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Two-dimensional algorithm of the density-matrix renormalization group
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We propose an approach to implement the density-matrix renormalization godRG) in two dimen-
sions. With this approach the initial blocks oL&<L lattice are built up directly from the matrix elements of
a (L—1)X(L—1) lattice and the topological characteristics of two-dimensional lattices are preserved in the
iteration of DMRG. By applying it to the spin-1/2 Heisenberg model on both square and triangular lattices, we
find that this approach is significantly more efficient and accurate than other two-dimensional DMRG methods
currently in use.
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I. INTRODUCTION Its eigenvalue is equal to the projection probability of the
corresponding eigenvector |@), i.e.,

The density matrix renormalization grodpMRG) is an
optimized iterative numerical method. Since its development
by White in 1992 this method has achieved tremendous M= [N el w2 2
success in studying ground state properties of one- )
dimensional(1D) interacting electrons. It has also been suc-
cessfully extended to finite temperatufésio momentum
space’ and to the calculation of dynamic correlation
functions>”* th ted syst ding to the standard thermod

The DMRG starts from a small system which can be € augmented system according to the standard thermody-

. ; . namic relation

handled rigorously. A large chain, called a superblock, is then
built up from this small system by adding a number of sites
at a time. At each stage, the superblock consists of system
and environment blocks in addition to a number of extra
sites. Graphically, a superblock can be represented as S=-Trplnp= Z Mk &
(Se.e.E), whereSandE represent the system and environ-
ment blocks and, ande. the extra sites added ®andE,  The maximum of the functiod(A\)=—X\ In\ is located at
respectively.S and e (similarly E and e;) form an aug- X=e !. When OsA<e !, f(\) increases monotonically
mented block, which becomes the systéemvironment  with A. Whenx>e ™%, f(\) decreases with. No more than
block in the next iteration. However, in order to keep the sizetwo \, can be larger thae ! since =,\,=1. Thus if the
of the superblock basis from growing, the basis for the augcontribution to the entropy from the largest is larger than
mented blocks is truncated. Hence the DMRG is a basis trurnthat from the largest discarded eigenvalug pthe DMRG is
cation method. However, unlike the conventional renormalalso a maximum entropy method.
ization group method, the truncation is done for each There are two approaches in forming a superblock. In the
augmented subb-lock and the basis states retained are detgferature they are often referred to as the finite and infinite
mined not by their energies but by their probabilities project-lattice approaches. In the infinite lattice approach in one di-
ing onto the ground statéor other targeted state®f the  mension, the environment block is generally chosen as the
superblock. These probabilities are determined by the respace reflection of the system. In the finite lattice approach,
duced density matrix of the augmented syst@mnenviron-  the size of the superblock is fixed and the environment block
menb block. is chosen as the remaining part of the lattice for a given

To construct the density matrix, the ground stafe of  system block. The infinite lattice approach allows the size of
the superblock is first diagonalized with the Lanczos or othethe superblock to be flexible and can be used to study the
sparse matrix diagonalization algorithm. The reduced densityhermodynamic limit directly. However, the finite size ap-
matrix of the augmented systefor environmentis defined  proach is more accurate in calculating quantities for a system
by tracing out from )( | all the degrees of freedom that do with fixed lattice size.
not belong to this block: The DMRG can also be used to study thermodynamic
properties of a 1D quantuhor 2D classical systerin this
case, the transfer matrix of a Hamiltonian system, instead of
the Hamiltonian itself, is diagonalized. The free energy and
other thermodynamic quantities are determined by the maxi-
mum eigenvalue of the transfer matrix. The transfer-matrix
Thus E®e.) is considered as a statistical bath to the aug-DMRG method treats directly an infinite lattice system and
mented system. The density matrix is semipositive definitehas therefore no finite lattice size effect.

where (,|\)) is an eigenpair op and{|e;)} is a basis set
of (Ede.).
Given the density matrix, an entropy can be defined for

p= Tr(Eeaoe)|'//><¢’|- (1
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System Environment FIG. 2. ALXL (L=5 herg triangular latticg(a) can be taken as
aL XL square lattice with extra next-nearest-neighbor coupling
FIG. 1. A superblock in a “multichain” algorithm. The system
and environment blocks are enclosed by dashed lines. Black spofaentum space DMRG has its own limitations. For example,
are the sites added to the system and environment. it is very difficult, if not completely impossible, to apply this
method to a pure spin system such as the Heisenberg model.

