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Nonlinear dynamics of vortexlike domain walls in magnetic films with in-plane anisotropy
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The nonlinear nonstationary dynamics of domain walls with variable two-dimensional internal structure
(topological solitons with internal degrees of freedoumder the action of an external magnetic field was
investigated in magnetic films having an in-plane anisotropy and a small damping coefficiEin¢ iteration
calculation procedure of the temporal evolution of the magnetization distribution is based on the predictor-
corrector method for direct numerical solution to the Landau-Lifshitz equations. The variable time step pro-
cedure was employed. It is shown that along with the periodic change of the internal structure of a wall
occurring with a certain period@ there also appear the subperiodic vibrations of some parts of the walls relative
to the other parts which results in the high-frequency oscillatiens@* Hz) of the velocity of a domain wall
in the fields above some critical field. at a small damping. The dependence of the period of dynamic
rearrangement of the internal structure of the walls on the external magnetic field and damping was studied.
The singular dependence Bon H is established to be different from thEl{/H2— 1)~ law which is typical
of one-dimensional models of a wall. The dependencH 0bn « is evaluated and appears to differ substan-
tially from that of the one-dimensional models.
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[. INTRODUCTION ture. In particular, it was established that the one-
dimensional models of domain walls could not describe the
The internal structure of domain walls in magnetic properties ofH. .

uniaxial films is known to be not one dimensional in the However, in all the works cited only films with suffi-
general casé.This imposes an essential influence on theirciently high dampingy=0.02 (« is the Gilbert damping pa-
dynamic behavior. Two particular cases should be distinfametey were considered. This restriction is related to the
guished: the films with perpendicular magnetic anisotropyfact that at much lowetr values the critical field becomes
and the films in which an easy axis lies in their pla@a@  small, and a period of rearrangement of the internal struc-
in-plane anisotropy Previously most of the papers were de- ture becomes very large and inevitably needs great compu-
voted to the films with perpendicular anisotropy.This is re-tation time. This circumstance imposes severe restrictions on
lated not only to their practical applications but also to thethe numerical experiments. At the same time, it is just a great
contribution of magnetostatic fields to the total energy, whichperiod T that is favorable for experimental studies, since no
is most difficult to compute and can be taken into accounproblems concerning the temporal resolution appear in this
approximately due to a great quality factoQ  case. Moreover, a wall motion is impossible in the absence
=K/277M§ (K is the uniaxial anisotropy constam, is the ~ of damping due to the gyrotropic properties of elementary
saturation magnetization The magnetostatic contribution magnetic moments. Thereby a question appears of how the
proves to be the main one and should be taken into accoufonlinear dynamic behavior of a wall would change as the
rigorously. Rigorous account of basic interactions, includingdamping becomes small. In the present paper the nonlinear
the dipole-dipole one, reveals the asymmetric structure ofnd, in the general case, nonstationary dynamics of domain
domain walls in the framework of a two-dimensional modelwalls with a two-dimensional distribution of magnetization is
of magnetization distributior® Such domain walls are real- considered at a small damping. In order to solve this problem
ized, for instance, in Permalloy films 0.04—Qu2n thick. = we advanced our previous computation programs by intro-
The existence of these walls is confirmed experimentafly. ducing a variable time step.
The switching on of the external magnetic field along an
easy axis of_ magnetization leads not only_ to a displacement Il. STATEMENT OF THE PROBLEM
o_f the o_lomam waI_I but also o_f a vortex in it. Thus_, from the AND BASIC EQUATIONS
viewpoint of nonlinear physics there is a very interesting
object, namely, a topological soliton with internal degrees of Let us consider a uniaxial magnetic film of thickndss
freedom. An advance in the studies of such objects was corwith a surface parallel to the&-y plane and an easy axis
nected with the work by Yuan and Bertranin which the  directed along the axis (see Fig. 1 Let the magnetic state
substantial periodic transformations in the internal structuref this film correspond to two domains with uniform satura-
of a domain wall were shown to occur in sufficiently high tion magnetization==Mg, oriented along+z (—2z) at x
fields. The effect of various film parameters on the charactera/2 (x<—a/2). We assume that a domain wall is entirely
of these transformations was elucidated in our previoudocated in a regioV with a rectangular cross secti@nin the
paper$? It revealed the important properties of the critical x-y plane and a length along thex axis. Assume also that
field H,, above which the motion of a domain wall is ac- M=M(x,y) in this regionV, which corresponds to a two-
companied by a periodic rearrangement of its internal struceimensional model oM distribution. In one-dimensional
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To determineM(x,y) it is necessary to minimize the
functional (3) with respect toM under the conditiorM?
=const and the following boundary conditions:

{ oM 0 )
" on y==*b/2 ,
Mz|x:ta/2:iMSa Mx|x=ta/2:O1 My|x=ta12:o-
(6)
In expression(5) [ ..., ...] stands for a vector product.

