
PHYSICAL REVIEW B, VOLUME 64, 104204
Anisotropic magnetoresistance in the hopping regime: Low frequencies and dc limit
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The magnetic field dependence of the magnetoconductivity in the strongly localized regime is investigated
at lowest frequencies, in the multiple hopping regime and in the dc limit. It is found that the magnetoconduc-
tivity of isotropic three-dimensional samples is anisotropic. It depends on the angle between the electric and the
magnetic field. A simple relationship between the longitudinal part of the magnetoconductivity and the trans-
verse part of the magnetoconductivity, valid for magnetic fields of any strength, is obtained. It turns out that the
transverse part of the magnetoconductivity is always larger than the parallel part. As a function of the magnetic
field the magnetoconductivity is a quadratic function for small magnetic fields, a nearly linear function for
moderate magnetic fields, and saturates for high magnetic fields. Its frequency dependence agrees with that of
the conductivity in the range of frequencies in question.
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I. INTRODUCTION

The investigation of the impact of magnetic fields
transport properties in the hopping regime has received m
attention in recent years. Often spin effects can be igno
Then the influence of a magnetic field on transport is g
erned by its impact on the resonance integrals. On the
hand, the magnetic field causes shrinkage, and thus lead
reduction of the magnitude of the resonance integral. On
other hand, the magnetic field affects the phase, and th
fore has impact on quantum interferences. The answer o
question what the dominating effect is depends on the m
nitude of the dimensionless parameters which govern the
pact. Since the impact of the magnetic field depends on
size of the characteristic area penetrated by flux the dim
sionless parameters depend also on the size of the area
shrinkage the relevant area is of the order ofa22, wherea21

is the localization length, that is of atomic size. According
the dimensionless parameter governing the impact is g
by k15eH/(a2hc), wheree is the charge of the electron,h
is Planck’s constant andc is the velocity of light. If the
magnetic field is low, that is ifk1!1, shrinkage can be ig
nored. For quantum interferences the characteristic areaSc is
determined by the positions of the initial and the final site
the hop, and the positions of intermediate scattering s
Therefore, the dimensionless parameter is given byk2
5eHSc /(hc) in this case. Since the hopping length is lar
k2@k1. Consequently, as first shown by Nguyen, Spiv
and Shklovskii,1 there is a range of magnetic fields in whic
shrinkage can be ignored, but the impact of the magn
field on quantum interferences is relevant. Within this ran
interferences have been studied in numerous papers
theoretically~see, e.g., Refs. 1–8! and experimentally~see,
e.g., Refs. 9–16!.

Related to the size of the areaSc is the question, what the
effective scattering sites are. If the system is strongly loc
ized, scattering at only one intermediate site is of most
portance. Multisite scattering is strongly suppressed, s
the corresponding transition probabilities are of higher or
with respect to the ratio between resonance integral and l
0163-1829/2001/64~10!/104204~10!/$20.00 64 1042
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spread, which is small in the strongly localized regime. Co
sequently, in the strongly localized regime a triangle is as
ciated to every bond, spanned by the initial, the final and
scattering site. The magnetic field affects only the quant
interferences in the plane transverse to the field, so that
impact of the magnetic field on the quantum interferences
hops transverse to the field is always larger than for hops
the direction of the magnetic field. Consequently, the eff
is highly anisotropic on the microscopic level.

The situation in the strongly localized regime is to
distinguished from the situation close to the metal insula
transition. Here scattering at many intermediate sites is
evant, so that there is not a characteristic triangle associ
to every bond. Rather, the initial and the final site are s
rounded by a whole cloud of scattering sites, so that the a
penetrable by flux is always as large for hops transvers
the magnetic field as for hops into the direction of the ma
netic field. In this case the effect is nearly isotropic on t
microscopic level.

An interesting question is, whether the anisotropy on
microscopic level in the strongly localized regime manife
itself also in the macroscopic properties of the sample. T
current itself is a vector, and since for an isotropic sample
the presence of an electric and a magnetic field only t
vectors are available,E andH, the current has to lie within
the vector space spanned byE and H. Consequently, the
symmetric part of the magnetic field induced change of
current with respect to the direction of the magnetic field h
the form

d j5ds'~H !E1
ds uu~H !2ds'~H !

H2
~EH!H. ~1!

If ds uuÞds' anisotropy is present. In this case the curren
not always parallel toE. In a recent paper17 we have used the
Holstein model to investigate the magnetoconductivity
high frequencies in the strongly localized regime. The mo
has the advantage that it can be solved exactly. Using
Holstein model we could show that
©2001 The American Physical Society04-1
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ds'~H !5
1

2H

d

dH
@H2ds uu~H !#. ~2!

In the quadratic regime with respect to the magnetic field
relationship entails

ds'~H !52ds uu~H !1o~H2!, ~3!

so that for low magnetic fields the magnetoresistance is
ways larger if the electric field is applied transversely to
magnetic field than for parallel electric and magnetic fiel
We do not expect that anisotropy can be produced merel
increasing the frequency. Therefore, we expect that ani
ropy is also present at low frequencies and in the dc limit
is the purpose of the present paper to investigate the situa
at low frequencies and in the dc limit, and to examine
difference between the situation at high frequencies and
situation at low frequencies.

So far all calculations~e.g., Refs. 1–6! yield an isotropic
magnetoresistance in the dc limit. Only in the numerical c
culations of Ref. 18 anisotropy was detected, but reporte
vanish with increasing sample size. No investigations of
magnetoresistance in the variable-range hopping~VRH! re-
gime for low frequencies and in the multiple-hopping regim
have been published so far.

