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Two-dimensional algorithm of the density-matrix renormalization group
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We propose an approach to implement the density-matrix renormalization group~DMRG! in two dimen-
sions. With this approach the initial blocks of aL3L lattice are built up directly from the matrix elements of
a (L21)3(L21) lattice and the topological characteristics of two-dimensional lattices are preserved in the
iteration of DMRG. By applying it to the spin-1/2 Heisenberg model on both square and triangular lattices, we
find that this approach is significantly more efficient and accurate than other two-dimensional DMRG methods
currently in use.
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I. INTRODUCTION

The density matrix renormalization group~DMRG! is an
optimized iterative numerical method. Since its developm
by White in 1992,1 this method has achieved tremendo
success in studying ground state properties of o
dimensional~1D! interacting electrons. It has also been su
cessfully extended to finite temperatures,2,3 to momentum
space,4 and to the calculation of dynamic correlatio
functions.5–7

The DMRG starts from a small system which can
handled rigorously. A large chain, called a superblock, is th
built up from this small system by adding a number of si
at a time. At each stage, the superblock consists of sys
and environment blocks in addition to a number of ex
sites. Graphically, a superblock can be represented
(SdsdeE), whereS andE represent the system and enviro
ment blocks andds andde the extra sites added toS andE,
respectively.S and ds ~similarly E and de) form an aug-
mented block, which becomes the system~environment!
block in the next iteration. However, in order to keep the s
of the superblock basis from growing, the basis for the a
mented blocks is truncated. Hence the DMRG is a basis t
cation method. However, unlike the conventional renorm
ization group method, the truncation is done for ea
augmented subb-lock and the basis states retained are d
mined not by their energies but by their probabilities proje
ing onto the ground state~or other targeted states! of the
superblock. These probabilities are determined by the
duced density matrix of the augmented system~or environ-
ment! block.

To construct the density matrix, the ground stateuc& of
the superblock is first diagonalized with the Lanczos or ot
sparse matrix diagonalization algorithm. The reduced den
matrix of the augmented system~or environment! is defined
by tracing out fromuc&^cu all the degrees of freedom that d
not belong to this block:

r5 Tr(E% de)uc&^cu. ~1!

Thus (E% de) is considered as a statistical bath to the a
mented system. The density matrix is semipositive defin
0163-1829/2001/64~10!/104414~6!/$20.00 64 1044
t

-
-

n
s
m

as

e
-

n-
l-
h
ter-
-

e-

r
ty

-
.

Its eigenvalue is equal to the projection probability of t
corresponding eigenvector inuc&, i.e.,

l l5(
j

u^l l ,ej uc&u2, ~2!

where (l l ,ul l&) is an eigenpair ofr and$uej&% is a basis set
of (E% de).

Given the density matrix, an entropy can be defined
the augmented system according to the standard therm
namic relation

S52 Tr r ln r52(
l

l l ln l l . ~3!

The maximum of the functionf (l)[2l ln l is located at
l5e21. When 0<l,e21, f (l) increases monotonically
with l. Whenl.e21, f (l) decreases withl. No more than
two l l can be larger thane21 since ( ll l51. Thus if the
contribution to the entropy from the largestl l is larger than
that from the largest discarded eigenvalue ofr, the DMRG is
also a maximum entropy method.

There are two approaches in forming a superblock. In
literature they are often referred to as the finite and infin
lattice approaches. In the infinite lattice approach in one
mension, the environment block is generally chosen as
space reflection of the system. In the finite lattice approa
the size of the superblock is fixed and the environment bl
is chosen as the remaining part of the lattice for a giv
system block. The infinite lattice approach allows the size
the superblock to be flexible and can be used to study
thermodynamic limit directly. However, the finite size a
proach is more accurate in calculating quantities for a sys
with fixed lattice size.

