PHYSICAL REVIEW B, VOLUME 64, 104204

Anisotropic magnetoresistance in the hopping regime: Low frequencies and dc limit
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The magnetic field dependence of the magnetoconductivity in the strongly localized regime is investigated
at lowest frequencies, in the multiple hopping regime and in the dc limit. It is found that the magnetoconduc-
tivity of isotropic three-dimensional samples is anisotropic. It depends on the angle between the electric and the
magnetic field. A simple relationship between the longitudinal part of the magnetoconductivity and the trans-
verse part of the magnetoconductivity, valid for magnetic fields of any strength, is obtained. It turns out that the
transverse part of the magnetoconductivity is always larger than the parallel part. As a function of the magnetic
field the magnetoconductivity is a quadratic function for small magnetic fields, a nearly linear function for
moderate magnetic fields, and saturates for high magnetic fields. Its frequency dependence agrees with that of
the conductivity in the range of frequencies in question.
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[. INTRODUCTION spread, which is small in the strongly localized regime. Con-
sequently, in the strongly localized regime a triangle is asso-
The investigation of the impact of magnetic fields on ciated to every bond, spanned by the initial, the final and the
transport properties in the hopping regime has received mucgcattering site. The magnetic field affects only the quantum
attention in recent years. Often spin effects can be ignorednterferences in the plane transverse to the field, so that the
Then the influence of a magnetic field on transport is govimpact of the magnetic field on the quantum interferences for
erned by its impact on the resonance integrals. On the onlgops transverse to the field is always larger than for hops into
hand, the magnetic field causes shrinkage, and thus leads tdtee direction of the magnetic field. Consequently, the effect
reduction of the magnitude of the resonance integral. On this highly anisotropic on the microscopic level.
other hand, the magnetic field affects the phase, and there- The situation in the strongly localized regime is to be
fore has impact on quantum interferences. The answer of théistinguished from the situation close to the metal insulator
question what the dominating effect is depends on the magransition. Here scattering at many intermediate sites is rel-
nitude of the dimensionless parameters which govern the imgvant, so that there is not a characteristic triangle associated
pact. Since the impact of the magnetic field depends on thto every bond. Rather, the initial and the final site are sur-
size of the characteristic area penetrated by flux the dimerrounded by a whole cloud of scattering sites, so that the area
sionless parameters depend also on the size of the area. Aagnetrable by flux is always as large for hops transverse to
shrinkage the relevant area is of the ordexof, wherea ™! the magnetic field as for hops into the direction of the mag-
is the localization length, that is of atomic size. Accordingly, netic field. In this case the effect is nearly isotropic on the
the dimensionless parameter governing the impact is givemicroscopic level.
by x;=eH/(a?hc), wheree is the charge of the electroh, An interesting question is, whether the anisotropy on the
is Planck’s constant and is the velocity of light. If the microscopic level in the strongly localized regime manifests
magnetic field is low, that is ifk;<1, shrinkage can be ig- itself also in the macroscopic properties of the sample. The
nored. For quantum interferences the characteristic®résma  current itself is a vector, and since for an isotropic sample in
determined by the positions of the initial and the final site ofthe presence of an electric and a magnetic field only two
the hop, and the positions of intermediate scattering siteg/ectors are availabléz andH, the current has to lie within
Therefore, the dimensionless parameter is given &gy the vector space spanned Byand H. Consequently, the
=eHS./(hc) in this case. Since the hopping length is largeSymmetric part of the magnetic field induced change of the
k,>Kk,. Consequently, as first shown by Nguyen, Spivak,current with respect to the direction of the magnetic field has
and Shklovskit there is a range of magnetic fields in which the form
shrinkage can be ignored, but the impact of the magnetic
field on quantum interferences is relevant. Within this range Soll(H)—
) 2 ) o(H)—8a*(H)
interferences have been studied in numerous papers both 8j=6a*-(H)E+ EH
theoretically(see, e.g., Refs. 13&nd experimentallysee,
e.g., Refs. 9-16
Related to the size of the ar& is the question, what the If Soll# 5ot anisotropy is present. In this case the current is
effective scattering sites are. If the system is strongly localnot always parallel t&. In a recent papéf we have used the
ized, scattering at only one intermediate site is of most imHolstein model to investigate the magnetoconductivity at
portance. Multisite scattering is strongly suppressed, sinchigh frequencies in the strongly localized regime. The model
the corresponding transition probabilities are of higher ordehas the advantage that it can be solved exactly. Using the
with respect to the ratio between resonance integral and levélolstein model we could show that

= H. @
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1 d ) results of these papers are not in contradiction to those pub-
S0 (H)= >0 gt soll(H)]. (2 lished here, if applied not too far from the metal insulator
transition.