In order to explain the isotropy of the magnetoresista
also in the strongly localized regime the authors usually
cus on the properties of the critical resistor. The critical
sistor of the percolation path is an objectf (S,H), which
depends on the surface vectorS and the magnetic fieldH.
The calculation of the configuration average amounts to
integration over all possible surface vectors. Thus, the an
betweenS andH is integrated out. Consequently, the result
a function ofH only.

While this argument seems to be plausible it does not t
into account the direction of the electric field. To understa
how the electric field modifies this argument consider
Ohmic current. The Ohmic current is a functionj(S,H,E). It
is linear with respect touEu but depends also on the ang
betweenS and E. In calculating the average we have
integrate over all directions of the surfaceS. However, in
doing so we have to take into account that the function d
not only depend on the angle betweenS andH, but also on
the angle betweenS and E. The latter angle is absent i
previous theories, which focus on the critical resistor only
this angle is taken into account the result of the integrati
depends on the angle betweenH andE, as shown in Ref. 17
in the limit of high frequencies.

Note, that the argument given above applies only to
strongly localized regime. Close to the metal insulator tr
sition, where scattering at many intermediate sites is
evant, the initial and the final site are surrounded by a clo
of scattering sites. In this case we expect that the curren
nearly independent of the angle betweenS and H before
averaging. Consequently, the averaging procedure leads
isotropic magnetoresistance in this case. Multisite scatte
is, in principle, treated in Refs. 1, 5, and 18, so that
10420
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results of these papers are not in contradiction to those p
lished here, if applied not too far from the metal insulat
transition.

It should be mentioned that in those experiments,
which the problem of anisotropy is tackled, an isotrop
magnetoresistance is found. Only in Ref. 10 anisotropy
been observed in a strong electric field. Thereds'/ds uu

51.94 was measured inn-type GaAs samples, which, in
principle, fits well to Eq.~3!. In our opinion, the reason fo
the absence of anisotropy is that the samples were too c
to the metal insulator transition, so that multisite scatter
was relevant.

Since the magnetoconductivity discussed here origina
from the impact of the magnetic field on quantum interfe
ences, one would also expect that the magnetoconduct
depends strongly on the frequency of the applied exte
field. In Ref. 17 we showed that Reds'/uu(v,H)/Res(v,0)
decreases with increasing frequency at high frequencies
very high frequencies the ratio passes into a plateau. To c
plete the investigation of the frequency dependence we
investigate the behavior of the magnetoconductivity at lo
est frequencies and in the multiple hopping regime. Bel
we will show, that for lowest frequencies and in the multip
hopping regime the above mentioned ratio is independen
frequency. The omitted corrections only lead to a weak
duction of the above mentioned ratio. This result is quali
tively in line with the analytical and numerical investigation
on the frequency dependence of the magnetoconductivit
the nearest-neighbor hopping~NNH! regime of Ref. 8.

The paper is organized as follows. In Sec. III our ba
equations are introduced. Here we discuss the transport e
tion and the main formula for the calculation of the magn
toconductivity. Section IV is devoted to the problem of a
isotropy. Here the main relationship between longitudin
and transverse part of the magnetoconductivity is derived
Secs. V and VI the dependence of the magnetoconducti
on the magnetic field and on the critical hopping length
examined in detail, both in the NNH and in the VRH regim
Based on the results of these sections the frequency de
dence of the magnetoconductivity is studied in Sec. VII.
nally a discussion of the results is given in Sec. VIII.

II. BASIC EQUATIONS

We consider spinless electrons hopping in the narrow
purity band of a lightly doped semiconductor. If their motio
is affected by a weak electric fieldE(t) suddenly switched
on at t50 the transport equation takes the form~see, e.g.,
Ref. 6!

sCm~Um1ERm!5(
m8

Gm8m~Um82Um!. ~4!

Here Cm5 f m(12 f m) ( f m : Fermi distribution with site en-
ergy em!, s52 iv (v: frequency of the applied electri
field!, and Um is the local electrochemical potential at th
site m with position vectorRm . The quantitiesGm8m are the
transition rates. In the absence of the magnetic field th
calculation can be restricted to two-site processes, which
4-2
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scribe only direct hops between the initial and the final s
Since these contributions are independent of the magn
field the consideration of the effect of the magnetic fie
requires to go beyond this approximation, so that higher
der processes have to be taken into account. To do so
consider besides two-site contributions also contributi
originating from three-site processes. The latter contributi
result from interferences between the amplitude for the di
hopping path from the initial to the final site with amplitud
for alternative hopping paths via an intermediate third site
that approximation the quantitiesGm8m can be decompose
into their two-site and their three-site parts according to

Gm8m5Gm8m
(2)

1Gm8m
(3)

~H!, ~5!

whereGmm8
(3) has the structure

Gmm8
(3)

5(
n

Gmnm8
(3) . ~6!

Both for strong and weak electron-phonon coupling
three-site rates are small as compared to the two-site one
that

Gm8m
(2)

@Gm8m
(3)

~H! ~7!

holds.
Explicit expressions for the transition rates were deriv

using the renormalized perturbation expansion in Ref. 2,
Konstantinov-Perel method in Ref. 6, and the nonequilibri
Greens function technique in Ref. 7. These expressions
be found in Appendix A.

