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London theory of the crossing vortex lattice in highly anisotropic layered superconductors
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A description of Josephson vorticédV’s) crossed by the pancake vorticg®V's) is proposed on the basis
of the anisotropic London equations. The field distribution of a JV and its energy have been calculated for both
dense &<\ ;) and dilute @>\ ;) PV lattices with distanca between PV's and the nonlinear JV core size
It is shown that the “shifted” PV lattice(PV’s displaced mainly along JV’s in the crossing-vortex lattice
structurg, formed in high out-of-plane magnetic fielBs>®,/y?s? [A. E. Koshelev, Phys. Rev. Le®3, 187
(1999, transforms into the PV lattice “trapped” by the JV sublattice at a certain field, lower dhahy?s?,
whered is the flux quantumy is the anisotropy parameter, asds the distance between Cy@lanes. With
further decreasin@,, the free energy of the crossing-vortex lattice struc{@é and JV sublattices coexist
separately can exceed the free energy of the tilted latticemmon PV-JV vortex structuyen the case of
yS<\ap With the in-plane penetration depiy,, if the low (B,< 7<1>0/>\§b) or high (B,=®,/ys?) in-plane
magnetic field is applied. It means that the crossing-vortex structure is realized in the intermediate-field
orientations, while the tilted vortex lattice can exist if the magnetic field is aligned nearakis and theab
plane as well. In the intermediate in-plane fiel;zl@on\gbs B,=®,/ys?, the crossing-vortex structure with
the “trapped” PV sublattice seems to settle in until the lock-in transition occurs since this structure has the
lower energy with respect to the tilted vortex structure in the magneticHeddented near thab plane. The
recent experimental results concerning the vortex-lattice melting transition and transitions in the vortex-solid
phase in BjSr,CaCyOg. 5 single crystals are discussed in the context of the presented theoretical model.
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The mixed state of high-temperature superconductors igortex sublattices with different orientations was analyzed
complex and rich with various vortex phaseésBesides the numerically by comparing the free energy of such a system
vortex lattice described by the three-dimensiof®) aniso-  Wwith the free energy of a mono-oriented tilted vortex lattice
tropic Ginzburg-Landau model, the new types of vortexat different field orientations and different absolute values of
structures can occur within the large part of the phase diathe external magnetic field for the case of 3D anisotropic
gram of the mixed state where the coherence length along-ondon model superconductofs™ as well as layered
the ¢ axis is smaller than the distance between gp@nes. (Lawrence-Doniach mod€) superconductors’ According
In such a case, the magnetic field, aligned with thexis,  to that analysis"** performed fory= 50— 160, the crossing
penetrates a superconductor in the form of quasi twolattice can be energetically preferable in the quite low mag-
dimensional pancake vorticéBV's)® while the field applied netic fields 8= \/BZZ~|— szsd)o/)\gb) in the intermediate-
parallel to theab plane generates Josephson vortichgs)  field orientations K O,<0<6,<7/2 with 0
in the layers between CuyOplanes'® In magnetic fields =arctanB,/B,) (B, and B, are the field components along
tilted with respect to the axis, PV’s and JV’s can form a the c axis and parallel to thab plane, respectively How-
common tilted latticBor exist separately as a crossifopm-  ever, the interaction of two coexisting vortex sublattices was
bined lattice®’ The tilted lattice represents the inclined PV not considered in those work&-''*3 Recently, Koshelek
stacks in fields applied close to tleaxis while at higher has studied the case of extremely anisotropic superconduct-
angles, the pieces of JV's linking PV’s are developé@he  ors ys>\,, and has shown that the crossing lattice can oc-
crossing lattice is another structure containing both a PVeupy a substantially larger region of the vortex-lattice phase
stack sublattice and a JV sublattice that coexist separately.diagram in the oblique fields due to the renormalization of

The vortex-solid phase diagram in the tilted magneticthe JV energy; through the interaction of a Josephson vor-
fields was first proposed by Bulaevskii, Ledvij, and Kodan. tex and the PV sublattice. In addition, such interaction leads
According to their model, which does not take into accountto the attraction of PV’s to JV'$Refs. 14,7 at low out-of-
the interaction between PV and JV sublattices in the crossinglane magnetic field8, (some sort of pinning effegt This
lattice structure, the tilted lattice is formed for all orienta- pinning may induce transitions between different substruc-
tions of the magnetic field until the lock-in transitfooccurs  tures of the crossing-lattice structure. However, there is still
if the in-plane London penetration depkh, is larger than no theoretical evidence on how a PV sublattice can influence
the Josephson vortex core with size (y is the anisotropy the JV lattice in the crossing-vortex structure in the case of
parameter and is the distance between Cy@lanes. Inthe  moderate anisotropic superconductors with<\ ,;,. In this
opposite limit,ys> \ ,p,, the tilted lattice transforms into the regard, the phase diagrimf the vortex lattice for strongly
crossing latticqas the magnetic field is inclined away from anisotropic layered superconductors should be reconsidered
the ¢ axig at a certain angle before the lock-in transition (at least for the case ofs<\,,) by taking into account the
happen$. Later, the possibility of the coexistence of two renormalization of; and the pinning of PV’s by JV'’s.
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The vortex structures in highly anisotropic layered super- +z
conductors are usually studied on the basis of the nonlinear
discrete Lawrence-Doniach modélbut this model is quite
complex and the detailed analysis of the vortex system is a) 4 =5 S
complicated. On the other hand, the layerness of supercon- 7> WY .- EECRS. /5>
ductors can be ignored on scales larger than the size of the 7=

=

nonlinear Josephson vortex core. Therefore, the linear aniso-
tropic London model could be applied for a study of the 7
vortex-crossing lattice outside JV cores. In this paper we /95
introduce the extended London theory, which allows to de- (=) (=)
scribe the crossing lattice as well as to calculate the energy

&, and the field distribution of JV in the presence of the b)
crossed PV sublattice. It is shown that with decreasing the
perpendicular magnetic field, the pancake sublattice trans-

forms from the “shifted” sublattice characterized by one-
component PV displacement along JV's to the “trapped”
sublattice where JV's are occupied by PV rows. The com- b

parison of the free energies of the tilted lattice and the

crossing-vortex structure for the casg,> ys indicates that FIG. 1. The JV crossed by PV stacks, which are shifted by the
in low (By= Y(I)O/Aib) and high 8,=®,/ys?) in-plane current_lnd_uced by_ J\a) 3D sketch depicts the deformation of the
fields, the tilted lattice can exist if the vect®@=B,e, PV lattice in the different Cu@planes,(b) 2D sketches show the

S - deformation of the PV lattice in a Cy(plane for the densdeft)
+B.& Is Q|rected CIOS? N thg ax_ls as vyell a_s near .trEb . and dilute(right) PV lattices. The filled circles correspond to the
plane, while the crossing lattice is realized in the fields ori-

unshifted PV’s while the open ones represent the PV’s shifted due

ented far enough from the crystal-symmetry axes. Furthert—o the interaction with JV current. The shaded area images the non-

more, in the intermediate in-plane fields the tilted vortex Iat'Iinear JV core region. The dashed-dotted lines mark the rows of the

tice exists only at the magnetic-field orientations nearahe nshitted Pv's while the dashed curve shows the deviation of PV's
axis whereas the crossing-vortex structure settles in the widgym these rows.

angular range until the lock-in transition happens.

