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London theory of the crossing vortex lattice in highly anisotropic layered superconductors
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A description of Josephson vortices~JV’s! crossed by the pancake vortices~PV’s! is proposed on the basis
of the anisotropic London equations. The field distribution of a JV and its energy have been calculated for both
dense (a,lJ) and dilute (a.lJ) PV lattices with distancea between PV’s and the nonlinear JV core sizelJ .
It is shown that the ‘‘shifted’’ PV lattice~PV’s displaced mainly along JV’s in the crossing-vortex lattice
structure!, formed in high out-of-plane magnetic fieldsBz.F0 /g2s2 @A. E. Koshelev, Phys. Rev. Lett.83, 187
~1999!#, transforms into the PV lattice ‘‘trapped’’ by the JV sublattice at a certain field, lower thanF0 /g2s2,
whereF0 is the flux quantum,g is the anisotropy parameter, ands is the distance between CuO2 planes. With
further decreasingBz , the free energy of the crossing-vortex lattice structure~PV and JV sublattices coexist
separately! can exceed the free energy of the tilted lattice~common PV-JV vortex structure! in the case of
gs,lab with the in-plane penetration depthlab if the low (Bx,gF0 /lab

2 ) or high (Bx*F0 /gs2) in-plane
magnetic field is applied. It means that the crossing-vortex structure is realized in the intermediate-field
orientations, while the tilted vortex lattice can exist if the magnetic field is aligned near thec axis and theab
plane as well. In the intermediate in-plane fieldsgF0 /lab

2 &Bx&F0 /gs2, the crossing-vortex structure with
the ‘‘trapped’’ PV sublattice seems to settle in until the lock-in transition occurs since this structure has the
lower energy with respect to the tilted vortex structure in the magnetic fieldH oriented near theab plane. The
recent experimental results concerning the vortex-lattice melting transition and transitions in the vortex-solid
phase in Bi2Sr2CaCu2O81d single crystals are discussed in the context of the presented theoretical model.
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The mixed state of high-temperature superconductor
complex and rich with various vortex phases.1,2 Besides the
vortex lattice described by the three-dimensional~3D! aniso-
tropic Ginzburg-Landau model, the new types of vort
structures can occur within the large part of the phase
gram of the mixed state where the coherence length a
thec axis is smaller than the distance between CuO2 planes.
In such a case, the magnetic field, aligned with thec axis,
penetrates a superconductor in the form of quasi tw
dimensional pancake vortices~PV’s!3 while the field applied
parallel to theab plane generates Josephson vortices~JV’s!
in the layers between CuO2 planes.4,5 In magnetic fields
tilted with respect to thec axis, PV’s and JV’s can form a
common tilted lattice5 or exist separately as a crossing~com-
bined! lattice.6,7 The tilted lattice represents the inclined P
stacks in fields applied close to thec axis while at higher
angles, the pieces of JV’s linking PV’s are developed.5,6 The
crossing lattice is another structure containing both a P
stack sublattice and a JV sublattice that coexist separate

The vortex-solid phase diagram in the tilted magne
fields was first proposed by Bulaevskii, Ledvij, and Koga6

According to their model, which does not take into accou
the interaction between PV and JV sublattices in the cros
lattice structure, the tilted lattice is formed for all orient
tions of the magnetic field until the lock-in transition8 occurs
if the in-plane London penetration depthlab is larger than
the Josephson vortex core with sizegs (g is the anisotropy
parameter ands is the distance between CuO2 planes!. In the
opposite limit,gs.lab , the tilted lattice transforms into th
crossing lattice~as the magnetic field is inclined away fro
the c axis! at a certain angle before the lock-in transitio
happens.6 Later, the possibility of the coexistence of tw
0163-1829/2001/64~9!/094521~14!/$20.00 64 0945
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vortex sublattices with different orientations was analyz
numerically by comparing the free energy of such a syst
with the free energy of a mono-oriented tilted vortex latti
at different field orientations and different absolute values
the external magnetic field for the case of 3D anisotro
~London model! superconductors9–11 as well as layered
~Lawrence-Doniach model12! superconductors.13 According
to that analysis11,13 performed forg5502160, the crossing
lattice can be energetically preferable in the quite low m
netic fields (B5ABz

21Bx
2&F0 /lab

2 ) in the intermediate-
field orientations 0,u1,u,u2,p/2 with u
5arctan(Bx /Bz) (Bz and Bx are the field components alon
the c axis and parallel to theab plane, respectively!. How-
ever, the interaction of two coexisting vortex sublattices w
not considered in those works.9–11,13 Recently, Koshelev7

has studied the case of extremely anisotropic supercond
ors gs@lab and has shown that the crossing lattice can
cupy a substantially larger region of the vortex-lattice pha
diagram in the oblique fields due to the renormalization
the JV energyEJ through the interaction of a Josephson vo
tex and the PV sublattice. In addition, such interaction le
to the attraction of PV’s to JV’s~Refs. 14,7! at low out-of-
plane magnetic fieldsBz ~some sort of pinning effect!. This
pinning may induce transitions between different substr
tures of the crossing-lattice structure. However, there is
no theoretical evidence on how a PV sublattice can influe
the JV lattice in the crossing-vortex structure in the case
moderate anisotropic superconductors withgs,lab . In this
regard, the phase diagram6 of the vortex lattice for strongly
anisotropic layered superconductors should be reconsid
~at least for the case ofgs,lab! by taking into account the
renormalization ofEJ and the pinning of PV’s by JV’s.
©2001 The American Physical Society21-1
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The vortex structures in highly anisotropic layered sup
conductors are usually studied on the basis of the nonlin
discrete Lawrence-Doniach model,12 but this model is quite
complex and the detailed analysis of the vortex system
complicated. On the other hand, the layerness of super
ductors can be ignored on scales larger than the size o
nonlinear Josephson vortex core. Therefore, the linear an
tropic London model could be applied for a study of t
vortex-crossing lattice outside JV cores. In this paper
introduce the extended London theory, which allows to
scribe the crossing lattice as well as to calculate the ene
EJ and the field distribution of JV in the presence of t
crossed PV sublattice. It is shown that with decreasing
perpendicular magnetic field, the pancake sublattice tra
forms from the ‘‘shifted’’ sublattice characterized by on
component PV displacement along JV’s to the ‘‘trappe
sublattice where JV’s are occupied by PV rows. The co
parison of the free energies of the tilted lattice and
crossing-vortex structure for the caselab.gs indicates that
in low (Bx&gF0 /lab

2 ) and high (Bx*F0 /gs2) in-plane
fields, the tilted lattice can exist if the vectorB5Bxex
1Bzez is directed close to thec axis as well as near theab
plane, while the crossing lattice is realized in the fields o
ented far enough from the crystal-symmetry axes. Furth
more, in the intermediate in-plane fields the tilted vortex l
tice exists only at the magnetic-field orientations near thc
axis whereas the crossing-vortex structure settles in the w
angular range until the lock-in transition happens.

