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Polaron effects in electron channels on a helium film
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Using the Feynman path-integral formalism, we study the polaron effects in quantum wires above a liquid-
helium film. The electron interacts with two-dimensional~2D! surface phonons, i.e., ripplons, and is confined
in one dimension~1D! by a harmonic potential. The obtained results are valid for arbitrary temperature~T!,
electron-phonon coupling strength~a!, and lateral confinement (v0). Analytical and numerical results are
obtained for limiting cases ofT, a, andv0 . We found the surprising result that reducing the electron motion
from 2D to quasi-1D makes the self-trapping transition more continuous.
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I. INTRODUCTION

In recent years multichannel electron systems have b
realized over liquid helium by using one-dimensional~1D!
metallic gate structures or by providing a surface distort
through a corrugated substrate in addition to holding
electric field perpendicular to the surface.1 A single channel
was also obtained using a polymer groove2 and strips on a
circuit board.3 In these quasi-one-dimensional~Q1D! sys-
tems, the electron motion is quantized in thez direction by
the effective holding potential due to an external elec
field and image confinement potential which can be mode
quite accurately, as in a wide class of Q1D and Q0D elect
systems, by a parabolic well.4

It is well known that the interaction of the electron wi
the quantized surface excitations~ripplons, in the case of a
liquid surface! can be described as a polaron problem w
the amazing possibility of a phase-transition-like behav
between localized and delocalized states when varying
electron-ripplon coupling.5 The ripplonic polaron state on th
surface of helium results in a decrease of the conductivity
the electron layer. More detailed information on the polar
state can be obtained by measuring the electron conduct
as a function of the microwave frequency.6 Even though the
formation of the localized polaron state has been claim
there is no conclusive interpretation about the origin of
mobility dip in some experiments and the question is s
controversial.7

Quite recently, 1D confinement effects on surface el
trons on bulk helium have been addressed by using the
drodynamic model of the polaron which describes the en
getics of the dimple formation on the surface of liqu
helium and its transport properties.8

Even though surface excitations of the liquid-helium fi
have in general a complicated dispersion relation com
from contributions of surface tension, gravity, and film thic
ness, in the case of thin films the ripplon spectrum ha
well-defined acoustical character.5 In a previous work,9 the
0163-1829/2001/64~10!/104301~7!/$20.00 64 1043
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3D acoustical polaron was studied within the Feynman
proach and it was found that, as a function of the electr
phonon coupling constanta, the polaron undergoes a sel
trapping transition ata;Ak0, where k0 is a finite Debye
cutoff in phonon space, which is continuous fork0,18 and
becomes discontinuous whenk0.18. For a 2D system, a
similar self-trapping transition was found ata.0.25 which
is almostk0 independent. The transition is now continuo
~discontinuous! for k0,130 (k0.130).10

In this paper, we will investigate how the polaron effect
altered when we further confine the electron system t
channel, i.e., a Q1D system. In the case of LO-phonon in
actions it is well known that the polaron effect~renormaliza-
tion! increases with confinement, i.e., with reduction of t
dimensionality.11,12 Here we will study the competition be
tween confinement and polaron effects as resulting from
interaction with acoustical phonons~ripplons!. The confine-
ment alters the available phase space of allowedk vectors for
virtual phonon emission and absorption and in this way
polaron effect.

The present paper is organized as follows. In Sec. II,
present the Fro¨hlich-type Hamiltonian, the path-integra
Feynman formalism,13,14 the trial Hamiltonian used, and th
variational principle to derive an upper bound to the ex
free energy of the system studied. Explicit analytic results
limiting cases of temperatureT, electron-phonon coupling
strengtha, and lateral confinementv0 are presented in Sec
III. The numerical results are shown in Sec. IV. In the la
section, we will present our conclusions.

II. HAMILTONIAN MODEL AND FREE ENERGY

The Hamiltonian which describes an electron interact
with 2D phonons and subject to a lateral confinement due
an harmonic potential is given by

H5
pW 2

2m
1

1

2
mv0

2y21(
kW

\vkWS a
kW
†
akW1

1

2
D 1HI , ~1!
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with the electron-phonon interaction given by

HI5(
kW

~VkWakWe
ikW•rW1V

kW
* a

kW
†
e2 ikW•rW!, ~2!

whererW (pW ) is the 2D position~momentum! operator of the
electron with massm,VkW is the electron-phonon strength, an
a

kW
†

(akW) is the creation~annihilation! operator of the phonon
with wave vector kW and frequencyvkW . The electron is later-
ally confined by an harmonic potential with frequencyv0 .