III. THE EFFECTIVE CURRENT

In order to calculate the configuration averaged magn
conductivity we take advantage of the inequality~7!, which
holds for magnetic fields of any strength. If we take in
account this inequality we can restrict the consideration
the linear approximation of the magnetoconductivity w
respect toG (3). In this case we can use the formula

j~H,s!2 j~0,s!5
e2

2kTVE dr1dr2dr3N~e1!N~e2!N~e3!

3G123
(3)D22~r1 ,r2 ,r3!~R13b1232R23b213!

3$E~R13b1232R23b213!% ~8!

for the magnetic field induced change of the conductivity
Ref. 19. Here the quantitiesGmnk

(3) and Gmn
(2) have to be con-

sidered as functions of their coordinatesr i5(Ri ,e i), andV
is the volume of the system. Furthermore,Rik5Ri2Rk ,

D~r1 ,r2 ,r3!5112 f ~G12
(2)1G13

(2)1G23
(2)!13 f 2~G12

(2)G13
(2)

1G12
(2)G23

(2)1G13
(2)G23

(2)!, ~9!

and

b1235112 f G23
(2)1 f G13

(2) . ~10!
10420
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The frequency dependent parameterf is related to the fre-
quency dependent critical hopping lengthRc(v) by the
relationship21

f np,e5exp~2aRc!. ~11!

Herenp,e is the attempt-to-escape frequency of the transit
rates for strong~p! and weak~e! electron-phonon-coupling
~see Appendix A!. In the dc limit the critical hopping lengths
are given byRc5(2a)21(T0 /T)1/4 in the VRH regime,
whereT0 is the characteristic temperature in Mott’s law, a
by Rc50.866n21/3 in the NNH regime, wheren is the con-
centration of sites. At lowest frequencies and in the multi
hopping regime it satisfies the equation21

2a„Rc~0!2Rc~v!…exp„2a@Rc~0!2Rc~v!#…5 i
v

v0
,

~12!

wherev is the frequency of the electric field andv0 is a
characteristic frequency of the order of the critical hoppi
probability.21 In the VRH regime it is given byv0
5sa2/„4e2NF(2aRc)

12
… (NF , density of states at the Ferm

surface;s, conductivity!. For NNH the characteristic fre
quency depends on the concentrationn of sites according to
v054p/3nRc

3exp(22aRc).
A detailed derivation of Eq.~8! is given in Ref. 19. The

approximations used in this derivation can easily be tra
lated into the language of percolation theory. In percolat
theory the consideration of the interference contributio
amounts to the consideration of additional resistors. If sc
tering at only one intermediate site is taken into acco
every simple resistor of the percolation path is replaced
two resistors switched parallel, one of them being the tw
site contribution and the other the three-site contributi
Since the system is strongly localized the three-site resis
are large as compared to the two-site ones, so that the cu
is governed by the two-site resistors only. Consequently,
percolation path is at most slightly changed. The approxim
tions used in our effective description amount to neglect t
small magnetic field induced change of the percolation pa
Within our formulation the two-site resistors are determin
by the critical hopping length. To neglect the magnetic fie
induced change of the percolation path means to neglec
field dependence of the critical hopping length, so thatRc is
still determined by the two-site contributions.

IV. ANISOTROPY

The further investigation of the magnetoconductivity r
quires the performance of the integrations. However, bef
tackling this problem, we note that Eq.~8! is very similar to
the expression for the magnetic field induced change of
current in the Holstein model.17 In fact, both expressions
agree with each other if the parameterf in Eq. ~8! is replaced
by 1/s, andC15C25C3 is set in the determinantD in Eq.
~22! of Ref. 17. If we use this observation we see that Eq.~8!
reduces to the exact result at high frequencies. The sym
tries of the integrand are not affected by this replacement
that the integrations over the orientations of the surface n
4-3
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mal of the characteristic triangle can be performed exa
and in the same way as in Ref. 17. Consequently, we
find the same result. If we use the results of Ref. 17
obtain

ds i ,'~H !5
4p2e2

3kT E
0

`

dR1dR2E
uR12R2u

R11R2
dR3E de1

3de2de3R1R2R3N~e1!N~e2!N~e3!

3g~r1 ,r3 ,r2!D22~r1 ,r2 ,r3!gi ,'~h!

3$~b1232b213!~R1
2b1232R2

2b213!1R3
2b123b213%.

~13!

Here

g~r1 ,r2 ,r3!5
G (3)~r1 ,r2 ,r3!

†cos„eH@R133R23#/~2\c!…21‡
. ~14!

Furthermore, different integration variables have been in
duced. Herer i5(Ri ,e i), with R15uR23u, R25uR13u, and
R35uR132R23u. In Eq. ~14! first the fraction is formed and
then the integration variables are changed.

The functiongi ,'(H) determines the magnetic field de
pendence of the conductivity. Its longitudinal part is given

gi~h!5
3

2 S 11
d2

dh2D sin~h!

h
21. ~15!

Longitudinal and transverse part are related by the relat
ship

g'~h!5
1

2h

d

dh
„h2gi~h!…. ~16!

The dimensionless magnetic field

h5
eHA4R1

2R2
22~R1

21R2
22R3

2!2

4\c
5

eHS

\c
~17!

in Eqs. ~15! and ~16! is equal to the number of flux quant
penetrating the areaSof the triangle formed by the sidesR1 ,
R2, andR3. If we use the relationship~16! we again find that
the longitudinal part of the magnetoconductivity and t
transverse part of the magnetoconductivity are related by
~2!. Consequently, the anisotropy is not affected by f
quency. We conclude that Eq.~2! describes the anisotropy i
the whole range of frequencies.