A simple extension of the DMRG to more than 1D would [N this paper, we introduce an approach to implement the
be to replace the single sites added between the blocks witAMRG in real space in 2D. Instead of ordering the lattice
a row of sites, either along a principal akisr along a  Sites row by row as in the multichain approach, we order the
diagonal® However, the extra degrees of freedom added tdattice sites by the order along the diagonal direction. This
the system would make the size of the Hilbert space prohibillows us to build up the initial system and environment of a
tively large. Therefore, the two-dimensional algorithm LXL lattice system based on the results onlLa-(1)X<(L
should be developed so that only a single site is added to 1) lattice and is particularly suitable for handling 2D lat-
each subblock at a time. tice models.

In practice the extension of the DMRG to more than 1D is  The rest of the paper is arranged as the following. In Sec.
to map a higher dimensional lattice onto a 1D one, namelyl! @ diagonally ordered algorithm of the 2D DMRG s intro-
to choose a path to order all lattice sit8sThe mapping duced. In Sec. lll, as an example of the application of the
breaks the lattice symmetry and introduces long range intelgorithm, the ground state energy of the spin-1/2 Heisenberg
actions among lattice sites. Therefore, the 2D procedure difhodel is evaluated on both square and triangular lattices. The
fers from the 1D one in that there are additional connectionstudy is summarized in Sec. IV.
between the system and environment blocks.

. Atypical mappi_ng., as iII.ustrated in I_:ig. 1 is to fold a ;D II. A 2D ALGORITHM OF THE DMRG
zipper into 2D. This is basically a multichain approach since
the length of the folded zipper is unlimited but the width is  In this section we will take the square lattice as an ex-
fixed. For a 2D gas of noninteracting electrons, Liang ancample to show how to build up initial blocks of laxL
Pang found that the number of states needed to maintain lattice from a (¢ —1)Xx (L —1) lattice. The extension to any
certain accuracy grows exponentially with the width of the2D lattice which can be topologically transformed to a
lattice° This convergence was also confirmed for an algo-square lattice by adding or removing some of the nearest or
rithm where a row of sites was added at each 8t&jphough ~ next nearest neighbor interactions from the square lattice,
no proof has been given, this statement is often referred to aich as triangular, hexagonal, and Kagomi lattitas ex-
most probably valid for any 2D DMRG calculation. ample for such a transformation is given in Fig), 2s

This multichain approach is simple to implement in the straightforward.

DMRG iteration. However, with this approach, the calcula- Let us start from a X2 lattice. Figure 8) shows the
tions on L—1)X(L—1) andL XL are performed indepen- order of the sites after the 2B1D mapping. As the system
dently. The information obtained from the iterations on ais small, the Hamiltonian can be fully diagonalized.
(L—1)x(L—1) lattice is not used in the preparation of the  Figure 3b) shows the configuration of the initial super-
initial sub-block matrices in the calculation forlax L lat-  block for a 3x 3 lattice system. As indicated by the number
tice. This is undoubtedly a loss of the efficiency. It mayshown in the figure, the lattice sites are ordered from the
result in the loss of the accuracy as well, since the topologilower left corner to the upper right corner along the diagonal.
cal characteristics of square lattices are not well manifestedhe initial system contains three sites linked by the solid line
in the preparation of the initial block states and the sweepingn the lower left corner. The initial environment contains all
procedure of DMRG iterations. the four sites in the upper right>22 lattice. All the matrix