This paper is organized as follows. The general equationgqditional current along the axis, which redistributes the
for the magnetic-field distribution and the energy of the Jo«pare” Jv field. Such a physical picture can be described
sephson vortex in the presence of the pancake lattice aigjith one-component PV displacement=(u,0,0), which

derived in Sec. I. The dense pancake lattice is studied in Segoes not depend on thxecoordinate(Fig. 1). The free energy
Il 1t is shown that, in the limitys>X\a, and ®@o/(¥S)*  functional F», can be written as

<B,<®,y?s?/\2,, our model reproduces the results that

were earlier obtained by Kosheléwhile the shear deforma- 1 5 - 5

tion of the PV lattice significantly renormalizes the JV en- fpazs—wf d°R(hg+V X hyAV Xh,+h5+V

ergy at the higher out-of-plane fields. Section Il is devoted

to the dilute PV lattice. It is described how the vortex sub- X hyAV X hy+ 2hph;+2V X hpKVth), 1

structure with the PV lattice “trapped” by the JV lattice can
be realized at lovB,. The phase diagram of the vortex-solid whereh, andh; are the magnetic fields of PV lines and JV,
phase in the tilted magnetic fields is considered for the castespectively, andX is the penetration-depth tensoW
of N,p>7ys in Sec. IV while the recent experimental results = (d/9x,d/dy,dldz). In the considered coordinate system,
are discussed in Sec. V. the tensor has only the diagonal componentg=A,,
=\2,, A,,=\2 with anisotropic penetration depthg, and
| JOSEPHSON VORTEX IN THE PRESENCE OF \¢. The fieldh, is determined by the displacementf PV's

PANCAKE-VORTEX LATTICE: GENERAL EQUATIONS through the London equatiaisee, for instance, Ref)2
We consider a Josephson vortex crossed with the pancake _ - au(Y;,z)e,
lattice in the framework of the modified London model. On  hp+ VX (AVXh,)=d,>, f dz e+ ————
scales that are much larger than both the distance between '
CuO, planes and the in-plane coherence lengtl, the
pancake-vortex stack could be considered as an ordinary vor-
tex line at tempgrl%tur:es significantly Ior:/ver thban tlhe eva%Ofra\'/vhere Ri(2)=(X,,Y, ) is the equilibrium position of the
tion temperaturé. ® The same approach can be also used fogy, py line,r=(x,y,z) while e, ande, are unit vectors along

o g
the description of the Josephson vortex far from the nonlm;the z and x axes, respectiveljHere we have accepted that
e parametric equation(z) (with parameterz) describing

ear core. The JV current acts on PV’s through the Lorentz

force causing their displacements along JV, which can béh = = -
interpreted as a local inclination of the PV lines away fromtheith vortex line takes the form of(z) =X;+ui(2), y(2)
the c axis. In turn, the local tilt of the PV stacks induces an=Y,, z(z)=z.] The in-plane coordinates of the unshifted

X8(r—Ri(z2)—-u(Y;,2)e), (2
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lines X; andY; are expressed through the distaneemndb =b dk, [ dk, .
[see Fig. 1b)] between PV’s and PV rows a§=al/2+aj u(Yi.z)= f, b 2T Eu(ky,kz)exm(kyYﬁkzz)]
andY;= Dbl with integerd andj. In our approach, the field of (5)
the Josephson vortex also obeys the London equation and
, 9°hy ,d%h; .
hr’\abg—?\ca—w=®o5(y)5(2), () U(ky,kz)=b; f dzuY;,z)exd —i(kyYi+kzz)], (6)

where & functions should be smoothed on a scale of theV where the domain of variation &, is restricted by the in-
Josephson vortex core. The JV-core size alongzthgis is equal|ty|kz|<1/s borne by the layerness of the system. Sub-
fixed by the interlayer distancg while the core length along stituting Eq~(5) into Eq.(4) a~nd using the well-known equal-
the y direction is limited by the condition that the current ity — =ifdzexgi(k—q)R;(2)]1=(2m)%(B,/®o)Zqd(k—q
along thec axis cannot exceed the maximum interlayer cur-—Q), whereQ=(Q,,Q,,0) are the vectors of the reciprocal
rentj.~c®,/(87°\2s). In the presence of PV’s, the current lattice (Qx=2mm/a,Qy= m(2n+m)/b with integerm and
across the layers consists of both the current of JV itself and). one gets the expansion of the field of PV’s in series with
the current born by the local inclination of PV lines. There-respect to the displacemeunt

fore, the core size along theaxis, \ ;, can be renormalized

in the presence of P\%’shind shJouId be calculated self- hp=h{"+hELu]+ h{PLu],
consistently(see next section Furthermore, the space vari-
abley could be replaced by -y, in the argument of theé
function with O<yy,=<b since the PV lattice can be arbitrary

np=n+n{P[ul+n{ u],

shifted from the center of JV. However, we talg=0, h+ VX (AVxh{)=n{, ()
which corresponds to the energetically more preferablg:Nhere
position’
Next, in order to find the distribution of the magnetic field
in the vortex system and the energy of JV, we will minimize nﬁ)o):eZCDOZ Sy(r' —Ry),

the free energyl) as a functional of the displacemantThe
fieldsh, andh; can be obtained using Eq) and(3) with dicdk
the displacement fixed by the minimization of Eq(1). W_pg J Y7 (eiO o+ eiku(k. Kk
Then, the energy of J\£;, defined as the difference of the Mo Z% 42 (&1Qx+&ik)ulky ky)
free energiegl) with and without JV, will be derived. This a0y ik
energy includes the self energy of JV and the change of the X e~ X! Ky = Ry)YglkaZ
free energy of the PV lattice borne by the interaction with JV.
We will use the elastic approximation, i.e., the free ener dk,dk,dk/dk!
o Yo pesy [T )

(1) and the magnetic field of PV's Eq2), will be expanded
up to the second order im

Using the integral representation of théunction, Eq.(2)
can be rewritten as

1 ) ) )
X\ = E Q>2<ez_ kazex) el(kz+ kz)ze7 1Qxx

hp+ VX (AVxh,) xexdi(ky+k;—Qy)y], 8
. with rt=(x,y) and Ri =(X;,Y;). The term ofh, with Q
—(I)OZ f dzf edre"iaRi(2 =0 corresponds to the continuous apprOX|mat|on and varies
on the large scale, while terms wi+ 0 are related to the

field components changing on the scaleaof
It is easy to see that only terms with,=0 will give a

contribution to the part of the free energy describing the

interaction between PV's and JV, because the figldloes

not depend orx and all terms withQ,# 0 vanish after inte-
(4 gration overx. Therefore, it is convenient to dividg" and

n{" into two componentsn(l)—n(Q)+exn h{V=h{@
The fieldh, of PV lines changes on different space scales+exh , where hng) and nf)Q) mclude summands WlﬂQx
The first scale is determined by the characteristic gradient o 0 whlle hy andng do not vary withx. Then, the free-
the displacement(y,z) and usually is much larger than the energy funcnonachross, containing only terms dependent
distancea between PV’s. The second scale is defined by then the displacement, can be introduced ab . ,ss= Fpj
discreteness of the PV lattice and it is abauflo separate —Fp—F;, where Fp and F; are the free energies of the
the contribution to the free energy from these scales, wenperturbed PV lattice and the “bare” JV, respectively. Us-
introduce the Fourier variablegk, ,k,), ing Egs.(7), we obtain the expression féi,,oss aS

X

ez{l_iqxui(2 qx |(Z)]

—iq,ui(2)}e,|.
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1 3 (QK(Q) (0)1(2)
Fcrosszg d R(np hp +2hp np )
1 3 * 2% *
+5 d R(hpnp+2thp). (9)

The first contribution comes from the terms wigh # 0 and
depends only on the short-scale variationgf It is deter-
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mation in the expressiofil) for the shear elastic energy was
done by Brandf in the limit k,< /b,

Usgs= Cook; . 13

where the shear elastic modul@sg is expressed a€gg
:(qujo)/(SW)\ab)z f0r a():\/q)olBZ<)\ab, Wh|le CGG
=N/ (680) P2 (ATN2 ) %exp(—ag/Ngy)  fOr @g>N\ap.

mined by the shear deformation and the tilt deformation. The'he tilt energy was obtained in Refs. 2 and 17,
second part describes the interaction of PV’s with JV and

with the current generated by PV's along thexis. Using
Egs. (8), the free energy.,,ss Can be rewritten in term of
Fourier variablesi(ky ,k,),

1
Fcrosszzf

B,d, dk,dk, .
ype Q;O 2.2 ik,u(k)

dk,dk,
?[UGG(ky)—i_ Uaa(ky ,K) Ju(k)u(—k)

f(k, , ky—Q,)— (B,/2dq)ik,u( —k
><( y ?y)z( 2 o)ikzu( )’ 10
1+ N5+ N (ky—Qy)?

with the shear energy

Q2
z X
Yoo~ 2 Q%O l

1+ N3pQe+ Nap(ky—Qy)?