The DMRG can also be used to study thermodynam
properties of a 1D quantum3 or 2D classical system.2 In this
case, the transfer matrix of a Hamiltonian system, instead
the Hamiltonian itself, is diagonalized. The free energy a
other thermodynamic quantities are determined by the m
mum eigenvalue of the transfer matrix. The transfer-ma
DMRG method treats directly an infinite lattice system a
has therefore no finite lattice size effect.
©2001 The American Physical Society14-1
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A simple extension of the DMRG to more than 1D wou
be to replace the single sites added between the blocks
a row of sites, either along a principal axis8 or along a
diagonal.9 However, the extra degrees of freedom added
the system would make the size of the Hilbert space proh
tively large. Therefore, the two-dimensional algorith
should be developed so that only a single site is adde
each subblock at a time.

In practice the extension of the DMRG to more than 1D
to map a higher dimensional lattice onto a 1D one, nam
to choose a path to order all lattice sites.10 The mapping
breaks the lattice symmetry and introduces long range in
actions among lattice sites. Therefore, the 2D procedure
fers from the 1D one in that there are additional connecti
between the system and environment blocks.

A typical mapping, as illustrated in Fig. 1, is to fold a 1
zipper into 2D. This is basically a multichain approach sin
the length of the folded zipper is unlimited but the width
fixed. For a 2D gas of noninteracting electrons, Liang a
Pang found that the number of states needed to mainta
certain accuracy grows exponentially with the width of t
lattice.10 This convergence was also confirmed for an alg
rithm where a row of sites was added at each step.8 Although
no proof has been given, this statement is often referred t
most probably valid for any 2D DMRG calculation.

This multichain approach is simple to implement in t
DMRG iteration. However, with this approach, the calcu
tions on (L21)3(L21) andL3L are performed indepen
dently. The information obtained from the iterations on
(L21)3(L21) lattice is not used in the preparation of th
initial sub-block matrices in the calculation for aL3L lat-
tice. This is undoubtedly a loss of the efficiency. It m
result in the loss of the accuracy as well, since the topolo
cal characteristics of square lattices are not well manifes
in the preparation of the initial block states and the sweep
procedure of DMRG iterations.

The momentum space DMRG provides an alternative w
to implement the DMRG in two or higher dimensions.4 In
this representation the momentum is conserved. This lead
a strong restriction on the basis states and allows the num
of states kept to increase substantially. Unlike its real sp
counterpart, the momentum space DMRG treats the kin
energy rigorously. Hence this method works better in
weak coupling limit. However, the application of the m

FIG. 1. A superblock in a ‘‘multichain’’ algorithm. The system
and environment blocks are enclosed by dashed lines. Black s
are the sites added to the system and environment.
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mentum space DMRG has its own limitations. For examp
it is very difficult, if not completely impossible, to apply thi
method to a pure spin system such as the Heisenberg m

In this paper, we introduce an approach to implement
DMRG in real space in 2D. Instead of ordering the latti
sites row by row as in the multichain approach, we order
lattice sites by the order along the diagonal direction. T
allows us to build up the initial system and environment o
L3L lattice system based on the results on a (L21)3(L
21) lattice and is particularly suitable for handling 2D la
tice models.

The rest of the paper is arranged as the following. In S
II a diagonally ordered algorithm of the 2D DMRG is intro
duced. In Sec. III, as an example of the application of
algorithm, the ground state energy of the spin-1/2 Heisenb
model is evaluated on both square and triangular lattices.
study is summarized in Sec. IV.

II. A 2D ALGORITHM OF THE DMRG

In this section we will take the square lattice as an e
ample to show how to build up initial blocks of aL3L
lattice from a (L21)3(L21) lattice. The extension to an
2D lattice which can be topologically transformed to
square lattice by adding or removing some of the neares
next nearest neighbor interactions from the square latt
such as triangular, hexagonal, and Kagomi lattices~an ex-
ample for such a transformation is given in Fig. 2!, is
straightforward.