Minimization of Eq.(3) allows one to find the equilibrium

FIG. 1. The geometry of problem and an example of asymmetrigonfigurations of domain walls and corresponding minimal
vortex structure of a wall obtained for films with basal parametersenergy values ofy,.

and @=0.1, b=0.05um. In this and the following figures the ar-
rows denote the projections of onto thex-y plane.M,<0 (M,

>0) to the left(to the righ} of the central dashed line. The orien-
tation of M is described by a polar angleand an azimuthal angle

.

models it should be remembered thvat= M (x) in the region
V. The problem of findindvi (x,y) is solved on the basis of a
rigorous micromagnetic approach taking into account all th
main interactions—the exchange, the dipole-dip@hecon-
tinuum approximatiop and the magnetoanisotropic interac-
tion. Let us denote the densities of these energies Qy
em, ande,,, respectively, where
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Here A is the exchange interaction parametér,s the
uniaxial magnetic anisotropy constai, is the saturation
magnetizationg is a unit vector along an easy axis, aid”
is a magnetostatic field defined as

d 1

x| lr—r'|’

d
H(m)(r)z—ﬁfvdr’Mj(r’) )

In the framework of the two-dimensional model consid-

ered, the energy of a domain wall per unit length alongzthe
axis may be presented in the form

7D=J f edx dy,
D

e=¢ggtentegn.

©)
where

(4)

The method of numerical minimization is described in
detail in Refs. 1,10. According to it a rectangular grid divides
the regionD into small cells. The regioWV is divided into
parallelepipeds stretched along thexis, whose sidewalls
are parallel to the coordinate planes z andy—z. The cells
are assumed to have macroscopic, but so small sizes that in
every point of each of these parallelepipeds Mhealirection
may be considered to be uniform. The network approxima-

&ion of vp is discussed in the Appendix.

The numerical calculations were carried out on the grids
with various numbers of cells. The maximum mesh of the
grid covering the calculation area was>@80. The greater
number of cells significantly increases the computation time,
but only slightly changes the numerical results. The choice of
the regionD to be computed, i.e., the sizesafindb, is of
a great importance because these sizes essentially depend on
the magnetic parameters of a film. The computations were
done for I1=a/b<6. We used the magnitudesA
=10 © erg/cm, K=10® erg/cn?, and M =800 emu cm?,
which are characteristic of Permalloy films, as the basic pa-
rameters of a film. The closeness to unity of the self-
consistency coefficien§, proposed by Aharofht was used
as a criterion for the end of the computations.

Figure 1 shows a stable structure of an asymmetric Bloch
wall as an example. It was determined for the first time by
LaBonte? First of all, it is seen that the projection oA
varies from domain to domain such that a vortex of magne-
tization is formed in thex-y plane. Thez component ofV
also varies. The magnitude &fl, is equal to zero at the
central dashed ling=yy(x) (the center of a wall Thus, the
center of a domain wall corresponds to differentoordi-
nates at different depths of a film. Due to the asymmetry of
this line such a wall is called an asymmetric wall. Two other
lines at the leveM ,= const(to the left and to the right of the
central ling are drawn such thd¥l rotates about the axis
by about 60°.

In the film shown in Fig. 1 the direction of thd winding
(chirality) is counterclockwise. The walls with this and op-
posite chirality have the same ener@legeneracy in chiral-
ity).

The study of nonlinear dynamics of the domain walls de-
scribed was done by a direct numerical solution of Landau-
Lifshitz equation, written in a dimensionless form
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Ju ity, the magnitude of the period of this velocity at nonstation-
(1+ aZ)EZ —[U,her] = alu,[u,heg]], (7)  ary motion of a wall, etg.in both methods coincide with a
good accuracy.
whereu=M/Mg, 7= yMdt, tis real time,y is the gyromag- The time stepAr is either chosen constant or variable