__g;_]
1+N5(Q+ QD))
and the tilt energy

(11)

QZ
1+ NZpkS+NEpQe+ Nap(Ky— Qy)?
- Q;
1+ NZQ%+ N 2h(Qy—ky)?
+ ks
T4+ NGpkE+NEQE+N2(ky—Qy)?

z
s |

. (Na—N2p) QK2
[1+N3pkS+N2,Q5+ A 2u(ky—Qy)?]

1
X .
[14+A2Q2+N2(k,— Q)%+ \3pK2]

12

The expressions fob),, and Ugg represent sums over the
reciprocal lattice vectors witlQ,# 0, while the summation
in the last term of Eq(10) is performed only over the recip-
rocal lattice vectors witlQ,=0. The functionf(q) in Eq.
(10) appears due to smoothing of ti&efunction in Eq.(3)
and can be evaluated d$q)~1 in the rectangular region

la,|<1/s, |g,|<1/\;, andf~0 outside that area. The sum-

BZCI)O
32m2\4,

Ugs

KS)

K
In| 1+ NI
Ngp T+

K2\
+ 2
AC

(14)

ban
Ke+{k/ ¥} +\¢ 2
for k,=Kqy=2/b, while

. B, DoIn(a% £2,)

@3
3.68 5
32w\

(47N ap)*

U=

[R5
(15

for k,<Ky. Performing a summation ov€), in the second
term of Eq.(10) (see Appendix A we finally obtain the
free-energy functional

Feross= J

B,
+ ik (kg k)

dk, dk, [1 .
Yy §(U44+U66)U( yu(—k)

. B
u(k)—lkzrbou(k)u(—k)“,
(16)

whereV is defined by the equation

dob sinh(\/1+ N2 k2b/\ )

2\oV1+ )\azbkzz cosh{y1+ )\azbkzzb/)\c) —cok,b
(17)

for ky<<min(mr/b, 1/\;) andk,<1/s while ¥~0 outside that
rectangular area. In the case of small values of wave véctor
(ky<7/b andk,< y/b), the discreteness of the PV lattice is
irrelevant and the functio® coincides with the Fourier im-
age of the “bare” JV field, but¥ is modified substantially
for largerk, or k,.

The minimization of the free-energy functior(d6) deter-
mines the displacementas

W (K, ky) =

o B ik, (K)
u(k)= 7= .
AT U g4t Uget (BIKZ/ATD o) W (K)

(18

In order to describe the field distribution of a JV in the cross-
ing lattice, the averaged magnetic inductiBp along thex
direction generated by both JV and inclined PV lines can be
introduced. By substituting the determined displaceni&djt

into Egs.(7) and(8), the magnetic induction of J¥8;=h;
+hy is rewritten as

094521-4
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dk,dk,
(2m)?

dg,dq <Doeiqyy+iqzz
BJ:I - zy 22,42 2+BZEJ'
(2m)° 1+NgOy+A3p07 Qy

C
y ik,u(k)
1+N2(ky— Q)%+ K22,

exdi(ky—Qy)+ik,z],
(19

whereq, andq, are the wave vectors of a “bare” JMd,
|<1/\;, |g,/<1/s), while the wave vectork of the PV lat-

tice are restricted also by the first Brillouin zone of the PV

lattice (k,|<min(1\;,7/b), |k,|<1/s). To get the energy
&; itis necessary to adé,,ssto the energy of the JV itself.

Obviously, the energy of a JV in the presence of PV lines is
always lower than that of a “bare” JV. Indeed, for the dis-

placement of PV'su determined by Eq(18), the energy

PHYSICAL REVIEW B4 094521
_fl/)\J dqy s dq,
Vo) 2w ) us2w

(Doeiqyy+iqzz

X
L+ NZA5+ N 3p02 + A2B2/[4m(U et Cogks) ]

(22
and
_(I)g 1N dqyJ’l/s da,
V8w ) o, 2m ) _ys2w
y 1
1+ NZ05+ N 202+ B2aZ/[4m(Uaet Cegdd) ]
(23

Fcross takes the minimum value, which is smaller than zero,

since F¢,,ss—=0 at u=0. Finally, the energy of JV in the
crossing lattice obeys the equation

_Cl;(z,f dg,da, 1
T 8m) (2m? 14222+ \207

- B2 fdkydkz K2W (k)W (—k)
3272 (2m)2 Uyt Uggt (K2B2ATD )W (K)

(20

The last undefined parametar;, can be obtained from the
condition|dB;(y~X\;,z=0)/dy|~ (4w/c)j.,

- J'mj 1s
——=\ d d
N2s ), Rl T
. %
1+ NEay+ 3505+ a2B2/[47(U 4at Coglld)]

(24)

The region of integration is shown in Fig(&. The rect-

angular domain of possible wave vectors replaces the usual
) ) elliptical one due to a peculiar core structure of JV. In the
currgnt density along th? axis shoqld be smaller than the anisotropic London model, the core of an ordinary vortex is
maximum current. density;, determine completely the be- defined by the elliptical stream line of the persistent current
havior of the PV lines and the JV. However, in further analy'having the depairing valu.However, in our case the maxi-
SIS it Is convenient to |nv§ast|gate the densgsta) and 1 m value ofq, is determined by the layerness of the me-
dilute (ys<a) pancake lattices separately. dium while the largest value af, is restricted by the Joseph-
son critical current along the axis. The rectangular domain
of wave vectordFig. 2(a)] can be divided into “screened”
(lk/=1/b) and “remote”(|k,|]<1/b) subdomains. The first
one corresponds to the region where one can roughly neglect
For the case of the dense PV lattice, many PV rows aréhe weak logarithmical dependence lonin Eq. (14) to ex-
placed on the nonlinear JV cof€&ig. 1(b), left sketch. It press the tilt energy as
means that the magnetic field of a bare JV varies on scales
larger than the distance between PV lines even near the JV
core. Thus, the continuous approximation is applicable in the . .
whole space. In this cask| < 1/\ ;< /b and, therefore, the with U 4= (B, ®¢/32m\5,)IN[1+k, Z(\;2+b )], Cus
cosine and hyperbolic functions in E{.7) can be expanded =(Bzd>0/32772>\§)|n(§;§/[b‘2+@2/¢)+xg2]) and E
in the series. Hence, the functioh can be rewritten as ~ (1lbs. The expression(25) is completely wrong in the
“remote” region in which it is necessary to use H35). By
using approximatior§25) for the tilt energy, the integrals in