Let us start from a 232 lattice. Figure 3~a! shows the
order of the sites after the 2D→1D mapping. As the system
is small, the Hamiltonian can be fully diagonalized.

Figure 3~b! shows the configuration of the initial supe
block for a 333 lattice system. As indicated by the numb
shown in the figure, the lattice sites are ordered from
lower left corner to the upper right corner along the diagon
The initial system contains three sites linked by the solid l
in the lower left corner. The initial environment contains a
the four sites in the upper right 232 lattice. All the matrix
elements for these initial sub-blocks can be obtained fr
the results previously obtained on the 232 lattice. We add
site 4 to the system and site 6 to the environment to form
augmented system and environment blocks. Unlike in a
1D system, these two added sites are not nearest neighbo
the mapped 1D system. After a standard DMRG calculat
for this superblock, the augmented system block can be
dated and taken as the new system in the next iteration.

ots

FIG. 2. AL3L (L55 here! triangular lattice~a! can be taken as
a L3L square lattice with extra next-nearest-neighbor coupling~b!.
4-2
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TWO-DIMENSIONAL ALGORITHM OF THE DENSITY- . . . PHYSICAL REVIEW B 64 104414
In the next iteration@Fig. 3~c!# the system contains fou
sites~i.e., sites 1–4! and the environment contains only thre
sites at the upper right corner~i.e., sites 7–9!. Since the two
sites~i.e., sites 5 and 6! to be added to the system and en
ronment are nearest neighbors in the mapped 1D lat
from now on the DMRG finite system sweeping can be do
exactly as in a true 1D system.

Similarly, the DMRG iterations on a 434 lattice can be
done based on the results of the 333 lattice. As for a 3
33 lattice, a 434 lattice @Fig. 4~a!# can be formed by two
corner cut off 333 lattices with two isolated sites. The in
tial system contains 6 sites linked by a solid line in the low
left corner~i.e., sites 126) and the initial environment con
tains 8 sites, also linked by a solid line, in the upper rig
333 lattice ~i.e., sites 8,9,11216). The configurations o
these two blocks can be found from the previously stud
333 lattice with or without a space reflection. We add site
to the system and site 10 to the environment to form
augmented system and environment blocks. Again, these
sites are not nearest neighbors in the mapped 1D system

FIG. 3. ~a! A 232 lattice.~b! The initial configuration of super-
block for a 333 lattice system. As indicated by the numbers, t
lattice sites are ordered along the diagonal direction. The in
system contains three sites linked by the solid line in the lower
corner. The initial environment contains four sites, also linked
the solid line, at the upper right corner.~c! Same as for~b! but for
the next iteration. Black spots are the extra sites added into
superblock.

FIG. 4. ~a! A 434 lattice decomposed as two partially ove
lapped 333 lattices~enclosed by the short dashed squares! and two
sites at the two corners outside these 333 lattices~i.e., sites 6 and
10!. The number besides each lattice site gives the order in
mapped 1D system. The sites in a system or environment block
linked by solid lines. Black spots are the sites added in.~b! Same as
for ~a! but for the next iteration. The environment~sites 10–16! is a
space reflection of the system~sites 1–7! with respect to the cente
of the 434 lattice.
10441
e,
e

r

t

d

e
o
ut

the standard DMRG calculation can be done as usual.
augmented system block is then updated and taken as
new system in the next iteration.

In the next iteration@Fig. 4~b!#, the augmented system i
the last iteration becomes the new system. It contains se
sites~i.e., sites 127). In this case, since the total number
sites in the environment is also seven, the environment
therefore be taken as the space reflection of the system
respect to the center of the 434 lattice, i.e., sites 10216. All
the matrix elements of this environment can be obtain
from the space reflection of the system. The sites now ad
into the system and environment are the two nearest ne
boring sites in the mapped 1D system. Thus starting fr
this iteration, the standard finite system sweeping can
done as in a 1D system, without considering how the 434
lattice is constructed from the 333 lattices.

