) the dynamics is fully charac-
terized by the trapping times
ticle”) that jumps among metastable states in a rugged con-
figuration spacésee Fig. 1 In a coarse-grained description, T=exp(E/6), (6)
only transitions between the deepéste)-energy minimekE;
will govern the dynamics at long times. According to
extreme-value statistics one may expect the distribution p(r)=0r"17° 1<r<w. 7
Y(E) of these deep minima to be exponentiahich is the
behavior of the tail of a Gumbel distribution, see, e.g., Ref.The absence of an equilibrium state #@+ 1 is reflected in
41). Indeed, mean-field theories of spin gladéemd recent the fact that the mean-trapping tinge) becomes infinite.
results from molecular dynamics simulatibhsuggest this Fora>0 itis convenient to operate with thedefined in Eq.
to be the case. (6) as well, although these no longer have the meaning of
For simplicity, we consider the metastable states with2 trapping time. The hopping rat8) can then be written as
lowest energies to be arranged on a hypercubic lattiog in

with distribution

dimensions and refer to them as “sites.” The lattice here T

resembles an average finite connectivity of the mutually ac- Wij= o ®
cessible states. To each lattice dites assigned a random !

energyE; drawn from a distribution At first glance the model defined here seems to be similar

to the model considered earlier in Ref. 35. However, there is
W(E)= —ex;{ _)_ CeE=0 @ an important difference. In the model studied in Ref. 35 the
Tg Ty’ e disorder is of “annealed” type, i.e., the energy of each site is
drawn anew from/(E) after each jump. This can be viewed
As discussed in a momerik, corresponds to a “glass tran- as a mean-field treatment and simplifies the problem to a

sition temperature” and we thus define great extent. As will be shown in Sec. Ill, in the annealed
case one can map any parametefsa(>0) to parameters
o=TIT, 2) (0',a=0), that means the: parameter is irrelevant. In the

present model by contrast the energy disorder is “quenched”
as the rescaled temperature. Also, energies are specified &md such a mapping is not possible. We will show that this
units of Ty. The particle can jump from one sitgo any of  leads to the occurrence of much richer aging dynamics, in-

the 2d nearest-neighbor sitg¢swith a hopping rate cluding subaging behavior and generalized scaling forms.
[aE;—(1-a)E|] B. Aging function
wij=vexg — , ©) _ _ . .
0 For studying aging properties we consider a quench from

f=x to H<1 at time 0O, then wait for some timg,>1 and
where the “attempt frequency?=1 sets our time unit, and ask for the behavior of correlation functions followed during
the parameter specifies how the energies of the initial and an observation time after the waiting period. Since the
target site contribute to the saddle point energy being sufphysical observables are functions of the coordinates of the
mounted during a jump. In order for the ; to obey detailed configuration space, they will essentially decorrelate after the
balance,a can assume any real value, but in a sense of &ystem has undergone a single transition from one deep
weighting of the initial and target energy we restrcto the  minimum to another one. Hence, a “generic correlation func-
range tion” in the model is to consider the probability that the

particle has not jumped betweép andt,+t. We denote

O<sa<l. (4)  this probability, after performing the disorder average, by

I(t,+t,ty).
Note that the caser=0 defines a trap model, where the  Let us note thaflI(t,,+1,t,) can also be regard&tas the
jump rates depend on the initial energy only, while the cas&pin-spin-correlation  function of the generalized
a=1/2 defines a “force model,” where the jump rates are Sherrington-Kirkpatrick model withp-spin interactions in
determined by the energy difference between the two sitesthe limit p—o, which maps onto the random-energy
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t
FIG. 2. Aging function II(t+t,,t,) for (d,0,qa) _ , —1-¢ ,
=(10,1/4,3/8) and different waiting timeg . The symbols refer to Peft( Tett) = Ceftl’ Tesf , 0= (1-a)’ (13)

waiting timest,,=2x108(+), 5xX10® (0), 2x10° (), 5x10°
0 0 1 1 ’
(1D><)131>2< %il) (;gh:c?\}gy,@)' 1x10" (@), 3x10 (A), and whereCer=([=24,7#17 %), and(...) denotes an average
’ over 2d uncorrelated random numbersdistributed accord-

ing to Eq. (7). The CTRW theory applies with a rescaled
model™ It can also be viewed as an incoherent intermediatéemperatured’, and the aging properties of this model have
scattering function at large wave numbers in diffusionbeen worked out in Ref. 35.
processes® Note in particular that fo®’ >1 no aging occurs, even if

A typical result for IT(t+t,,t,) from continuous-time the distribution(5) is not normalizable fo#<<1. This, how-
Monte Carlo simulations is shown in Fig. 2 for parameterseVver, is nothing to worry about, since in the annealed model
(d,6,a)=(10,1/4,3/8) and differertt, (for details regarding the energies change after each hop and the distrib@fipn
the simulation see Appendix)Aindeed, we can identify a does not correspond to an equilibrium distribution. The dy-
pronounced aging phenomenon: The decaylg,+t,t,) namlgal phase tran5|t|o_n_ in the annealed. mpde! is defined by
with time t becomes slower and slower with increasing wait-th€ diverging mean waiting time of the distributipgy( 7er)

ing time,,. The linear behavior of the curves at long times that or(]:cu_rs f%r‘9’<,1' Tbhe absence of aging ;0r<01—g
in the double-logarithmic plot indicates a common = thatis whend’>1 but 0<¢<1, points to the fact that

asymptotic power-law decay, and suggests that the varioJQe annealed model may not provide a valid mean-field de-

curves may be collapsed onto a common master after rescﬁ—crl'pt:zo.n ()::;[rr]\e qu_encfhed tf“‘;g'et' I: ta:ly cymehnsd)nf th
ing the observation timeby a proper function of the waiting N Fig. € aging functiol(t,, +t.t) is shown for the

time t,,. The understanding of such scaling properties 01annealed model as resulting from simulations for two differ-

: ent parameters sets,d,¢,«)=(10,1/3,0) and d,60,«)
+ >
lk;[e(tth ;chﬁ%rgr}gguioit: t?]gdftgvng\?v?r?én e largetit,>1) wil =(10,1/4,1/4) that both refer to the samié=1/3. As ex-

pected, the aging functions for the two parameter sets are
indistinguishable. Moreover, as predicted in Ref. B4t,,
+t,t,) scales witht/t,,, TI(t,+t,t,)=F(t/ty), where
F(u)~1—ul"*for u<1 [see Fig. ®)] andF(u)~u *[see