It should be mentioned that in those experiments, in
In the quadratic regime with respect to the magnetic field thisvhich the problem of anisotropy is tackled, an isotropic
relationship entails magnetoresistance is found. Only in Ref. 10 anisotropP/ has
been observed in a strong electric field. Thete"/ 5o’

=1.94 was measured in-type GaAs samples, which, in
principle, fits well to Eq.(3). In our opinion, the reason for
the absence of anisotropy is that the samples were too close
so that for low magnetic fields the magnetoresistance is alto the metal insulator transition, so that multisite scattering
ways larger if the electric field is applied transversely to thewas relevant.
magnetic field than for parallel electric and magnetic fields. Since the magnetoconductivity discussed here originates
We do not expect that anisotropy can be produced merely bffom the impact of the magnetic field on quantum interfer-
increasing the frequency. Therefore, we expect that anisonces, one would also expect that the magnetoconductivity
ropy is also present at low frequencies and in the dc limit. ltdepends strongly on the frequency of the applied external
is the purpose of the present paper to investigate the situatidield. In Ref. 17 we showed that Be*'|(w,H)/Reo(w,0)
at low frequencies and in the dc limit, and to examine thedecreases with increasing frequency at high frequencies. At
difference between the situation at high frequencies and theery high frequencies the ratio passes into a plateau. To com-
situation at low frequencies. plete the investigation of the frequency dependence we also

So far all calculationge.g., Refs. 1-Byield an isotropic  investigate the behavior of the magnetoconductivity at low-
magnetoresistance in the dc limit. Only in the numerical cal-€st frequencies and in the multiple hopping regime. Below
culations of Ref. 18 anisotropy was detected, but reported twe will show, that for lowest frequencies and in the multiple
vanish with increasing sample size. No investigations of théiopping regime the above mentioned ratio is independent of
magnetoresistance in the variable-range hopwigH) re-  frequency. The omitted corrections only lead to a weak re-
gime for low frequencies and in the multiple-hopping regimeduction of the above mentioned ratio. This result is qualita-
have been published so far. tively in line with the analytical and numerical investigations

In order to explain the isotropy of the magnetoresistanc®n the frequency dependence of the magnetoconductivity in
also in the strongly localized regime the authors usually fothe nearest-neighbor hoppifiNH) regime of Ref. 8.
cus on the properties of the critical resistor. The critical re- The paper is organized as follows. In Sec. Ill our basic
sistor of the percolation path is an objetS,H), which  equations are introduced. Here we discuss the transport equa-
depends on the surface vect®rand the magnetic fielétH.  tion and the main formula for the calculation of the magne-
The calculation of the configuration average amounts to aioconductivity. Section IV is devoted to the problem of an-
integration over all possible surface vectors. Thus, the anglisotropy. Here the main relationship between longitudinal
betweerS andH is integrated out. Consequently, the result isand transverse part of the magnetoconductivity is derived. In
a function ofH only. Secs. V and VI the dependence of the magnetoconductivity

While this argument seems to be plausible it does not tak@n the magnetic field and on the critical hopping length is
into account the direction of the electric field. To understandexamined in detail, both in the NNH and in the VRH regime.
how the electric field modifies this argument consider theBased on the results of these sections the frequency depen-
Ohmic current. The Ohmic current is a functig¢s,H,E). It~ dence of the magnetoconductivity is studied in Sec. VII. Fi-
is linear with respect tdE| but depends also on the angle nally a discussion of the results is given in Sec. VIII.
betweenS and E. In calculating the average we have to

So-(H)=2680!l(H)+0(H?), (3)

integrate over all directions of the surfae However, in Il. BASIC EQUATIONS
doing so we have to take into account that the function does . ) o ]
not only depend on the angle betwe®mndH, but also on We consider spinless electrons hopping in the narrow im-

the angle betweer$ and E. The latter angle is absent in purity band of a lightly doped_ se_miconductor. If their_ motion
previous theories, which focus on the critical resistor only. IfiS affected by a weak electric fiel(t) suddenly switched
this angle is taken into account the result of the integration®" att=0 the transport equation takes the fotsee, e.g.,
depends on the angle betwedrandE, as shown in Ref. 17 Ref. 6
in the limit of high frequencies.

Note, that the argument given above applies only to the
strongly localized regime. Close to the metal insulator tran-
sition, where scattering at many intermediate sites is rel-
evant, the initial and the final site are surrounded by a cloudHere C,,=f(1—f,) (f,,: Fermi distribution with site en-
of scattering sites. In this case we expect that the current isrgy €,), s=—io (w: frequency of the applied electric
nearly independent of the angle betweBrand H before field), andU,, is the local electrochemical potential at the
averaging. Consequently, the averaging procedure leads to aite m with position vectorR,,. The quantitied”,,/,, are the
isotropic magnetoresistance in this case. Multisite scatteringransition rates. In the absence of the magnetic field their
is, in principle, treated in Refs. 1, 5, and 18, so that thecalculation can be restricted to two-site processes, which de-

SCr(Um+ERp) =2 (U —Up). (4)
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scribe only direct hops between the initial and the final siteThe frequency dependent parameftds related to the fre-
Since these contributions are independent of the magnetguency dependent critical hopping lengi(w) by the
field the consideration of the effect of the magnetic fieldrelationship®

requires to go beyond this approximation, so that higher or-

der processes have to be taken into account. To do so, we frpe=exp2aR;). (11

consider besides two-site contributions also contribution . .
1—|ere vy IS the attempt-to-escape frequency of the transition

originating from three-site processes. The latter contribution tes for st ) and ke) elect h i
result from interferences between the amplitude for the direcﬁa es fors rqng(p and weak(€) electron-phonon-coupling
see Appendix A In the dc limit the critical hopping lengths

hopping path from the initial to the final site with amplitudes . _ oy 174 .
for alternative hopping paths via an intermediate third site. ' given byR:=(2a) .(TO/T) n the.VRH ,reglme,
that approximation the quantitidd,., ., can be decomposed whereT is the characteristic temperature in Mott’s law, and

— —1/3; ; ; _
into their two-site and their three-site parts according to by RC_.O'%G] . n the NNH reg|me,.where| IS the con :
centration of sites. At lowest frequencies and in the multiple

memZanz?m+F§§?m(H), (5) hopping regime it satisfies the equafibn
(3) L
wherel' " has the structure 2a(Ry(0)— R(w))exp2a[R,(0) — R(w)]) =i o
F(3),:2 r® - (6) (12)
mm 4y mn where o is the frequency of the electric field and, is a