Below we restrict our consideration to the calculation
the longitudinal part of the conductivity. The correspondi
expressions for the transverse part can easily be obtaine
means of equation~2!. Both longitudinal and transverse pa
as calculated below and from Eq.~2!, are depicted in Fig. 1
and Fig. 2.

V. MAGNETOCONDUCTIVITY IN THE NNH REGIME

A. Strong electron-phonon coupling

Characteristic for the NNH regime is that the impuri
band width is small as compared to the thermal energy
10420
ly
so
e

-

n-

q.
-

f

by

o

that the spread of the energy levels can be neglected if c
pared tokT. In this situation the energy integrations are d
termined by the maximum of the density of states. To mo
this situation we assume that the maximum is located ae
50, and put

N~e!5nd~e!. ~18!

Heren is the density of sites of the system. A redefinition
the position of the maximum of the density of states amou
to a redefinition of the Fermi energy.

If we use Eq.~18! the energy integrations can easily b
performed. In this case, in order to simplify the integratio
over the side lengths of the triangle, we can take advant
of the fact that the integrand of Eq.~13! is symmetric with
respect tor1 and r2. If we introduce integration variable
r 1 , r 2, andr 3, according to 2R15r 11r 2 , 2R25r 21r 3, and
2R35r 11r 3, then Eq.~13! takes the form

FIG. 1. Magnetic field dependence of the magnetoconducti
in the NNH regime. Thick line: transverse part; thin line: paral
part.

FIG. 2. Magnetic field dependence of the magnetoconducti
in the VRH regime. Thick line: transverse part; thin line: paral
part.
4-4
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ds i~H !5
p2e2n3

96kT E
0

`

dr1dr2dr3~r 11r 2!~r 11r 3!~r 21r 3!

3g~r 1 ,r 2 ,r 3!D22~r 1 ,r 2 ,r 3!gi~h!

3$~b1232b213!@~r 11r 3!2b1232~r 21r 3!2b213#

1~r 11r 2!2b123b213%. ~19!

In order to perform the spatial integrations we restrict
consideration to strongly localized systems with 2aRc@1.
Furthermore, we take advantage of the fact that the integr
of Eq. ~19! has two maxima, located atr 152Rc,r 25r 350
and atr 252Rc,r 15r 350. Since the contributions of thes
maxima are equal to each other we restrict our considera
to one maximum and multiply the result by two. On th
maximum we havef G125 f G1351,f G235exp(2aRc)@1. To
perform the integrations we neglect small contributions
the order (f G23)

21, and take into account only the leadin
contribution of f G23 in the determinantD. Doing so, we
obtain

ds i~H !52
4p2e2n3npRc

4

9kTa4

J0

Ea
tanhS eF

2kTD
3exp~22aRc!I iS eHRc

2\ca D , ~20!

whereh is given byh.eHRcAr 2r 3/(2\c), and

I i~l!52E
0

`

dxdy
xgi~lAxy!

expx1expy
. ~21!

The functionI i determines the dependence of the magne
conductivity on the magnetic field. Its analytical calculabili
is restricted to small magnetic fields. For small magne
fields @eHRc /(2\ca)!1# Eq. ~21! can be expanded with
respect toH2. Doing so we obtain

I i5
C

10S eHRc

2\ca D 2

, ~22!

whereC515.0577. To calculate the ratiods i(H)/s we use
the expression

s5
2p

15

e2n2

kT
npRc

5exp~22aRc! ~23!

for the conductivity20,21 in the absence of the magnetic fie
and obtain

ds i~H !

s
52

pCh3

24

J0

Ea
tanhS eF

2kTD ~aRc!
22S eH

2\ca2D 2

.

~24!

Consequently, the effect decreases with increasing temp
ture. Furthermore, if we replaceeF by 2eF the magnetocon-
ductivity changes sign, so that Eq.~24! exhibits a p-n
anomaly.

For moderate and high magnetic fields Eq.~21! can only
be calculated numerically. Results are depicted in Fig. 1
10420
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Fig. 1 it can be seen, that for moderate magnetic fields
magnetoconductivity is approximately a linear function
the magnetic field. For high magnetic fields the magnetoc
ductivity saturates.

B. Weak electron-phonon coupling

Due to the singular structure of the three-site part of fu
tion G (3) Eq. ~A5! for weak electron-phonon couplin
strength the same approximations cannot be applied in
situation. Furthermore, if the site energies were put to z
only in the exponents of the functionG (3) ~A5! and in the
exponents of the quantitiesG (2) the magnetoconductivity
would vanish. Consequently, in the limit of weak electro
phonon coupling strength the consideration of the influe
of the magnetic field on the conductivity requires the cons
eration of the small energy contributions in the exponents
the resistors. To this end we write the two-site rates in
form

G ik
(2)5neexp~22auRiku!~11b ik!, ~25!

and the functiong in the form

g~r1 ,r2 ,r3!5neJ0S 1

e12e3
1

1

e22e3
D

3exp„2a~ uR12u1uR13u1uR23u!…~11b12!,

~26!

where

b ik5
2ueFu2ueF2e i u2ueF2eku2uek2e i u

2kT
!1. ~27!

Since the quantitiesb ik are small we only take into accoun
their linear contributions to the magnetoconductivity. In th
approximation the calculation can be performed as in
strong coupling limit, up to additional energy integratio
over the quantitiesb ik . After a lengthy but straightforward
calculation we obtain

ds i~H !52
p2e2n3J0n

3~kT!2

Rc
4

a4
exp~22aRc!I iS eHRc

2\ca Dm~eF!,

~28!

whereI i(l) is given by Eq.~21!, andm(eF) has the form

m~eF!5n23E
0

`

de1de2de3N~e1!N~e2!N~e3!