Equations(18)—(20) together with the condition that the

II. JOSEPHSON VORTEX IN THE PRESENCE OF DENSE
PV LATTICE

Ugg~Ugyt E44"5 (25

P

Y= (22) Eqgs.(23) and(24) are easily evaluate@ppendix B and we
1+ NZpkZ+N2KS get
Substituting this expression foF into Egs.(19) and (20) N ~ma E E)\ 26)
and omitting the difference betwednand g, the equations J )\ggf’ )\gf)f ab
for the dense PV latticéwhich determine the field distribu-
tion and the energy of Jvare deduced as and
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A Y (26) and (27)]. In the opposite case, i.e., when the London
b penetration depth exceeds the JV core size, the shear defor-
a) 1 mation becomes relevant and as a resyltlecreases witB,
slower than was proposed in Ref. 7.
To understand how the field of JV is distributed in the real
S d /b Us b space, we rederl\{e the results qon5|der|ng the_ free-energy
::;f;f S::e?;‘;d i L functional of the displacementdefined as a function of the
Remote & % spatial coordinates. In the limits>a, the JV field varies on
region scales larger than the distance between PV’s even near the
JV core. This means that the fieitd along thex axis can be
averaged out on the scale larger tt@n
s . 2% 21 *
P;l;.l;lng a4 Plnqmg h*_)\zb‘? hp _)\2‘9 hP =n*=B (29
region a C z .
Non-screened  region However, the short-range variations of the fiblgigive the
% wh /" shear energWgg and the tilt energyd 4. After ignoring the
slow logarithmic dependence &nin the expression fod 44,
Screened /b Screened YD {1/s one can conclude that the density of the tilt energy in the real
region Remote region = space iU 4,u?(y,z), while the density of the shear energy is
region Ugs= Ces(dU/dy)?. Thus, the free-energy functional is ex-
; pressed as
Non-screened region

1 5 au\?
_ _ o Fcrosszgf d°R| 47Cegq W
FIG. 2. The integration region in Eq$19) and (20) for the

dense PV latticéa) and the dilute PV latticéb). In the dense case _ Ju N
(@), the region of the available wave vectdtsof the PV lattice + 47U u’+ h; Bz&—+2h33—
coincides with the accessible domain of wave vectgréhe con- z z
tinuous approximatiori21) for ¥ is always valid. The approxima-
tion (25) is correct in the “screened” domain of wave vectors, while
it fails in the “remote” region. In the dilute casd), the continuous

approximation is correct only in the regidqy| < /b, [q,|<y/b; . .
the “non-screened” regionaq,|>7/b is not accessible fok. The of the PV lines with the current generated by JV.

continuous approximation fo¥ (k) is broken in the “pinning” re- In order to get the complete set of e.qu.ations. for the dis-
gion |k,|< /b, y/b=|k|=<1/s. placementu and the averaged magnetic inductiBa, we
Y have minimized the functiondB0) and have added together

Egs.(3) and(29),
CD% C66 Aab )\cut
£y~ - 2 2=, (@27)
16772)\gb )\C U44)\ab )\J )\J &zu

. (30

The first three terms represent the elastic endébmpyne by
shear, electromagnetic tilt, and Josephson-coupling tilt rigid-
ity, respectively, but the last term is related to the interaction

By

—47Cqg— + 47U 4u—2B,— =0,
where m % 52 T Z 9z
i - AN W N
Neur™~min(A¢,min(yb,maxbhc/\gy , VBN N ap/NGH))), , 19283 2(9283 U
while the renormalized penetration deptf]' is expressed as By—N3p 2 oy =®od(y)8(2)+B, . (31
2
Aeff= A /N2 + B: (28) This set of equations is applicable if the continuous approxi-
ab ab 47Uy, mation is valid ¢ ;> a) and, strictly speaking, only when the

The physical reason of the renormalization of the in-plan {ilt energyU,,(k;) can be replaced by the constdy,. The

it ; ; 200 \y2) A2
penetration depth is related to the screening of the JV fieﬁ]""s’t2 cond|t|9n“fa|ls fo: d|s_tances far from_JVz tryly
by currents borne by the local inclination of PV lines. From =) In this remf?ttza rezglon,.the constarily, has to be
Eq.(26) it is easy to see that the size of the nonlinear JV coréSubstituted by-C5,'9%/ 9z°. Besides, ik ap> ys, the param-
also decreases due to the interaction of JV and PV'’s. TheterU,, should be replaced by C,,0%/ 92> near the JV core
similar conclusion was given earlier by Koshelewho con-  (z<\,p/7).
sidered the additional phase variation of the order parameter Even though we consider only the situation when the set
borne by the displacement of PV's. However, the shear conef Eq. (31) is valid, i.e., the case ,,<ys and the region
tribution to the renormalization of; and A ; was neglected z?+y?/y?<b?, the solution of Eqs(31) seems to be quite

in Ref. 7, which could be done only for;>\,, [see Eqs. complicated. The relation between the displacememind
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the magnetic inductiom;, which is obtained from the first evant, the JV core size becomig=N\ S/\S{'~ysa/\,p,

equation of Eqs(31), becomes nonlocal due to the shearand the energy of JV is determined by the logarithmic term
rigidity of the PV lattice, in Eq. (27). Below the field®y/)\2,, at which the distanca
_ between PV'’s exceeds,,, the currents generated by PV’s
B, < _dB;(y,2) v practically does not influence the JV field and, thus, the
u= \/—_ _xdy 9z ° Y (32 renormalization of\ap, Ny, @and&; vanishes. In the case of
87N CeeUas Nap=>7ys the physical picture is different from the previous
situation. The core size obeys the law=/ysa at fields

— T 22 . .
where 5=\ap\Ces/ (Uadkap) ~Nap IS the characteristic o _ g o2 geiow this field, the effective value of the
length of a nonlocality. However, the nonlocality is irrelevant .

; ff_\2 ;
if the space scale of the variation Bf is substantially large in-plane London penetration deptil, ~\3,/a [Eq. (28)] is

C till larger than\ ,,, while the JV core size is saturated as
than§, i.e., if \j>\,,. In such a case, the Eq81) for B; N o . ab» ) .
andu can be decoupled, N\j=7s. This means that the JV field shows different behav-

ior far from JV (z2+y?/ y*>b?/vy?), where the redistribution
B, B, due to the local inclination of PV lines is still important and
u= - close to the JV core.
477U a4 0z

2B, 5B, IIl. JOSEPHSON VORTEX IN THE PRESENCE OF
—>\56—y2=<bo§(y) 8z). (33 DILUTE PV LATTICE

Fria
Far from the JV centerz’+y?/y*>b?/»?, the JV field

Equation(33) for induction B, is the London equation with yaries slowly, which causes the smooth variation of the dis-

the renormalized in-plane penetration depfiy’. Therefore, placementu even for the case of the dilute PV lattica (

the field distributionB3;, not far from the center of the Jo- > ys). In that spatial region, the continuous approximation is

sephson vortexz+y?/y?<b?), can be approximated as still valid. On the other hand, near the JV cofg|&b), the

JV current increases quite fast inducing a large displacement

of the PV stack placed on the center of JV. In this case, the

continuous approximation is not applicable. To describe such

a physical situation, we consider the wave vector arel of

where Ky(x) is a modified Bessel function of zero order. divided into two domaingFig. 2b)]. In the first interval

Using the free-energy functioné80) and Eqs(31), itis easy  |ky|<a/b and |k |<y/b, the function ¥ can be still

to show that the energy of JV is determined by the field in itsroughly approximated by the equatidﬂ~d>0/(1+)\§k§

center, i.e.£;=®y/(87)By(y=N\;,z=s), +A2,k?), while ¥ ~dqb/(2\ A apk,) is the approximation

in the second regiofk,|<=/b and y/b<|k,|<1/s [“pin-

ning” region in Fig. 2b)]. Following this approach, the en-

ergy of JV is evaluated as

P

KO, (3
ab *c

BJ:

2
0

——— % In(\%s) (35)
16m2\EMM (Nab

&

with the lengtha*,=\¢{". However, the set of equations Ey(a>ys)
(31) becomes incorrect in the regia’d+y?/y*>b?, which ©2 (b d b
cuts off that length as\*,~b. Thus, the expressiof85) ofm ﬂfy a9,

coincides with the earlier obtained E(7) in the studied 8T —mb2m ) -y 27
casel ;>\ ,p. The resultg34) and(35) can be interpreted in
terms of the effective anisotropy parametét '=x ./ 8", » 1
which governs the JV lattice. Sineé&l™>\p, the effective 1+N205+ N 5,02+B202/[4m(U 44t Ug) ]
anisotropyy©f is reduced in the presence of PV's with re-
spect to the “bare” oney=\./\,,. The similar anisotropy D3 b B,®3
y¢ff was earlier introducedas a ratioy®' =\ /s, but these t o Il —5)— 30202
/ ntre s ar 3/, buttr 167NNy | 7S/ 128m3an\?,
two different definitions ofy®'" give the same value in the
casel ;> \ 5, When the shear deformation is irrelevant. J‘lls dk, 36
Here, we discuss how the core size and the JV energy are oUast B, oKyl (BThohapd)

changed with the magnetic inductid®, if ys>\,,. For
quite high magnetic inductions B,=B;=(®y/\5,)  The first term comes from the spatial region far from the
X(ys/\ap)?, the size of the nonlinear cokg is smaller than  center of JV while the second and the third terms are related
Nap and the shear contribution to the free energy is impor+o the vicinity of the JV center. The screening of the “bare”
tant. The second logarithmic term in the JV ene@y) can  JV field vanishes near the J¥nonscreened” region ik

be omitted, and the core size obeys the equahg(B,)  spacg, which determines the second term in E86). The
=\/ysa. With decreasing of induction, the core size in- last term in Eq.(36) represents the energy gain due to the
creases proportionally t8, Y4 and reachea ., at B,~B;. strong interaction between the PV line placed on the JV core
At low fields, the shear interaction between rows is irrel-and the JV currenfthe energy gain of a PV stack placed on
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a JV in the limit ys>\,, and B,—0 was calculated by el : o
KosheleV). Since the last term is sensitive to the mutual e — Q
position of JV and the nearest PV line, this contribution can bJI —— ———
be called the “crossing-lattice pinning.” Using the results of _:‘_—'_q’g: ° .
Appendix B and taking into account that the evaluation aJ 9
BZQDOKZ/(B)\C)\aba)sCMkﬁ is held in the “pinning region” a) .
(k,>v/b), the energy of JV is finally obtained, H ¢ 8
Df 2u1Caa¥® N3p 15Ce6 A ap 6 4 |
&~ il o a2 et N T 2 p P :
167 Nehap | mUaahgp DN U\ zp : P 2,
(¢} : .
@ Neut 5 b - 1
e o™ Ty T e M s , i !
167NN b ) 16m°NNg | VS o i
1 o}
1 1 ] V

P2 b—ys
—u arcta ,
Cc

Aman VU 4/ Cyusb+ yVCiyslUyy
(37

where u=B,D/(327°A A2,VCsU4) <1 is the dimen-
sionless function depending quite slowly 8g and the nu-
merical parameterg, and u, are about unity.

Next, we will discuss how the renormalization of the JV c)
energy comes in with increasing of tazecomponent of the
magnetic field. At low fieldsB,< <b0/)\§b (a>N\gp), the first J §
term and the last term in Eq37) can be omitted and the
expression for the energy of a “bare” JV reported earlier in  FIG. 3. The different substructures of the crossing lattieg.

Refs. 19 and 20 is reproduced, The “shifted” PV lattice characterized by one-component displace-
ment along JV’s(b) the PV lattice trapped by the JV sublattice for
P2 A the case when the distanag between JV’s exceeds the distarice
EJZZ— n —) (38) between PV rows,)che “trapped” PV lattice fora;<b, i.e., in the
167 NeNap | 7S case of the field orientations very close to #ieplane. The dotted

- _ lines depict the rows of unperturbed latti@ossings of these lines
For the case.,,> s, the renormalization of JV energy be and filled circles mark the positions of unshifted PVis all

CQmeS relevant £Z~¢0/A§b' ,"e" earlier than the ‘]\,/ COT€  sketches. Dashed-dotted lines indicate the rows of the “trapped”
size Startsz to decrease, which occurs only in fieBlS  py atice that are deformed in order to match with JV sublattice.
>®q/(ys)". The origin of this behavior is that the addi- The arrows directed from the filled circles to the open ones show
tional current along the axis induced by tilted PV stacks is the two-component displacement of PV's for the cases represented
much smaller tharj. near the JV core in the field interval in sketchegb) and (c). Inset in(a): the JV sublattice with lattice
®y/\2,=B,=®,/(ys)?, but the inclination of all PV lines parameters, andb, (lines mark the Cu@planes. Inset in(b): the
can still cause the renormalization of the JV field on scalesdditional deformation of the PV lattice, which is required for trap-
larger thana. In the field interval@o/A§b< B,=< (Do/yzsz, ping of PV’s by JV’s. The upper sketch is the equilateral triangle of
the main contribution to the Josephson vortex end®f the unperturbed PV lattice, which is incommensurate with the JV
comes from the first term related to the tilt elastic rigidity lattice (&;#pb with integerp). The lower sketch is the isosceles
(born by Josephson coupling of PY'and shear elasticity of triangle of the PV lattice matched with the JV sublatfieg=p(b
the PV lattice. Strictly speaking, from our rough estimation ™ 9P}
of Eq. (20), we cannot conclude how strongly is sup-
pressed in that field interval, i.e., in the presence of the diluteate,a;# pb with integerp. This means that the considered
PV lattice. Nevertheless, the pinning eneftast term in Eq.  one-component displacement of P\is=(u(y,z),0,0) [the
(37)] could be of the same order of magnitude as the first andshifted” PV lattice shown in Fig. 8)], does not provide the
the second terms in E¢37) in fields B,~®,/\2, and may energy gain coming from the “crossing-lattice pinning”
decrease; substantially. since the PV rows cannot occupy the centers of JV's. How-
Another interesting possibility arising due to the “ ever, the PV’s can be rearranged in order to occupy all JV's
crossing-lattice pinning” is the rearrangement of the PV lat-[the “trapped” PV lattice shown in Fig. ®)] if the PV lines
tice in the presence of the JV sublattice. In the in-plane magshift also along they direction, u= (uy(x,y,z),u(x,y,2),0).
netic fieldsB,, JV's form a triangular lattice with distances The “crossing-lattice pinning” decreases the free energy of
aj andb; between JV'Ysee inset in Fig. @]. In general, the “trapped” PV lattice, while the additional shear deforma-
the PV sublattice and the JV sublattice are not commenstution acts in the opposite way through increasing the free
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energy. For the cas®,< yB,, the energy gain related to the
“trapped” PV lattice is calculated by normalizing the last
term of EQ.(37) per unit volume,

B,® b—1ys
E: 0 arctar( ) . a)

=u — N
Amake \/U44/C445b+ 7\/C4A/U44
(39

But, in order to trap the PV lattice, the total displacement of =3 -
PV's along they axis between the two nearest JV rows, i.e., - o>

on the scalea;, should be aboub. Following the simple
analysis?! the extra shear deformatigimset in Fig. 3b)] is

H,
aboutsb/b~b/a; (b is the change of the distance between b) w : A
rows of PV'9 and the energy losE;;,.,5,Can be estimated as : H.,

b)? C B 40
=V GGE (40)

Eshear=Ce4l a
J

with numerical constanv<1. For the caseys>\,,, the
shear elastic energyt0) is strongly suppressed in the fields
B,<®,/(ys)? where the “crossing lattice pinning” is ac-
tive, since Cgg is exponentially small ifa>\,, [see Eqg.
(13)]. Therefore, the “trapped” PV lattice seems to be real-
ized as soon as>ys. In the opposite case\,,=ys, the
transformatio” from the “shifted” PV lattice to the
“trapped” PV lattice occurs when the energy gdii, ex- FIG. 4. The 3D sketches of the different vortex structures in the
ceeds the energy lo$5,,c4,. It happens at a certain out-of- tilted magnetic field with the componenits, andH ,,, along thec
plane field between the fieldb,/(ys)?, at which the axis and in theab plane, respectivelya) The tilted vortex lattice
“crossing-lattice pinning” is activated, and the fielg, near thecaxis(Tl), when the current between Cy@lanes is much
N(I)O/)\azlbv where the shear elastic energy rapidly decrease%m?”er than the critical valug, , ie, the Josephson strings linking
Next, we discuss the difference between the considereg]vS are not developedp) the t'l.ted vortex lattice far away .from
“trapped” state and the “chain” state proposed for the cross- ec a>|(|s .(T”)’ when the JV strings are forme(t) the crossing-

ing lattice! The “trapped” state is related to the rearrange- vortex lattice.