. characteristic frequency of the order of the critical hopping
Both for strong and weak electron-phonon coupling the robability? In the VRH regime it is given bywg

:P};e—sne rates are small as compared to the two-site ones, gzooa2/(4ezNF(2aRc) 12) (N.., density of states at the Fermi

surface; o, conductivity. For NNH the characteristic fre-
quency depends on the concentratioaf sites according to
wo=47/3nR3exp(—2aRy).
holds. A detailed derivation of Eq(8) is given in Ref. 19. The
Explicit expressions for the transition rates were derived@pproximations used in this derivation can easily be trans-
using the renormalized perturbation expansion in Ref. 2, théated into the language of percolation theory. In percolation
Konstantinov-Perel method in Ref. 6, and the nonequilibriuntheory the consideration of the interference contributions
Greens function technique in Ref. 7. These expressions cadmnounts to the consideration of additional resistors. If scat-

(2) (3)
1—‘m’m>rm’m(H) (7)

be found in Appendix A. tering at only one intermediate site is taken into account
every simple resistor of the percolation path is replaced by
IIl. THE EEFECTIVE CURRENT two resistors switched parallel, one of them being the two-

site contribution and the other the three-site contribution.
In order to calculate the configuration averaged magnetoSince the system is strongly localized the three-site resistors
conductivity we take advantage of the inequali@y, which  are large as compared to the two-site ones, so that the current
holds for magnetic fields of any strength. If we take intois governed by the two-site resistors only. Consequently, the
account this inequality we can restrict the consideration tgercolation path is at most slightly changed. The approxima-
the linear approximation of the magnetoconductivity withtions used in our effective description amount to neglect this
respect ta®). In this case we can use the formula small magnetic field induced change of the percolation path.
) Within our formulation the two-site resistors are determined

. . € by the critical hopping length. To neglect the magnetic field
I(H,8)=j(0,8)= 2kTQf dp1dp2dpsN(er)N(€ez)N(€3) induced change of the percolation path means to neglect the

field dependence of the critical hopping length, so fRats

XTI " 2(p1.p2,p3) (Rigb12s— Rogbord) still determined by the two-site contributions.

X{E(Ri3b123— Rogb213)} 8
IV. ANISOTROPY
for the magnetic field induced change of the conductivity of ) o o
Ref. 19. Here the quantiti&ﬁﬁr),k and TET?% have to be con- The further investigation of the magnetoconductivity re-

quires the performance of the integrations. However, before
tackling this problem, we note that E) is very similar to
the expression for the magnztric field induced change of the
_ (2) L 7@ 1@ 2121 (2) current in the Holstein model. In fact, both expressions
D(p1:p2,pa) =1+ 20T + i+ Iag) + 311z T agree with each other if the paramettén Eq. (8) is replaced
+TPr@+r2ra), (9) by 1k, andC,;=C,=Cj; is set in the determinar® in Eq.
(22) of Ref. 17. If we use this observation we see that [By.
and reduces to the exact result at high frequencies. The symme-
@) @) tries of the integrand are not affected by this replacement, so
D1p5=1+2fT55+ I35 . (100 that the integrations over the orientations of the surface nor-

sidered as functions of their coordinaigs= (R; ,¢;), andQ
is the volume of the system. FurthermoRy=R,— Ry,
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mal of the characteristic triangle can be performed exactlyl 1 (A)
and in the same way as in Ref. 17. Consequently, we alsc 2t
find the same result. If we use the results of Ref. 17 we
obtain

5 Ili(H)—4wzezfde dR fR1+R2ded
o T T3KT 0 10 IRy Ryl 3 €1

X de,degR1RyR3N(€7)N(€2)N(€3)
X ¥(p1,p3,p2)D " (p1,p2.p3)9|,. (h)
X {(b123~ b19) (RID125~ R3b19) + R3D1240513

(13
0 2 4 6 8 10
Here A
I‘(3)( ) FIG. 1. Magnetic field dependence of the magnetoconductivity
Y(p1.p2,p3) = P1:P2:P3 . (19 in the NNH regime. Thick line: transverse part; thin line: parallel
[coseH[Ry3X Ry3)/(27ic))— 1] part.

Furthermore, different integration variables have been intro-

duced. Herep;=(R;,¢), with R;=|Ryg, R,=|R13, and that the spread of the energy levels can be neglected if com-

R3=|R13— Roq. In Eq. (14) first the fraction is formed and pared tokT. In this situation the energy integrations are de-

then the integration variables are changed. termined by the maximum of the density of states. To model
The functiong; , (H) determines the magnetic field de- this situation we assume that the maximum is located at

pendence of the conductivity. Its longitudinal part is given by=0, and put

3 d? | sin(h)
gm=5| 1+ 5|/ L (15) N(e)=nd(e). (18)
Longitudinal and transverse part are related by the relation- . . . .
ship Heren |_s_the density of_ sites of the system. A redefinition of
the position of the maximum of the density of states amounts
1 d to a redefinition of the Fermi energy.
9. (=5 %(hzgu(h))- (16) If we use Eq.(18) the energy integrations can easily be
performed. In this case, in order to simplify the integrations
The dimensionless magnetic field over the side lengths of the triangle, we can take advantage

— ————s of the fact that the integrand of E(L3) is symmetric with
h= eHV4RIR;— (RI+R5—Rj) _eHS 1 respect top; and p,. If we introduce integration variables
- Atc ~ he 17 rq, rp, andrg, according to R;=r,+r,, 2R,=r,+r3, and

. . 2R3=r,+r3, then Eq.(13) takes the form
in Egs. (15 and(16) is equal to the number of flux quanta

penetrating the are@of the triangle formed by the sidé¥,

R,, andRs. If we use the relationshifl6) we again find that I,
the longitudinal part of the magnetoconductivity and the o.oco2s5¢
transverse part of the magnetoconductivity are related by Eq
(2). Consequently, the anisotropy is not affected by fre-
guency. We conclude that E() describes the anisotropy in
the whole range of frequencies.