In the annealed case the model corresponds to &ig- 3@]. We will see in the following that this simple be-
continuous-time random walkCTRW) irrespective of the havior does not hold true any longer in the quenched case.
value of @, since all timesr; are drawn anew after each Nevertheless, since is the inverse hopping rate on a site,
transition. The whole process can be characterized by a dighe formulag(9) and(11) will still be useful in the following.
tribution pex(7e) Of effective trapping times . (residence

Ill. ANNEALED SITUATION

times between two transitions _ _ IV. PARTIAL EQUILIBRIUM CONCEPT  (PEC)
In order to calculate«( 7x), let us consider the particle
to be at sita =0. Then Although full equilibrium cannot be reached in a system

of infinite size, there should be some equilibration on a local
scale that corresponds to the region of configuration space

1 Tcl)—a _being explored by the system after the quench. This is the
Teff= 20— =29 (9)  idea of the PEC. o '
E We E -2 In_ the present moc!el we can translate this _|Qea into a
= 0 =) precise though approximate procedure for describing the ag-
ing process. After the waiting timg,, the particle has vis-
ited S=S(t,,) distinct sites and we will assume that on these
and the distribution is given by sites the system has equilibrated. Accordingly, the probabil-

104417-3



RINN, MAASS, AND BOUCHAUD PHYSICAL REVIEW B64 104417

. TI(t+t,.t,,) 1 - TI(t+t,,.t,,)
10 - - - - - ;
(a) (b)
10-1 4 I 3 I 2 I 1 IO ; 1 I2 3 I . I
10 10 10° 10 10 10 10 10° 1971 10° 10! 10 10°

tty te,,

FIG. 3. Aging functions(a) TI(t+t,,t,) and its complementb) 1—-II(t+t,,t,) from simulations of the annealed model with
parametersd, 6, ) =(10,1/3,0) (lines) and @, §,«) =(10,1/4,1/4)(points. The waiting times range from 0o 10'2 The scaling is so
good that the various curves cannot be distinguished on the scale of the line thickness. The tick labels of the ordind® céfpariso
to part(b).

ity p; to find the particle on the sitgof the set of visited to be different. Sincell(t,+1,t,) depends ont, only
sites is throughS=S(t,,), we will, in the following, also denote this

function byTI(t,S).

e El0 r As shown in Appendix B, the number of distinct visited
pj(S)=—s =— ’ (12 sitesS(t,,) grows with increasing waiting timg, as
2 2 S(t)~t}, (149
where
The probability for the particle to remain on sitdor a

timetis exp(—tEnjwj,nj)zexp(—trjf”_lznjrr‘ij), where the sum do for d
over n; runs over all nearest-neighbor sitesjofSince the y=14 d+(2-d)6 (14b)
distinct visited sites form a Brownian path in the lattice, 0 for d>2.

which, on a local scale, has a one-dimensional topology, we o .

will consider exactly two of the, sites to belong to the path. N d=2 ethere are logarithmic ~ corrections S(t,,)
The remainingn— 2 sites are considered to be never visited ~[tw/Inty]".

until t,, . It will turn out (see Sec. Vllthat this assumption is

not very important and that the aging properties would be V. SIMPLE SCALING ARGUMENTS

mainly the same if the Brownian path had a compact struc- In this section we present simple arquments. why and how
ture (except for the asymptotics discussed in Sec. VIIF _ P P 9 » Why

According to the PEC, the aging functioH (t,+t,t,) In(t,,+t,t,) is expected to scale. In particular we propose
is now approximated by taking the average ofthe presence of two characteristic relaxation tirhés,), i

exp(—trj”linjrﬁj) over all visited siteg with the weightsp;, ~ ~ 1,2, that grow as power laws with,
)~ tH
st it~ (15
> mexp —tri Y Tﬁ_) wherep; are exponents depending @nand .
fi(t,+t.t,)= =1 n (13) The first characteristic relaxation time(t,,) can be ob-
e St ' tained as follows. After the waiting timeg,, the particle has
kgl Tk visited S= S(t,,) distinct sites and the occupation probability

of these sites is dominated by the one for the site with lowest
energyE i, (in the glassy phasé<1 the extreme values are

lated random numbers that are distributed according to Eq. gcf)?;?]arng_hesg(plccEal \;zilule ?S min €aN be estimated from
(7). We will see thatfl (t,+t,t,) andTI(t,+t.t,) exhibit > —= V(5)=SEXPEmn)=1, 1€,
the same scaling properties, which in view of the generic E,in(ty) ~ — N S(ty,) ~ — yIn(ty,), (16)

character oflI(t,,+1,t,) (cf. Sec. Il B are of primary inter-
est for us here. In quantitative terms both functions turn oubr, in terms of the variable,,, corresponding td ,,

Here( .. .) denotes an average overd2 1)S(t,,) uncorre-
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Here the first term in the rectangular brackets corresponds to
ﬁ the typical situation, while the second term corresponds to
Eneighbo:; 725 the rare events and is weighted by a factqy, (we have
(a) (b) Enelghbor Enmin neglected constant prefactbr@omparing_ these two terms,
Eoin Enmin we see that, iff<a, the latter term dominates fadl m. In

this case we thus expect the scaling behavior of the form
FIG. 4. Jumps out of a valley with enery,;, after timet,, : (&) ~
a situation corresponding to the typical situation, where the energies S1-1I(t,S)]~F(Ay),  A=t/ty(ty) (22
here a east one of the neighboring valeys has am energy of orgd?" IMEStty>1 ando<a<1/2
g g 4 9y For a< 0 to the contrary, the first term in the rectangular

Ermin- brackets dominates for smalkim= 6/ «, andt,(t,,) is not
_ 1 16 significant[note thatt,(t,,) is smaller thart,(t,,)]. The fact
Tl tw) = €XP(— Eqin ) ~ S(t,) '~} (7 th?;lt Eq.(ZEL) is not azgemg’;)ular expansion i?l(tvh\l)e] scaling vari-
Being at the site with energ¥,,,, the particle typically ablet/t(t,)= t/rma)‘j‘ (for @>0) indicates thaF (A ;) does
encounters a situation as drawn in Figa)4All neighboring  not have an analytical behavior for small,. On the other
sites have energies close to zero and the characteristic escand, the formal short-time expansion suggests a regular be-
time t,; from the site with energEm,n is the inverse hopplng haviorF,(A,)~A,. An exact treatment of the PEC formula

rate given in EQ.(9), ty(ty)~ mhg~ St~ ty(1m )l (13) presented in Sec. VII, however, shows that this should
ie., be true only ind=1. The smallA, regime is in fact a subtle
one since it is very sensitive to rare events and the connec-
_Y1-a) (19 vty properties of the Brownian path.
#a 0 We can furthermore deduce the asymptotic form of