The momentum space DMRG provides an alternative waglements for these initial sub-blocks can be obtained from
to implement the DMRG in two or higher dimensiché#n  the results previously obtained on thex2 lattice. We add
this representation the momentum is conserved. This leads &ite 4 to the system and site 6 to the environment to form the
a strong restriction on the basis states and allows the numbaugmented system and environment blocks. Unlike in a real
of states kept to increase substantially. Unlike its real spac&D system, these two added sites are not nearest neighbors in
counterpart, the momentum space DMRG treats the kinetithe mapped 1D system. After a standard DMRG calculation
energy rigorously. Hence this method works better in thefor this superblock, the augmented system block can be up-
weak coupling limit. However, the application of the mo- dated and taken as the new system in the next iteration.
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FIG. 3. (a) A 2X 2 lattice.(b) The initial configuration of super-
block for a 3< 3 lattice system. As indicated by the numbers, the
lattice sites are ordered along the diagonal direction. The initial
system contains three sites linked by the solid line in the lower left 2 o—
corner. The initial environment contains four sites, also linked by N
the solid line, at the upper right cornéc) Same as forb) but for
the next iteration. Black spots are the extra sites added into the
superblock. (b)

In the next iteratior{Fig. 3(c)] the system contains four \.Xl
sites(i.e., sites 1—#and the environment contains only three
sites at the upper right cornére., sites 7—8 Since the two
sites(i.e., sites 5 and )6to be added to the system and envi-
ronment are nearest neighbors in the mapped 1D lattice,
from now on the DMRG finite system sweeping can be done
exactly as in a true 1D system.
Similarly, the DMRG iterations on a4 lattice can be
done based on the results of thex 3 lattice. As for a 3
X 3 lattice, a 4X4 lattice[Fig. 4(a)] can be formed by two (c)
corner cut off 3X 3 lattices with two isolated sites. The ini-
tial system contains 6 sites linked by a solid line in the lower
left corner(i.e., sites -6) and the initial environment con-
tains 8 sites, also linked by a solid line, in the upper right
3% 3 lattice (i.e., sites 8,9,1216). The configurations of
these two blocks can be found from the previous|y studied FIG. 5. The first three initial configurations of superblocks for a
3% 3 lattice with or without a space reflection. We add site 75%5 lattice system. At the first two iteratioria) and (b) the two
to the system and site 10 to the environment to form theSites which are added to the system and environrientX; and
augmented system and environment blocks. Again, these tw() aré not next to each other in the mapped 1D system. At the

sites are not nearest neighbors in the mapped 1D system. B{§rd iteration (¢) X, and X, become next to each other in the
mapped 1D system.

the standard DMRG calculation can be done as usual. The
augmented system block is then updated and taken as the
new system in the next iteration.

In the next iteratiofFig. 4(b)], the augmented system in
the last iteration becomes the new system. It contains seven
sites(i.e., sites - 7). In this case, since the total number of
sites in the environment is also seven, the environment can
therefore be taken as the space reflection of the system with
respect to the center of the<# lattice, i.e., sites 10 16. All
the matrix elements of this environment can be obtained
@ (b) from the space reflection of the system. The sites now added
into the system and environment are the two nearest neigh-
lapped 3 3 lattices(enclosed by the short dashed squpeesi two ~ 20TNg Sites in the mapped 1D system. Thus starting from
sites at the two corners outside these® lattices(i.e., sites 6 and IS iteration, the standard finite system sweeping can be
10). The number besides each lattice site gives the order in thélone as in a 1D system, without considering how the44
mapped 1D system. The sites in a system or environment block af@ttice is constructed from the>33 lattices.
linked by solid lines. Black spots are the sites addedtinSame as The above procedure can be repeated to larger square lat-
for (a) but for the next iteration. The environmesites 10-1pisa  tices. In general, the initial superblocks of. & L lattice can
space reflection of the systesites 1—7 with respect to the center be formed based on the results of the system and environ-
of the 4x 4 lattice. ment blocks in al{—1)X(L—1) lattice. We order all the