Below we restrict our consideration to the calculation of
the longitudinal part of the conductivity. The corresponding
expressions for the transverse part can easily be obtained b 0.001
means of equatiofR). Both longitudinal and transverse part,
as calculated below and from E), are depicted in Fig. 1
and Fig. 2.

0.0021

0.0015 1

0.0005 1

V. MAGNETOCONDUCTIVITY IN THE NNH REGIME 0 1o 20 s0 40 50 A 60

A. Strong electron-phonon coupling FIG. 2. Magnetic field dependence of the magnetoconductivity

Characteristic for the NNH regime is that the impurity in the VRH regime. Thick line: transverse part; thin line: parallel
band width is small as compared to the thermal energy, spart.
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m2e2n3 (= Fig. 1 it can be seen, that for moderate magnetic fields the
sol(H)= 96kT j drydrodra(ry+ro)(ro+ra)(ra+rs) magnetoconductivity is approximately a linear function of
0 the magnetic field. For high magnetic fields the magnetocon-
X y(r1,12,19)D (1, 15,r3)g)(h) ductivity saturates.
_ 2, 2
X{(D123~bo1g)[(r1F13)"P1og= (T2 +13)"ban] B. Weak electron-phonon coupling
+(ry+12)°bodo g (19 Due to the singular structure of the three-site part of func-

- . . i (3) - i
In order to perform the spatial integrations we restrict thei°n I Eq. (A5) for weak electron-phonon coupling
consideration to strongly localized systems withR2,>1. strength the same approximations cannot be applied in this

Furthermore, we take advantage of the fact that the integran%it“at_ion' Furthermore, if the site e_ne(rgies were pgt to zero
of Eq. (19) has two maxima, located af=2R,,r,=r5=0 only in the exponents of the function'>’ (A5) and in the
and atr,=2R,,r;=r;=0. Since the contributions of these €XPonents of the quantities(®) the magnetoconductivity
maxima are equal to each other we restrict our consideratiofou!d vanlsh._ Consequently, in the_ I|m|t_of weak e_Iectron-
to one maximum and multiply the result by two. On the phonon coupling strength the consideration of the influence
maximum we have T 1y= ;5= 1,fT y3=exp(2aR)>1. To of the magnetic field on the conductivity requires the consid-

perform the integrations we neglect small contributions Oferation .Of the smallienergy contri'butions in the exponepts of
the order (I',5) 1, and take into account only the leading the resistors. To this end we write the two-site rates in the

contribution of fI'»3 in the determinanD. Doing so, we form

obtain
I'P)=veexp( — 2a|Ry ) (1+ Bi), (25)

and the functiony in the form

4me’ndv RE J €
sol(Hy=— —— P <=0 |-( F )

OkTa* Ea  \2KT

1 1
eHR 1P2,p3) = Ved ( + )
><exp(—2aRc)I|(%), (20 Y(P1,P2,P3) evo €1— €3 €1— €3
Xexp(— a(|Ry+|R13 +|R 1+ ,
whereh is given byh=eHR.\r,r4/(24c), and X ([ Rad F [Rugl - [Rosl) X ’81(2) |
26
= Xg)(\ Vxy)
=— h
|H()\) fo dmym (21) wnere
The functionl determines the dependence of the magneto- B, :2|€F|_|EF_6i|_|EF_6k|_|6k_ Gl <1. (27
conductivity on the magnetic field. Its analytical calculability Ik 2kT '

is restricted to small magnetic fields. For small magnetic - )
fields [eHR./(2fica)<1] Eq. (21) can be expanded with Since the quantitieg; are small we only take into account

respect taH2. Doing so we obtain their linear contributions to the magnetoconductivity. In this
approximation the calculation can be performed as in the
C [eHR,\2 strong coupling limit, up to additional energy integrations
=10\ 2%ca) (22)  over the quantitiess, . After a lengthy but straightforward
calculation we obtain
whereC=15.0577. To calculate the ratiés!(H)/o we use
the expression solh)— 2e?n3Jyr R . eHR,
2mein? TS Gk RN g <P
o= 15 kT VpRCEXF( —2aR,) (23 (29)

for the conductivity®?*in the absence of the magnetic field Wherel (\) is given by Eq.(21), and u(e) has the form
and obtain

—n-3 ”
50’“(H) ch3 ‘JO €F 2 IU’(EF)_n Jl) d61d62d€3N(€1)N(62)N(63)
=— —tan TI’

eH

aR,) 2
(aRo) 2hca?

o 24 E,

(24) X|5F_63|+|52_63|.

