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Polaron effects in electron channels on a helium film

G. A. Farias and R. N. Costa Filho
Departamento de Bica, Universidade Federal do Cegr&ampus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Cerazil

F. M. Peeters
Universiteit Antwerpen (UIA), Departement Natuurkunde, Universiteitsplein 1, B-2610 Antwerpen, Belgium

Nelson Studart
Departamento de Bica, Universidade Federal dé 8a&Carlos, Caixa Postal 676, 13565-905,5@arlos, Sa Paulo, Brazil
(Received 19 April 2001; published 21 August 2001

Using the Feynman path-integral formalism, we study the polaron effects in quantum wires above a liquid-
helium film. The electron interacts with two-dimensioii2D) surface phonons, i.e., ripplons, and is confined
in one dimensior(1D) by a harmonic potential. The obtained results are valid for arbitrary tempei@iure
electron-phonon coupling strengtly), and lateral confinementw(). Analytical and numerical results are
obtained for limiting cases of, «, andwy. We found the surprising result that reducing the electron motion
from 2D to quasi-1D makes the self-trapping transition more continuous.
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[. INTRODUCTION 3D acoustical polaron was studied within the Feynman ap-
proach and it was found that, as a function of the electron-
In recent years multichannel electron systems have begphonon coupling constant, the polaron undergoes a self-
realized over liquid helium by using one-dimensioaD)  trapping transition aiw~ \k,, wherek, is a finite Debye
metallic gate structures or by providing a surface distortioncutoff in phonon space, which is continuous #<18 and
through a corrugated substrate in addition to holding thd>ecomes discontinuous whé@>18. For a 2D system, a
electric field perpendicular to the surfaté. single channel similar self-trapping transition was found at=0.25 which
was also obtained using a po|ymer gro%)wd Strips on a is aImostkO independent. The transition is now continuous
circuit board® In these quasi-one-dimensiondD1D) sys-  (discontinuousfor ky<130 (ko> 130).*
tems, the electron motion is quantized in theirection by In this paper, we will investigate how the polaron effect is
the effective holding potential due to an external electricaltered when we further confine the electron system to a
field and image confinement potential which can be modeleghannel, i.e., a Q1D system. In the case of LO-phonon inter-
quite accurately, as in a wide class of Q1D and QOD electro@ctions it is well known that the polaron effeicenormaliza-
systems, by a parabolic wéll. tion) increases with confinement, i.e., with reduction of the
It is well known that the interaction of the electron with dimensionality:"'* Here we will study the competition be-
the quantized surface excitatiofipplons, in the case of a tween confinement and polaron effects as resulting from the
liquid surfacé can be described as a polaron problem withinteraction with acoustical phonortgpplons. The confine-
the amazing possibility of a phase-transition-like behaviorment alters the available phase space of allokeelctors for
between localized and delocalized states when varying theértual phonon emission and absorption and in this way the
electron-ripplon coupling.The ripplonic polaron state on the polaron effect.
surface of helium results in a decrease of the conductivity of The present paper is organized as follows. In Sec. II, we
the electron layer. More detailed information on the polaronPresent the Fidich-type Hamiltonian, the path-integral
state can be obtained by measuring the electron conductivifyeynman formalism?**the trial Hamiltonian used, and the
as a function of the microwave frequerﬂ;&ven though the variational principle to derive an upper bound to the exact
formation of the localized polaron state has been claimedee energy of the system studied. Explicit analytic results in
there is no conclusive interpretation about the origin of thimiting cases of temperatur&, electron-phonon coupling
mobility dip in some experiments and the question is stillstrengtha, and lateral confinemeni, are presented in Sec.
controversiaf. Ill. The numerical results are shown in Sec. IV. In the last
Quite recently, 1D confinement effects on surface elecsection, we will present our conclusions.
trons on bulk helium have been addressed by using the hy-
drodynamic model of the polaron which describes the ener-  Il. HAMILTONIAN MODEL AND FREE ENERGY
getics of the dimple formation on the surface of liquid
he"E”vrQnaPh‘leﬁ?SfoZ’? ggﬁtﬁi of the liquid-helium film Y/t 2D Phonons and subject to a lateral confinement due to
. ; . . . . an harmonic potential is given by
have in general a complicated dispersion relation coming