The above procedure can be repeated to larger square
tices. In general, the initial superblocks of aL3L lattice can
be formed based on the results of the system and envi
ment blocks in a (L21)3(L21) lattice. We order all the

FIG. 5. The first three initial configurations of superblocks for
535 lattice system. At the first two iterations~a! and ~b! the two
sites which are added to the system and environment~i.e. X1 and
X2) are not next to each other in the mapped 1D system. At
third iteration ~c! X1 and X2 become next to each other in th
mapped 1D system.
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TABLE I. Comparison of the ground state energy per bond of the Heisenberg model on squa
triangular lattices with free boundary conditions obtained by our approachE2d with that obtained by the
multichain approachEmc. m is the number of states retained. The lattice size isL2.

Square lattice Triangular lattice
L E2d Emc (Emc2E2d)/uEmcu E2d Emc (Emc2E2d)/uEmcu

m550

6 20.361972 20.361919 1.531024 20.210692 20.210732 21.931024

8 20.35204 20.351149 2.631023 20.199179 20.198752 2.131023

10 20.344292 20.341389 8.431023 20.192918 20.189763 1.631022

12 20.337374 20.332574 1.431022 20.187242 20.182806 2.431022

m5100

6 20.362096 20.362089 1.931025 20.211171 20.211196 21.231024

8 20.353213 20.353057 4.331024 20.200426 20.200494 23.331024

10 20.347043 20.345771 1.331023 20.195015 20.192714 1.231022

12 20.341588 20.338833 831023 20.189992 20.186441 1.931022
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lattice sites similar to a folded zipper with unequal wid
along the diagonal. If the first site at the lower left corner
theL3L lattice is labeled as 1, then the two sites to be ad
in will have the coordinatesX15(L21)L/211 and X2
5L(L11)/2 in the mapped 1D system, respectively.~An
example is given in Fig. 5 for a 535 lattice system.! We take
the first (L21)L/2 sites in the lower left corner as the initia
system and all the sites in the upper right (L21)3(L21)
square lattice not used by the system as the initial envir
ment. The DMRG calculation can be done as before. T
system is always augmented and updated. At the first
iterations, the site which is added to the environment is fix
at X2 and is not exactly next toX1 in the mapped 1D lattice
This continues until the environment can be generated by
center reflection of the system and the two sites adde
these two blocks become nearest neighbors in the map
1D system. After that the standard finite system sweep
can be done as in an ordinary 1D lattice.

III. THE 2D HEISENBERG MODEL

In this section, we take the spin-1/2 Heisenberg mode
an example to demonstrate how good our approach is c
pared with the multichain approach. The ground state e
gies on both square and triangular lattices are evaluated
these 2D systems, there are currently rather precise re
available, mainly from large-scale Monte Carlo calculatio
and series expansions. Therefore the accuracy of our re
can be assessed by comparing with these results.

The Heisenberg model is defined by the Hamiltonian

H5(̂
i j &

Si•Sj , ~4!

whereSi is the spin operator and the summation runs over
nearest neighbors. In real space at the same parameter
number of states, the truncation error in a system with p
odic boundary conditions is usually much higher than w
free boundary conditions, therefore we use free bound
conditions.
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The total spinS2 is a good quantum number for the iso
tropic Heisenberg model. This symmetry has been use
obtaining all the results presented below. We have also
formed finite system iterations using both our algorithm a
the multichain one. In the multichain calculations, we ha
used an algorithm introduced in Ref. 11 to build up the init
system or environment blocks.