3
ueF2e3u1ue22e3u

e12e3
. ~29!

For symmetric densities of states the quantitym(eF) can be
replaced approximately by sgn(eF). In this case thep-n
anomaly of the magnetoconductivity is reobtained. If we u
Eq. ~23! we obtain in the quadratic approximation with r
spect to the magnetic field
4-5
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ds i~H !

s
52

pCh3

32

J0

kT
~aRc!

22S eH

2\ca2D 2

m~eF!.

~30!

Note that both in the case of weak electron-phonon coup
strength and in the case of strong electron-phonon coup
strength the magnetoconductivity changes sign if the sign
the resonance integral or the sign of the Fermi energy
changed. This is to be contrasted, with the situation for m
tisite scattering, where the magnetoconductivity is alwa
positive ~see, e.g., Refs. 1,5!.

C. Comparison with results of the standard effective
medium theory

The fact that the most important contributions to the c
rent originate from triangles withr 152Rc and r 25r 350
entails that the most important contributions to the integ
tions arise from nonsymmetric triangles. Two sides of
triangles are of the order of the critical hopping lengthRc .
The contributions from the third site are from the interv
(0,a21). Since one side (R3) always lies on the percolatio
path the critical part of an infinite cluster contains always
intermediate third site. This fact justifies posteriorly the a
eraging procedure over the intermediate third site used
Ref. 6. Furthermore, it determines the agreement of the
sults of the present paper and the results of Ref. 6 in
important points. First, since in both papers the most imp
tant contributions to the current arise from triangles w
small areas, which vary between 0 anda21Rc , the dimen-
sionless magnetic fieldh5eHRc /(2\ca), the number of
flux quanta penetrating the critical configuration, is the sa
Secondly, due to the fact that the area of the critical trian
is small the dimensionless magnetic field is also sm
Therefore, the magnetoconductivity does not exhibit qu
tum oscillations depending on the strength of the app
magnetic field. This can also be seen in Fig. 1, which sho
a saturation for high magnetic fields. In that the magnetoc
ductivity in the NNH regime differs from the Hall effect in
the NNH regime. There the characteristic configurations
given by equilateral triangles with large areas and side len
of the order of the critical hopping length, which manife
themselves in quantum oscillations of the Hall conductiv
in strong magnetic fields.19 In the case of the magnetocon
ductivity quantum oscillations can only be obtained for mo
erate, that is for not too large, critical hopping lengths. If t
critical hopping length is large, but not large enough to ju
tify the restriction to the leading asymptotic contribution
the integrals, corrections to the asymptotic calculations of
integrals have to be taken into account. In this case b
triangles with small and triangles with large areas contribu
and the latter manifest themselves in quantum oscillation

A further comparison of our results with that of the sta
dard effective medium approximation of Ref. 6 shows th
for weak electron-phonon coupling the results of both cal
lations agree. For strong electron-phonon coupling the
sults of both papers differ by a factor (aRc)

21. Obviously,
the agreement of both results in the weak-coupling limit
purely by chance. The consideration of its origin reveals t
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in contrast to the present paper, where the character
spread of the energies in the singular part of the denomin
of the three-site resistance is of the order^(e12e3)&
}(kT)21, the averaging procedure in Ref. 6 yields^(e1
2e3)&}(kTaRc)

21. This compensates the differences in t
averaging over the coordinates. Despite these difference
can be checked numerically that both results are in g
agreement with the numerical calculations published in R
6. To do so, one has to take into account that the consi
ation in Ref. 6 is restricted to the transverse contribution a
involves furthermore a suitably chosen constant.

VI. MAGNETOCONDUCTIVITY IN THE VRH REGIME

A. Temperature and field dependence

If we look on Eq.~13! we see that, contrary to the NNH
regime, in the VRH regime the role of the three sites in t
hopping process is determined in advance. The leading c
tributions to the integrations are obtained if the energies
the sites 1 and 2 are close to the Fermi surface and
energy of site 3 is far away from it. To check this asserti
note that the magnitude of the integrand of Eq.~13! increases
with decreasingG12 and G23 for fixed G12 and g, which
corresponds to an increase ofueF2e3u for fixed values ofe1 ,
e2 , r 1 , r 2, andr 3. Owing to this factG13 andG23 may be put
0. Since furthermore the most important contributions to
integrations over the energies of the sites 1 and 2 result f
the vicinity of the Fermi energy bothe1 and e2 can be put
equal toeF in preexponential factors. Doing so, we assum
that the density of states has no peculiarities in the reg
under consideration. In the course of this procedure the
pression for the current simplifies considerably. We obtai

ds i~H !5
p2e2NF

2np,eLp,e

96kT E
0

`

dr1dr2dr3~r 11r 3!~r 21r 3!

3~r 11r 2!3gi~h!E de1de2

exp~2ar 3!G12

~112 f G12!
2

. ~31!

According to Eqs.~A4! and ~A5! Lp,e is given by

Lp5
J0

Ea
E de3N~e3!tanhS eF2e3

2kT D ~32!

for strong electron-phonon coupling and by

Le52J0E de3

N~e3!

eF2e3
~33!

in the limit of weak electron-phonon coupling. Note that
both casesL changes sign if the sign of the Fermi energy
changed, if the density of states is symmetric.