Consequently, the effect decreases with increasing tempera-

ture. Furthermore, if we replacg by — e the magnetocon- For symmetric densities of states the quantiffez) can be

ductivity changes sign, so that E¢24) exhibits ap-n replaced approximately by sgei). In this case thep-n

anomaly. anomaly of the magnetoconductivity is reobtained. If we use
For moderate and high magnetic fields E2l) can only  Eq. (23) we obtain in the quadratic approximation with re-

be calculated numerically. Results are depicted in Fig. 1. Irspect to the magnetic field

(29

€17 €3
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Say(H) 7C7% Jo ) 2 in contrast to the present paper, where the charactgristic
=~ 3 k—_l_(aRC) 2 5 un(ep). spread of the energies in the singular part of the denominator
7 2hica of the three-site resistance is of the ordffe;— e3))

(B0 «(kT)"1, the averaging procedure in Ref. 6 yielde;

_ 71 . . .
Note that both in the case of weak electron-phonon couplin% €3))= (kTaR;) . This compensates the differences in the

strength and in the case of strong electron-phonon couplin veraging over the coordinates. Despite these differences, it

strength the magnetoconductivity changes sign if the sign o an be checked ”“me“cﬁ"y that bOt.h results_are in good
the resonance integral or the sign of the Fermi energy i greement with the numencallcalculauons published in Ref.
changed. This is to be contrasted, with the situation for mul: T0 d0 SO, one has to take into account that the consider-

tisite scattering, where the magnetoconductivity is alwayé"lt'orl1 In Rfef.thG IS restrlcted_ttobrhe rt:ansverse (tzon:rlbutlon and
positive (see, e.g., Refs. 1,5 involves furthermore a suitably chosen constant.

C. Comparison with results of the standard effective VI. MAGNETOCONDUCTIVITY IN THE VRH REGIME

medium theor
y A. Temperature and field dependence

The fact that the most important contributions to the cur-
P If we look on Eq.(13) we see that, contrary to the NNH

rent originate from triangles witlh;=2R; andr,=rz=0 . . : L
9 9 1oc z 3 regime, in the VRH regime the role of the three sites in the

entails that the most important contributions to the integrah . s determined in ad The leadi
tions arise from nonsymmetric triangles. Two sides of the opping process IS determined in advance. The leading con-

triangles are of the order of the critical hopping length. tributions to the integrations are obtained if the energies of

The contributions from the third site are from the interval the sites 1-and .2 are close to t.he Fermi surfgce and. the
(0,2~ 1). Since one sideR;) always lies on the percolation energy of site 3 is far away from it. To check this assertion

path the critical part of an infinite cluster contains always thenOte that the magnitude of the integrand of EXp) increases

intermediate third site. This fact justifies posteriorly the ay-With decr%as;ngr‘lg and I'g fo_r f'X?d Elz :ndly’ Wr:Ch
eraging procedure over the intermediate third site used ifforresponds toan increase| ef — es| for fixed values ofe,,

Ref. 6. Furthermore, it determines the agreement of the re€2' '1: 2, andr . Owing to this fact’,3 andI',; may be put
sults of the present paper and the results of Ref. 6 in twd" Since furthermore the most important contributions to the

important points. First, since in both papers the most imporlnteg(a_tiqns over the en_ergies of the sites 1 and 2 result from
tant contributions to the current arise from triangles withth® Vicinity of the Fermi energy botk;, and e, can be put
small areas, which vary between 0 and'R,, the dimen- equal toeg in preexponential factors. Doing so, we assume

sionless magnetic fielti=eHR,/(2%ca), the number of that the density of states has no peculiarities in the region

flux quanta penetrating the critical configuration, is the sam gnder consideration. In the course of this procedure the ex-

Secondly, due to the fact that the area of the critical triangld’€SSion for the current simplifies considerably. We obtain

is small the dimensionless magnetic field is also small.

Therefore, the magnetoconductivity does not exhibit quan- m2e2N2y. A

tum oscillations depending on the strength of the applied soll(H)= Fpe pe

magnetic field. This can also be seen in Fig. 1, which shows HoE

a saturation for high magnetic fields. In that the magnetocon- exp(—arg)l

ductivity in the NNH regime differs from the Hall effect in ><(r1+rz)3g\|(h)f déldézw_ (31)

the NNH regime. There the characteristic configurations are (1+2fT )2

given by equilateral triangles with large areas and side length

of the order of the critical hopping length, which manifest - P

themselves in quantum oscillations of the Hall conductivityAccordmg to Eqs(A4) and(A5) Ap e is given by

in strong magnetic fields In the case of the magnetocon-

ductivity quantum oscillations can only be obtained for mod- Jo €EF— €3

erate, that is for not too large, critical hopping lengths. If the Ap:E_f dfaN(fa)tan"( KT ) (32

critical hopping length is large, but not large enough to jus- 2

tify the restriction to the leading asymptotic contribution to _

the integrals, corrections to the asymptotic calculations of th&°r Strong electron-phonon coupling and by

integrals have to be taken into account. In this case both

triangles with small and triangles with large areas contribute,

and the latter manifest themselves in quantum oscillations. A= ZJOJ de;
A further comparison of our results with that of the stan-

dard effective medium approximation of Ref. 6 shows that

for weak electron-phonon coupling the results of both calcuin the limit of weak electron-phonon coupling. Note that in

lations agree. For strong electron-phonon coupling the reboth cased\ changes sign if the sign of the Fermi energy is

sults of both papers differ by a factorrR;) ~*. Obviously, changed, if the density of states is symmetric.

the agreement of both results in the weak-coupling limit is The integrations over the energies can be performed ex-

purely by chance. The consideration of its origin reveals thaactly. They yield

fdrldrzdr3(rl+r3)(r2+r3)
0

N(ea)
€ €3

(33
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” am?€NEvy JAKT [ Soy(H) 7w A To[ eH |’ 40
Sal(H)= P fo drydr,drg o 220058 T | ghee? (40
X(ry+13)(ra+r3)(ri+r)3g(h) in the quadratic approximation with respect to the magnetic
field. For moderate magnetic fields the integrals can be cal-
Xexp(—pe—r3)in(l+2 expgpc—ri—ry)). culated numerically. Results are shown in Fig. 2. Again, for

(34) not too large magnetic fields the magnetoconductivity is ap-
proximately a linear function with respect to the magnetic
Here a=4(=3/2) for strong(weak electron-phonon cou- field, so that a linear dependence on the magnetic field can
pling. also be obtained without logarithmic averaging.