ment of PV’s on the scala; between the nearest rows of ] o ) )
JV's. On the other hand, the “chain” state is associated withPhase diagram in tilted fields, the free energy of the crossing
the creation of an extra PV rofan interstitial in the PV and tilted vortex structures will be cpmpared. We cq.ncegtrate
lattice) on a JV, but the influence of the neighboring JV's is O" the Caseyso<)\ab,_when, according to Bulaevskit al.
completely ignored. As a result, the “trapped” and “chain” and Koshele¢ fche tllte_d_ lattice is energ_etlcally preferable
states have different in-plane field dependences of the ouiPove the lock-in transitiohwe will consider a thin super-
of-plane transition fields. The out-of-plane transition fidld conducting platelet with the axis perpendicular to the plate.
between the “shifted” and “trapped” PV lattices does not I_n this geometry the Iock—lr; transition occurs at very _Iow
depend orH, in contrast to theH,,,-dependent out-of-plane fields’ B,~(1—n,)®o/(4m\3,)In(5/&,) with demagneti-
field’ of the destruction of the “chain” state. Since the zation factom, (1—n,<1).

analysig is correct only in the case ofs>\,, and a For the field oriented close enou_gh to tb_eaxis, targ
>\,ap, the transformation of the PV lattice discussed here=Bx/B,<y, the ffé?e energy of thg t";f?d lattic; can be
seems to be more likely in the cakg,> vs. evaluated a$,=F;+3C,, (k=0)B;/B; in analogy to the
analysis given in Ref. 7. Her&. represents the free energy
IV. PHASE DIAGRAM OF VORTEX LATTICE IN TILTED in the absence of the in-plane magnetic f|8|d, while the tilt
: ; tilt /L — ) — R2 eff i
MAGNETIC FIELDS modulus is expressed &S,,(k=0)=B;/4w+C;, with

) ) _ ) Cﬁf defined in Eq(15) for the case 0B,=®,/(47\2,). As
In this section we discuss the vortex lattice structuresy resylt, we have

formed at different field orientations. The tilted lattice con-
sists of mono-oriented vortices and transforms continuously

from the tilted PV stacks in fields near tleaxis [Fig. 4(a)] B2 ®oB, He, B2
to the long JV strings connected by PV kinks for the field Fe= @4' 32772)\ 2 In B, + 8
orientations close to thab plane[Fig. 4(b)]. On the other ab
hand, the tilted lattice is topologically different from the ®2 2 29

. . 0 Bx Bx 0 HCZJ_
crossing-vortex structurg-ig. 4(c)], and they replace each +3.68 i) 525 In 5 (47
other via a phase transiti6nEor the analysis of the vortex 2(4mhqp)" B 64T°NCB, Pz
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whereH,, = ®y/2w£2, . The first two terms form the free kink.° We note, that the tilted vortex lattice in the considered
energy forB,=0. The third term is the in-plane magnetic angular range of the magnetic-field orientations seems to ex-
energy, the fourth one comes from the electromagnetic interist as a kink-wall substructure, where kinkiselonging to
action of the inclined PV's, and the last contribution is con-different vortice$ are collected in separated walls parallel to
nected with the Josephson coupling of PV's. the yz plane?® For the kink-wall substructure of the tilted
The free energy of the crossing lattiEg consists of two lattice, the contribution to the free energgp) attributed to
contributions from the PV sublattice and the JV sublatticethe PV kinks, is slightly reduced in the high in-plane mag-

while the interaction of PV'’s and JV’s is taken into accountnetic fieldsB,>®,/ys?2° which can be taken into account
through the renormalization of the JV energy, through renormalizatiortd ;= ®,/(87\2,) IN(yHe/B)).
In the considered field intervaB,> yB,, B,<®y/\2,,
B @B, Hep BE By the renormalization of the JV energy in the crossing-lattice
FC:E’L 32Wz)\§b|n5_z+ E’L@TOEJ' (42 structure vanishes. However, the interaction of PV and JV

sublattices still manifests itself through the “crossing-lattice
The renormalized JV energy; is defined by Eq.(20) in  pinning,”
which the lower limits of integration are restricted by the

conditionsqy, k,=1/a; andq,, k,=1/b;. B2 DB, ®, Hy, B,
The tilted lattice is energetically preferable in the fields F°:8_ 5 n—s 7
oriented near the axis becaus&,<B2, while F,xB,, i.e., T 32w Naphe  ¥S By m
F.<F. for low B,. The phase boundary between the tilted _—
lattice and the crossing structure can be obtained from the — 1B, / Bx®o arcta 1- VBx/Ho
conditionF,=F, which is rewritten in the form * NV er?y\2, VHIHg+ /By [HX
& B2 (46)

B Do 1.84D2/ (47N )+ DB,/ (64m2N2)IN(Hy, /B,) with Hep, =®o/(4mh2)In(\p/éx) [the critical radiusr

(43 for the in-plane current of a P2V stack is abouy, (Ref. 6],

X : .

The transition from the tilted lattice to the crossing structure o= Po/¥s*, andHY=y®o /N5, . The third term is the en-
occurs at the field oriented quite close to thaxis for high ergy of the unp‘erturb_ed PV .Iatt|c_e, Wh'!,e the I_ast term corre-
anisotropic superconductors due(® the high energy cost spond; t.o' the “crossing-lattice pinning coptnbuqon, which
of the inclination of PV stacks in the tilted lattice related to ¢@n significantly deczrease the free rzenngym}he in-plane
the electromagnetic interaction of PV'’s, afii] the decrease fi€ld interval y®o/\5p=B,=®,/ys". The difference be-
of the JV energy in the crossing-lattice structure. For théWeen the “crossing-lattice pinning” contributions to the free
dense PV latticd8,> ®,/(ys)2 and A 4p> 7S, Eq. (43) can  €nergy in the cases of loB,<yB, and highB,> yB, in-

be simplified, plane fields[see Eqs(39) and (46)] emerges because the
number of PV lines is sufficient to occupy all J\Big. 3(b)]

Ces 2)\§b B§ at.BX< 78; while some JV strings do not carry PV rows
Be=\/=—; i ) [Fig. 3(c)] in the opposite case. By analyzing E¢45) and
UsapAohan  ¥®o (46), we can conclude that, at least fBy=y®y/\2, and

B,
+ =—In(H.,, /B . . : :
2y (Hez, /8,) B,=®,/ys?, the tilted lattice exists near thab plane since

(44)  the condition F<F. is held due to the inequalityH,
<H,.1, . The tilted lattice is replaced by the crossing-lattice

Next, we will study the field orientations close to taé  with increasing the out-of-plane magnetic field abd®g
plane,B,>yB,. Here, the electromagnetic interaction be- =B, /y. However, it is difficult to determine the contour of
tween PV’s in the tilted lattice is not so important and thethe possible phase line between the crossing and tilted vortex
free energy in the love-axis fieldsB,<®,/\3, is reducefl  structures, since it requires the more precise calculations of
to the free energie§. andF; in the regionB,<+vyB,. In the
intermediate in-plane magnetic fieIdSyCDO/)\gbs B,y
=d,/ys?, the “crossing lattice pinning” could make the
crossing structure more energetically preferable with respect
to the tilted lattice. In that case, the crossing latficH) [see
where Hy=®o/(4m\2,)In(yg£y). The first two terms are Fig. 3b)] with a<a; transforms into the crossing lattice
related to the energy of JV strings while the last one is assoClIl) [see Fig. &)] with the extremely dilute PV sublattice
ciated with the energy cost of the formation of PV kinks. Ina>a; at the angled=arctanB,/B,)~arctany.
detail, the PV kink generates the in-plane current, which de- Therefore, we find a complicated picture of phase transi-
creases with the distancefrom the kink center as fil/lup to  tions between the tilted vortex structure and the crossing
a critical radiusr of the region with 2D behavior where the vortex structure in the casgs<\,,. The proposed phase
current along the axis is about the maximum possible cur- diagranf*is shown in Fig. 5. As it was suggested eafli@nd
rentj..% At larger distances, the in-plane current decays exaccording to our calculations by using E@3), the tilted
ponentially. Simple evaluation givesy=vys for the PV  vortex structurgTl) of inclined PV stack$see Fig. 4a)] can