FIG. 4. (a) A 4X4 lattice decomposed as two partially over-

104414-3



TAO XIANG, JIZHONG LOU, AND ZHAOBIN SU PHYSICAL REVIEW B64 104414

TABLE |. Comparison of the ground state energy per bond of the Heisenberg model on square and
triangular lattices with free boundary conditions obtained by our appr&aghwith that obtained by the
multichain approactt,,.. mis the number of states retained. The lattice sizk?s

Square lattice Triangular lattice

L E2d Emc (Emcf EZd)/| Emc| E2d Emc (Emcf E2d)/| Emc|
m=50

6 —0.361972 —0.361919 1.%10°4 —0.210692 -0.210732 —1.9x10°4

8 —0.35204 —0.351149 2.610°3 —0.199179 -0.198752 2.x10°8

10 —0.344292 —0.341389 8.410°3 —0.192918 -0.189763 1.610°2

12 —0.337374 —0.332574 1.410°2 —0.187242 —0.182806 241072
m= 100

6 —0.362096 —0.362089 1.%10°° —0.211171 -0.211196 —1.2x10°4

8 —0.353213 —0.353057 4.%10* —0.200426 —0.200494 -3.3x10°4

10 —0.347043 —0.345771 1.310°3 —0.195015 -0.192714 1.X10°2

12 —0.341588 —0.338833 &10°° —0.189992 —0.186441 1.%10°2

lattice sites similar to a folded zipper with unequal width  The total spinS? is a good quantum number for the iso-
along the diagonal. If the first site at the lower left corner oftropic Heisenberg model. This symmetry has been used in
theL XL lattice is labeled as 1, then the two sites to be addedbtaining all the results presented below. We have also per-
in will have the coordinatesX;=(L—1)L/2+1 and X,  formed finite system iterations using both our algorithm and
=L(L+1)/2 in the mapped 1D system, respectivelfin  the multichain one. In the multichain calculations, we have
example is given in Fig. 5 for 285 lattice system.We take  ysed an algorithm introduced in Ref. 11 to build up the initial
the first (L—1)L/2 sites in the lower left corner as the initial system or environment blocks.

system and all the sites in the upper right1)x(L—1) Table | compares the ground state energy per bond ob-

square lattice not used by the system as the initial environgined by our approach,q with that obtained by the multi-
ment. The DMRG calculation can be done as before. Thepain approactE,,. on both square and triangular lattices.
system is always augmented and updated. At the first fe\C/E

) i : o : L or square latticess,q is always lower thark,,,.. Since the
iterations, the site which is added to the environment is fixe . e - . .

" ; ; MRG satisfies the variational principle, this means that the
at X, and is not exactly next t&, in the mapped 1D lattice. P P

. . ) . results obtained with our approach are more accurate than
This continues until the environment can be generated by th o .
§1e multichain ones. Moreover, the differenceE,(

center reflection of the system and the two sites added t . o . . .
these two blocks become nearest neighbors in the mappe_dEZd)/IEmCI increases with increasing IaFt|ce: Thus the im-
1D system. After that the standard finite system sweeping"OVement of our approach over the multichain approach be-
can be done as in an ordinary 1D lattice. omes more and more significant as the lattice size is in-

creased. For triangular latticeB,q is slightly higher than

Eqnc WwhenL is small. However, for large latticds,  is much
Ill. THE 2D HEISENBERG MODEL

In this section, we take the spin-1/2 Heisenberg model as -0.3612
an example to demonstrate how good our approach is com-
pared with the multichain approach. The ground state ener- 03614

gies on both square and triangular lattices are evaluated. For
these 2D systems, there are currently rather precise results
available, mainly from large-scale Monte Carlo calculations =
and series expansions. Therefore the accuracy of our results ;* i
can be assessed by comparing with these results. -0.3618
The Heisenberg model is defined by the Hamiltonian