The remaining integrations can be performed in the limit |f we look on our result we again find that the sign of the
of largep.=2aR., where we can take advantage of the factresult depends on the sign of the Fermi energy and the sign
that the leading contributions to the integrations in B#)  of the resonance integrals. Again, this is to be contrasted
arise from O<ry,r,<p., 0<rz<1. If we use this fact the with the situation for multisite scattering, where the magne-
intlegratic;]ns in Eq{(34) can be simplified by means of the toconductivity is always positivésee, e.g., Refs. 1)5
relationship

. ) ; B. Comparison with results of standard
C . .
J' dr¢(r)|n(1+exqpc—r))2f drf dr’ ¢(r’) effective-medium theory
0 0 0 If we compare the results of the calculation with those of
Pc the standard effective medium theory of Ref. 7 we see that in
= fo dr(pe—r)e(r). contrast to the standard effective medium theory, which
yields S0 (H)/ oo pSHZ,7 the other method leads to
(39 So(H)/ooxcpiH?cT1H2. As for NNH the difference origi-
nates from the averaging over the positions of the sites. Fur-

Thereafter Eq(34) takes the form
a4 thermore, the dimensionless critical hopping length in the

awzezNﬁup . AkTp? eri’/Z standard effeqtive mediul”n theor;llmdi'ffers from the critical
sol(H)=— ' el , parameterp. in that p.=(T,/T)™ is replaced byp.
48a8 V2hca? =(To/T)?5, which also sets the results of the standard ef-
(36)  fective medium theory apart from that of percolation theory,
h which also leads t@.=(To/T)¥4

where In the framework of two-site transition probabilities dis-
" 1 . crepancies between results of the standard effective medium
L(N)= _f drge"?’f df1J dry(1—ry)(r—ry) ftheory with those of percolgtlon theqry have been discussed
0 0 0 in Refs. 22 and 23. There it was pointed out that agreement
3 between the results of both methods can be achieved by in-
XTIl g (AT aro(r1=r2)ra). (37) corporating aspects of percolation theory into the standard

&eﬁective medium theory. A similar situation occurs in the

form. However, the threefold integral in E(®6) can be ex- presence of the magnetic field. Since the two-site effective
' ' medium approximation does not take into account the addi-

; 3/2 2 i
panded with respect to the parametdps /7ica”. Doing tional intermediate third site properly, it has to be supple-

so, we obtain for the longitudinal part of the magnetoconduc-mented by additional assumptions. So it was assumed in

tivity Refs. 2—6 that the virtual path involving the intermediate
third site does not coincide with a percolation path. In the
framework of the random resistor network this requirement

The remaining integrations cannot be performed in close

awzezNﬁvp,eAkTpE B
e

Sal(H)=— & .
32a8 entails that bott¥,3>27,, andZ,3;>7,5, wherez;, are ran-
o dom resistors, and the intermediate site is labeled by 3. Fur-
- +1)! eHp thermore, as in Ref. 1, the average has been taken over the
- 1)K(k+1)! Hp3? h in Ref. 1, th has b k h
X logarithm of the phase factor in Refs. 2—4, which leads to a
= 112 2 g p ,
k=1 ((2k+3)1)%(3k+7)(3k+8) | Bhcar linear dependence of the magnetoconductance with respect
(389)  to the magnitude of the magnetic field for small magnetic
fields.
ido! i . .
To calculate the ratido'/o we use the expression In contrast to the effective medium methods of Refs. 2—8,

5 5 4 the effective method used here does not rely on these as-
_amevp KTNep, 39  Sumptions. All three sites enter the averaging procedure
N 1265 eXp(— pe) (39 equally. The method itself leads automatically to a determi-
nation of the most important configurations for the formation
for the conductivity in the absence of the magnetic fféld, of the current. According to our calculation these configura-
which yields tions are given by nonsymmetric triangles. Two sides of the
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triangles are of the order of the critical hopping length, and Regoi
the length of the third side varies between 0 and'. The

site energies of the initial and the final site are close to the
Fermi energy. The scattering site is far away from the Fermi BN
energy.