4.3m2\2,

B @B, ®, H,B,

Fi=5—+ In ,
© 8™ 32w\ N, ys?B, 47

(49)
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FIG. 6. TheH,,-T phase diagram of the vortex-solid phase at
field oriented near theb plane B,/B,=y=100). The region
of the crossing-lattice phas€lll) becomes narrower and finally
disappears with increasing temperature. Inset: the same phase dia-
gram fory=150. The dotted lines correspond to the experimentally

. _ T2 2 i
crossing lattice CllI to the tilted lattice TII or the crossing lattice determme@ .tem.perature dependehkg%“l, TIT; Pf the in plgne )
Clll happens. The arrows from enframed TI and TIl are directedcharacterlstlc fields of the vorte;<o—latt|ce melting transition in
toward the regions where these vortex structures are realized. Ins&!zsrzca(:_Lt08+5_'n the t'm_ad_ fields™ (for instance, symbols rep-
the part of the phase diagram close to ¢hexis for strongly aniso- resented in the inset exhibit the temperature dependence of the
tropic superconductors wity=500 (ys>\,,) andT=45 K; the maximum in-plane field of the vortex-lattice melting transifion

a 1

solid line marking the transition from the tilted lattice Tl to the

crossing lattice is obtained from E¢3), while the dashed line away from thec axis to theab plane. Such po;sibility for
corresponding to the same transition is calculated by using@fq. 0w fields was earlier mentioned in the wotks®in which

of Ref. 7. The parameters are chosen to give some insight to thie interaction of crossed sublattices was not considered.
behavior of BjSr,CaCyOg_ 4 in the oblique magnetic fields. Moreover, we note that the instability of the tilted lattice was
found numerically by Thompson and Mod&rdfor y=100)

be replaced by the crossing lattice quite close todfaxis ~ Only at the intermediate-field orientations 9%, <0< 6,

(see phase diagram obtained fpr=500, inset in Fig. & <90°, which could also support the dlscussed scenario. The
Nevertheless, in the higb-axis magnetic fields, the calcu- Parameters taken for théi-H,, phase diagram aff
lated in-plane magnetic fields of this transition are higher=45 K (Fig. 5 and the Hny-T phase diagram at the
than those obtained by using the model developed bynagnetic-field orientatioB,=B,/y (Fig. 6) were chosen to
KosheleV, This difference comes from the shear contributiongive some insight into the behavior of vortex array in
to &, which was omitted in Ref. 7. The crossing lattice, Bi2SCaCuyOg.g (BSCCQ in the tilted magnetic fields
which exists in a wide angular range, can have different subésee further discussioras A ,,=2000A/1—T%T2 A, &,
structures. At high enough out-of-plane fieBs>®,/y%s?>, =30N1-T/T, A, s=15 A, T,=90 K, y=100 (y

the “shifted” PV sublattice is realized in the crossing-lattice =500 for the inset in Fig. 5 angti=150 for the inset in Fig.
structure (CI) [see Fig. 8)]. In this substructure, the JV 6).
currents shift the PV’s mostly along tixeaxis. The “shifted”
phase can transform into the “trapped” PV lattigell) when

the energy gain related to the “crossing-lattice pinning” ex-
ceeds the energy needed for the additional shear deformation This theoretical investigation was partially motivated by
(the dashed line in Fig. 5 separating Cl and Cll has beetthe recent intensive experimental studies of the vortex-lattice
obtained from the conditiofE,, = Egpes). Around the line  melting transitioR®3° as well as transitions in the vortex-
B,=yB,, the lattice CIl can be changed by the tilted lattice solid phas&-3!in Bi,Sr,CaCyOs_ 5 single crystals. The ob-
(TI') with JV strings linked by PV kink§Fig. 4(b)] or by the  served linear decay of the-axis melting-field component
crossing-lattice structur€Clil) at which all PV stacks are H with in-plane field®?” was interpretefias an indication
placed on a few JV’s. The domain in ti.-H,, phase dia- of the crossing-vortex lattice. Thus, the tilted lattice could be
gram with the lattice ClII is determined by the condition replaced by the crossing vortex structure quite nearcthe
F.<F., whereF andF are defined by Eq$45) and(46),  axis. According to our calculations, the angle where such a
respectively. With increasing temperature, the region of tharansition may occur is about 7° &,~100 Oe andy
lattice CIII becomes narrower and disappears at a certair-500 while that angle reaches 14.5° in the higher out-of-
temperaturgsee Fig. 6. The proposed phase diagram sug-plane fieldB,=500 Oe, which correlates well with the dis-
gests the possibility of the reentrant tilted-crossing-tiltedappearance of the hexagonal order alongcthgis found by
phase transition as the magnetic fig¢lt least with lowB  neutron measurement$With further tilting of the magnetic
<y®y/\2, or high B=®,/ys? absolute valugis tilted field, the linear dependence of theaxis melting-field com-

FIG. 5. The proposed phase diagram of the vortex-solid phase ir]1
the oblique magnetic fields calculated using E@Q), (40), (43), the
(45), and(46) with parameters mentioned in the teXt=45 K, vy
=100, andv=1. The dotted line is the lin&,=yB,, while the

V. CONCLUSION
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ponent HE“éH%)) abruptly transform%? into a weak 1 @ sinh(ra)

dependencé,™=” which, as was showtf, cannot be ex- =57 —

plained in the frame of the mod&Such behavior suggests a 7 rP4(t+2an/a)? 20 costira) - codta)

p'hase.tran.sition in the vortex-;olid phase in tiltgd magnetinith real numbers, t, anda.

fields in BIZSrZC_aCL_éOSM, which was detected in t_he re- Next the sum Wy(ky,k)=®DoZo —ompf (ks K

cent ac magnetization measureménts.As was mentioned 5 2 o Y y ) Y

by Ooi et al.! the behavior of the new anomaly of the local ~ Qv)/[1+Xapkz +Ac(ky,—Qy)7] needs to be estimated. By

magnetization in BSCCO attributed to the phase transition i#'Sing inequalityk,=1/s, we obtain f(k;,ky—Qy)~T,(k,

the vortex solid slightly reminds of the peak effect related to~ Qy) Where f,~1 for |k,—Qy[<1/\; and is zero other-

the vortex pinning, which, in turn, could be induced by theWise- In the case of the dense PV lattide<{\ ;) we retain

vortex trapping by planar defectsSuch analogy, as well as Only the term withn=0 in the sum and get the expression

a very weak dependence of thexis magnetic-field compo- ‘I’l(zky2> UN)=0 and  Wy(ky=1\;)=Po/(1+N50k;

nentH* of the phase transition on in-plane magnetic figlds +Acky). Taking into account the inequality, <1/x ;<1/b

in a wide angular range could suggest the transition from tha@nd 1+ A2 k?b/\.<b/(ys)<1, one can rewrite¥, (k,

“shifted” PV sublattice (Cl) to the “trapped” PV sublattice = <1/\;,b<<\;)=W(k,,k,). Thus, we come to Eq16).