The Hamiltonian which describes an electron interacting

from contributions of surface tension, gravity, and film thick- 52 1 : 1
ness, in the case of thin films the ripplon spectrum has a H=—+—mw§y2+2 hoy aagt —| +Hy, 1)
well-defined acoustical characfem a previous work, the 2m 2 K 2
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with the electron-phonon interaction given by

ZO:e—BFon de Dr(u)exp{Sy[r(u)]}

kT xS T kT
Hi=2 (Viae" "+ Viae ™), @ X 8(F(B)~F)8(F(0)~F), )
k
o and we define the expectation value of any functioial]
wherer (p) is the 2D positionlmomentum operator of the  with respect taS, by
electron with masm, Vi is the electron-phonon strength, and

j N - . Cer s . 1 R R .
ak (ay is the crefimor(annlhllanor) ?perator of the phonons <A[r]>°:z_:j er' DF(U)exp{So[ ()]}
with wave vector kand frequencyw,. The electron is later- 0
ally confined by an harmonic potential with frequengy. X A[F(U)]8(F(B)— ) S(F(0)—T). ®)

The Helmholtz free energy is given by
Using this trial action, the partition function of the real

1 .
e _ Eln z, 3 system, Eq(5), can be written as
Z=Zx{exp(S—Sy))g- 9)
with . .
If the actionsS and S, are real, as is the case for our
Z=Tr e AH (4) problem, the convexity property of the function exp€an

be applied from which we find the inequality
the partition function. The free energy, E®), and the par-
tition function, Eq.(4), contain the contribution of the free (exp(S—Sp))o=exp({S—Sp)o), (10

phononsF . Here, we will shift the free energl by this  |eading to a variational principle for the free energy:
constant contributiorF,,. Using the path-integral formal-

ism, the trace of the partition functiGh*>'can be written as 1
F$F0—E<S—So>o. (11
Z:f drf Dr(wexp[S[r(u)];é(r(B)—r)s(r(0)—r), We propose a trial action derivable from the trial Hermit-
(5) ian Hamiltonian
where [Dr denotes the integral over all possible electron p2  pz 1 , b -
paths,3=1/kgT is the inverse temperature, ands related Ho=5 oy T3 KX=X)"+ 5 -4 s me’?ys,
to the real-time variablé asu=it. The actionS[r] in Eq. (12)
(5) is obtained after exact elimination of the phonon coordi-
nates and is given BY whereX (py) is the 1D positio(momentum of the fictitious
particle of masdM, K is the strength of the harmonic poten-
S=5.+5, (g tial, andw’ is the oscillation frequency associated with lat-
eral confinement of the electron in tlyedirection. The first
with three terms in Eq(12) correspond to the 1D Feynman po-
laron in thex direction’’ The last two are associated with the
mee o, o, 1 [P ) confined motion and the variablé4, K, and w’ are varia-
Se=— 75 JO difx()"+y(1)"]- Em“’OJO dty(t)?, tional parameters.
(6b) Using the same procedure as for the original Hamiltonian,

Eqg. (1), we eliminate the coordinates of the fictitious particle
and obtain the trial action

B B T =
S=> |v;42f dtf dsG, (t—s)eM=11  (6c)
v 0 0 mes .o, .1 5 [P 2
80:—5 dt[x(t)“+y(t) ]—Emw’ dty(t)
0 0

where
h2K? (8 (B )
Bo(m 3 (L4 (w6 s+ noreielly (6] - [ et Tas at-spn -xo2, @9
is the phonon Green’s function amqw) = (e?**—1)"1the  with w=+K/M andv?=K[(M+m)/Mm].
number of phonons with frequeney. Following the same approach used by Peeters and