This paper is organized as follows. The general equati
for the magnetic-field distribution and the energy of the
sephson vortex in the presence of the pancake lattice
derived in Sec. I. The dense pancake lattice is studied in
II. It is shown that, in the limitgs@lab and F0 /(gs)2

!Bz!F0g2s2/lab
4 , our model reproduces the results th

were earlier obtained by Koshelev,7 while the shear deforma
tion of the PV lattice significantly renormalizes the JV e
ergy at the higher out-of-plane fields. Section III is devot
to the dilute PV lattice. It is described how the vortex su
structure with the PV lattice ‘‘trapped’’ by the JV lattice ca
be realized at lowBz . The phase diagram of the vortex-sol
phase in the tilted magnetic fields is considered for the c
of lab.gs in Sec. IV while the recent experimental resu
are discussed in Sec. V.

I. JOSEPHSON VORTEX IN THE PRESENCE OF
PANCAKE-VORTEX LATTICE: GENERAL EQUATIONS

We consider a Josephson vortex crossed with the pan
lattice in the framework of the modified London model. O
scales that are much larger than both the distance betw
CuO2 planes and the in-plane coherence lengthjab , the
pancake-vortex stack could be considered as an ordinary
tex line at temperatures significantly lower than the evapo
tion temperature.3,15 The same approach can be also used
the description of the Josephson vortex far from the non
ear core. The JV current acts on PV’s through the Lore
force causing their displacements along JV, which can
interpreted as a local inclination of the PV lines away fro
the c axis. In turn, the local tilt of the PV stacks induces
09452
r-
ar

is
n-
he
o-

e
-

gy

e
s-

’’
-
e

-
r-
-

de

s
-
re
c.

t

d
-

se

ke

en

or-
-
r
-

tz
e

additional current along thec axis, which redistributes the
‘‘bare’’ JV field. Such a physical picture can be describ
with one-component PV displacementu5(u,0,0), which
does not depend on thex coordinate~Fig. 1!. The free energy
functionalFPJ can be written as

FPJ5
1

8pE d3R~hp
21“3hpLJ“3hp1hJ

21“

3hJLJ“3hJ12hphJ12“3hpLJ“3hJ!, ~1!

wherehp andhJ are the magnetic fields of PV lines and J
respectively, andLJ is the penetration-depth tensor,“
5(]/]x,]/]y,]/]z). In the considered coordinate system
the tensor has only the diagonal componentsLxx5Lyy

5lab
2 , Lzz5lc

2 with anisotropic penetration depthslab and
lc . The fieldhp is determined by the displacementu of PV’s
through the London equation~see, for instance, Ref. 2!

hp1“3~LJ“3hp!5F0(
i
E dz̃Fez1

]u~Yi ,z̃!ex

] z̃
G

3d~r2Ri~ z̃!2u~Yi ,z̃!ex!, ~2!

where Ri( z̃)5(Xi ,Yi ,z̃) is the equilibrium position of the
i th PV line,r5(x,y,z) while ez andex are unit vectors along
the z and x axes, respectively.@Here we have accepted tha
the parametric equationr i( z̃) ~with parameterz̃) describing
the i th vortex line takes the form ofx( z̃)5Xi1ui( z̃), y( z̃)
5Yi , z( z̃)5z.# The in-plane coordinates of the unshifte

FIG. 1. The JV crossed by PV stacks, which are shifted by
current induced by JV.~a! 3D sketch depicts the deformation of th
PV lattice in the different CuO2 planes,~b! 2D sketches show the
deformation of the PV lattice in a CuO2 plane for the dense~left!
and dilute~right! PV lattices. The filled circles correspond to th
unshifted PV’s while the open ones represent the PV’s shifted
to the interaction with JV current. The shaded area images the
linear JV core region. The dashed-dotted lines mark the rows of
unshifted PV’s while the dashed curve shows the deviation of P
from these rows.
1-2
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LONDON THEORY OF THE CROSSING VORTEX . . . PHYSICAL REVIEW B64 094521
lines Xi andYi are expressed through the distancesa andb
@see Fig. 1~b!# between PV’s and PV rows asXi5al/21a j
andYi5bl with integersl andj. In our approach, the field o
the Josephson vortex also obeys the London equation

hJ2lab
2 ]2hJ

]z2
2lc

2 ]2hJ

]y2
5F0d~y!d~z!, ~3!

where d functions should be smoothed on a scale of
Josephson vortex core. The JV-core size along thez axis is
fixed by the interlayer distances, while the core length along
the y direction is limited by the condition that the curre
along thec axis cannot exceed the maximum interlayer c
rent j c;cF0 /(8p2lc

2s). In the presence of PV’s, the curre
across the layers consists of both the current of JV itself
the current born by the local inclination of PV lines. Ther
fore, the core size along they axis,lJ , can be renormalized
in the presence of PV’s and should be calculated s
consistently~see next section!. Furthermore, the space var
abley could be replaced byy2y0 in the argument of thed
function with 0<y0<b since the PV lattice can be arbitrar
shifted from the center of JV. However, we takey050,
which corresponds to the energetically more prefera
position.7

Next, in order to find the distribution of the magnetic fie
in the vortex system and the energy of JV, we will minimi
the free energy~1! as a functional of the displacementu. The
fields hp andhJ can be obtained using Eqs.~2! and~3! with
the displacementu fixed by the minimization of Eq.~1!.
Then, the energy of JV,EJ , defined as the difference of th
free energies~1! with and without JV, will be derived. This
energy includes the self energy of JV and the change of
free energy of the PV lattice borne by the interaction with
We will use the elastic approximation, i.e., the free ene
~1! and the magnetic field of PV’s Eq.~2!, will be expanded
up to the second order inu.