VII. FREQUENCY DEPENDENCE OF THE
MAGNETOCONDUCTIVITY

In our approach the frequency dependence of the curren
is entirely determined by the frequency dependence of the
critical hopping length. The dispersion of the critical hopping N
length is given by Eq(12) for lowest frequencies and in the
multiple hopping regime. Since for such frequencies w

|pc(0) = pe(s)|<pc(0), (41 FIG. 3. Schematic sketch of the frequency dependence of the

] ‘magnetoconductivity in the VRH regime.
the frequency dependence of the preexponential factor is

negligible. Consequently, since the magnetoconductivity angvhich shows that the frequency dependence of the quantity
the conductivity have the same exponential dependence MReS,(w) differs only weakly from that of the quantity
the dimensionless critical hopping length, the ratioReS(w).

sol(H,w)/o(w) is independent of frequency, in the first  For high frequencies, in the range of applicability of the

approximation. Holstein-model, Réo(w,H)/Res(w) decreases like
To investigate this point further we introduce the quanti-
ties Reédo(w,H) Ve
Reo(w) Int © (46)
So(H,w)
Sh(w)= So(H,0) 42 for 0<v, 1‘? the quadratic regime with respect to the mag-
netic field," and reaches the plateau feev.. On the pla-
and teau we hav€
o(w) soll(H0) 1287 A eH? 2H2
S(a))z—o. (43 o(H, )= m— ° +0 ° , (47
(0) o () 120 © 48 h2c2a* h2c2a®

Here the superscripfsandL have been omitted, for brevity. so that
From the results obtained above, it follows that for low mag-

netic fields Reso!l(H,0) () , 46
pc_pc(w) n 0'(0) Reéo-ll(H ,oo) 151OOSOOC ' ( )
SH(w)=S(w)(1——) ; (44) o _
Pec Taking into account this fact, the frequency dependence of
wheren=1 for NNH and 4 for VRH. the magnetoconductivity in the limit of large. is as
sketched in Fig. 3. Note, that the step is not of exponential

The most important property of the quant®y(w)/S(w)
is its nonexponential dependence on the paranigtgiO)
—pc(w)]/pc(0), which describes the decrease of the critical
hopping length with increasing frequeri@/As mentioned VIIl. RESULTS
above this parameter is small in range of frequencies under
consideration. Only for high frequencies, within the range ofd
applicability of the two-site model, where the critical hop- i
ping length decreases down te !, this parameter ap-
proaches 1. Consequently, the relationsdg) shows that
the ratiodo(H,w)/o(w) depends only weakly on frequency
within the range of frequencies under consideration.

If we take into account the frequency dependence of th
preexponential factor and ugg(0)— p.(w)=InJw), then
the frequency dependence of the quandityw) can be cast
into the form

height.

We have studied the magnetoconductivity of three-
imensional, strongly localized systems, far from the metal-
nsulator transition, where multisite scattering is irrelevant.
The calculation shows that in this limit the magnetoconduc-
tivity has peculiarities, e.g., anisotropy, then anomaly, and
the frequency dependence. This sets the situation deep in the
strongly localized regime, where multisite scattering is irrel-
@vant, apart from that close to the metal-insulator transition,
where multisite scattering is relevant.

Deep in the strongly localized regime we expect that at
most scattering at one intermediate site is important, since
. the trarjsitior) probabilities fpr scatte(ing events at many in_—
Su(w)=S(w)—i——, (45  termediate sites are proportional to higher powers of the ratio