netic ratio,« is a dimensionless Gilbert damping parameter,under the constraint of the maximal rotation angle of the
het is @ dimensionless effective field in which the magneti-magnetization vector in a cell by a certain small value. In the
zation moves latter case the step varies by the following algorithm. If the
_ (m) maximal rotation angle ofi,, ; with respect tau, (over the
heir=he+ "™ —ha(u-c)cth, (8 whole set of the cellsexceeds the giver, value then the
where step is multiplied by 0.3sharply diminishes otherwise it is
multiplied by 1.3(gradually increasesOur experience has
Ju  J%u shown that is was quite sufficient to choogg=0.01. The
he=—7+—, results are insensitive to the furth@g reduction. The vari-
& dn able adjustable step allowed us to substantiall lerate th
justable step allowed us to substantially accelerate the
(™ — (™M computations and to carry out the calculations for the small
s’ values of the damping parameter
h=H/M We anticipated a procedure of introducing random pertur-
bations with arbitrary amplitude at any time instant, and also
ha=2K/M?2 the possibility of starting from any configuration of th.
s’ This allows us to evaluate the stability of the solutions ob-
£=x/by, tained. To prevent the reaching of a wall the boundary of the
computation regiorV/ a shift of the region is anticipated in
n=ylby, (9) the course_of the wall motion. . . _
Two variants of a shift were studied. In the first, the grid
bo=\2A/Mg, andH is the external magnetic field. To nu- shifts by one cell along the axis when the “center of grav-
merically calculate Eq(7) with boundary condition$5) and  ity” of a wall passes the same distance in this direction. The
(6) we use the same spatial grid as was used at the minimguantity * = uy+ uy that characterizes the deviation of the
zation of the functionalyp . In addition to that, we use the magnetization vector from the quiescent state was chosen as
explicit difference schemguler methog, added with allow-  a “mass.” In the second variant, the distribution at each it-
ance for the so-called predictor corrector. The distributign  eration “shifts” backwards such that the “center of gravity”
(i.e., u in each cell of the spatial grids initialized at the is always in the center of calculation area. This approach
moment7=0. The u, configuration is determined by nu- allowed us to more accurately determine the critical values
merical minimization of the total enerd®) of a wall. At the  of the bifurcation field(the field of transition from the sta-
first stage(predicto) an iterationu, ; is determined by the tionary to nonstationary motion of a walnd to carry out

formula the computations for arbitrary small values of the damping
. parametere. This is related to the removal of jumps that

Uy 1= Unt+ pA7f(7,Up), (10 appear at a wall shift. It should be emphasized that if the

where boundary conditions at the calculation area boundaries per-

pendicular to thex axis are such that the magnetizatibh
1 substantially deviates from the(—z) direction in domains
f(7y,Uy)=— —2[un MNer(Un) | so the above definition of the center of gravity may appear to
1ta be invalid. Such a situation may either appear, for example,
at a presence of nonzek, or H, components of the exter-

@ [Uy,[Up, heg(un) 1. (11)  hal fieldH or when the 90° domain walls are considered.
1+a?
At the second stagéorrectoy the iterationu,, ; is finally lll. RESULTS AND DISCUSSION

determined: Let us consider the motion of a domain wall that is in-

(12) duced by the external magnetic fiel directed along an
easy axis of the magnetization. Previousl§the existence
Here A7 is the time step. They parameter can vary within of some critical fieldH, (a bifurcation field was established,
the limits 0<7n<1. At =0 the above-described method below which the motion of a wall proves to be steady state,
degenerates into the explicit Euler difference schétia.  and the motion with variable velocity occurs above this field.
our case they parameter was chosen, as a rule, to be equal ttn particular, in some rangd >H, close toH, the velocity
0.75. The numerical experiments show that when using thef a domain wall varies periodically. Such a motion corre-
variable adjustable stegee belowin the predictor-corrector sponds to the periodic rearrangement in the internal structure
method the computation may be accelerated by about severi a domain wall. As a matter of fact, the subcritical behavior
times in comparison with the Euler method. The results ofof a domain wall with a vortex internal structure is quite the
calculations(e.g., the average over the film thickness veloc-same as the behavior of the domain wall motion with a one-

Upy1=Up+A7f(7,,U5, ).
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et i vl R rection of the displacement depends on the applied field di-
piibebetn uh Yy DN rection. The situation depicted in Figs. 2 and 3 occurs in the
I L SIS field directed along the axis and applied to the structure
rliiiiis 2 shown in Fig. 1. If the fieldH sufficiently differs fromH,,

then the center of a vortex occupies some equilibrium posi-
tion between the upper and lower surfaces of a film. By this

5 @ the transition process terminates, and the domain wall begins
{ to move with a constant velocity. In this case, even a very
10 110 210 strong diminishing ine does not lead to any additional fea-
t (nsec) tures in the domain wall behavior. It is only the range of the
il fields, in which the considered process occurs, that de-

REES creases. If the fieldH is close toH. (H.—H<H,), after
e switching on the fieldH the vortex at first shifts to the lower
surface of a film, and then the asymmetric Bloch wall trans-
forms to the asymmetric N¢wall, depicted in Fig. @). Itis
FIG. 2. Instantaneous wall configuratiofa,(b) and the depen-  just this wall that moves stationary. Its velocity proved to be
dence of the averagever the film thicknesgsvelocity of a domain  higher than that of the asymmetric Bloch wall. If now we
wall motion on time atH =80 Oe and basal parameters of a film. gradually decrease the damping, then the range of fields in
The portion parallel to abscissa axis corresponds to the stationafyhich such a motion occurs also decreases, and quite a novel
wall motion. effect appears as well. In the course of the asymmetric Bloch
_ _ o o o wall transformation to the asymmetric Blewall, an excita-
dimensional distribution of the magnetization studied in desjon of high-frequency oscillations of the wall velocity oc-
tail in Ref. 12. It is actually relatgd to the violation of a curs. A typical example of such a behavior of a wall is shown
balance of angular momentum, which leads to the precessiqp Fig. 4.
of the magnetization about an easy axis along with the pre- e fix all the instantaneous configurations of a wall dur-
cession about the direction of a wall motion. The differenceng computation and create an animation on this basis. Look-
is that in the case of a wall with a two-dimensional magne+ng through this animation gives evidence that the velocity
tization distribution the precession of the magnetizationygciliations are related to some parts of a wall that begin to
about an easy axis is essentially inhomogenédus. the  yiprate relative to one another. In particular, with time dura-