The Helmholtz free energy is given by

F52
1

b
ln Z, ~3!

with

Z5Tr e2bH ~4!

the partition function. The free energy, Eq.~3!, and the par-
tition function, Eq.~4!, contain the contribution of the fre
phonons,Fph. Here, we will shift the free energyF by this
constant contributionFph. Using the path-integral formal
ism, the trace of the partition function13,15,16can be written as

Z5E drWE DrW~u!exp$S@rW~u!#%d~rW~b!2rW !d~rW~0!2rW !,

~5!

where *DrW denotes the integral over all possible electr
paths,b51/kBT is the inverse temperature, andu is related
to the real-time variablet as u5 i t . The actionS@rW# in Eq.
~5! is obtained after exact elimination of the phonon coor
nates and is given by15

S5Se1SI , ~6a!

with

Se52
m

2 E
0

b

dt@ ẋ~ t !21 ẏ~ t !2#2
1

2
mv0

2E
0

b

dt y~ t !2,

~6b!

SI5(
kW

uVkW u2E
0

b

dtE
0

b

dsGvk
~ t2s!eikW•@rW~ t !2rW~s!#, ~6c!

where

Gv~ t !5 1
2 $@11n~v!#e2\vutu11n~v!e\vutu% ~6d!

is the phonon Green’s function andn(v)5(eb\v21)21 the
number of phonons with frequencyv.

The path integral in Eq.~5! cannot be evaluated exactl
We follow Feynman’s polaron theory13 and introduce a trial
actionS0 , such that~i! the path integral with this action ca
be done exactly and~ii ! it approximates the original actionS
as close as possible. The free energy associated with this
action is given by
10430
-

ial

Z05e2bF05E drWE DrW~u!exp$S0@rW~u!#%

3d~rW~b!2rW !d~rW~0!2rW !, ~7!

and we define the expectation value of any functionalA@rW#
with respect toS0 by

^A@rW#&05
1

Z0
5E drWE DrW~u!exp$S0@rW~u!#%

3A@rW~u!#d~rW~b!2rW !d~rW~0!2rW !. ~8!

Using this trial action, the partition function of the re
system, Eq.~5!, can be written as

Z5Z0^exp~S2S0!&0 . ~9!

If the actionsS and S0 are real, as is the case for ou
problem, the convexity property of the function exp(x) can
be applied from which we find the inequality

^exp~S2S0!&0>exp~^S2S0&0!, ~10!

leading to a variational principle for the free energy:

F<F02
1

b
^S2S0&0 . ~11!

We propose a trial action derivable from the trial Herm
ian Hamiltonian

H05
px

2

2m
1

pX
2

2M
1

1

2
K~x2X!21

py
2

2m
1

1

2
mv82y2,

~12!

whereX (pX) is the 1D position~momentum! of the fictitious
particle of massM, K is the strength of the harmonic poten
tial, andv8 is the oscillation frequency associated with la
eral confinement of the electron in they direction. The first
three terms in Eq.~12! correspond to the 1D Feynman po
laron in thex direction.17 The last two are associated with th
confined motion and the variablesM, K, andv8 are varia-
tional parameters.

Using the same procedure as for the original Hamiltoni
Eq. ~1!, we eliminate the coordinates of the fictitious partic
and obtain the trial action

S052
m

2 E
0

b

dt@ ẋ~ t !21 ẏ~ t !2#2
1

2
mv82E

0

b

dt y~ t !2

2
\2K2

4Mv E
0

b

dtE
0

b

ds Gv~ t2s!@x~ t !2x~s!#2, ~13!

with v5AK/M andv25K@(M1m)/Mm#.
Following the same approach used by Peeters

Devreese,18 from Eqs.~6a! and~13!, the Feynman variationa
principle for the free energy of our system, Eq.~11!, can be
written as

F<FF2FR2
1

b
^S2S0&0 , ~14!
1-2
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where FF is the free energy of the trial Hamiltonian, E
~12!, given by

FF52
1

b
lnFLx

v
w

1

A2pb
G

2
1

b
lnF H 1

2 sinh1
2 bvJ H 1

2 sinh1
2 bv8J G , ~15a!