Using the integral representation of thed function, Eq.~2!
can be rewritten as

hp1“3~LJ“3hp!

5F0(
i
E dz̃E d3q

~2p!3
eiq•re2 iq•Ri ( z̃)

3FezH 12 iqxui~ z̃!2
1

2
qx

2ui
2~ z̃!J

1
]ui~ z̃!

] z̃
$12 iqxui~ z̃!%exG . ~4!

The field hp of PV lines changes on different space scal
The first scale is determined by the characteristic gradien
the displacementu(y,z) and usually is much larger than th
distancea between PV’s. The second scale is defined by
discreteness of the PV lattice and it is abouta. To separate
the contribution to the free energy from these scales,
introduce the Fourier variablesu(ky ,kz),
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u~Yi ,z!5E
2p/b

p/b dky

2p E dkz

2p
u~ky ,kz!exp@ i ~kyYi1kzz!#

~5!

and

u~ky ,kz!5b(
Yi

E dzu~Yi ,z!exp@2 i ~kyYi1kzz!#, ~6!

where the domain of variation ofkz is restricted by the in-
equalityukzu&1/s borne by the layerness of the system. Su
stituting Eq.~5! into Eq.~4! and using the well-known equal
ity ( i*dz̃exp@i(k2q)Ri( z̃)#5(2p)3(Bz /F0)(Qd(k2q
2Q), whereQ5(Qx ,Qy,0) are the vectors of the reciproca
lattice (Qx52pm/a,Qy5p(2n1m)/b with integerm and
n), one gets the expansion of the field of PV’s in series w
respect to the displacementu,

hp5hp
(0)1hp

(1)@u#1hp
(2)@u#,

np5np
(0)1np

(1)@u#1np
(2)@u#,

hp
( i )1“3~LJ“3hp

( i )!5np
( i ) , ~7!

where

np
(0)5ezF0(

i
d2~r'2Ri

'!,

np
(1)5Bz(

Q
E dkydkz

4p2
3~eziQx1exikz!u~ky ,kz!

3e2 iQxxei (ky2Qy)yeikzz,

np
(2)5Bz(

Q
E dkydkzdky8dkz8

16p4
u~k!u~k8!

3S 2
1

2
Qx

2ez2QxkzexDei (kz1kz8)ze2 iQxx

3exp@ i ~ky1ky82Qy!y#, ~8!

with r'5(x,y) and Ri
'5(Xi ,Yi). The term ofhp with Q

50 corresponds to the continuous approximation and va
on the large scale, while terms withQÞ0 are related to the
field components changing on the scale ofa.

It is easy to see that only terms withQx50 will give a
contribution to the part of the free energy describing t
interaction between PV’s and JV, because the fieldhJ does
not depend onx and all terms withQxÞ0 vanish after inte-
gration overx. Therefore, it is convenient to dividehp

(1) and
np

(1) into two components,np
(1)5np

(Q)1exnp* , hp
(1)5hp

(Q)

1exhp* , where hp
(Q) and np

(Q) include summands withQx

Þ0 while hp* and np* do not vary withx. Then, the free-
energy functionalFcross, containing only terms dependen
on the displacementu, can be introduced asFcross5FPJ
2FP2FJ , whereFP and FJ are the free energies of th
unperturbed PV lattice and the ‘‘bare’’ JV, respectively. U
ing Eqs.~7!, we obtain the expression forFcross as
1-3
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Fcross5
1

8pE d3R~np
(Q)hp

(Q)12hp
(0)np

(2)!

1
1

8pE d3R~hp* np* 12hJnp* !. ~9!

The first contribution comes from the terms withQxÞ0 and
depends only on the short-scale variations ofhp . It is deter-
mined by the shear deformation and the tilt deformation. T
second part describes the interaction of PV’s with JV a
with the current generated by PV’s along they axis. Using
Eqs. ~8!, the free energyFcross can be rewritten in term o
Fourier variablesu(ky ,kz),

Fcross5
1

2E dkydkz

4p2
@U66~ky!1U44~ky ,kz!#u~k!u~2k!

1
BzF0

4p (
Qx50

E dkydkz

4p2
ikzu~k!

3
f ~kz ,ky2Qy!2~Bz/2F0!ikzu~2k!

11lab
2 kz

21lc
2~ky2Qy!2

, ~10!

with the shear energy

U665
Bz

2

4p (
QxÞ0

H Qx
2

11lab
2 Qx

21lab
2 ~ky2Qy!2

2
Qx

2

11lab
2 ~Qx

21Qy
2!
J , ~11!

and the tilt energy

U445
Bz

2

4p (
QxÞ0

H Qx
2

11lab
2 kz

21lab
2 Qx

21lab
2 ~ky2Qy!2

2
Qx

2

11lab
2 Qx

21lab
2 ~Qy2ky!2

1
kz

2

11lab
2 kz

21lc
2Qx

21lc
2~ky2Qy!2

1
~lc

22lab
2 !Qx

2kz
2

@11lab
2 kz

21lab
2 Qx

21lab
2 ~ky2Qy!2#

3
1

@11lc
2Qx

21lc
2~ky2Qy!21lab

2 kz
2#
J . ~12!

The expressions forU44 and U66 represent sums over th
reciprocal lattice vectors withQxÞ0, while the summation
in the last term of Eq.~10! is performed only over the recip
rocal lattice vectors withQx50. The functionf (q) in Eq.
~10! appears due to smoothing of thed function in Eq.~3!
and can be evaluated asf (q)'1 in the rectangular region
uqzu<1/s, uqyu<1/lJ , and f '0 outside that area. The sum
09452
e
d

mation in the expression~11! for the shear elastic energy wa
done by Brandt16 in the limit ky!p/b,

U665C66ky
2 , ~13!

where the shear elastic modulusC66 is expressed asC66

5(BzF0)/(8plab)
2 for a05AF0 /Bz,lab , while C66

5Aplab /(6a0)F0
2/(4plab

2 )2exp(2a0 /lab) for a0.lab .
The tilt energy was obtained in Refs. 2 and 17,

U445
BzF0

32p2lab
4 F lnS 11

kz
2

lab
221K0

2D
1

kz
2lab

4

lc
2

lnS jab
22

K0
21$kz

2/g2%1lc
22D G ~14!

for kz*K052p/b, while

U445F3.68
F0

2

~4plab!
4

1
BzF0ln~a2/jab

2 !