fields far higher tharH, the wall motion can prove to be {on the swing of the central line of the asymmetricaNeall
much more complicatedHowever, such situations will not gries periodically.

be considered in this paper. As an example, Figs.(d) and 4f) show two configura-
_ _ tions of the Nel wall with different swings of the central
A. Steady-state motion of a domain wall line. The excitation of the above oscillations occurs due to

The steady-state motion of a domain wall is settled afte,the_appearance of a fast change of nonuniform internal field
passing a certain transition process. Hereby two differenfluring the process of the wall rearrangement.
types of the steady-state motion can be discriminated. Typi-
cal examples of transitions to these motions are shown in
Figs. 2 and 3 a=0.1. There are shown, in particular, the
velocitiesv of a domain wall motion averaged over the film  As was noted above, the balance of the angular momen-
thickness. In both cases, a vortex shifts to a lower film surtum is violated wherH>H_, and the motion of a domain
face after switching on the external magnetic field. The di-wall ceases to be steady state. Rather complicated transfor-
mations in the internal structure of a domain wall develop in
the course of its motion. When moving away from the criti-
cal field the character of the rearrangement will change.
i However, it is always possible to select a wide range of
5 magnetic fields, in which the main features of the domain
“ wall dynamic rearrangement will be retained.
As an example, Fig. 5 shows the dependence of the ve-
[—‘I T T LT 1!6”6 AT locity v of a _domain Walllon time and where the ins_tanta—
= TTm t(nsec) neous domain wall configurations are shown at different
stages of transformation. The data was obtained for basic
films with «=0.1 and in the fieldd =100 Oe. This field is
greater than the critical field by about 0.7 Oe. It is seen that
FIG. 3. Instantaneous wall configuratiofas,(b) and the depen- if we begin with a configuration of an asymmetric Bloch
dence of the averagever the film thicknessvelocity of a domain ~ Wall (@), then with time a vortex shifts to the lower surface of
wall motion on time atH =99 Oe and basal parameters of a film. the film (b). Then the asymmetric Bloch wall rearranges to
The portion parallel to abscissa axis corresponds to the stationafjie asymmetric Nel wall (c). During this rearrangement the
wall motion. wall velocity decreases, then grows and becomes greater

B. Nonstationary motion of a wall

v (10%m/s)
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9% 176 251
t (nsec) FIG. 4. Instantaneous wall configurations
(c),(d) and the dependence of the averdgeer
the film thicknessvelocity of a domain wall mo-
tion on time atH=2 Oe,a=0.001,b=0.05um
and basal parameters of a film. The oscillation
®) velocity part is depicted in more detail ).

N0

t(see) 2

than the velocity of the asymmetric Bloch wall. After that, appearance of the resulting magnetization in the motion di-
the swing of a central line of the asymmetric élevall  rection is necessary for a wall to move. Meanwhile, with the
gradually decreases, and the wall structure actually becomegppearance of th# precession about an easy axis there
similar to a classical one-dimensional &lavall (d). At this  inevitably appear the states of a wall with a slopeNof
instant the wall velocity passes through zero and changeslative to thex axis opposite to the initial direction of a
sign, then a reverse motion of a wall begtAdhe structure  domain wall motion.

(d) rearranges to the structure of asymmetriceNeall (e), With further wall moving, the slope angle of the central
but with an opposite slope of a central line, as compared withine again decreases, and near the upper surface of the film a
the structurgc). The swing of this line reaches a maximum. vortex (f) with the chirality opposite to that of the initial
The nature of the domain wall reverse motion is just thevortex (a) is nucleated. A half-period/2 of dynamic rear-
same as in one-dimensional walfdt is related to that if the  rangement in the internal structure of a wall terminates when

2-
,; 14 FIG. 5. Instantaneous wall configurations and
= the dependence of the avera@gever the film
£ 0 — T 11 v Bt v I e = e 4 ) . - i .
s 2 4 6 8EN\O*12 14 16 200 22 24 26 1§28 '30 thickness velocity on time for the film with basal
% 1 ZZZ::K:K:E“ © t (nsec) parameters, b=0.05um, «=0.1, and H