The path integral in Eq(5) cannot be evaluated exactly. Devreesé? from Egs.(6a) and(13), the Feynman variational
We follow Feynman'’s polaron theotyand introduce a trial ~ principle for the free energy of our system, Ef1), can be
actionS,, such that(i) the path integral with this action can written as
be done exactly angi) it approximates the original actidh 1
as close as possible. The free energy associated with this trial -F . _ T o
action is given by F<Fr—Fr ,8<S Soo - (14
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where F¢ is the free energy of the trial Hamiltonian, Eq. andD,(t) is obtained from the above expression by taking

(12), given by w—0 andv—w’, giving

1 _ e ot

Fr=— Eln - Dy(t)=5 e 4n(v)sink? > (21b
1 1 1 Substituting Eqs(153—(21b) into Eq. (14), we finally
- = [ - H : ] , (153 obtain an upper bounB® for the exact free energy of our

B || 2sinpu |2 sintBo’ system, given by
Fr is the free energy of the fictitious particle without the
. . ; 1 Bv 2 1 v Ly
interaction term, given by FU=— (02— 0?)| coth—— —| — =In| —

Bv] B W .\27pB
1 1
Fr=—=In| ——|, (15b) inhi
"B | 2sinkBw _ im sinhz fe !
B sinh3Bv | | 2 sinh3 Bw’

and

1 o’
- m((u'z—w%)COth'B—

1 B
(5~ Sho=3 o' ad) | dty (0, 2

=2 IVilP[1+n(w;
<> |v;42fﬁdtfﬁds G, (t-9) 2 ML nG)
K 0 0

B 2 2
Aim X J dv e~ “kig~KPx(Wg=kyDy(u) (22)
X<elk[r(t 1(s) ]> _Tw(vz_wz) 0

which is subject to the minimization conditions
B (B
X JO dtJO ds G,(t—=s){[x(t) = x(s)]?). GFY  9FY  oFY

PR P I 23

(159
Defining Ill. GROUND-STATE ENERGY AND LIMITING CASES

The result obtained in E¢22) is general and can be used

ik [f()—(s)]y — _ -
(e Po=Axky t=8)A (ky t—s), (16 to calculate all thermodynamic quantities, like, e.g., specific

where heat, entropy, internal energy, etc. In the zero-temperature
_ limit, the free energyF" reduces to the polaron ground-state
Ak, t—s)=(ekd€O—ES] (17)  energyE}, given by
with {=x,y, we have that o e 1 (02— wd) ,
7 o= Im Py T TR )
([ED=&9)o= Sz Adke t=s). (19
& 2D kz
dve wiig—KDXWe= kDY) ()
The three averages in E¢L5¢) can be calculated in an
analogous way as done by Osikaand Peeters and
Devreseé? such that we obtain with
1 2 2__ 2
o' U
= (Y (02)o= 5 coth -, (19 DYW= gzt 7 (1-e ™), (259
andD(t) is obtained from the above expression by taking
Ag(kf,t—s)=e‘k§D§“‘s), (20 w—0 andv—w’, giving
with 1
y(U)— o (17 ). (25b)
B |t| It]) 02— w?
Dy(t)= 1= Bl 23 In Eq. (24) the first term corresponds to the zero-point
) energy of the harmonic oscillator with frequeney; the
- LoV d one is due to the interaction between the lateral con-
| 1—evltl— vt secon
1-e 4n(v)sinf? ) (213 finement and the fictitious oscillator with frequenciegand
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', respectively. The third term is due to the Feynman po- ko o ) 2
laron with eigenfrequency and the fictitious particle with B:afo dk kzjo due ““f(k,u)=—av(e d*¥-1),
frequencyw (i.e., m—). The last term is associated with (30)
the electron-phonon interaction.