-0.3616 |

0.362 |

H=2 §-§, 4 : . . | ]
i -0.3622 il

107 10° 10°  0.0001  0.001
Truncation Error

whereS§ is the spin operator and the summation runs over all
nearest neighbors. In real space at the same parameters ana
number of states, the truncation error in a system with peri- F|G. 6. The ground state energy per bdag, as a function of
odic boundary conditions is usually much higher than withthe truncation error for the spin-1/2 Heisenberg model onxs66
free boundary conditions, therefore we use free boundargquare lattice with free boundary conditions. The solid line is a
conditions. polynomial fit to the data.
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. FIG. 8. E,q versus 1L for the Heisenberg model with free
FIG. 7. Ground state enerdy,q versus 1L of the Heisenberg ), nqary conditions on triangle lattices. The solid line is a polyno-
model with free boundary conditions on square lattices. The behaviyial fit to the data with mod(,3)=0.

ior of E,4 on even lattices is different to that on odd lattices. But the

extrapolated value in the limit L/~ 0 is the same within numerical . )
errors. also consistent with the quantum Monte Carlo results ob-

tained by Capriottiet al,*® E.,~—0.1819, and by Bernu
. et al,}” E,.~—0.1825. The second order spin wave result is
more accurate thak,,.. The increase ofEc— Ezq)/|Emd E — 0182018 P
with increasing size in the triangular lattice is even larger The above comparison indicates that accurate results for

than in the square one. . : .
For a givenL, an accurate estimate of the ground Statethe ground state energy can be obtained using the algorithm

energy(similarly other physical quantitiean be obtained ![Egot%?;leg qboz\/ € In obFamlng these results, the symmetry of
by extrapolatingE,q to the limit m—oo. This can also be ) pmS IS cqn5|dered and up to 300 states are re-
doné? by extrapolatingE,q with respect to the truncation tained. Thls ca.lculatlon' can be readily done on a moderate
error As, since the limitm— is equivalent to the limit workstation. With the aid of modern parallel computers, we
Ae—0. The extrapolation with respect to the number of re-Should be able to keep more statesy., 3000 statesand to

tained states is difficult to implement since the asymptotidurther increase the accuracy.
behavior ofE,q in the limit m—co is unknown and there is

some uncertainty in determining the function used in the

extrapolation. However, we find that thes dependence of IV. CONCLUSION
E,q is generally very simple and can be well described by a

power law in the limitAe —0. An example is given in Fig. 6 ) . :
where theAe dependence dE,, on a 6 6 square lattice is  SPace DMRG in 2D. We point out thatlax L lattice can be

shown. In the figure, the solid line is a polynomial(fip to ~ t2ken as an assembly of two partially overlappéd-()
the quadratic term it &) to the data. From the fit the ground < (L —1) lattices plus two extra sites and th_erefore the initial
state energy per bond for this® system is estimated to be Plocks of aL XL system can be built up directly from the
—0.36212. For other cases, this fitting procedure can b&locks of a ( —1)X(L—1) system. This preserves a higher
similarly done. degree of the symmetry of 2D lattice than in the multichain

To obtain the ground state energy in the thermodynami@pproach and can be readily used in the DMRG calculation.
limit, we need to do a finite size scaling for the results ob-For the spin-1/2 Heisenberg model on both square and trian-
tained from the above extrapolation. In a periodic system, thgular lattices, the ground state energies obtained with this
leading size correction to the ground state energy per bond @pproach are consistent with the quantum Monte Carlo re-
of order 1L3.** However, in an open system as consideredsults and better than those obtained with the multichain ap-
here, the finite size effect is stronger and the leading sizgroach for large lattice systems.
correction is of order 1.

Figures 7 and 8 show the scaling behavior of the ground
state energy on square and triangular lattices, respectively. ACKNOWLEDGMENTS
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We have developed an approach to implement the real
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