2 N =100 Oe.
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2 . ‘ d ® FIG. 6. The dependence of the averdgeer
4 L 2 the film thicknessvelocities on time for the film
:g 0 15 20 25 30 35440 45 5 t——% % 75 80 85 with basal parametets=0.05 xm ande«, H, and
No:;- 4 \/msec) i H.: (a) 0.01, 11 Oe, 10.5 Odh) 0.001, 2.6 Oe,
S ¢ 2.5 Oe;(c) 0.0001, 2.2 Oe, 1.9 Oe.
a7 s
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14
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this vortex crosses the film centég). During the second quencies depend on their amplitude. The order-of-magnitude
half-period similar rearrangements of the domain wall strucfrequency estimation is about #Hz.

ture occur, and at the end of a period the wall chirality re- Leaving aside the subperiodic oscillations the transforma-
turns to the initial ong@). The rearrangements consideredtions that happen during a periddoccur at smalla quite
correspond to those studied in Ref. 7 at other valuesafid  similar to the transformations in the case @=0.1. The

H. However, in our case the time dependence of the Ve|OCit¥)oints (a)_(g) in Fig. 6 Correspond to the structures denoted
has quite another form. It has substantially extended the reyy the same letters in Fig. 5. The velocities correspond to the
gion which corresponds to the existence of asymmetrielNe fie|ds immediately close to the critical fields in each case.

wall structure. Note that this distinction is related to thelncreasing the field to values far exceedidg does not sub-
choice ofH close to the critical field rather than to the choice stantially change the pattern of a domain wall dynamic be-

of a. The extension of this region is caused by the fact that ihavior. As an example, Fig. 7 shows the velocity dependence
is rather difficult to overcome the state of a wall with a¢or a film with basal parameters and dampiag:0.001 in
maximal direction of the magnetization along hexis[(d) o fielqH =5 Oe. This field is about twice the value k.

statq in the fields slightly exceeding the critical one. With o . e

, . " : : : In order to demonstrate the subperiodic velocity oscillations

increasingH above the critical field, the region with a struc- _. ) . - :
_Fig. 8 shows a shorter time interval. This figure also illus-

ture of the(c) type gradually narrows, and the time depen X - .
dence of the velocity becomes similar to that brought out irfrates various oscillation types of the internal structure of a

Ref. 7. Thus, it is clear that the increase in a period of dy_wall by the instantaneous domain wall configurations. Apart
namic rearra’ngement of domain wall internal structure withffom the subperiodic oscillations discussed above it is clearly

decreasing external magnetic field down to the critical field®&€n from Fig. 6 that with decreasing damping the fraction of

is related to the extension of a time interval during which thetn® PeriodT at which a wall moves backward increases. It

asymmetric Nel wall exists. means that with decreasing damping the average velocity of

The above-obtained properties do not undergo noticeabl@ Wall forward movement gradually decreases, and the wall
changes with passing to the films with lower dampings_OSCI"atIOHS related to the r;onumfor(nver they aX|§) pre--
However at small dampings, apart from the velocity change§€SSion of the magnetization about the easy axis begin to
that happen during a whole peridtthe changes at much Play the greater and the greater role.
shorter time intervals are also seen. We will call them sub-
periodic velocity oscillations. As an example, Fig. 6 shows
the velocity dependence dnfor basic film parameters and
three differente values. As is evident from the considerations above, the pefiod

The subperiodic velocity oscillations are clearly seen inof dynamic transformations in the internal structure of do-
this figure apart from the changes of velocity on a periodmain walls depends on the external magnetic field. We inves-
T (tg—ta=T/2 in Fig. 6. They are of the same nature as tigated this dependence for various valuesaofFigure 9
those described when Fig. 4 was discussed. According to thishows, as an example, tigH) dependence for three
nature, their frequencies do not depend on the field appliedalues. As it should be on decreasing the external magnetic
along an easy axis, but do depend on the film parameters arigld and approaching the critical field the periddgrows
its thickness. The specific analysis requires time-consuminthat agrees, in general, with the known one-dimensional
computations, and we are going to realize them in the futuremodel!? We compared the field dependence of the pefiod
The above oscillations are essentially nonlinear. Their frecalculated in this paper in the two-dimensional model of the

C. Period of dynamic transformations
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34 FIG. 7. Instantaneous wall configurations and
—_ 21 the dependence of the averagever the film
§ 14 thickness velocity on time for the film with basal
o~ _(1)_ 30 40 parameters b=0.05um, «=0.001, and H
= =5 Oe.
= -% t (nsec)
a3 /
\R DI
L
b/ AAEREEE magg e
IR I e 0