Pc between resonance integral and level spread, which is small
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in the strongly localized regime. Due to this fact we canenergy results also in a change of the sign of the magneto-
imagine that for every initial and final site there is one scat-conductivity, if the density of states is symmetric. That is, for
tering site, so that the positions of these sites span a triangleymmetric densities of states the magnetoconductivity exhib-
Consequently, every bond is associated with a triangle. Sindés ap-n anomaly, as discussed also in Ref. 8.
the impact of the magnetic field on the quantum interferences The unusual behavior of the magnetoconductivity in the
is governed by the flux penetrating the triangle the effect isstrongly localized regime manifests also in its frequency de-
highly anisotropic on the microscopic level. pendence. As shown above, the ratio between magnetocon-
To see, whether this anisotropy manifests also in the macductivity and conductivity is nearly independent of fre-
roscopic properties of the sample we focused on the configuduency for lowest frequencies and in the multiple-hopping
ration average of the current. Also in the linear approximategime. Consequently, the impact of such frequencies on the
tion with respect to the electric field, the current is a functioninterferences in the strongly localized regime is also weak.
i=j(E,S,H), which depends on the surface vec®pof the  Only at high frequencies the magnetoconductivity decreases
characteristic configuration, the electric fi#dand the mag- appreciably with increasing frequentBince the magneto-
netic fieldH. In calculating the average one has to integrateconductivity discussed here is due to quantum interferences,
over all directions of the surface normal. However, in doingone would have expected a strong dependence on frequency.
s0, it has to be taken into account that the current is not onlyf herefore, the weak dependence on frequency, as already the
a function of the angle betwee® and H, but also of the Possibility to change the sign of the magnetoconductivity by
angle betweer and E. Therefore, a dependence on the changing the sign of the resonance integral or the Fermi en-
angle betweelE andH remains. Formul&2), which relates  €rgy for symmetric dt_ansities of states, is_a further hint on that
the longitudinal part of the magnetoconductivity to the trans-the role of quantum interferences deep in the strongly local-
verse part, derived for lowest frequencies and in thdzed regime is very different from that close to the metal-
multiple-hopping regime in the present paper, entirely agreelisulator transition or in weak localization physics. o
with the corresponding formula obtained in the Holstein- Despite all these peculiarities the magnetoconductivity
model in Ref. 17, which shows that anisotropy is not pro-deep in the strongly localized regime also has much in com-
duced merely by increasing frequency. Consequently(Bg. ™Mon with the s!tu_atlon for mult|5|te s_catterlng. As mentioned
describes the anisotropy in the whole frequency range. A3bove, the existing theories describe the temperature and
already pointed out in the introduction the transverse part oftagnetic field dependence observed in the experiments fairly
the magnetoconductivity is always larger than the paralleivell. It turns out that the results derived in our paper do so
part of the magnetoconductivity for small magnetic fields. alS0. As can be seen from our figures, the magnetoconduc-
Note that, the argumentation given above does not appl§Vity calculated in th|s_paper is a quadratic fun_ctlo_n with
to the situation close to the metal-insulator transition, sincd®Spect to the magnetic field for small magnetic fields, a
multisite scattering is relevant there. If multisite scattering islineéar function of the magnetic field for moderate fields, and
relevant we cannot imagine that every bond is associateg@turates for high magnetic fields, like in most other calcu-
with a triangle. There every initial and final site is sur- lations. . _ _ o
rounded by a whole cloud of scattering sites, so that the The quadratic regime with respect to the magnetic field
current is nearly independent of the angle betwSamdH  has been observed in many experimegee, e.g., Refs. 12—
before averaging. Consequently, the magnetoresistance 1§)- In many cases the data were presented in the form
isotropic in this case. Multisite scattering is, in principle, 9o (H)/o=T~"H?. It was found, e.g., thay=1,22 in GaAs
investigated in Refs. 1, 5, and 18, so that the results of thed® Ref. 12, y=1,32 for CdSe in Ref. 13y=0.93 in thin
papers are not in contradiction to those published here. ~ films of In;O;_, in Refs. 11 and 14 with decrease o
As mentioned before in most experiments isotropic mag-= 0,76 with increasing thickness,=0,75 for T<4 K with
netoresistance is observed, which shows, in our opinion, thdfcrease up toy=1,25 for T>4 K in CulnSe in Ref. 15.
these experiments were performed in the vicinity of theOur calculation yieldsy=1.
metal-insulator transition. Only in Ref. 10 anisotropy was According to Eq.(38) the deviations from the quadratic
observed in a strong electric field. Thefe'/6o'=1.94was behavior are governed by the parametgp3?(fica?).
measured im-type GaAs samples in a strong electric field in Consequently, such deviations have to be taken into account
the quadratic regime with respect to the magnetic fieldfor fields of the order oH ,~%ca?p, ¥¥exT%8 The same
Equation(2) yields do, /d0=2, so that, in principle, this result was found in Ref. 1, where the magnetic field depen-
result fits well to the experimental data. However, since thalence is governed by the same parameter. It also agrees well
experiments were performed in the non-Ohmic regime, thewith the numerical simulations of Ref. 7, where the cross-
cannot be considered as verification for our prediction. over was also observed. Experimentally the crossover from
A further peculiarity of the magnetoconductivity in the quadratic to quasilinear dependence with increasing mag-
strongly localized regime is th@-n anomaly. While the netic field has been observed in numerous san{gkss, e.g.,
magnetoconductivity is always positive if multisite scatteringRefs. 16, 13, and 15So it was found thatl < T%"°in CdSe
is relevant->*8the sign of the magnetoconductivity deep in samples in Ref. 13, T¥® for T<4 K andH o« T*% for
the strongly localized regime depends on the sign of th&>4 K in CulnSe samples in Ref. 15.
resonance integral and the sign of the Fermi energy. If the The quasilinear dependence of the magnetoconductivity
sign of resonance integrals is changed also the magnetocohas been observed in most experiments referrddee, e.g.,
ductivity changes sign. A change of the sign of the Fermi-Refs. 13—1% Here in many cases the temperature depen-
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dence is also written in the fordic<HT *. For the expo- Since we are only interested in effects symmetri¢dim
nent\ 3/4 was obtained in Ref. 1 and 7/8 in Ref. 2. If in the the linear approximation with respect F§*) we can restrict
quasilinear regime we replace the series in Bf) by a  the consideration to the symmetric part of the functi/d
linear function we obtain\ =5/8. Experimentally, e.g.\ with respect to the direction of the magnetic field. Both for
=0.76 was observed in Ref. 11 in,@;_, andA=0.63 in  strong and weak electron-phonon coupling the three-site con-
n-type CulnSe for temperatures befo 4 K in Ref. 15. Con-  tribution has the structufe

sequently, we conclude that our calculations can account for

. eH[R;3XR
the temperature dependence and the field dependence ob- T =%Ymmm [Ris 23]—1 . (A3)
! 4 1MoMg 1MoMg 2hc
served in the experiments as well.
For strong electron-phonon coupling the functigiis given
APPENDIX A: TRANSITION RATES by

The two-site conductances of the transport equatin Jo €F— €3

are given b§ Ynymam, = Vo 1NN
_ |er— €l +|er— e + N — &

Tik=vpeeXQ —2a|Rix— KT . xexp —a(|Ryg +|Rag +|Ryg)

(A1)
— + —
Here a1 is the localization lengtheg is the Fermi energy, —lEF il t|er Ez'). (A4)

and\=1 (0) for strong(weak coupling with phonons. For 2kT
weak electron-phonon coupling the preexponential fagtor For weak electron-phonon coupling it has the form
is a constant of the order of the characteristic phonon fre-
qguency. For strong electron-phonon coupling the preexpo- _ 1 1
. .2 Ym,m,m, = VeJo +
nential factorv, is given by 17273

€1 €3 €r— €3
. :ﬁ J3 exr{—E) X exp(— a(|Ryz +|Rog + [Rygl))
P2k \JEKT kT)' Xex[{_|€F_€l|+|EF_€2|+|€l_62|>.

whereE, is the activation energy for a polaronic hop ahd 2kT
is the preexponential factor of the resonance integral. (A5)

(A2)
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