32p2lc
2 Gkz

25C44
e f fkz

2

~15!

for kz!K0. Performing a summation overQy in the second
term of Eq. ~10! ~see Appendix A!, we finally obtain the
free-energy functional

Fcross5E dky

2p

dkz

2p H 1

2
~U441U66!u~k!u~2k!

1
Bz

4p
ikzC~kz ,ky!Fu~k!2 ikz

Bz

2F0
u~k!u~2k!G J ,

~16!

whereC is defined by the equation

C~kz ,ky!5
F0b

2lcA11lab
2 kz

2

sinh~A11lab
2 kz

2b/lc!

cosh~A11lab
2 kz

2b/lc!2coskyb
~17!

for ky,min(p/b, 1/lJ) andkz,1/s while C'0 outside that
rectangular area. In the case of small values of wave vectk
(ky!p/b andkz!g/b), the discreteness of the PV lattice
irrelevant and the functionC coincides with the Fourier im-
age of the ‘‘bare’’ JV field, butC is modified substantially
for largerky or kz .

The minimization of the free-energy functional~16! deter-
mines the displacementu as

u~k!5
Bz

4p

ikzC~k!

U441U661~Bz
2kz

2/4pF0!C~k!
. ~18!

In order to describe the field distribution of a JV in the cros
ing lattice, the averaged magnetic inductionBJ along thex
direction generated by both JV and inclined PV lines can
introduced. By substituting the determined displacement~18!
into Eqs.~7! and ~8!, the magnetic induction of JVBJ5hJ

1hp* is rewritten as
1-4
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LONDON THEORY OF THE CROSSING VORTEX . . . PHYSICAL REVIEW B64 094521
BJ5E dqzdqy

~2p!2

F0eiqyy1 iqzz

11lc
2qy

21lab
2 qz

2
1Bz(

Qy

E dkydkz

~2p!2

3
ikzu~k!

11lc
2~ky2Qy!21kz

2lab
2

exp@ i ~ky2Qy!1 ikzz#,

~19!

whereqy and qz are the wave vectors of a ‘‘bare’’ JV (uqy
u,1/lJ , uqzu,1/s!, while the wave vectorsk of the PV lat-
tice are restricted also by the first Brillouin zone of the P
lattice (ukyu,min(1/lJ ,p/b), ukzu,1/s). To get the energy
EJ it is necessary to addFcross to the energy of the JV itself
Obviously, the energy of a JV in the presence of PV lines
always lower than that of a ‘‘bare’’ JV. Indeed, for the di
placement of PV’su determined by Eq.~18!, the energy
Fcross takes the minimum value, which is smaller than ze
since Fcross50 at u50. Finally, the energy of JV in the
crossing lattice obeys the equation

EJ5
F0

2

8pE dqydqz

~2p!2

1

11lc
2qy

21lab
2 qz

2

2
Bz

2

32p2E dkydkz

~2p!2

kz
2C~k!C~2k!

U441U661~kz
2Bz

2/4pF0!C~k!
.

~20!

Equations~18!–~20! together with the condition that th
current density along thec axis should be smaller than th
maximum current densityj c , determine completely the be
havior of the PV lines and the JV. However, in further ana
sis it is convenient to investigate the dense (gs@a) and
dilute (gs!a) pancake lattices separately.

II. JOSEPHSON VORTEX IN THE PRESENCE OF DENSE
PV LATTICE

For the case of the dense PV lattice, many PV rows
placed on the nonlinear JV core@Fig. 1~b!, left sketch#. It
means that the magnetic field of a bare JV varies on sc
larger than the distance between PV lines even near the
core. Thus, the continuous approximation is applicable in
whole space. In this caseukyu,1/lJ,p/b and, therefore, the
cosine and hyperbolic functions in Eq.~17! can be expanded
in the series. Hence, the functionC can be rewritten as

C5
F0

11lab
2 kz

21lc
2ky

2
. ~21!

Substituting this expression forC into Eqs. ~19! and ~20!
and omitting the difference betweenk and q, the equations
for the dense PV lattice~which determine the field distribu
tion and the energy of JV! are deduced as
09452
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BJ5E
21/lJ

1/lJ dqy

2p E
21/s

1/s dqz

2p

3
F0eiqyy1 iqzz

11lc
2qy

21lab
2 qz

21qz
2Bz

2/@4p~U441C66ky
2!#

~22!

and

EJ5
F0

2

8pE21/lJ

1/lJ dqy

2p E
21/s

1/s dqz

2p

3
1

11lc
2qy

21lab
2 qz

21Bz
2qz

2/@4p~U441C66qy
2!#

.

~23!

The last undefined parameter,lJ , can be obtained from the
condition u]BJ(y'lJ ,z50)/]yu;(4p/c) j c ,

p

lc
2s

.lJE
21/lJ

1/lJ
dqyE

21/s

1/s

dqz

3
qy

2

11lc
2qy

21lab
2 qz

21qz
2Bz

2/@4p~U441C66qy
2!#

.

~24!