magnetization distribution for basal films wih=0.1 and needs much computation time, and we are going to do it in
b=0.05um with the period T(H) obtained in the one- the future. The above growth af with decreasingd takes
dimensional modéf1* place for arbitrary values af. It is very important, however,
that it is flattening with decreasing. This circumstance is,
27(1+ a?) 1 in our opinion, favorable for the experimental studies. Note,
T= , (13)  first of all, that there is no need for great time resolutions in
e H2 the presence of a long period of dynamic transformations. It
N —-1 seems to be sufficient to carry out the studies near the critical
H2 field, since the period is always great enough in this region.
But in the films witha=0.1 the critical field is rather high
wherew = yH.. This comparison is shown in Fig. 10. The (H.~99.3 Oe for basal films In the immediate vicinity of
solid curve corresponds to E¢L3), and the points to our this field the periodr is undoubtedly large. For exampl€,
numerical experiment. Although giving similar behavior of ~171.7 ns aH=99.33 Oe. If a field is only increased up to
T(H) the models are seen to qualitatively differ from one 102 Oe, then the pericBwill fall off to about 11.6 ns. Thus,
another. In other words, the two-dimensional distribution ofthe field range, in whicfT is large, is very narrow, and it is
M has the character of a singularity of the periotlirns out  difficult to hit such a narrow range. It follows from Figs. 7
to be different from reciprocal-square rodd{/HZ—1)"?  and 8, ata=0.001 even in the fiel =5 Oe, which is about
which is typical for one-dimensional models of a wall. Fromtwo times as great as the critical field, the peribdstill
general considerations an assumption can be inferred that themains great enough, namelj~=80 ns. As a result, the
character ofT(H) singularity in the two-dimensional case temporal resolution of the order of 10 ns is required to ex-
depends on the thickness and magnetic parameters of tperimentally reveal a range with periodic variation of the
film. However, the elucidation of this interesting questionwall velocity. Moreover, there is a great enough reserve for

FIG. 8. The dependence of on T on much
less time interval. Instantaneous wall configura-
tions corresponding to minima and maxima of
velocity at various stages of a domain wall dy-
namic rearrangement.

v(102m/s)
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FIG. 9. The dependence of the period of dynamic rearrange- I/T (1/nsec)
ments of a domain wall on magnetic field for basal filnis,
=0.05 um, and variousy: (a) 0.001,(b) 0.01, and(c) 0.03. Circles FIG. 11. An example of thed dependence on T/used for
and triangles are the numerical experiment data, and the curves agetermining theH.. The parameters employed are those for basal
the guides for eye. films, «=0.1 andb=0.05 um.

increasingT by lowering H. The measurements can be car- dence. The snapshots at the beginning and the end of a pulse

ried out, e.g., by the method of high-speed photography i@nd theH amplitude variation at>T will give an opportu-
the double- or triple-flash regime for a pulse duration with anity to determineH, (see below

flash time of the order of 1 ns to determine the coordinate of 't 1S also very important to Choose proper fi!ms, the most
instantaneous wall shifting as a function of timé&). One favorable of which are those with small damping. Note that

can obtain theg(t) curve by varying a delay between the although we used in our calculati(_)ns the magnetic param-

first and second flash by about 1 ns, and the third flash m ters close to those of Permalloy films, the above-described

be done at the end of a pulse. A H ' no peculiarities will ehavior retains for the films with other parameters as well.
. Cc

appear on the curve, which should appear in the oppositE®r €xample, we varieM from 400 to 1600 GK from 10°
caseH>H,, when the reverse motion is possible to occur. If©© 1C° erg/cn? and obtained a behavior quite similar to that

the time intervat is great enough then several periods can bénentioned above .

registered, which allows the determinationBfH) depen- We also calculated the de_pendence of a period on_the
damping «. In accordance with the above data a period

grows with increasingy for all H>H. .

1 D. Critical field of dynamic rearrangement of a domain wall

. The most difficult to determine is the critical field,.
The difficulties are both of the fundamental and computing
401 character; it is a computation-intensive task. Let us explain
in short the method for calculating, . First of all, for given
film parameters the period of dynamic transformatidrveas
calculated as a function dfi, then this data was used for
constructing the dependence df on 1/T. Finally the ob-
tained curve was extrapolated tolr#0 as shown in Fig. 11
as an example. The ordinaké value was accepted &$..
This procedure was performed in a wide rangexofalues
and Fig. 12 shows the resulting curk, versusa. The
0 I TR T T Th behavior ofH () is seen to be almost linear over a wide
H (Oe) range ofa values, which corresponds to the one-dimensional
models data.