: < F1(A;) for A;—o andA;—0 by simple arguments as will
Heni?’ fo_r boﬂt andt, becoinlng large tt,,>1) andA.l be shown next. The behavior &,(A,) for large A, then
=t/t,* being fixed we expedl(t,S) to become a function  fo|jows from the fact that the largd , behavior of Eq(22)
of A; only should match the small; behavior of Eq.(19), i.e. 1

- — SR, (t/t42) = F (t/t*Y) for 1<tM2<t<th1.
M(t,9~Fy(Ay), A=t/th?, (19 2(Ut,)=Fa(t/t,) w w

The second relaxation timg(t,,) is associated with rare A. Limit. Ay—o0
events depicted in Fig.(8), which turn out to be important  The particle leaves the site reached aftgtypically in a
at small times. The deepest state on an interval of lesgth {jme t“1. In order to explore the behavior for large,

has a typical value determined by the fact that it should occur _, .."
with a probability 15. To obtain the scaling of the second =t/t,”>1 we may assume>t,>1 and ask, which events

deepest state witBwe note that for a distribution exhibiting give rise to a nonvanishingi(t,S). These areare events,
no peculiar long-time tails, the gap between the deepest ariihere an unusual large inverse hopping ratg=t+t,~t
second-deepest state remains finite wigno~. Accord- has been encountered before the tipéras passed, or, said
ingly, with probability of order 1%~ 7,.”. one of the neigh- differently, before the particle has visit&ft,,) distinct sites.
boring sites can also have an energy ComparabEth. In The probablllty thatTeff on one site is smaller thah is
this case the hopping rate specified in Ef) vields t,  P(t)=Jod7emper(Tem) ~1 -t~ #("*) and the probability

~ e g1m2a)l0 e that at least for one 08=S(t,,) sites o is larger thart is
1—PS. Hence,
v(1-2a) 5
N 20 fi(t,9)~1-PS=1-(1-Q)S~S(t,)Q), (23

Clearly this is a relevant time growing with, only for «  WhereQ(t)=1—7(t)~t~”*~%). InsertingS(t,) from Eq.
<1/2. Moreover, there is a further condition on the relevanced 148 we thus obtain

of t,. To see this, we may consider the formal short-time 0

expansion ofI(t,S) from Eq.(13). Using the fact that a sum Fl(A1)~A1_5, o= 1 (24
over random7’s raised to some power with an exponent @

larger thané scales as the maximal term appearing in the

sum (Lévy statistic$, we can estimate B. Limit A;—0
(_ )m In the limit A;— 0 corresponding to <Et<tv‘f,1, the typi-
H(t,S)=< E E P;T; - “)m(Z T J) > cal situations govern the decay déi(t,+t,t,). In these
m=0 M typical situations, energieE<E,(t,,) or Boltzmann fac-
o (—t)™ tors 7> 7,2 ty) do not matter. Let us then consider a jump
~1+ >, (l—a)m[l+ Tro o). (21)  of the particle from a site with enerdy, [Boltzmann factor
m=1 Ml 7oy T1=exp(—E;/6)] to a neighboring site with energg,
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[Boltzmann factor 7,=exp(—E,/6)], where O0<E,,E, As discussed above, by matching this smgjl behavior
<Enn. On average such a jump occurs at a tingér; “.  of F1(Ay) to the largeA, behavior ofF,(A;) we further-
The probability for the particle to be at a site with energy inmore obtain fora> 6

an interval €,,E;+dE;) is (E ) exp(—E;/6)dE;
ocrl’l"gq-ldrl (equilibrated initial sit¢ and the probability for
the energy of a neighboring site to be in an interval
(E;,Ep,+dEy) is ¢(E,)dEy,x7, ' %dr, (random target
site). Hence the probability)(t)dt for the particle to leave
the site reached aftdy, in a time interval {,t+dt) can be
estimated by A. Scaling properties

Fa(A)~AZ*,  Ap—eo. (31)

VI. TEST OF THE PEC

1-a
71

Tmax 0 Tmax “1-9¢ B
P, Trax) & dry7m; dr,7, ol t -
1 1

)

model ind=1, 10, 100, and 1000 by means of a continuous-
time Monte Carlo algorithm{see Appendix A for details of
the simulation proceduyeAverages were taken over 2L@or
=1t Tma) - (25  d=1,10,100) and 1D(for d=1000) energy landscapes.
. ) w 1o ) Figures %a) and Fb) show, respectivelyII(t+t,,,t,)
Normalizing ¢(t) on its SUPPOrtrya,=t< 7rma We obtain and 1-TI(t+t,.t,) as a function of the scaled variable
Ap=t/t[* [cf. Eqs.(18) and(19)] for (6,a)=(1/4,3/8), i.e.,
P, Trg) = b, Tma) . (26) a case wherer>> 6. As expected from the PEC and the scal-
Jfﬁqjafdt, ¢ ing arguments outlined in the previous section the data col-
o At Tma) lapse onto master curvds;(A,) for all dimensionsd. In
- particular we findF;(A;)~A{~ for A;—0 and F;(A;)
Since 1-1I(t,+t,t,) is the probability of the particle to ~AI5in agreement with Eq$30a,b and(24), respectively.
leave the site reached aftgy within the time interval 0,t), Correspondingly scaled data foé,@)=(1/3,1/4), i.e., a
we expect case wherex<< 6, are shown in Fig. 6. Again there is a good
data collapse and the scaling functidhg A ;) have the ex-
pected asymptotic behavior for small and larye In par-
ticular we now findFl(A1)~Ai> with e~ from Eq. (309.
Moreover, fora> 6, PEC and the scaling arguments pre-
for t,t,>1 and t/t\‘A’“I1<1. Performing the integrals in Eq. {ict the presence of a second time S(I@lvet\’fvz [cf. Eq.(20)]
(25 gives and an associated generalized scalifjigl —IT(t+t,,,t,)]
~ Fz(t/tC‘V"‘) [cf. Egs.(22) and(149]. The occurrence of this
-1 generalized scaling is verified in Fig. 7 fo=1, 10, and
' 100. The master curves scafg(A,)~A5* for A,—= as
(28 predicted by Eq(31). A critical reader may note that the
] - ] o o simulated data do not collapse at largye, the deviations
Sincet/ 7, ~ A1, we have, in the limitA; —0, to distin-  from scaling setting in at large, for largert,, . The reason