If the y confinement is much larger than the phonon ef-and the energy is given as
fects, one can take the limii’ =~ wq . Also, if in this limit the
phonon cloud surrounding the electron is very small, we can v wg
assumev~w. Within these approximations, the polaron EpoIZE_ av
ground-state energly, Eq.(24), is given by

+av(e k% 1), (31)

One can see that the energy decreases when we increase the
1 o 5 lateral confinement.
Egonf:E wo— z |Vu2f du e “xugkyur2

K ° IV. NUMERICAL RESULTS

xgky(1-e” o)i2ug (26) In this section we present the numerical results for the
zero-temperature limit of the free energy, that is, the con-
which equals the result from second-order perturbatioinement polaron ground-state eneffy, by minimizing Eq.
theory. (24), and considering the electron interacting with longitudi-

The first term inEg™ is the zero-point energy of the nal surface acoustic phonorispplons. For these excita-
harmonic oscillator, the second exponential term under th@ons, the dispersion relation is given by

integral is associated with the free motion along xhdirec-
tion, and the last exponential under the integral is due to the wi=s| |Z|, (329
oscillator motion in the confinement direction containing all

confinement levels. Expanding the last exponential term unwheresis the velocity of sound, and the Fourier transform of
der the integral oES®™, we can integrate out thevariable,  the electron-phonon interaction,

resulting in

V{2 ak, (32b

2
" ek describes both 2D phonons and rippldi8where « is the

w,+ k§/2+ Nwy’ dimensionless electron-phonon coupling constant which de-
pends on the deformation potential. In our calculation the
(27 o
sum over the phonon wave vectobs,, will be replaced by

which allows a perturbation analysis in terms of diagrams. the integraIA/(Zq-r)zfc_jlz, which is cut off atk,, the Debye

We now consider the limiting cases of weak and stronggcritical wave vector in phonon space which simulates the
coupling. For weak coupling, we have the following condi- discreteness of the lattick,~ 1/a, with a the lattice con-
tions: a>0.5,0~w, andw’—0. Therefore, expanding the stant, and corresponds to the capillary constant 1/d?,
exponentials in thé, , terms, we obtairD,(u)~u/2 and Whered is the film thickness in the case of liquid helium.
D,(u)=~u/2, resulting inf(k,u)=exp(—k?u/2). In this case, Hereafter, we use dimensionless units and express the energy
the integral in units of mg and the length in units of/ms. Substituting

1 Co1( K
conf_— =~ -2 i
Eo =50 Ek) Vi nZ'O n! (2w0

400 T T

Kk, )
B:af “dk sz dv e~ (k,u)
0 0

2 k
~2ake 1— —In| 1+ 2] |, 28) 300
Ko 2
and the polaron energy can be written as W 200
|
1 wé
Epo,:Z o -B. (29

100

In the absence of confinemenb{=0), even wherv’ is too
small, E o= —B. For wg>1, the polaron energy increases

fast. 0 L L
0.45 0.50 0.55 0.60

In the strong limita>0.5, we have the conditions>w
and o’ —uv. Therefore, as before, expanding the exponen- a
tials in the D, , terms, we obtain nowD,(u)~1/2v and FIG. 1. Ground-state energy of the 2D acoustical polaron as a
Dy(u)~1/2w’, resulting in f(k,u)=exp(~k¥2v). In this  function of the electron-phonon coupling constanfor different
case, the integral values ofky, wy=20 (dash-dotted lingsand wy=0 (solid lines.
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FIG. 3. Second derivative of the ground-state energy of the 2D
acoustical polaron as a function of the electron-phonon coupling

FIG. 2. First derivative of the ground-state energy of the 2Dconstanta for (&) ko=50 and(b) k=150, in both cases fow,
acoustical polaron as a function of the electron-phonon coupling=0 (solid lineg and w,= 20 (dash-dotted lings

constanta for (a) ky=50 and(b) ko=150, in both cases fow o o
=0 (solid lines and wy= 20 (dash-dotted lings when we take the limitvy— 0. This difference can be under-

stood as due to the fact that the translational invariance in the
Egs. (328 and (32b) into Eq. (24) and integrating out the Y direction is not taken into account in our model Hamil-

As can be seen, the lateral confinement increases the en-

1 o o 1 ) ergy and this is more significant for small values @fIn
T ag (@ Tt (v w) order to analyze the effects of the lateral confinement on the
self-trapping transition, Fig. 2 shows the first derivative of
ko 2 °° kU the ground-state energy as a functionaofor two values of
_“JO dk Jo due ™ (k,u), (33 k,. We observe, in Fig. (@), that the lateral confinement
wo=20 smoothens the curve compared with the one where
with wo=0. Consideringko= 150, Fig. Zb) shows the existence
of a discontinuity in the first derivative corresponding to a
first-order transition in the case whetg=0. This is not
observed forwy=20. These facts are best visualized in the
(34) second derivative of the ground-state energy as a function of
the coupling constant presented in Fig. 3.