FIG. 10. Comparison of the dependence of the period of dy- HOWever, a substantial distinction from the one-

namic rearrangements of a domain wall calculated by(Eg§.and  dimensional _Smodel, _i” which H;/QZZ_WMS (”5_
numerically computed in the framework of a two-dimensional X 10° emu cm® for considered basal films with the thick-

model. The parameters employed are those for basal film€).1, ness 0.05um) is that the two-dimensional model gives
andb=0.05 um. Solid curve corresponds to Ed.3) and circlesto  much smaller values ofl./« ~10% emu cm 2 for similar
the two-dimensional model. films. Moreover, our previous numerical calculatidssiow

T (nsec)

—
=
1
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In spite of the fact that a critical field is the most difficult

304 magnitude to compute we believe that its experimental study
as a function of various film parameters will prove to be
25 rather simple. Indeed, the wall velocity grows with growing
é H up to the critical field. AboveH=H_, the dynamic rear-
T gp) rangement in the internal structure of a wall develops, and

reverses its motion. Due to conventional experimental
method$® the velocity is measured at the time intervals far
exceeding a period of the wall dynamic rearrangement so
that it is the average velocityover the periodT) that is
measured in the fieltH. Since with increasing field, as our
studies show, the period decreases and the relative contribu-
3 s tion of reverse motions increases, so the measured velocity
. should fall off with increasing field. Thus, a maximum of the
¥ R X X T Y R ¥ 3y velocity measured has to be observediat H . This maxi-
o mum was really observed in experiméntience, by mea-
suring the velocity maximum in the field dependence at vari-
FIG. 12. The dependence of the critical figfy on « for the = ous parameters of a film one can determine the critical field
films with basal parameters ar=0.05 um. Circles are the nu- as a function of these parameters.
merical experiment data, and a straight line corresponds to the lin-
ear dependendd ;= Pa with P=10° Oe.

IV. CONCLUSIONS

thatH./a depends on the film thickness. These features can We investigated the nonlinear and, in general, nonstation-
be easily understood by remembefihghat the very exis- ary dynamics of domain walls in magnetic films with an
tence of a critical field is related to the finiteness of anguladn-plane anisotropy and rather small dampiag(down to

momentum caused by tHé(™ component of magnetostatic 10" 4). Such studies succeeded only due to the introduction
field X of variable time step.

Two different types of the stationary wall motion are re-
vealed. The first is related to the equilibrium state of a wall
vortex at a certain distance from the film center. The second

In a film, in contrast to an infinite crystal considered by
Schryer and WalkeY? the wall dimensions are finite along

the direction perpendicular to the film surface. This induce ype, that appears in the fields close to the critical one, is

theH{™ component of the field, caused by the magnetostatice ated to the appearance of the dynamically stable asymmet-
poles that inevitably appear with appearance of the magnetic Neel wall. Since the velocity of asymmetric Bewall is
zation precession at the wall surfaces perpendicular to thﬁsually higher than that of the asymmetric Bloch wall, the
motion direction and it will be different in each film. The dependence ob on H will be nonlinear in the rangéd
specific character of thdl distribution is surely important. <y and different from that predicted for the materials with
This field in a film will depend on its thickness, which will 5 quality factorQ<1 in the framework of one-dimensional
lead to the thickness dependencethf. In such a case, the model of a wall2
magnitudeH ./« would seem to grow approaching the value |n the fields above the critical one, the nonstationary be-
2wMs, but, as our calculations show, the valuetdf/a in havior of a domain wall was established to be more compli-
more thick films may become even less than the value mensated at small damping (0.00€k<0.02) than for largex
tioned above {10° emu cm ®). The latter is related to the values (e.g., ata=0.1). For small damping, along with a
fact that in thick films the scenario of the dynamic rearrangeperiodic dynamic rearrangement of the internal structure of
ment of the internal structure of a domain wall becomesjomain walls occurring during large perio@igup to several
complicated as a greater number of vortexes are involved iggzens of nanosecondshere also appear high-frequency
the rearrangement than before. This is in agreement with th@éubperiodi¢ oscillations of velocity of domain wall motion
rgsults of Ref.. 7. The appearanc_e_of several vortexes Wit{yith a period~10"2 ns) at certain portions of the peridd
different chirality leads to the splitting up of the magneto-  These oscillations are established to be related to various
static poles at the surface of a film perpendicular to the MOtypes of vibrations of some parts of domain walls relative to
tion direction, which naturally diminishesi{™ and, as a one another. They appear every time when a fast change of
consequencel,. the strength of inhomogeneous internal magnetic field occurs
We relate the nonlinear deviations from the liné(«)  due to the rearrangement in the wall internal structure. At
dependence that appear at smallto the development of different portions of the period the form of oscillations
subperiodic oscillations which effect the averdgeer timg  proves to be different but they are nonlinear in every case,
values of H{™ . It should be noted that the study of very and their period varies with varying amplitude. The external
small damping, such as less than"f0needs very great magnetic fieldH applied along an easy axis and forcing a
computation time, and it is difficult to say whether the ob-domain wall to move does not effect their frequency. The
served deviations play any role in thé.—0 transition increase irH leads to the high-frequency oscillations of the
at a—0. internal structure of a wall begin to exhibit themselves on the
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greater and the greater parts of a periodf the main rear- magnetization distribution will be described by the dimen-

rangement of a domain wall. sionless unit vecton=M/Mg. The directional cosines of the
Also we investigated the dependence of the peifioof = magnetization vectou belonging to the I(p) cell are de-

the basic rearrangement of a domain wall on the strength dgfoted bya,,, Bi,, and y,, respectively, and consider the

external magnetic field for various values of the damping Vectoru=(a,,Bp,7)p) to be constant within each cell. In