) In order to test the PEC, we performed simulations of the

1_ﬁ(tw+t’tw)wfotdtl Pt Trma{tw)) (27)

1ou () e @
_ (a—0)(1—a)
At Tma) = a— 0t ( 1 )

-
Tmax

guish betweenv> 6 anda< 6, yielding for this is that the limitst,,— o and A ,=t/t"?—c must not
be commuted. One first has to take the lijt- to obtain
1__at—<1+0)/a7<1—0>/a a>0 the scaling functionF,(A,) and then has to consider the
a—0 mee asymptotic behavior for larga ,.
DL, Tma) ~ 11—« (29 The behavior forA,—0 is not so clear. Fod>1, the
mt_“(l_”)/(l_“), a<é. exact treatment of the PEC formuld3d) yields F,(A,)

~A§’”‘ also (with a smaller prefactor in the scaling Iaw
Inserting this into Eqs(26) and (27) and using(17) then  While ford=1, F5(A;)~ A, seems to be correct. In fact, for
gives d=1 the data in Fig. 7 are in fair agreement with a linear
behavior. Ford=10,100 the data also show some linear de-
1-Fy(A)~AZ, A,;—0. (309  Ppendence for intermediatk, values(see the dashed lines in
Fig. 7), and in fact, such intermediate regime is predicted to
with occur based on the PEC formulalthough it should be less
pronounced, see the discussion in Sec. VIIFor very small
A5, however, we expecin(Az)~A§”“, although this
; a>0 asymptotic regime can not be identified in Fig. 7. At best we
(30b) can say that there is a change in curvature at very sfnall
_ The true asymptotics, however, could not be obtained within
T 1-a’ ' reasonable CPU time.

104417-6



HOPPING IN THE GLASS CONFIGURATION SPACE: ... PHYSICAL REVIEW &4 104417

> Mttty 1 -TI(t, +t,t,,)
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o o e d=100 1
. e ’ Le0ATBOMAPOATEONESOADOON
100 Proedstecsaenan.,, _D..“,O ot .O.Aow. ae d=10 e e s s o]
. g L . d:l 040 .“QAE\ . B .
S s - 2435 . @ .
. ®
- " d=1
10" | (a) Te, . o (b) |
—e/(M_
10’2 1 L 1 1 L Al ! 1 ) ‘e : L L ) )
0% 10% 107 10! 10° 100 10° 10° 10* 10° ¢! 10° 10" 102 103 10*
t/tlvlvl = A1 t/tlvlvl = Al

FIG. 5. First scaling function for a parameter set witb- 6: (a) II(t,,+t,t,) and(b) 1—1II(t,+t,t,) as a function oit/t(l‘vlel for
parametersd, ) = (1/4,3/8) and different dimensiomks The straight lines indicate the asymptotic behavior according to(B4sand(30).
In order to make the graphs distinguishatlkt,, +t,t,,) and 1-II(t,,+t,t,) have been multiplied by factors 4, 16, and 64der 10, 100,
and 1000, respectively. In pldb) also’[/t\’,j1 has been multiplied by factors 32, 4, 1, and 0.5de+1, 10, 100, and 1000, respectively. For
d=10 andd=100 the symbols refer to the same waiting times as in Fig. 2. defl the symbols refer td,=6x10F (+), 2
X10° (0), 4x10° (¢), 1x10¢ (O), 3x10° (M), 6x10° (O), 2x10° (@), 4x10° (A), and 1X10 (A). For d=1000 the
symbols refer tot,,=6x10° (), 1x10° (O), 3x10° (M), 8x10" (O), 2x1C¢° (@), and 4x10® (A). The tick labels of the
ordinate of pari@) refer also to parth).

Accounting for the existence of two different time scales B. Full comparison with simulations
is very important to prqperly _rescale the numerical results. \wnile the predictions of PEC regarding the scaling prop-
Had one assumed a single time scefe one would have erties and the asymptotic behavior of the scaling functions
obtained an appro>f|mate data collapse W|th_ an effective o fulfilled, TI(t+t,,t,) and its PEC equivalemﬁ(t
value of u intermediate betweep, and u,. This remark ¢ '+ 4 are different in quantitative terms. To see this, we
might be of importance for analyzing experimental data: thenave computedNI(Ht t,) numerically according to Eq.
assumption of a single time scale could lead to a systemati(cl3) and compared ith(/i{NHT(Ht t,) obtained from the
. . . W tW.
underestimation of the true, asymptotic value,ofsee the  \ionte Carlo simulations. As shown in Fig. 8 the scaling

discussion in Ref. 45 functions associated witH (t+t,, ,t,,) andII(t+t,,t,) dif-
TI(t,,+t.t,,) 1-TI(t,+t,8,)
10° . ; . . . :
| {uceamosamcsamcenmcenscraucena,, d:!QQ
10! F Swoag, i .n.o'nlo.nlo

NosOWoeOWCeTNOeBNOL TR . o2 =
*Guoeg, By u® d—lO gmoepmo®
©eoy pmo®
oe

100 o™ o : o 2 ® ¢ .‘AODC‘...‘AODS
A’i< - g/l ° et 2 d=1 OD&'.‘4A0D<‘!.IO-A
_1 et w? are®
10 (] g o ? 208 L E
an® - .."A“"“. (b)
10° F ] oot ]
Acn&. *
103 - — - - — = \ . . . s
10 107 10 10 10 10 10 107! 10° 10! 10% 10°
il = A, Yl = A,

FIG. 6. First scaling function for a parameter set witk: 6: (a) II(t,+t,t,) and(b) 1-TI(t,+t,t,) as a function oft/t*= A for
(0,a)=(1/3,1/4) and different dimensiomks The straight lines indicate the asymptotic behavior according to(24sand(30). In order to
make the graphs distinguishallKt,,+t,t,,) and 1-T1I(t,,+t,t,) have been multiplied by factors 4 and 16 &b+ 10 and 100, respectively.