The integrations over the energies can be performed
actly. They yield
4-6
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ds i~H !5
ap2e2NF

2np,eLkT

48a8 E
0

`

dr1dr2dr3

3~r 11r 3!~r 21r 3!~r 11r 2!3gi~h!

3exp~2rc2r 3!ln„112 exp~rc2r 12r 2!….

~34!

Here a54(53/2) for strong~weak! electron-phonon cou
pling.

The remaining integrations can be performed in the lim
of largerc52aRc , where we can take advantage of the fa
that the leading contributions to the integrations in Eq.~34!
arise from 0,r 1 ,r 2,rc , 0,r 3,1. If we use this fact the
integrations in Eq.~34! can be simplified by means of th
relationship

E
0

`

drf~r !ln„11exp~rc2r !….E
0

rc
drE

0

r

dr8f~r 8!

5E
0

rc
dr~rc2r !f~r !.

~35!

Thereafter Eq.~34! takes the form

ds i~H !52
ap2e2NF

2np,eLkTrc
8

48a8
e2rcI iS eHrc

3/2

A2\ca2D ,

~36!

where

I i~l!52E
0

`

dr3e2r 3E
0

1

dr1E
0

r 1
dr2~12r 1!~r 12r 2!

3r 2r 1
3gi„lAr 1r 2~r 12r 2!r 3…. ~37!

The remaining integrations cannot be performed in clo
form. However, the threefold integral in Eq.~36! can be ex-
panded with respect to the parametereHrc

3/2/\ca2. Doing
so, we obtain for the longitudinal part of the magnetocond
tivity

ds i~H !52
ap2e2NF

2np,eLkTrc
8

32a8
e2rc

3 (
k51

`
~21!k~k11!!

„~2k13!!! …2~3k17!~3k18!
S eHrc

3/2

8\ca2D 2k

.

~38!

To calculate the ratiods i/s we use the expression

s5
ape2np,ekTNF

2rc
7

1260a5
exp~2rc! ~39!

for the conductivity in the absence of the magnetic field21

which yields
10420
t
t

d

-

ds i~H !

s
52

7p

2200

L

a3

T0

T S eH

8\ca2D 2

~40!

in the quadratic approximation with respect to the magne
field. For moderate magnetic fields the integrals can be
culated numerically. Results are shown in Fig. 2. Again,
not too large magnetic fields the magnetoconductivity is
proximately a linear function with respect to the magne
field, so that a linear dependence on the magnetic field
also be obtained without logarithmic averaging.

If we look on our result we again find that the sign of th
result depends on the sign of the Fermi energy and the
of the resonance integrals. Again, this is to be contras
with the situation for multisite scattering, where the magn
toconductivity is always positive~see, e.g., Refs. 1,5!.

B. Comparison with results of standard
effective-medium theory

If we compare the results of the calculation with those
the standard effective medium theory of Ref. 7 we see tha
contrast to the standard effective medium theory, wh
yields ds(H)/s}rc

5H2,7 the other method leads t
ds(H)/s}rc

4H2}T21H2. As for NNH the difference origi-
nates from the averaging over the positions of the sites. F
thermore, the dimensionless critical hopping length in
standard effective medium theory differs from the critic
parameter rc in that rc5(T0 /T)1/4 is replaced by rc
5(T0 /T)2/5, which also sets the results of the standard
fective medium theory apart from that of percolation theo
which also leads torc5(T0 /T)1/4.

In the framework of two-site transition probabilities di
crepancies between results of the standard effective med
theory with those of percolation theory have been discus
in Refs. 22 and 23. There it was pointed out that agreem
between the results of both methods can be achieved by
corporating aspects of percolation theory into the stand
effective medium theory. A similar situation occurs in th
presence of the magnetic field. Since the two-site effec
medium approximation does not take into account the ad
tional intermediate third site properly, it has to be supp
mented by additional assumptions. So it was assumed
Refs. 2–6 that the virtual path involving the intermedia
third site does not coincide with a percolation path. In t
framework of the random resistor network this requirem
entails that bothZ13.Z12 andZ23.Z13, whereZik are ran-
dom resistors, and the intermediate site is labeled by 3. F
thermore, as in Ref. 1, the average has been taken ove
logarithm of the phase factor in Refs. 2–4, which leads t
linear dependence of the magnetoconductance with res
to the magnitude of the magnetic field for small magne
fields.

In contrast to the effective medium methods of Refs. 2–
the effective method used here does not rely on these
sumptions. All three sites enter the averaging proced
equally. The method itself leads automatically to a deter
nation of the most important configurations for the formati
of the current. According to our calculation these configu
tions are given by nonsymmetric triangles. Two sides of
4-7
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triangles are of the order of the critical hopping length, a
the length of the third side varies between 0 anda21. The
site energies of the initial and the final site are close to
Fermi energy. The scattering site is far away from the Fe
energy.

VII. FREQUENCY DEPENDENCE OF THE
MAGNETOCONDUCTIVITY

In our approach the frequency dependence of the cur
is entirely determined by the frequency dependence of
critical hopping length. The dispersion of the critical hoppi
length is given by Eq.~12! for lowest frequencies and in th
multiple hopping regime. Since for such frequencies

urc~0!2rc~s!u!rc~0!, ~41!

the frequency dependence of the preexponential facto
negligible. Consequently, since the magnetoconductivity
the conductivity have the same exponential dependenc
the dimensionless critical hopping length, the ra
ds i ,'(H,v)/s(v) is independent of frequency, in the fir
approximation.