In fields H>H, at any value ofa the period grows with the network approximation , the contributionsyg from the

decreasingd such that a conclusion on the singular characte€Xchangee,, and magnetoanisotropig,, interactions, where

of T(H) may be inferred by analogy with the one-

dim_ensional model of a wall. In this_ conn_ec_tion, it seems eex:f fsededy, (A1)

straightforward to observe the velocity variation due to the D

periodic dynamic rearrangements in the fields close to the

critical one. If the damping is not so smalk{-0.1-0.02),

however, the increase in the external magnetic field even by €an= fDJ eadx dy, (A2)

several percent may decrease the pefiody an order of

magnitude which makes the time resolution difficult. It may pe presented in the following form:

would be much more favorable to observe the velocity oscil-

lations at small dampinga(<0.005). In this case, even with P-1 L1 N _ 14 1—y

increasing of the external field up to values exceeding the ¢ = > A77p| > |~ L1pilp op 1=1p

critical field it is quite possible to deal with periods of dy- p=0 =1 Ag Ao Ag

namic rearrangement equal to hundreds of nanoseconds. An- L—1 P—1

other advantageous aspect for experimental investigations of T E Ag z 1-Nip-wp (A3)
dynamic rearrangement of domain walls in films with small =0 p=0 Anp '
damping is the smallness of external magnetic figlflan
order of several Oeat which this rearrangement occurs. Kp2 P! L-1

Finally, we studied for the first time the critical fields and TN Z A ”PZ A&(1— ). (A4)
showed that, although the dependence oH. in a wide p=0 =0

range ofa is close to the linear one, the very magnitude of . o .
H./a appears to be much smaller than follows from theWhen writing Eq.(A3) we represented the derivatives with

results of one-dimensional model. The studies carried Ouﬁespect to coordinates by finite differences and also used the

show that with decreasing not only the field range, in relation MZ:.MS' As for the contribution toyp from the
which a wall moves stationary, narrows, but simultaneously2gnetostatic energy

the backward motions of a wall begin to play a greater role.

In the H>H, field range the velocity of a wall's forward € :f f edx dy, (A5)
motion gradually decreases, and the wall oscillations related ™ Jo " '

to the nonuniform magnetization precession about

an easy axis and as well as the subperiodic vibrations df may be represented as

some parts of a wall begin to play a greater role in the mo-

tion of the wall. b2M 2 L-1P-1L-1P-1

> 2> 2 [Aipij @ipij + Bipij a1pBi

€En— —
" 4A =0 p=0 =0 {=0
ACKNOWLEDGMENTS + Bipij Bipij + Cipij BipBij 1 (A6)

We are grateful to Dr. V. V. VolkoVloffe Physicotechni- where
cal Institute, Russian Academy of Sciences, Politekh-

nicheskaya ul. 26, St. Petersburg, 194021 Rydsiauseful Apij =3(Ah, (A7)
remarks and discussion. This work was supported by the

Russian Foundation for Basic Research, Project No. 99-02- _ f

16279. : Bipij=S(B'), (A8)

Cipij=—Apijta4m(a 1~ a) (b4 1—0)) 6 6y, (A9)

APPENDIX A: NUMERICAL SOLUTION . . f
OF THE STATIC PROBLEM S(DY)=R[D'(a11,bp+1)]-R[D(a;,bp+1)]

We used the network approximation for finding the static - R[Df(aHl’bp)]’L R[D'(a bp)]l, (AL0)
magnetization distribution. The whole regidhwas subdi-
vided into L X P rectangular prisms expanded along the R[Df(X,y)]=Rf(X,y,ai+1,bj+1)—Rf(X,y,ai Dj1)
axis. Denote the sizes of ah,p) cell alongx andy axes by of §
Ax; andAy,, respectively, and use in what follows the di- RI(X.Y.8+1,0)) +RI(X,Y,ai . by).
mensionless quantitie& & =Ax,/b and An,=Ay,/b. The (A11)
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In Egs.(A10) and(Al11) D should be replaced b andB.

HereSandR are the formal operations, whose application to

the functionsA" andB' leads to the number;,;; andBj,;;
calculated as a sum of sixteen terms of the type

—b
Af(x,y,a,b)=2(x—a)(y— b)arctan)):_—a + 1/ (x—a)?

+(y=b)?IIn[(x—a)*+(y—b)’]  (A12)

PHYSICAL REVIEW B64 104412

and
y—b
Bf(x,y,a,b)=[(x—a)?+ (y— b)z]arctanm —(x—a)
X(y=b)in[(x—a)*+(y—b)?],  (AL3)

wherex andy should be replaced by the boundaries oflhe
cell, anda andb by the boundaries of thig cell.
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