FR is the free energy of the fictitious particle without th
interaction term, given by

FR52
1

b
lnF 1

2 sinh1
2 bvG , ~15b!

and

^S2S0&05
1

2
m~v822v0

2!E
0

b

dt^y~ t !2&0

1(
kW

uVkW u2E
0

b

dtE
0

b

ds Gvk
~ t2s!

3^eikW•@r ~ t !2rW~s!#&02
\m

4
v~v22v2!

3E
0

b

dtE
0

b

ds Gv~ t2s!^@x~ t !2x~s!#2&.

~15c!

Defining

^eikW•@rW~ t !2rW~s!#&05Ax~kx ,t2s!Ay~ky ,t2s!, ~16!

where

Aj~kj ,t2s!5^eikj@j~ t !2j~s!#&0 ~17!

with j5x,y, we have that

^@j~ t !2j~s!#2&052
]2

]kj
2 Aj~kj ,t2s!. ~18!

The three averages in Eq.~15c! can be calculated in an
analogous way as done by Osaka15 and Peeters and
Devresee,18 such that we obtain

1

m
^y~ t !2&05

1

2v8
coth

bv8

2
, ~19!

Aj~kj ,t2s!5e2kj
2Dj~ t2s!, ~20!

with

Dx~ t !5
utuv2

2v2 S 12
utu
b D2

v22v2

2v3

3S 12e2vutu24n~v !sinh2
vt

2 D , ~21a!
10430
and Dy(t) is obtained from the above expression by taki
v→0 andv→v8, giving

Dy~ t !5
1

2v8 S 12e2v8utu24n~v !sinh2
v8t

2 D . ~21b!

Substituting Eqs.~15a!–~21b! into Eq. ~14!, we finally
obtain an upper boundFv for the exact free energy of ou
system, given by

Fv5
1

4v
~v22v2!S coth

bv
2

2
2

bv D2
1

b
lnF v

w

Lx

A2pb
G

2
1

b
lnF S sinh 1

2 bv

sinh 1
2 bv

D H 1

2 sinh1
2 bv8J G

2
1

4v8
~v822v0

2!coth
bv8

2

2(
kW

uVkW u2@11n~vkW !#

3E
0

b

dv e2vkue2kx
2Dx~u!e2ky

2Dy~u!, ~22!

which is subject to the minimization conditions

]Fv

]v
5

]Fv

]v
5

]Fv

]v8
50. ~23!

III. GROUND-STATE ENERGY AND LIMITING CASES

The result obtained in Eq.~22! is general and can be use
to calculate all thermodynamic quantities, like, e.g., spec
heat, entropy, internal energy, etc. In the zero-tempera
limit, the free energyFv reduces to the polaron ground-sta
energyE0

v , given by

E0
v5 lim

b→`

Fv5
1

2
v82

~v822v0
2!

4v8
1

1

4v
~v2v!2

2(
kW

uVkW u2E
0

`

dv e2vk
Wue2kx

2Dx
0
~u!e2ky

2Dy
0
~u!, ~24!

with

Dx
0~u!5

v2

2v2 u1
v22v2

2v3 ~12e2vu!, ~25a!

and Dy(t) is obtained from the above expression by taki
v→0 andv→v8, giving

Dy
0~u!5

1

2v8
~12e2v8u!. ~25b!

In Eq. ~24! the first term corresponds to the zero-po
energy of the harmonic oscillator with frequencyv8; the
second one is due to the interaction between the lateral
finement and the fictitious oscillator with frequenciesv0 and
1-3
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FARIAS, COSTA FILHO, PEETERS, AND STUDART PHYSICAL REVIEW B64 104301
v8, respectively. The third term is due to the Feynman
laron with eigenfrequencyv and the fictitious particle with
frequencyw ~i.e., m→`). The last term is associated wit
the electron-phonon interaction.

If the y confinement is much larger than the phonon
fects, one can take the limitv8'v0 . Also, if in this limit the
phonon cloud surrounding the electron is very small, we
assumev'w. Within these approximations, the polaro
ground-state energyE0

v , Eq. ~24!, is given by

E0
conf5

1

2
v02(

kW
uVkW u2E

0

`

du e2vkue2ky
2u/2

3e2ky
2
~12e2v0u!/2v0, ~26!

which equals the result from second-order perturbat
theory.