The region of integration is shown in Fig. 2~a!. The rect-
angular domain of possible wave vectors replaces the u
elliptical one due to a peculiar core structure of JV. In t
anisotropic London model, the core of an ordinary vortex
defined by the elliptical stream line of the persistent curr
having the depairing value.18 However, in our case the maxi
mum value ofqz is determined by the layerness of the m
dium while the largest value ofqy is restricted by the Joseph
son critical current along thec axis. The rectangular domai
of wave vectors@Fig. 2~a!# can be divided into ‘‘screened’
(ukzu*1/b) and ‘‘remote’’(ukzu,1/b) subdomains. The firs
one corresponds to the region where one can roughly neg
the weak logarithmical dependence onkz in Eq. ~14! to ex-
press the tilt energy as

U44'Ū441C̄44kz
2 ~25!

with Ū445(BzF0/32p2lab
4 )ln@11kz̄

2/(lab
221b22)#, C̄44

5(BzF0/32p2lc
2)ln(jab

22/@b221(kz̄
2/g2)1lc

22#) and kz̄

;A1/bs. The expression~25! is completely wrong in the
‘‘remote’’ region in which it is necessary to use Eq.~15!. By
using approximation~25! for the tilt energy, the integrals in
Eqs.~23! and~24! are easily evaluated~Appendix B! and we
get

lJ'maxS lcs

lab
e f f

,Alcs

lab
e f f

labD ~26!

and
1-5
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EJ'
F0

2

16p2lab
e f flc

SA C66

Ū44lab
2

lab

lJ
1 ln

lcut

lJ
D , ~27!

where

lcut;min~lc ,min„gb,max~blc /lab
e f f ,Ablclab /lab

e f f!…!,

while the renormalized penetration depthlab
e f f is expressed as

lab
e f f5Alab

2 1
Bz

2

4pŪ44

. ~28!

The physical reason of the renormalization of the in-pla
penetration depth is related to the screening of the JV fi
by currents borne by the local inclination of PV lines. Fro
Eq. ~26! it is easy to see that the size of the nonlinear JV c
also decreases due to the interaction of JV and PV’s.
similar conclusion was given earlier by Koshelev,7 who con-
sidered the additional phase variation of the order param
borne by the displacement of PV’s. However, the shear c
tribution to the renormalization ofEJ andlJ was neglected
in Ref. 7, which could be done only forlJ.lab @see Eqs.

FIG. 2. The integration region in Eqs.~19! and ~20! for the
dense PV lattice~a! and the dilute PV lattice~b!. In the dense case
~a!, the region of the available wave vectorsk of the PV lattice
coincides with the accessible domain of wave vectorsq; the con-
tinuous approximation~21! for C is always valid. The approxima
tion ~25! is correct in the ‘‘screened’’ domain of wave vectors, wh
it fails in the ‘‘remote’’ region. In the dilute case~b!, the continuous
approximation is correct only in the regionuqyu!p/b, uqzu!g/b;
the ‘‘non-screened’’ regionuqyu.p/b is not accessible fork. The
continuous approximation forC(k) is broken in the ‘‘pinning’’ re-
gion ukyu,p/b, g/b&ukzu&1/s.
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e
ld

e
e

er
n-

~26! and ~27!#. In the opposite case, i.e., when the Lond
penetration depth exceeds the JV core size, the shear d
mation becomes relevant and as a resultlJ decreases withBz
slower than was proposed in Ref. 7.

To understand how the field of JV is distributed in the re
space, we rederive the results considering the free-en
functional of the displacementu defined as a function of the
spatial coordinates. In the limitgs@a, the JV field varies on
scales larger than the distance between PV’s even nea
JV core. This means that the fieldhp along thex axis can be
averaged out on the scale larger thana,

hp* 2lab
2

]2hp*

]z2
2lc

2
]2hp*

]y2
5n* 5Bz

]u

]z
. ~29!

However, the short-range variations of the fieldhp give the
shear energyU66 and the tilt energyU44. After ignoring the
slow logarithmic dependence onk in the expression forU44,
one can conclude that the density of the tilt energy in the r
space isŪ44u

2(y,z), while the density of the shear energy
U665C66(]u/]y)2. Thus, the free-energy functional is ex
pressed as

Fcross5
1

8pE d3RF4pC66S ]u

]yD 2

14pŪ44u
21hp* Bz

]u

]z
12hJ

]u

]zG . ~30!

The first three terms represent the elastic energy~borne by
shear, electromagnetic tilt, and Josephson-coupling tilt rig
ity, respectively!, but the last term is related to the interactio
of the PV lines with the current generated by JV.

In order to get the complete set of equations for the d
placementu and the averaged magnetic inductionBJ , we
have minimized the functional~30! and have added togethe
Eqs.~3! and ~29!,

24pC66

]2u

]y2
14pŪ44u22Bz

]BJ

]z
50,

BJ2lab
2 ]2B J

]z2
2lc

2 ]2B J

]y2
5F0d~y!d~z!1Bz

]u

]z
. ~31!

This set of equations is applicable if the continuous appro
mation is valid (lJ@a) and, strictly speaking, only when th
tilt energyU44(kz) can be replaced by the constantŪ44. The
last condition fails for distances far from JV (z21y2/g2

.b2). In this ‘‘remote’’ region, the constantŪ44 has to be
substituted by2C44

e f f]2/]z2. Besides, iflab.gs, the param-

eterŪ44 should be replaced by2C̄44]
2/]z2 near the JV core

(z,lab /g).
Even though we consider only the situation when the

of Eq. ~31! is valid, i.e., the caselab,gs and the region
z21y2/g2,b2, the solution of Eqs.~31! seems to be quite
complicated. The relation between the displacementu and
1-6
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the magnetic inductionBJ , which is obtained from the firs
equation of Eqs.~31!, becomes nonlocal due to the she
rigidity of the PV lattice,

u5
Bz

8pAC66Ū44

E
2`

`

dỹ
]BJ~ ỹ,z!

]z
e2uy2 ỹu/d, ~32!

where d5labAC66/(Ū44lab
2 );lab is the characteristic

length of a nonlocality. However, the nonlocality is irreleva
if the space scale of the variation ofBJ is substantially large
thand, i.e., if lJ@lab . In such a case, the Eqs.~31! for BJ
andu can be decoupled,

u5
Bz

4pU44

]BJ

]z
,

BJ2~lab
e f f!2

]2B J

]z2
2lc

2 ]2B J

]y2
5F0d~y!d~z!. ~33!