The results for the energy as a functionaoére shown in In Fig. 4, the phase diagramk{, wg) for the 2D acoustical
Fig. 1 for different values of the Debye cutdff and the polaron is depicted for=0.515 where the transition occurs.
lateral confinement frequeney,. The figure shows that the For eachw,, the value ofk, determines the self-trapped
slope of the polaron energy variesat=0.51. This value of transition and the curve bounds two regions. In the upper
« is approximately twice the value obtained in Ref. 10, everregion, the transition is discontinuous, while in the region

!

, 1
EOZE(‘)

k2
f(k,u)=e~KIDx(W+Dyw12 0( D) - D‘;(u)|> .
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FIG. 6. The ground-state energy shift of the polaradr:
=E(wg=0)—E(wg), as a function of the lateral confinement fre-
0-40 = & &8 © B i quencyw, for «=0.515, considerind,= 50 (solid line), ky=100

(dashed ling andky,= 100 (dash-dotted ling

: . . We also observe that the effects of the lateral confinement
FIG. 4. Phase diagrank{,wg) for the self-trapping transition S . .
. . on the polaron mass are more significant in the region of
of the acoustical polaron at=0.515. . . .
small «, i.e., the non-self-trapped region, and the transition
below it is continuous for thig value. In the latter region it from I0\_/v t06large pr?laronhmass IS SOW smooth. i
is possible to find a discontinuous self-trapping transition In Fig. 6 we show t € groun -stat_e energy shife
whena>0.515. :E(wOZO)_— E(wg) as a function otv for d|_fferent va_llues of
In Fig. 5 we present the Feynman polaron mas<ko an_d a@ﬂxed value ok. The lateral confinement increases
M= (v/w)? as a function ofa for different values of the the binding energy, ar_1d we do not see any abrupt change in
the energy values. This fact can be understood from(Z4j.

Debye cutoffky and the lateral confinement frequeney. , ; .
This result shows that, whew, increases, the zero-point

The figure shows clearly the transition from the weak- to the : X
energy increases more than the terms corresponding to the

strong-coupling regime. It also shows that fly<<70 the ¢ . | hex direct d th iated
transition is continuous. Again, it is worth mentioning that, I'e€ motion along the direction and the one associated to
for we=0.0, the value obtained here is different from the opthe oscillator motion in the confinement direction, which
polaron®® dnce more. this difference is due to the fact thatcontain all the confinement levels. Although the ground-state
the translational invariance in tlyedirection is not taken into energy d_oes not pres_ent an abrupt change with confmer_nent,
this fact is observed in the Feynman polaron mass. In Fig. 7

account in our model Hamiltonian.
we present the Feynman polaron mhbs: (v/w)? as a func-
10' . .
k,=150

10° 10"
g e
210’ 2
1] ‘|>|’
= =

10’

10° L . 0

0.45 0.50 0.55 0.60 10 . L :
0 5 10

FIG. 5. Feynman polaron masd =(v/w)? as a function of
the electron-phonon coupling constanfor different values ok,
and wg.

FIG. 7. Polaron mass as a function of the lateral confinement
frequencyw, for the same parameters as in Fig. 6.
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tion of wq for different values ok, and a fixed value ofr.  ties. We determined the phase diagram for polaron formation
As can be seen, the polaron mass increases with lateral coand found the intriguing result that the self-trapping transi-
finement and can change dramatically for large valuds,of tion becomes more continuous when the electron motion is
where it exhibits a discontinuous behavior. reduced from a 2D to a Q1D system.
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