The first term inE0
conf is the zero-point energy of th

harmonic oscillator, the second exponential term under
integral is associated with the free motion along thex direc-
tion, and the last exponential under the integral is due to
oscillator motion in the confinement direction containing
confinement levels. Expanding the last exponential term
der the integral ofE0

conf, we can integrate out theu variable,
resulting in

E0
conf5

1

2
v02(

kW
uVkW u2(

n50

`
1

n! S ky
2

2v0
D n e2ky

2/2v0

vk1kx
2/21nv0

,

~27!

which allows a perturbation analysis in terms of diagram
We now consider the limiting cases of weak and stro

coupling. For weak coupling, we have the following cond
tions: a@0.5,v'w, andv8→0. Therefore, expanding th
exponentials in theDx,y terms, we obtainDx(u)'u/2 and
Dy(u)'u/2, resulting inf (k,u).exp(2k2 u/2). In this case,
the integral

B5aE
0

k0
dk k2E

0

`

dv e2kuf ~k,u!

.2ak0F12
2

k0
lnS 11

k0

2 D G , ~28!

and the polaron energy can be written as

Epol5
1

4 S v0
2

v8
D 2B. ~29!

In the absence of confinement (v050), even whenv8 is too
small, Epol52B. For v0.1, the polaron energy increase
fast.

In the strong limita@0.5, we have the conditionsv@w
and v8→v. Therefore, as before, expanding the expon
tials in the Dx,y terms, we obtain nowDx(u)'1/2v and
Dy(u)'1/2v8, resulting in f (k,u).exp(2k2/2v). In this
case, the integral
10430
-

-

n

n

e

e
l
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-

B5aE
0

k0
dk k2E

0

`

du e2kuf ~k,u!.2av~e2k0
2/2v21!,

~30!

and the energy is given as

Epol5
v
2

2
v0

2

4v
1av~e2k0

2/2v21!. ~31!

One can see that the energy decreases when we increas
lateral confinement.

IV. NUMERICAL RESULTS

In this section we present the numerical results for
zero-temperature limit of the free energyFv, that is, the con-
finement polaron ground-state energyE0

v , by minimizing Eq.
~24!, and considering the electron interacting with longitud
nal surface acoustic phonons~ripplons!. For these excita-
tions, the dispersion relation is given by

vkW5sukW u, ~32a!

wheres is the velocity of sound, and the Fourier transform
the electron-phonon interaction,

uVkW u2}ak, ~32b!

describes both 2D phonons and ripplons,5,10 wherea is the
dimensionless electron-phonon coupling constant which
pends on the deformation potential. In our calculation
sum over the phonon wave vectors,(kW , will be replaced by
the integralA/(2p)2*dkW , which is cut off atk0 , the Debye
critical wave vector in phonon space which simulates
discreteness of the lattice,k0;1/a, with a the lattice con-
stant, and corresponds to the capillary constantkc;1/d2,
whered is the film thickness in the case of liquid helium
Hereafter, we use dimensionless units and express the en
in units of ms2 and the length in units of\/ms. Substituting

FIG. 1. Ground-state energy of the 2D acoustical polaron a
function of the electron-phonon coupling constanta for different
values ofk0 , v0520 ~dash-dotted lines! andv050 ~solid lines!.
1-4
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POLARON EFFECTS IN ELECTRON CHANNELS ON A . . . PHYSICAL REVIEW B64 104301
Eqs. ~32a! and ~32b! into Eq. ~24! and integrating out the
angular coordinate ofkW , we obtain

E0
v5

1

2
v82

1

4v8
~v822v0

2!1
1

4v
~v2v!2

2aE
0

k0
dk k2E

0

`

du e2kuf ~k,u!, ~33!

with

f ~k,u!5e2kx
2
@Dx

0
~u!1Dy

0
~u!#/2I 0S kx

2

2
uDx

0~u!2Dy
0~u!u D .

~34!

The results for the energy as a function ofa are shown in
Fig. 1 for different values of the Debye cutoffk0 and the
lateral confinement frequencyv0 . The figure shows that the
slope of the polaron energy varies ata'0.51. This value of
a is approximately twice the value obtained in Ref. 10, ev

FIG. 2. First derivative of the ground-state energy of the
acoustical polaron as a function of the electron-phonon coup
constanta for ~a! k0550 and~b! k05150, in both cases forv0

50 ~solid lines! andv0520 ~dash-dotted lines!.
10430
n

when we take the limitv0→0. This difference can be unde
stood as due to the fact that the translational invariance in
y direction is not taken into account in our model Ham
tonian: i.e., we are considering a Q1D system.