In plot (b) alsot/tc‘vl has been multiplied by factors 32 and 4 fbe= 1 and 10, respectively. The symbols refer to the same waiting time as
for d=1 in Fig. 5. The tick labels of the ordinate of p&a) refer also to partb).
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VII. EXACT EVALUATION OF THE PARTIAL
EQUILIBRIUM FORMULA

In this part we show how the scaling arguments presented
in Sec. V can be validated by an exact evaluation of the PEC
formula (13) in the limit of large S (larget,). The reader
who is not interested in these more mathematical derivations,
may skip this section and proceed with the Summary in Sec.
VIII.

When we replace the denominator of E@L3) by
JodN exp(—)\Eﬁ;lrk) and notice that all but three random
are uncorrelated with the, /T, appearing in the numerator

5 of Eq. (13), we find

S[1 - T(ty+t.t,)]

10 100 10° 10 10
M2 _
Y2 = A,

11 — ” —A7\S—3 .
FIG. 7. Scaling functiorF,(A,) for the same parameter set as I(t,9) Sfo dA(e ") " g(tiN), (32

in Fig. 6: §1-1II(t,+t,t,)] as a function oft/t\‘,‘V2=A2 for
(0,a)=(1/4,3/8) andd=1,10,100. The straight lines for large, ~ Whereg(t;\) is defined by
indicate the asymptotic behavior according to E2fl), while the

solid (d=1) and dashed linesl& 10,100) for smallA , correspond 2d
to a linear behaviofsee text The symbols refer to the same wait- g(t;)\):< Texr{ 7t7_a—12 = N1+ 71+ 7) >
ing times as in Fig. 5, with the additional waiting tintg=3 =1
X 1CP. In order to make the graphs distinguishat®1—TII(t,,
+1,t,)] has been multiplied by factors 10 and 5 fb+ 1 and 10, _ fxadTermadTl emlfxadTZ e 72
respectively. 1 4 1 Ti“’ 1 T%”
; : . . . o+ t 2(d-1)
fer by a factor in the scaling variable and the precise form in % ex;{ g2 f( ) ] (33)
a transient region between the asymptotic regimes for small e e

and large arguments.
In summary we can conclude that all predictions of theand
PEC concerning the scaling properties can be corroborated
by the simulations. The PEC thus turns out to be a powerful I B e 0
tool to uncover the mechanisms of aging in quenched ran- f(z)=f1 7_1+0e =52 T - o't (343
dom energy landscapes.

Herel'(a,z)=[dte 't® ! denotes the incomplete Gamma
function. Note that 8f(z)<1 and that forz—0

TI(t,+t,t,,) 1 - TI(t,+t,t,,)
100 T T T T //;:/fflr\
liEC MC s PEC . AMC
*y, %\ f’ J
| ) £
1 S i
10 r %. ] o g o 4
% F P
'%. ‘D.l L'cr
(@) , \ : ; ®)
Y . K 5
9’-“ i‘“ : ;f
102 . . . S . £ . . . .
106 10 1072 10° 10 10* 10°8 1074 102 10° 10 10*
t/tt,lvl =A t/t;vlv1 =M

FIG. 8. II(t,+t,t,) and 1-TI(t,+t,t,) for (d,6,)=(10,1/4,3/8) as a function of the scaling variabl€,* from Monte Carlo
simulations and the partial equilibrium formula, E43) (PEQ. The symbols refer to waiting timeg,=2Xx 10 (+), 6x10" (¢), 3
X10% (¢), 1x10' (0O), 4x10" (W), 2x 10" (O), 6x10** (@), 3X10" (A), and 1x10'® (A). The tick labels of the ordinate

of part (a) refer also to partb).
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O\ o 4 2
f(z)=1-T|1——|z*— —— z+O(Z%), (34b
@ 00—«
where I'(a)=I'(a,0) is the Gamma function. Forz
—oo (Jargz|<3w/2)
f be’ 34
(2)~——. (349

In the limit S—« (t,—=), the asymptotic form of Eq.
(32 is [see Eq(C3I)]

ﬁ(t,3)~sf:d>\ e MSg(t:n), (35)

where

S=kS, «k=I(1-9). (36)

A. First scaling regime: F,(A,)

By substitutingu=S"’\ in Eq. (35) andv=7/S"’ in Eq.
(33) we obtain

ﬁ(t,S)”Efwdu e‘“gﬁw d—ve‘“"fwed”e-unféw
KJo 71/9U0 1 T%Jrﬁ
X fng::'e‘”z’éwexp< —t~S‘<1_“)/0711+72)
175 v ¢
g (1-aye)| 2@~
X| f S . (37
1%
When keeping
A =tS A-alo (38)

fixed, EqQ.(37) has a well-defined limit folS—o. Before

taking this limit, however, let us note at this point that if we

would have considered a’vlnj in Eq. (13) to belong to the
Brownian path, we had obtained

~ 6 (> Y *° dU
II(t,S)~—| due -
KJo S v
g dr; ur; T
J'l 7_i1+f)ex _'él/H_Alvl—a
(39

instead of Eq(37). Now, v~ “exp(—u’—w)IT¢, 67 * ?is an
integrable majorant for the integrand in both E¢37) and

2d

XefuvH

=1

(39). Hence, by Lebesgue’s theorem we obtain from bothSince M v

equations the same scaling function

d 2d

_6 * *Ug *dv —uv
Fl(A1)=; . due O—e

UH

A
v

(40)

PHYSICAL REVIEW &4 104417

We can conclude that it makes no difference here whether we
consider the path of distinct visited sites to have a one di-
mensional or a compact topology or anything in between. As

required by normalizatiorf;(0)=1.

When transforming to variableg=AY "9y and ¢
=\; Y49 in Eq. (40), we find

6 0 _ w o0
Fa(Ay=A; "0-0- f dge " f dg g
KJo 0
x e ¥f2d(ym(1mm),
Since the integrand in the limit;—« is an integrable ma-

jorant for all A;, we can take the\ ;—oo limit under the
integral to obtain

Fu(A)~C A7 A7) for Aj—oe, (41a
where
0(=d ,,
= _ —-(1-a)
C.= KJO éMf (¢~ @-a), (41b)

Note that this integral is well defined because of the

asymptotic behavior of(.) given in Egs.(34b,0.