To investigate this point further we introduce the quan
ties

SH~v!5
ds~H,v!

ds~H,0!
~42!

and

S~v!5
s~v!

s~0!
. ~43!

Here the superscriptsi and' have been omitted, for brevity
From the results obtained above, it follows that for low ma
netic fields

SH~v!5S~v!S 12
rc2rc~v!

rc
D n

, ~44!

wheren51 for NNH and 4 for VRH.
The most important property of the quantitySH(v)/S(v)

is its nonexponential dependence on the parameter@rc(0)
2rc(v)#/rc(0), which describes the decrease of the critic
hopping length with increasing frequency.20 As mentioned
above this parameter is small in range of frequencies un
consideration. Only for high frequencies, within the range
applicability of the two-site model, where the critical ho
ping length decreases down toa21, this parameter ap
proaches 1. Consequently, the relationship~44! shows that
the ratiods(H,v)/s(v) depends only weakly on frequenc
within the range of frequencies under consideration.

If we take into account the frequency dependence of
preexponential factor and userc(0)2rc(v)5 ln S(v), then
the frequency dependence of the quantitySH(v) can be cast
into the form

SH~v!.S~v!2 i
n

rc

v

v0
, ~45!
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which shows that the frequency dependence of the quan
ReSH(v) differs only weakly from that of the quantity
ReS(v).

For high frequencies, in the range of applicability of th
Holstein-model, Reds(v,H)/Res(v) decreases like

Reds~v,H !

Res~v!
} ln4S ne

v D ~46!

for v!ne in the quadratic regime with respect to the ma
netic field,17 and reaches the plateau forv@ne . On the pla-
teau we have17

ds uu~H,`!

s~`!
5

1287

120
p2

L

a3

e2H2

\2c2a4
1oS e2H2

\2c2a4D , ~47!

so that

Reds uu~H,0!

s~0!

s~`!

Reds uu~H,`!
5

7

1510080
rc

4 . ~48!

Taking into account this fact, the frequency dependence
the magnetoconductivity in the limit of largerc is as
sketched in Fig. 3. Note, that the step is not of exponen
height.

VIII. RESULTS

We have studied the magnetoconductivity of thre
dimensional, strongly localized systems, far from the me
insulator transition, where multisite scattering is irreleva
The calculation shows that in this limit the magnetocond
tivity has peculiarities, e.g., anisotropy, thep-n anomaly, and
the frequency dependence. This sets the situation deep in
strongly localized regime, where multisite scattering is irr
evant, apart from that close to the metal-insulator transiti
where multisite scattering is relevant.

Deep in the strongly localized regime we expect that
most scattering at one intermediate site is important, si
the transition probabilities for scattering events at many
termediate sites are proportional to higher powers of the r
between resonance integral and level spread, which is s

FIG. 3. Schematic sketch of the frequency dependence of
magnetoconductivity in the VRH regime.
4-8
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in the strongly localized regime. Due to this fact we c
imagine that for every initial and final site there is one sc
tering site, so that the positions of these sites span a trian
Consequently, every bond is associated with a triangle. S
the impact of the magnetic field on the quantum interferen
is governed by the flux penetrating the triangle the effec
highly anisotropic on the microscopic level.

To see, whether this anisotropy manifests also in the m
roscopic properties of the sample we focused on the confi
ration average of the current. Also in the linear approxim
tion with respect to the electric field, the current is a functi
j5 j(E,S,H), which depends on the surface vectorS of the
characteristic configuration, the electric fieldE and the mag-
netic fieldH. In calculating the average one has to integr
over all directions of the surface normal. However, in doi
so, it has to be taken into account that the current is not o
a function of the angle betweenS and H, but also of the
angle betweenS and E. Therefore, a dependence on t
angle betweenE andH remains. Formula~2!, which relates
the longitudinal part of the magnetoconductivity to the tra
verse part, derived for lowest frequencies and in
multiple-hopping regime in the present paper, entirely agr
with the corresponding formula obtained in the Holste
model in Ref. 17, which shows that anisotropy is not p
duced merely by increasing frequency. Consequently, Eq~2!
describes the anisotropy in the whole frequency range.
already pointed out in the introduction the transverse par
the magnetoconductivity is always larger than the para
part of the magnetoconductivity for small magnetic fields

Note that, the argumentation given above does not ap
to the situation close to the metal-insulator transition, sin
multisite scattering is relevant there. If multisite scattering
relevant we cannot imagine that every bond is associa
with a triangle. There every initial and final site is su
rounded by a whole cloud of scattering sites, so that
current is nearly independent of the angle betweenS andH
before averaging. Consequently, the magnetoresistanc
isotropic in this case. Multisite scattering is, in principl
investigated in Refs. 1, 5, and 18, so that the results of th
papers are not in contradiction to those published here.

As mentioned before in most experiments isotropic m
netoresistance is observed, which shows, in our opinion,
these experiments were performed in the vicinity of t
metal-insulator transition. Only in Ref. 10 anisotropy w
observed in a strong electric field. Thereds'/ds i51.94 was
measured inn-type GaAs samples in a strong electric field
the quadratic regime with respect to the magnetic fie
Equation~2! yields ds' /ds i52, so that, in principle, this
result fits well to the experimental data. However, since
experiments were performed in the non-Ohmic regime, t
cannot be considered as verification for our prediction.