Equation~33! for inductionBJ is the London equation with
the renormalized in-plane penetration depthlab

e f f . Therefore,
the field distributionBJ , not far from the center of the Jo
sephson vortex (z21y2/g2&b2), can be approximated as

BJ5
F0

2plab
e f flc

K0@Az2/~lab
e f f!21y2/lc

2#, ~34!

where K0(x) is a modified Bessel function of zero orde
Using the free-energy functional~30! and Eqs.~31!, it is easy
to show that the energy of JV is determined by the field in
center, i.e.,EJ5F0 /(8p)BJ(y'lJ ,z's),

EJ5
F0

2

16p2lab
e f flc

ln~lab* /s! ~35!

with the lengthlab* 5lab
e f f . However, the set of equation

~31! becomes incorrect in the regionz21y2/g2.b2, which
cuts off that length aslab* 'b. Thus, the expression~35!
coincides with the earlier obtained Eq.~27! in the studied
caselJ.lab . The results~34! and~35! can be interpreted in
terms of the effective anisotropy parameterge f f5lc /lab

e f f ,
which governs the JV lattice. Sincelab

e f f.lab , the effective
anisotropyge f f is reduced in the presence of PV’s with r
spect to the ‘‘bare’’ oneg5lc /lab . The similar anisotropy
ge f f was earlier introduced7 as a ratioge f f5lJ /s, but these
two different definitions ofge f f give the same value in th
caselJ.lab when the shear deformation is irrelevant.

Here, we discuss how the core size and the JV energy
changed with the magnetic inductionBz if gs.lab . For
quite high magnetic inductions Bz*B15(F0 /lab

2 )
3(gs/lab)

2, the size of the nonlinear corelJ is smaller than
lab and the shear contribution to the free energy is imp
tant. The second logarithmic term in the JV energy~27! can
be omitted, and the core size obeys the equationlJ(Bz)
.Agsa. With decreasing of induction, the core size i
creases proportionally toBz

21/4 and reacheslab at Bz'B1.
At low fields, the shear interaction between rows is irr
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evant, the JV core size becomeslJ5lcs/lab
e f f'gsa/lab ,

and the energy of JV is determined by the logarithmic te
in Eq. ~27!. Below the fieldF0 /lab

2 , at which the distancea
between PV’s exceedslab , the currents generated by PV
practically does not influence the JV field and, thus,
renormalization oflab , lJ , andEJ vanishes. In the case o
lab.gs the physical picture is different from the previou
situation. The core size obeys the lawlJ.Agsa at fields
Bz.F0 /(gs)2. Below this field, the effective value of th
in-plane London penetration depthlab

e f f;lab
2 /a @Eq. ~28!# is

still larger thanlab , while the JV core size is saturated a
lJ5gs. This means that the JV field shows different beha
ior far from JV (z21y2/g2.b2/g2), where the redistribution
due to the local inclination of PV lines is still important an
close to the JV core.

III. JOSEPHSON VORTEX IN THE PRESENCE OF
DILUTE PV LATTICE

Far from the JV center,z21y2/g2.b2/g2, the JV field
varies slowly, which causes the smooth variation of the d
placementu even for the case of the dilute PV lattice (a
.gs). In that spatial region, the continuous approximation
still valid. On the other hand, near the JV core (uyu,b), the
JV current increases quite fast inducing a large displacem
of the PV stack placed on the center of JV. In this case,
continuous approximation is not applicable. To describe s
a physical situation, we consider the wave vector area ok
divided into two domains@Fig. 2~b!#. In the first interval
ukyu,p/b and ukzu,g/b, the function C can be still
roughly approximated by the equationC'F0 /(11lc

2ky
2

1lab
2 kz

2), while C'F0b/(2lclabkz) is the approximation
in the second regionukyu,p/b and g/b,ukzu,1/s @‘‘pin-
ning’’ region in Fig. 2~b!#. Following this approach, the en
ergy of JV is evaluated as

EJ~a@gs!

'
F0

2

8pE2p/b

p/b dqy

2p E
2g/b

g/b dqz

2p

3
1

11lc
2qy

21lab
2 qz

21Bz
2qz

2/@4p~U441U66!#

1
F0

2

16p2lclab

lnS b

gsD2
BzF0

3

128p3alc
2lab

2

3E
g/b

1/s dkz

U441BzF0kz /~8plclaba!
. ~36!

The first term comes from the spatial region far from t
center of JV while the second and the third terms are rela
to the vicinity of the JV center. The screening of the ‘‘bar
JV field vanishes near the JV~‘‘nonscreened’’ region ink
space!, which determines the second term in Eq.~36!. The
last term in Eq.~36! represents the energy gain due to t
strong interaction between the PV line placed on the JV c
and the JV current~the energy gain of a PV stack placed o
1-7
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S. E. SAVEL’EV, J. MIRKOVIĆ, AND K. KADOWAKI PHYSICAL REVIEW B 64 094521
a JV in the limit gs@lab and Bz→0 was calculated by
Koshelev7!. Since the last term is sensitive to the mutu
position of JV and the nearest PV line, this contribution c
be called the ‘‘crossing-lattice pinning.’’ Using the results
Appendix B and taking into account that the evaluati
BzF0kz /(8lclaba)&C̄44kz

2 is held in the ‘‘pinning region’’
(kz.g/b), the energy of JV is finally obtained,

EJ'
F0

2

16p2lclab
e f f S 2m1C̄44g

2

pŪ44lab
2

lab
3

b2lab
e f f

1Am2
2C66

Ū44lab
2

lab

b D
1

F0
2

16p2lclab
e f f

lnS lcut

b
D 1

f0
2

16p2lclab

lnS b

gs
D

2m
F0

2

4palc
arctanS b2gs

AŪ44/C̄44sb1gAC̄44/Ū44

D ,

~37!

where m5BzF0 /(32p2lclab
2 AC̄44Ū44),1 is the dimen-

sionless function depending quite slowly onBz and the nu-
merical parametersm1 andm2 are about unity.

Next, we will discuss how the renormalization of the J
energy comes in with increasing of thez component of the
magnetic field. At low fields,Bz!F0 /lab

2 (a@lab), the first
term and the last term in Eq.~37! can be omitted and the
expression for the energy of a ‘‘bare’’ JV reported earlier
Refs. 19 and 20 is reproduced,

EJ5
F0

2

16p2lclab

lnS lc

gsD . ~38!