C. Limit A;—0
SinceF,(A,)—1 for A;—0, it is convenient to consider

Ay
1—f2d( ) :
vl*a

(42)

©

0 (= Lt dv
1_F1(A1):;f0 due J_

ae—UU
ov

For #<a it follows from Egs.(34a—¢ 1—f(x)24=2dI'(1
—0la)x”*p_(x), where ¢_(x) is a bounded function,
e (X)<M_ for O0s=x<w, with ¢_(x)—1 for x—0.
Hence,

0\0 / * .0 » dv
1-Fy(Ay)=2dl'| 1—— —A"“f due “f
) K 0

0 v@/a
xe W =
P< yl-a .

exp(—uv—u’) is an integrable majorant of
the integrand, we find

(43)

—0la

1-Fy(A)~c.AY*  A—0, 6<a, (443

where

104417-9
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0 ~ oA ® 24 cogdr
2dor|1— — _ o —uf, —(a—0) ]
( a) - o (edv 1-1I(t,S) (1_a)Kfo dueu Hl J’l 170
Cc=—rr——— duet _/e uv J 7]
-0 Jo 0yt y ol 2d
2 Xexp — = -
a1 (2 {527 7)
= ¢ ¢ (44b 2d (1-0)/(1-a)-1
r(1-6 ' o
( ) X Alul_ajzl Tja
For 6> « thev integral in Eq.(43) would become diver-
gent when taking the\;—0 limit in ¢ (A;/v®*~9). We 52 0 dw(l—e™)
thus transform the variable in Eq.(42), w=A, /vl ¢, to X fo wit(1- /1= a)
obtain
2d 1/(1- )
GAL O Jfe dw Aqutmed o
_ -t S I =1
1=F1(Ay) (1-a)k Jo due Jo wlt(1-0/1-a) xXexp —

w

AYA® We now decompose this expression into the sum of two parts

><[1—f2d(W)]eXP< - W) (45) corr;adsponding to a decompositions?, Ff=3"_, 7
+2{Z,417 in the second line. We can use the symmetry

From Egs.(34a—¢ it follows for 6>a that 1—f2d(w)  With respect td 7} in order to replac&j_, 7{" by n7{ in the
—we- (W) , whereg-(w) is a bounded functionp- (w)  first part and=?< . 7 by (2d—n) 73, in the second part.
<M. for 0sw<, with ¢ (W)—(6—a)/2d6 for w—0.  After the transformatiof=S"’z, in the first part, and the
Hence M. exp(-u’)w*~ @~ is an integrable majorant of ansformation; =% ¥’r,4 in the second part one can, for
the integrand in Eq(45) and we can take thé,;—0 limit g, again use Lebesgue’s theorem to perform the IBnit

under the integral, yielding Nl
1=Fy(A)~C AL 200 A0 p>a, (469 N t o -
=S =, 0<a<s.
where =T .
1 This yields
F(E) o dw 2d S 1-T(t,9)]~F,(A,) (493
C>:(1— - 1+(1— 0)/(1— )[1_f (w)].
VI o w o —nE® )
(46b) Fa(Ap)=nF5)(Ay)+(2d—n)F5)(A,), (49D

where
D. Second scaling regimeF ,(A )

The second scaling regime is more difficult to extractF{Y(A,)=
from Egs.(32) and(33). We start by taking advantage of the

0°A, qu e_ugfw dge h(Aul-aze
(I-a)kJo u=? Jo fr=(e=0 (Aau 0%,

normalizationiI(t=0,S)~1 in order to write (50
»dw(l—e™")
w0 w0 2d _ —1-0/1-a-1| T = 7 _ U(1-a)
1—ﬁ(t,s)~fj du e‘”BJ d—ve‘“” I1 J o0 o= fo witi-ol-a exfL = (x/w) !
KJo 10,0 =1 )1 7_]_1+n9 5
n
u and
Xexp — = > 7
SV =1 2 ~u? 1-
0°A, (=due edZh(Au="%Z%)
-
A5 2 (—ak)o yet Joo (a0
X[1—exp ——— 2 7| |. (47) )
vt T =l _PAS qu g U dev h(v)
This corresponds to Eq$37) and (39), if the number of a(l-=a)xo yt=%« Jo yOla
neighboring sites belonging to the Brownian pathnjs2 02 (1
=<n=2d (see the discussion in Sec.)lV F( 1— _) F(—)
After the transformationv —w=A;=72, 7%/v ") this _ @ @)\ ola 52
can be rewritten as r'(1-6) 2

104417-10
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The restriction toe<<1/2 in Eq.(48) follows from the fact
that in order for the scaling regime to be relevaty,
~GA-20)/0 _/(1720)/0 ghoyld increase with increasirig .

The functionh(x) has the asymptotic behavior

1-—a)(a—10), x—07"

Tla-aTa-ox1 x—o
The importance of the conditioA<a now becomes clear,

since for the{ integrand to be integrable in Eq&0) and
(52) for {—0, a— 0 has to be positive.

h(x) (53

E. Limit A,— o
After the transformationf—v=A,u*~9* Eq. (50)
= du

gives
f Hfoc dv
e*U
a(l—a)K o ul—ﬂ/a 0 U@/a

X exd —up YA, Yey= (- alah(y), (54

2A6/a
FEI(A,) =

PHYSICAL REVIEW &4 104417

Brownian path(see the discussion in Sec.)l\According to
Eq. (57), there can occur an intermediate regime, where
F>(A,) depends linearly on\,. This intermediate regime
seems to be more pronounced for the “true dynamics”
(see Fig. 7 than for the dynamics predicted by the PEC
formula (13).

VIIl. SUMMARY AND CONCLUSIONS

We have studied aging within the framework of a simple
hopping model mimicking a system that performs thermally
activated transitions between the deep free-energy minima of
its configuration space. Based on general arguments from the
statistical theory of extremes we have chosen the free-energy
density of states to exhibit an exponential tail. In order to
effectively quantify the influence of the initial and target site
on the energy barrier to be surmounted during a transition,
we introduced a parameteat, 0=« <1, in the hopping rates
that turned out to strongly influence the aging properties. We
have found that generically, subaging occurs in these models,
an effect related to the multiple visits of deep traps. We have

The limit A,—2 can then be taken under the integral, yield-also found that different time scales, corresponding to differ-

ing [cf. Eq. (52)]

FE(AL)~F(A,). (55
Using Eqgs.(49b) and (52) we finally obtain
6\2 (1
2dI’ 1—; I >
FalAg)~cfAg", o=
(56)

As required by matching;5”) =c_ [cf. Eq. (44b)].