A further peculiarity of the magnetoconductivity in th
strongly localized regime is thep-n anomaly. While the
magnetoconductivity is always positive if multisite scatteri
is relevant,1,5,18 the sign of the magnetoconductivity deep
the strongly localized regime depends on the sign of
resonance integral and the sign of the Fermi energy. If
sign of resonance integrals is changed also the magneto
ductivity changes sign. A change of the sign of the Ferm
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energy results also in a change of the sign of the magn
conductivity, if the density of states is symmetric. That is, f
symmetric densities of states the magnetoconductivity ex
its a p-n anomaly, as discussed also in Ref. 8.

The unusual behavior of the magnetoconductivity in t
strongly localized regime manifests also in its frequency
pendence. As shown above, the ratio between magneto
ductivity and conductivity is nearly independent of fr
quency for lowest frequencies and in the multiple-hopp
regime. Consequently, the impact of such frequencies on
interferences in the strongly localized regime is also we
Only at high frequencies the magnetoconductivity decrea
appreciably with increasing frequency.5 Since the magneto
conductivity discussed here is due to quantum interferen
one would have expected a strong dependence on freque
Therefore, the weak dependence on frequency, as alread
possibility to change the sign of the magnetoconductivity
changing the sign of the resonance integral or the Fermi
ergy for symmetric densities of states, is a further hint on t
the role of quantum interferences deep in the strongly loc
ized regime is very different from that close to the met
insulator transition or in weak localization physics.

Despite all these peculiarities the magnetoconductiv
deep in the strongly localized regime also has much in co
mon with the situation for multisite scattering. As mention
above, the existing theories describe the temperature
magnetic field dependence observed in the experiments f
well. It turns out that the results derived in our paper do
also. As can be seen from our figures, the magnetocon
tivity calculated in this paper is a quadratic function wi
respect to the magnetic field for small magnetic fields
linear function of the magnetic field for moderate fields, a
saturates for high magnetic fields, like in most other cal
lations.

The quadratic regime with respect to the magnetic fi
has been observed in many experiments~see, e.g., Refs. 12–
16!. In many cases the data were presented in the fo
ds(H)/s}T2gH2. It was found, e.g., thatg51,22 in GaAs
in Ref. 12, g51,32 for CdSe in Ref. 13,g50.93 in thin
films of In2O32x in Refs. 11 and 14 with decrease tog
50,76 with increasing thickness,g50,75 for T,4 K with
increase up tog51,25 for T.4 K in CuInSe2 in Ref. 15.
Our calculation yieldsg51.

According to Eq.~38! the deviations from the quadrati
behavior are governed by the parametereHrc

3/2/(\ca2).
Consequently, such deviations have to be taken into acc
for fields of the order ofHm;\ca2rc

23/2/e}T3/8. The same
result was found in Ref. 1, where the magnetic field dep
dence is governed by the same parameter. It also agrees
with the numerical simulations of Ref. 7, where the cro
over was also observed. Experimentally the crossover fr
quadratic to quasilinear dependence with increasing m
netic field has been observed in numerous samples~see, e.g.,
Refs. 16, 13, and 15!. So it was found thatHm}T0.75 in CdSe
samples in Ref. 13,Hm}T3/8 for T,4 K andHm}T1.05 for
T.4 K in CuInSe2 samples in Ref. 15.

The quasilinear dependence of the magnetoconducti
has been observed in most experiments referred to~see, e.g.,
Refs. 13–16!. Here in many cases the temperature dep
4-9
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dence is also written in the formds}HT2l. For the expo-
nentl 3/4 was obtained in Ref. 1 and 7/8 in Ref. 2. If in th
quasilinear regime we replace the series in Eq.~38! by a
linear function we obtainl55/8. Experimentally, e.g.,l
50.76 was observed in Ref. 11 in In2O32x and l50.63 in
n-type CuInSe2 for temperatures below 4 K in Ref. 15. Con-
sequently, we conclude that our calculations can accoun
the temperature dependence and the field dependence
served in the experiments as well.

APPENDIX A: TRANSITION RATES

The two-site conductances of the transport equation~4!
are given by6

G ik5np,eexpS 22auRik2
ueF2e i u1ueF2eku1lue i2eku

2kT D .

~A1!

Herea21 is the localization length,eF is the Fermi energy,
andl51 ~0! for strong~weak! coupling with phonons. For
weak electron-phonon coupling the preexponential factorne
is a constant of the order of the characteristic phonon
quency. For strong electron-phonon coupling the preex
nential factornp is given by

np5
Ap

2\

J0
2

AEakT
expS 2

Ea

kTD , ~A2!

whereEa is the activation energy for a polaronic hop andJ0
is the preexponential factor of the resonance integral.
r.

at

v.

ck

os
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Since we are only interested in effects symmetric inH in
the linear approximation with respect toG (3) we can restrict
the consideration to the symmetric part of the functionG (3)

with respect to the direction of the magnetic field. Both f
strong and weak electron-phonon coupling the three-site c
tribution has the structure6

Gm1m2m3

(s) 5gm1m2m3S cos
eH@R133R23#

2\c
21D . ~A3!

For strong electron-phonon coupling the functiong is given
by

gm1m2m3
5np

J0

Ea
tanhS eF2e3

2kT D
3expS 2a~ uR12u1uR23u1uR13u!

2
ueF2e1u1ueF2e2u

2kT D . ~A4!

For weak electron-phonon coupling it has the form

gm1m2m3
5neJ0S 1

e12e3
1

1

e22e3
D

3exp„2a~ uR12u1uR23u1uR13u!…

3expS 2
ueF2e1u1ueF2e2u1ue12e2u

2kT D .

~A5!
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