As can be seen, the lateral confinement increases the
ergy and this is more significant for small values ofa. In
order to analyze the effects of the lateral confinement on
self-trapping transition, Fig. 2 shows the first derivative
the ground-state energy as a function ofa for two values of
k0 . We observe, in Fig. 2~a!, that the lateral confinemen
v0520 smoothens the curve compared with the one wh
v050. Consideringk05150, Fig. 2~b! shows the existence
of a discontinuity in the first derivative corresponding to
first-order transition in the case wherev050. This is not
observed forv0520. These facts are best visualized in t
second derivative of the ground-state energy as a functio
the coupling constant presented in Fig. 3.

In Fig. 4, the phase diagram (k0 ,v0) for the 2D acoustical
polaron is depicted fora50.515 where the transition occur
For eachv0 , the value ofk0 determines the self-trappe
transition and the curve bounds two regions. In the up
region, the transition is discontinuous, while in the regi

g

FIG. 3. Second derivative of the ground-state energy of the
acoustical polaron as a function of the electron-phonon coup
constanta for ~a! k0550 and~b! k05150, in both cases forv0

50 ~solid lines! andv0520 ~dash-dotted lines!.
1-5
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FARIAS, COSTA FILHO, PEETERS, AND STUDART PHYSICAL REVIEW B64 104301
below it is continuous for thisa value. In the latter region it
is possible to find a discontinuous self-trapping transit
whena.0.515.

In Fig. 5 we present the Feynman polaron ma
M5(v/w)2 as a function ofa for different values of the
Debye cutoffk0 and the lateral confinement frequencyv0 .
The figure shows clearly the transition from the weak- to
strong-coupling regime. It also shows that fork0,70 the
transition is continuous. Again, it is worth mentioning tha
for v050.0, the value obtained here is different from the 2
polaron.10 Once more, this difference is due to the fact th
the translational invariance in they direction is not taken into
account in our model Hamiltonian.

FIG. 4. Phase diagram (k0 ,v0) for the self-trapping transition
of the acoustical polaron ata50.515.

FIG. 5. Feynman polaron massM5(v/w)2 as a function of
the electron-phonon coupling constanta for different values ofk0

andv0 .
10430
n

s

e

,

t

We also observe that the effects of the lateral confinem
on the polaron mass are more significant in the region
small a, i.e., the non-self-trapped region, and the transit
from low to large polaron mass is now smooth.

In Fig. 6 we show the ground-state energy shiftDE
5E(v050)2E(v0) as a function ofv0 for different values of
k0 and a fixed value ofa. The lateral confinement increase
the binding energy, and we do not see any abrupt chang
the energy values. This fact can be understood from Eq.~27!.
This result shows that, whenv0 increases, the zero-poin
energy increases more than the terms corresponding to
free motion along thex direction and the one associated
the oscillator motion in the confinement direction, whic
contain all the confinement levels. Although the ground-st
energy does not present an abrupt change with confinem
this fact is observed in the Feynman polaron mass. In Fig
we present the Feynman polaron massM5(v/w)2 as a func-

FIG. 7. Polaron mass as a function of the lateral confinem
frequencyv0 for the same parameters as in Fig. 6.

FIG. 6. The ground-state energy shift of the polaron,DE
5E(v050)2E(v0), as a function of the lateral confinement fre
quencyv0 for a50.515, consideringk0550 ~solid line!, k05100
~dashed line!, andk05100 ~dash-dotted line!.
1-6
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POLARON EFFECTS IN ELECTRON CHANNELS ON A . . . PHYSICAL REVIEW B64 104301
tion of v0 for different values ofk0 and a fixed value ofa.
As can be seen, the polaron mass increases with lateral
finement and can change dramatically for large values ok0
where it exhibits a discontinuous behavior.

V. CONCLUSIONS

In this work we applied the Feynman path-integ
method to study the effects of lateral confinement on
ground-state properties of the 2D acoustical polaron wh
can be formed in Q1D electron systems over a helium fi
We evaluated the ground-state energy and the polaron m
as a function of the electron-phonon couplinga, and we
analyzed the effect of lateral confinement on these pro
-

-

-

10430
n-

l
e
h
.
ss

r-

ties. We determined the phase diagram for polaron forma
and found the intriguing result that the self-trapping tran
tion becomes more continuous when the electron motio
reduced from a 2D to a Q1D system.
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