For the caselab.gs, the renormalization of JV energy be
comes relevant atBz'F0 /lab

2 , i.e., earlier than the JV cor
size starts to decrease, which occurs only in fieldsBz
.F0 /(gs)2. The origin of this behavior is that the add
tional current along thec axis induced by tilted PV stacks i
much smaller thanj c near the JV core in the field interva
F0 /lab

2 &Bz&F0 /(gs)2, but the inclination of all PV lines
can still cause the renormalization of the JV field on sca
larger thana. In the field intervalF0 /lab

2 ,Bz&F0 /g2s2,
the main contribution to the Josephson vortex energy~37!
comes from the first term related to the tilt elastic rigid
~born by Josephson coupling of PV’s! and shear elasticity o
the PV lattice. Strictly speaking, from our rough estimati
of Eq. ~20!, we cannot conclude how stronglyEJ is sup-
pressed in that field interval, i.e., in the presence of the di
PV lattice. Nevertheless, the pinning energy@last term in Eq.
~37!# could be of the same order of magnitude as the first
the second terms in Eq.~37! in fields Bz;F0 /lab

2 and may
decreaseEJ substantially.

Another interesting possibility arising due to the
crossing-lattice pinning’’ is the rearrangement of the PV l
tice in the presence of the JV sublattice. In the in-plane m
netic fieldsBx , JV’s form a triangular lattice with distance
aJ and bJ between JV’s@see inset in Fig. 3~a!#. In general,
the PV sublattice and the JV sublattice are not commen
09452
l
n

s

te

d

-
g-

u-

rate,aJÞpb with integerp. This means that the considere
one-component displacement of PV’su5(u(y,z),0,0) @the
‘‘shifted’’ PV lattice shown in Fig. 3~a!#, does not provide the
energy gain coming from the ‘‘crossing-lattice pinning
since the PV rows cannot occupy the centers of JV’s. Ho
ever, the PV’s can be rearranged in order to occupy all J
@the ‘‘trapped’’ PV lattice shown in Fig. 3~b!# if the PV lines
shift also along they direction,u5„ux(x,y,z),uy(x,y,z),0….
The ‘‘crossing-lattice pinning’’ decreases the free energy
the ‘‘trapped’’ PV lattice, while the additional shear deform
tion acts in the opposite way through increasing the f

FIG. 3. The different substructures of the crossing lattice.~a!
The ‘‘shifted’’ PV lattice characterized by one-component displa
ment along JV’s,~b! the PV lattice trapped by the JV sublattice fo
the case when the distanceaJ between JV’s exceeds the distanceb
between PV rows, c! the ‘‘trapped’’ PV lattice foraJ,b, i.e., in the
case of the field orientations very close to theab plane. The dotted
lines depict the rows of unperturbed lattice~crossings of these lines
and filled circles mark the positions of unshifted PV’s! in all
sketches. Dashed-dotted lines indicate the rows of the ‘‘trapp
PV lattice that are deformed in order to match with JV sublatti
The arrows directed from the filled circles to the open ones sh
the two-component displacement of PV’s for the cases represe
in sketches~b! and ~c!. Inset in ~a!: the JV sublattice with lattice
parametersaJ andbJ ~lines mark the CuO2 planes!. Inset in~b!: the
additional deformation of the PV lattice, which is required for tra
ping of PV’s by JV’s. The upper sketch is the equilateral triangle
the unperturbed PV lattice, which is incommensurate with the
lattice (aJÞpb with integerp). The lower sketch is the isoscele
triangle of the PV lattice matched with the JV sublattice@aJ5p(b
1db)#.
1-8
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energy. For the caseBx,gBz , the energy gain related to th
‘‘trapped’’ PV lattice is calculated by normalizing the la
term of Eq.~37! per unit volume,

Etr5m
BxF0

4palc
arctanS b2gs

AŪ44/C̄44sb1gAC̄44/Ū44

D .

~39!

But, in order to trap the PV lattice, the total displacement
PV’s along they axis between the two nearest JV rows, i.
on the scaleaJ , should be aboutb. Following the simple
analysis,21 the extra shear deformation@inset in Fig. 3~b!# is
aboutdb/b;b/aJ (db is the change of the distance betwe
rows of PV’s! and the energy lossEshear can be estimated a

Eshear.nC66S b

aJ
D 2

'nC66

Bx

gBz
~40!

with numerical constantn&1. For the casegs@lab , the
shear elastic energy~40! is strongly suppressed in the field
Bz,F0 /(gs)2 where the ‘‘crossing lattice pinning’’ is ac
tive, since C66 is exponentially small ifa.lab @see Eq.
~13!#. Therefore, the ‘‘trapped’’ PV lattice seems to be re
ized as soon asa.gs. In the opposite case,lab*gs, the
transformation22 from the ‘‘shifted’’ PV lattice to the
‘‘trapped’’ PV lattice occurs when the energy gainEtr ex-
ceeds the energy lossEshear. It happens at a certain out-o
plane field between the fieldF0 /(gs)2, at which the
‘‘crossing-lattice pinning’’ is activated, and the fieldBz

;F0 /lab
2 , where the shear elastic energy rapidly decrea

Next, we discuss the difference between the conside
‘‘trapped’’ state and the ‘‘chain’’ state proposed for the cros
ing lattice.7 The ‘‘trapped’’ state is related to the rearrang
ment of PV’s on the scaleaJ between the nearest rows o
JV’s. On the other hand, the ‘‘chain’’ state is associated w
the creation of an extra PV row~an interstitial in the PV
lattice! on a JV, but the influence of the neighboring JV’s
completely ignored. As a result, the ‘‘trapped’’ and ‘‘chain
states have different in-plane field dependences of the
of-plane transition fields. The out-of-plane transition field23

between the ‘‘shifted’’ and ‘‘trapped’’ PV lattices does n
depend onHab in contrast to theHab-dependent out-of-plane
field7 of the destruction of the ‘‘chain’’ state. Since th
analysis7 is correct only in the case ofgs@lab and a
@lab , the transformation of the PV lattice discussed h
seems to be more likely in the caselab.gs.