F. Limit A,—0
Sinceh(x) is monotonously decreasing withfor x>0,
we can replacé(A,ul™ %% by h(0)=(1—a)I'(a—6) in
Eqg. (50). Hence,

F(zl)(Az)”CzAzy (57)
where
B 92r(a—a)deu e—“"Jw dse ¢
Co= K 0 ua*@ Ogl*(a*ﬁ)
. ar 1-2(a—6)
9 (a—0) — Y -
T 1l-a r'(1-6) (58

This means that for small,, F,(A,) should be dominated
by F@(A,), except for d>1 [where Fj(A,)
=2F(A,)]. For a given(mean value ofn we thus find

n
Fa(Ap)~cPIAge, D= 1——)c<2>. (59)

2d

ent scaling regions, appear in these models.

These aging properties can be understood from a PEC
that, despite not being an exact quantitative description, pro-
vides a powerful tool to study the scaling properties of the
aging dynamics. Based on the PEC we first motivated the
occurrence of subaging behavior and generalized scaling
forms in terms of simple scaling arguments. We then pre-
sented a detailed analysis of the PEC formdld and cal-
culated the aging functions following from E(.3) and their
asymptotics exactly. With respect to the scaling properties
the predictions could be confirmed by Monte Carlo simula-
tions ind=1, 10, 100, and 1000 dimensions.

The fact that even fod = 1000 the “quenched model” has
aging properties different from the “annealed model” stud-
ied earlier in Ref. 35 is rather surprising, since the number of
distinct visited sitesS in d>2 scales as the number of all
transitionsN between minima for larg®l, S~N. From this
one tends to conclude that the system effectively explores a
new minimum in each transition, which would correspond to
the annealed situation. However, in the quenched situation
one can imagine that there is always sdo@l equilibrium
established at the site with minimal energy reached after time
tw, and this local equilibration effect slows down the diffu-
sion in configuration space on all time scales, i.e. instead of
S~N~t? with 6’ =min[1,0/(1— )] in the annealed situa-
tion we haveS~N~t/ in the quenched situation fat>2,
0<0<1.

The existence of a local equilibrium around the “domi-
nant” site with minimal energy after timg, does not imply
that there must be a true equilibration on all visited sites as it
is assumed in the PEC formu(&3). In fact, by studying the
disorder averaged participation ratiog,(t)=(Z;P;(t)%),
wherePj(t) is the probability for the system to be at mini-
mumj at timet, we find that the PEC never becomes exact in
the limit t—o, not even ind=1 where each trap is visited

This A,—0 limit of the generalized scaling form depends onan infinite number of times. This behavior offers the possi-
the number of neighbors being considered to belong to thbility to define an effective temperature in the nonequilib-
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rium aging regime, which enters a modified fluctuation-to do a good job. For largd the RAM consumption of the
dissipation theorem, similar as it was found for mean-fieldcomputer programs is the limiting factor when trying to ac-
spin-glass modef€ The role of an effective temperature in cess longer timeg, . While simulations fod<10 can easily
the landscape model considered here will be discussebe performed on workstations, fat=100 computers with
elsewheré (for recent progress in our understanding of this4GB of RAM and more are necessary.
problem coming from MD simulations, see Ref.)47

With respect to the applicability of the analysis outlined
above the question arises, whether the characteristics of the
aging dynamics can be worked out also for general hopping
rates not exhibiting the specific form given in E§). For the
PEC to be applicable, the system should have the tendency to For =0, i.e. the trap model, we use a scaling argument
approach equilibrium(that truly exists only for6>1), so  discussed in Ref. 49 to derive the behavio(f,,) for large
that one may require the jump rates to obey detailed balanceg, . Then we show by a finite-size scaling argument that in
It is then indeed straightforward, by using the simple argud=1 the behavior ofS(t,) for =0 is not expected to
ments presented in Sec. V, to extract all characteristic tim@hange for B<a<1. Furthermore, we give genera| argu-
scalest;(t,) and to predict the scaling properties. A neces-ments for the invariance of E¢L4b) with respect tax for all
sary ingredient for this procedure to work correctly, howeverd, Finally we confirm Eqs(14a,b by Monte Carlo simula-
is the robustness of the scaling relatis(t,,) ~t) [cf. Eqs. tions.
(14a,b]. Preliminary results indicate that for “physical
choices” of the jump rategsmeaning that the dependence of
the energies of the initial and target site on the saddle point
energy is reasonableEgs.(14a,h always hold true. After N>1 transitions of the system, the typical elapsed

Moreover, it is possible also to consider some randontime t,, is
distribution of the form of the jump ratdss it is expected to
occur when the dynamics in configuration space is mapped N g,(N)
onto a jump process by means of some quantitative anglysis tW(N):E ri:NE £ T, AT
and to work out the aging features of such more realistic =1 « N
models. It turns out then, that in principle infinitely many
aging regimes can exists in the two-time plang,=0. A Nf"max(S(N))

APPENDIX B: CONNECTION BETWEEN
THE “NUMBER OF DISTINCT VISITED SITES”
AND THE WAITING TIME

1. Trap model (a=0)

o

thorough discussion of these issues, however, is beyond the dr7p(7)

scope of the present work.

1

~N[ 7mal( S(ND]H7, (B1)
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APPENDIX A: TECHNICAL DETAILS OF THE MONTE NY2, 1=d<2
CARLO SIMULATIONS S(N)~{ N/InN, d=2 (B2)
We use the standard continuous-time Monte Carlo algo- N d>2,

rithm as discussed in detail, e.g., in Ref. 48 to simulate the
stochastic process defined in Sec. Il A. A special problenwe find
arises for large dimensiords>1, where it is not possible to

save the energies within a hypercube of even small linear gld+@=del/de  1<q<2
dimension. To resolve this problem, we use hash maps, as, e -

for example, the hash map template provided by the Stan- tw(S)~7 S7InS d=2 (B3)
dard Template Library of ISO—€+. s, d>2.