Table I compares the ground state energy per bond
tained by our approachE2d with that obtained by the multi-
chain approachEmc on both square and triangular lattice
For square lattices,E2d is always lower thanEmc. Since the
DMRG satisfies the variational principle, this means that
results obtained with our approach are more accurate
the multichain ones. Moreover, the difference (Emc

2E2d)/uEmcu increases with increasing lattice. Thus the im
provement of our approach over the multichain approach
comes more and more significant as the lattice size is
creased. For triangular lattices,E2d is slightly higher than
Emc whenL is small. However, for large latticesE2d is much

FIG. 6. The ground state energy per bondE2d as a function of
the truncation error for the spin-1/2 Heisenberg model on a 636
square lattice with free boundary conditions. The solid line is
polynomial fit to the data.
4-4
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TWO-DIMENSIONAL ALGORITHM OF THE DENSITY- . . . PHYSICAL REVIEW B 64 104414
more accurate thanEmc. The increase of (Emc2E2d)/uEmcu
with increasing size in the triangular lattice is even larg
than in the square one.

For a givenL, an accurate estimate of the ground st
energy~similarly other physical quantities! can be obtained
by extrapolatingE2d to the limit m→`. This can also be
done12 by extrapolatingE2d with respect to the truncation
error D«, since the limitm→` is equivalent to the limit
D«→0. The extrapolation with respect to the number of
tained states is difficult to implement since the asympto
behavior ofE2d in the limit m→` is unknown and there is
some uncertainty in determining the function used in
extrapolation. However, we find that theD« dependence o
E2d is generally very simple and can be well described b
power law in the limitD«→0. An example is given in Fig. 6
where theD« dependence ofE2d on a 636 square lattice is
shown. In the figure, the solid line is a polynomial fit~up to
the quadratic term inD«) to the data. From the fit the groun
state energy per bond for this 636 system is estimated to b
20.36212. For other cases, this fitting procedure can
similarly done.

To obtain the ground state energy in the thermodyna
limit, we need to do a finite size scaling for the results o
tained from the above extrapolation. In a periodic system,
leading size correction to the ground state energy per bon
of order 1/L3.13 However, in an open system as consider
here, the finite size effect is stronger and the leading s
correction is of order 1/L.

Figures 7 and 8 show the scaling behavior of the grou
state energy on square and triangular lattices, respecti
For the square lattice, the extrapolated ground state ener
the limit 1/L→0 is E`'20.3346. This agrees very we
with the probably best currently available estimate, obtain
from large-scale quantum Monte Carlo calculations ofE`

'20.334719(3).14 The result of spin wave theory isE`5
20.33475 up to the fourth order correction.15 For the trian-
gular lattice, the extrapolated result isE`'20.1814. It is

FIG. 7. Ground state energyE2d versus 1/L of the Heisenberg
model with free boundary conditions on square lattices. The beh
ior of E2d on even lattices is different to that on odd lattices. But t
extrapolated value in the limit 1/L→0 is the same within numerica
errors.
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also consistent with the quantum Monte Carlo results
tained by Capriottiet al.,16 E`'20.1819, and by Bernu
et al.,17 E`'20.1825. The second order spin wave result
E`520.1822.18

The above comparison indicates that accurate results
the ground state energy can be obtained using the algor
introduced above. In obtaining these results, the symmetr
the total spinS2 is considered and up to 300 states are
tained. This calculation can be readily done on a mode
workstation. With the aid of modern parallel computers,
should be able to keep more states~e.g., 3000 states! and to
further increase the accuracy.

IV. CONCLUSION

We have developed an approach to implement the
space DMRG in 2D. We point out that aL3L lattice can be
taken as an assembly of two partially overlapped (L21)
3(L21) lattices plus two extra sites and therefore the init
blocks of aL3L system can be built up directly from th
blocks of a (L21)3(L21) system. This preserves a high
degree of the symmetry of 2D lattice than in the multicha
approach and can be readily used in the DMRG calculat
For the spin-1/2 Heisenberg model on both square and tr
gular lattices, the ground state energies obtained with
approach are consistent with the quantum Monte Carlo
sults and better than those obtained with the multichain
proach for large lattice systems.
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FIG. 8. E2d versus 1/L for the Heisenberg model with free
boundary conditions on triangle lattices. The solid line is a polyn
mial fit to the data with mod(L,3)50.
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