(Cll) in the crossing lattice structure. Our estimation of the For the case of the dilute PV lattica {<b), many terms

c-axis field H/® of the transition from CI to CI[H®"  give contributions to the sur¥;=d SN__ 1[1+\5K3

~450 Oe fory=100 atT=45 K(see Fig. 5] (Ref. 33 isin +)\§(ky— 27n/b)?], since inequalityk,—27n/b|<1/\; is

a reasonable agreement with experimental find‘hgsg(T held until n exceedsN>1. Thus, the functiortV; is esti-

=45 K)~430 Oe. Near thab plane, the properties of the mated as

observed anomaly changes abruptly and the figldsharply

goes to zerd! which may indicate a transformatiohin the ob = dx

JV lattice or a trace of the phase transition from Tl to Clll. ~ W1(ky k) ~W(ky k;)— j > 7 73
; . . . . . T Jangl+ N2 Ko+ N2X2

At higher in-plane fields, the determined stepwise beh&Vior a apfz ™ e

of the vortex-lattice melting transition may be related to the (A2)
existence of one more phase transition in the solid phasq;ma"y we obtain¥,=[1— B(k, ,k,)]¥ with
Interestingly enough, all characteristic in-plane fields of the ' v
vortex-lattice melting transition depend on temperature
proportionally to 1- T2/T§, which is similar to the calcu- cosh \/1+)\azbk27b/)\c)—cos(kyb)
lated temperature dependence of the phase transition from B(ky kp)~= inh( y/ 2 12p/
Clll to TIl (see Fig. 6. SINACVL+ A Gpkzb/A )

In summary, we discussed the crossing-lattice structure in 2 N
a strongly anisotropic layered superconductor in the frame- X|1— —arctar( —C) . (A3)
work of the extended anisotropic London theory. The renor- 7T NgVI+NGpK;

malization of the JV energy in the crossing-lattice structure o

was calculated in the cases of the dense PV lattice as well & |k-|<1/s, it is easy to show thaB=<\;/b<1, and the
the dilute PV lattice. It was shown, that the “crossing-lattice @PProximation¥; ="V used in Eq(16) is excellent. Only for
pinning” can induce the rearrangement of the PV sublatticé<z~ 1/, the function'¥’, can differ from the function by a

in the crossing lattice structure as soon as the out-of-plant&ctor of about unity in the case of the dilute PV lattitee
magnetic field becomes lower than a certain critical valuefactor is 1= 8~0.5 in the framework of our rough consider-
The free-energy analysis indicates a possibility of the reenation). However, the correct estimation of the value of the
trant tilted-crossing-tilted lattice phase transition with incli- factor depends on the type of the smoothing function and

nation of the magnetic field away from tieeaxis to theab ~ requires more precise analysis than that in the framework of
plane in the case of ;,> ys. the London approach. Therefore, we can always assume

¥, =W in our semiquantitative consideration.

APPENDIX A:  APPROXIMATE SUMMATION IN
EQUATION (10) APPENDIX B: EVALUATION OF INTEGRALS
IN EQS. (23), (24), AND (36)

. In this appendix, the integrals in Eq®3), (24), and(36)
o, S ik u(k)f(kz,ky—ZWn/b)—(BZ/2<I>0)ikzu(—k) are evaluated. We start with the dense PV lattice) ;. In
LA 1+ M2 K2+ \3(k,— 27n/b)? the regionq,< 1{b, the tilt energy is smal!, Eq.15). There-
abtz = Telly fore, the denominators of the integrands in E&8) and(24)
=ik, ¥q(ky ,kz)u(k)+(BZ/2q>0)k§\Ir(ky Jk)Hu(kyu(—=k). are substantially larger than those in the agse 1/b and we
can roughly neglect the contribution related to the region
(A1) g,<1h. Using Eq.(25 for the tilt energy in the domain
Equation(17) for W (ky,k,) can be directly obtained by us- q,>1/b, the integral23) and(24) can be rewritten as fol-
ing the well-known mathematical equality lows:

Our aim is to sum the sequence
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f(al

1N 1s
I=2J dgy [ d

—ny 2 qzl+x§q§+x

2605+ B202/[4m(U g+ Cai0’+ Coctl) ]

(B1)

vlheref(q§)=<b§/327r3 for Eq. (23) andf=>\Jq§ for Eq. (24). After multiplying numerator and denominator by the factor of

Uyt Cas0’+ Ceed , the expressioliB1) is reduced to

(Uggt Cagul+ Ceedo) f(})

1Ny s
=2 f dgy [ da,
—1ng 1b

_ _ B
(1+2202+22,02) (U ga+ Coed2) + | (1+N202+12,02) Cant 5|02

. (B2)

Y 4

The term (& A2g2+12,9%)Ca, can be neglected with re- where we denoté=\/Cgs/U 44~ \4p and take into account
spect toB§/4w in the denominator. Indeed, the maximum that\ ., should be smaller than,. As a result, the integral

value of M2q2C,, [see Eq.(25] is about \2C,1M3
~B,®,/\2<B2, while the maximum value ok2,q2C,, is
N2C,1IN2(Ny/ys)?, which is even smaller sinca;<ys
[see Eq(26)]. Next, the integration in EqB2) overq, can
be taken easily,

1Ny )
I =4f dayf(ay)

1IN

Cua 1
2 2 o7 2\ s
By/4m+Ngp(Uast Ceelly) S
1 VU s+ Coel} 0% (aly)

+
Ny B2/ + 22U s+ Coetld)

: (B3)

where the functiorg*, defined as

-1
q —
6* (qy) = arctar+ %\/ 1+B2/[4m\2(Uggt c66q§)]]

-1
— arctar{ %\/1"‘ B;/[47T)\§b(g44+ Cﬁeqi)]] ,

determines the lower cutting valuexy(, of q,. Namely, by

(B3) can be evaluated as

Cu 1
2 2 0 2y s
BZ A4+ N\ b( U44+ CGGQy)

a
1N 5 1 Y U44+ C66q§
+2WL da,f(ay)
ut

c Acdy \/B;/47T+ A2( Ut Cesq@
(B4)

In case of the dense PV lattice, the first integral is small and

can be neglected. In addition, we also can omit the term

Ceedl; in the expressiomS/4m+\5,Ceel; . Finally, we have

1 (wmf(gddg, | C
effJ T 1+__66q)2/'
NeNap J heur Ay Usg
(B5)
After taking f(g7)=X\,q5 in Eq. (B5) and by ignoring
C66q§/U44 in the case\ ;>\ ,;, or by neglecting unity in the
opposite case, we obtain the expression

Ay~maxQ SN VINeS/AEITS). It coincides with Eqg.
(26) since 5~\,,. The energy of JV, Eq(27), is easily

=4 f Mt (o2
- 1, qy (qy)

using Eq.(26) we can assume that the argument of the firstyerived if one puts (q2) = ®2/(327°) in Eq. (B5).
arc tangent in the last expression is larger than 1, for most next, we roughly astimate the first integral in EG6).

values ofq, . Then, the value ob*(q,) is about=/2 if the

argument of the second arc tangent is smaller than 1; othe
wise 0* is close to zero. Thus, we obtain the expression fo

)\Cutr

by

Aeur™

BZ

z

477)\621b(U44+ Ceehont)

-
V2by
(A5 2b%y?

2
b2,yZ
2 + _2_1 +4 2 o2
5 s N2, 8

~min(A¢,min(yb,max bx ¢/ ELF, VoA SINELD)),

1/2

The inequality (}-N\207+\3,02) Cas<BZ is still correct in

he domaing,<y/b, q,<1/b for Bz>¢)0/)\§. Thus, we can
get the estimationB4) also for the dilute casea> vys).
However, in contrary to the dense PV lattice, the contribution
related to the first term in EqB4) remains important,

C /b
|(a>>\3):4_$7f’” da,f(q?)

Uab(A5H2 1,
2w (w2l f(gd) C
+ ffJ' 1\ 1+ —_66q32,- (B6)
)\c)\gb Iyt Qy U44

Here, we have introduced numerical paramegersand w.,
since the upper limits of integration are not well defined. The
corresponding contribution to the energy is obtained from the
last equation foif =<I>§/32773 as presented in the text.
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