The hash function should be computable quickly and at
the same time the sitesbeing encountered must be mappedThis yields Eqs(14a,b for «=0.
to different hash values as often as possible. For dimensions We note that in the annealed model E&2) remains

d=10 we found valid, while 7~ NY?, leading toS(t,)~t3"? for 1<d
<2,S(ty)~tl/Int, for d=2, andS(t,)~t’ for d>2. Due
2d to our discussion in Sec. lll, one can replageby 6’
f(x)= 2 nx, (A1) =min[1,6/(1— «)] in these formulas to obtain the behavior
n=1 for Osa<1.
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FIG. 9. Number of distinct visited site$(t,) for (6,a)

=(1/4,3/8) and different dimensiorts

2. One dimension(0=a<1)

Let us consider a finite chain withsites and site energies
distributed according to Eql). Then the mean-square dis-
placement Ax?(t)) of a particle performing a random walk
on this chain with the hopping rates given in Eg) is ex-

pected to scale as

t7 for

AW~ 5 L)y

for

written as!

L2
D(L)=

(AX*(t))<L?
(AX3(t))> L2

for large L. The diffusion coefficientD(L) can be

(B4)

T
j§=:1 (p,(eq)\Nj,jﬂY1

with p{*V=exp(~ BE))/Si_,exp(- BE) =1, /Sci. The de-

(BS)

nominator then reads, using B@), =_,7=_1(7j7j1) *.

Since ((7j7j+1) “) exists (for a>—4), the second sum
gives a contributiors<L for largeL, while the first sum has
no finite average and is dominated by the maximum,

~LY Thus we find

2
D(L)~

Ll/HL

At the crossover time,, where(Ax?(t,)) changes its be-

~L1_1/€

(B6)

havior in Eq.(B4), we obtain from continuity

t7~D(L)t,~L2

(B7)

This impliest,~L?7 andt,~L*"? yielding

20
T—1¥e

(B8)

SinceS(t,,) ~(Ax3(t))¥2, we finally obtain for G<a<1

S(tW)Ntvr\]l/ZZ t$(1+ )

in agreement with Eqg14a,h.

(B9)
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FIG. 10. Number of distinct visited siteS(t,,) for (6,a)
=(1/6,1/4) and different dimensiorts

3. General arguments

The very physical difference between the trap model (
=0) and models with weighted ratea¥0) is the occur-
rence of forward-backward jump correlations. When the sys-
tem jumps from a site with low-energy to a site with energy
close to zero(such energies are most likglyit has high
tendency to jump back foir>0. More generally, when the
system enters a region of connected low-energy sites, it will,
before escaping this region, perform more and more jumps
between the low energy sites the larger the valuexds.
Once it leaves the region, it again has high tendency to jump
back to it.

One may regard a cluster of sites with deep energies and
the surrounding shell of sites with higher energy as a “su-
pertrap.” On a coarse-grained level with respect to time, the
particle performs “superhops” between these supertraps.
Then the essential difference between the 0 and thea«
>0 situation disappears, since there are no increased back-
ward jump correlations between the superhops. One thus sus-
pects thato only rescales the timg, of the S(t,,) relation
but does not change its exponent. Indeed this is what we
have shown more explicitly id=1 in the previous section,
and there is no reason why the argument should falil in higher
dimensions.

It is worth noting that the same arguments also apply to
I(t+t,,t,), if one generalizes it to a quantityl,(t
+t,,,t,) that is defined as the averaged probability that the
system after a waiting time, does not leave a region of
radius n in configuration space. Clearly[I(t+t,,,t,)
=IIy(t+t,,t,), but for largem only superhops should lead
to a decrease ibl,(t+t,,t,). In fact we found that fon
=1 II,(t+t,,t,) shows normal aging, i.ell (t+t,,t,)
~F{"(t/t,,) for a>0.

4. Monte Carlo results

Figures 9 and 10 show®(t,,) from Monte Carlo simula-
tions ind=1, 10, 100, and 1000 for parameter sefsaf)
=(1/4,3/8) and (1/6,1/4), respectively. In all cassd,,)
shows the behavior predicted by E¢$4a,b.
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APPENDIX C: TI(T,S) IN THE LIMIT S—c
To derive the larges limit of Eq. (32),

ﬁ(t,S)zsf d\(e S 3g(t;N), (C1)
0
we need to consider the smalllimit of
* 0dr
AT\ _ —NT_ 0 _
(e >—L 7_ng =ONT(—6,N)
(7
=1-T(1- N+ ——N+O(\?)
1-6
—e 0,

where ¢(\) is a continuous function witlp(\)—T'(1— 6)

for \—0. Furthermore{e ") has an upper bound "
for A=0,

(e My<e (C2)

with some constard, 0<a<1, being independent of. To
prove this forh=1 we compare

e—aﬁ: fmdr[a)\”r*” 0e—a(>\r)"]
1

with

—AT\ — ” —1—0n—\T
(e )—J'l dr 67 e M.

For /=sa=<1 andr=1 the first integrand is larger than the
second integrand for al=1, thus the first integral is larger
than the second integral. Sinee®" for fixed \ is strictly
monotonously decreasing witlnthis remains valid also for
0<a< 6. To prove propertyC2) for A\<1 we note that for
small argument it is
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e ¢ L 0(e)=1-T(1- 0)€’

_ a0
<l-—ael=e 3+ 0?9,

sincel'(1—-60)>1 for 6<1. We can deduce that it exists a
finite interval (O)o] where Eq.(C2) holds. Becaus¢e *7)

is strictly monotonously decreasing it {& *07)<1. When
choosingay= —In{e *0">0 it holds that

(e My<e @ for 0<A<1

and the proof of Eq(C2) is complete.
With the transformation. —u=SY’\ Eq. (C1) gives

u
a
__ 0
corf -2

« 9d7e_ sV,

3 ” S-3
H(t,S)= f duexp( - ¢(u€/s)Tu0> Sll/eg( t:
0

When using Eq(C2) we can estimate

_ s-3 ,
eXx asu

eSS
exg —e(u’/S)——u
S
for S>6 and from Eq.(33),
Sl—llﬁg(t.S—l/eu)gsl—llﬂf
L] 1 r
:Slfl/f)e)\ﬂflr(l_ e,sfl/f)u)
<6r(1—eyu’ L.

These estimations will allow us to use Lebesgue’s theorem
when considering the lim&— o« in Egs.(37) and(47). Thus
we can write asymptotically

ﬁ(t,S)~Sl‘1""f du e <v’g(t;S™ Y0)
0

~st dx e M*Sg(t:\), (C3

where the shortcut=1"(1— 6) [cf. Eq. (36)] has been used.
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