IV. PHASE DIAGRAM OF VORTEX LATTICE IN TILTED
MAGNETIC FIELDS

In this section we discuss the vortex lattice structu
formed at different field orientations. The tilted lattice co
sists of mono-oriented vortices and transforms continuou
from the tilted PV stacks in fields near thec axis @Fig. 4~a!#
to the long JV strings connected by PV kinks for the fie
orientations close to theab plane @Fig. 4~b!#. On the other
hand, the tilted lattice is topologically different from th
crossing-vortex structure@Fig. 4~c!#, and they replace eac
other via a phase transition.6 For the analysis of the vorte
09452
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phase diagram in tilted fields, the free energy of the cross
and tilted vortex structures will be compared. We concentr
on the casegs,lab , when, according to Bulaevskiiet al.6

and Koshelev,20 the tilted lattice is energetically preferab
above the lock-in transition.8 We will consider a thin super-
conducting platelet with thec axis perpendicular to the plate
In this geometry the lock-in transition occurs at very lo
fields6 Bz'(12nz)F0 /(4plab

2 )ln(gs/jab) with demagneti-
zation factornz (12nz!1).

For the field oriented close enough to thec axis, tanu
5Bx /Bz!g, the free energy of the tilted latticeFt can be
evaluated asFt5Ft

01 1
2 C44

t i l t (k50)Bx
2/Bz

2 in analogy to the
analysis given in Ref. 7. Here,Ft

0 represents the free energ
in the absence of the in-plane magnetic field, while the
modulus is expressed asC44

t i l t (k50)5Bz
2/4p1C44

e f f with
C44

e f f defined in Eq.~15! for the case ofBz*F0 /(4plab
2 ). As

a result, we have

Ft.
Bz

2

8p
1

F0Bz

32p2lab
2

ln
Hc2'

Bz
1

Bx
2

8p

13.68
F0

2

2~4plab!
4

Bx
2

Bz
2

1
Bx

2F0

64p2lc
2Bz

ln
Hc2'

Bz
, ~41!

FIG. 4. The 3D sketches of the different vortex structures in
tilted magnetic field with the componentsHc andHab along thec
axis and in theab plane, respectively.~a! The tilted vortex lattice
near thec axis~TI!, when the current between CuO2 planes is much
smaller than the critical valuej c , i.e., the Josephson strings linkin
PV’s are not developed;~b! the tilted vortex lattice far away from
the c axis ~TII !, when the JV strings are formed;~c! the crossing-
vortex lattice.
1-9
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whereHc2'5F0/2pjab
2 . The first two terms form the free

energy forBx50. The third term is the in-plane magnet
energy, the fourth one comes from the electromagnetic in
action of the inclined PV’s, and the last contribution is co
nected with the Josephson coupling of PV’s.

The free energy of the crossing latticeFc consists of two
contributions from the PV sublattice and the JV sublatt
while the interaction of PV’s and JV’s is taken into accou
through the renormalization of the JV energy,

Fc.
Bz

2

8p
1

F0Bz

32p2lab
2

ln
Hc2'

Bz
1

Bx
2

8p
1

Bx

F0
EJ . ~42!

The renormalized JV energyEJ is defined by Eq.~20! in
which the lower limits of integration are restricted by th
conditionsqy , ky*1/aJ andqz , kz*1/bJ .

The tilted lattice is energetically preferable in the fiel
oriented near thec axis becauseFt}Bx

2 , while Fc}Bx , i.e.,
Ft,Fc for low Bx . The phase boundary between the tilt
lattice and the crossing structure can be obtained from
conditionFt5Fc , which is rewritten in the form

Bx.
EJ

F0

Bz
2

1.84F0
2/~4plab!

41F0Bz /~64p2lc
2!ln~Hc2' /Bz!

.

~43!

The transition from the tilted lattice to the crossing structu
occurs at the field oriented quite close to thec axis for high
anisotropic superconductors due to~a! the high energy cos
of the inclination of PV stacks in the tilted lattice related
the electromagnetic interaction of PV’s, and~b! the decrease
of the JV energy in the crossing-lattice structure. For
dense PV latticeBz@F0 /(gs)2 and lab.gs, Eq. ~43! can
be simplified,

Bx.A C66

Ū44lab
2

2lab
2

lJlab
e f f

Bz
2

gF0

4.3p2lab
2

1
Bz

2g
ln~Hc2' /Bz!

.

~44!

Next, we will study the field orientations close to theab
plane, Bx.gBz . Here, the electromagnetic interaction b
tween PV’s in the tilted lattice is not so important and t
free energy in the lowc-axis fieldsBz,F0 /lab

2 is reduced6

to

Ft.
Bx

2

8p
1

F0Bx

32p2lablc

ln
F0

gs2Bx

1
HJBz

4p
, ~45!

where HJ5F0 /(4plab
2 )ln(gs/jab). The first two terms are

related to the energy of JV strings while the last one is as
ciated with the energy cost of the formation of PV kinks.
detail, the PV kink generates the in-plane current, which
creases with the distancer from the kink center as 1/r up to
a critical radiusr 0 of the region with 2D behavior where th
current along thec axis is about the maximum possible cu
rent j c .6 At larger distances, the in-plane current decays
ponentially. Simple evaluation givesr 05gs for the PV
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kink.6 We note, that the tilted vortex lattice in the consider
angular range of the magnetic-field orientations seems to
ist as a kink-wall substructure, where kinks~belonging to
different vortices! are collected in separated walls parallel
the yz plane.20 For the kink-wall substructure of the tilte
lattice, the contribution to the free energy,~45! attributed to
the PV kinks, is slightly reduced in the high in-plane ma
netic fieldsBx.F0 /gs2,20 which can be taken into accoun
through renormalization,HJ5F0 /(8plab

2 )ln(gHc2 /Bx).
In the considered field interval,Bx.gBz , Bz!F0 /lab

2 ,
the renormalization of the JV energy in the crossing-latt
structure vanishes. However, the interaction of PV and
sublattices still manifests itself through the ‘‘crossing-latti
pinning,’’

Fc5
Bx

2

8p
1

F0Bx

32p2lablc

ln
F0

gs2Bx

1
Hc1'Bz

4p

2mBzA BxF0

16p2glab
2

arctanS 12ABx /H0

AHl
x /H01ABx /Hl

x D ,

~46!

with Hc1'5F0 /(4plab
2 )ln(lab/jab) @the critical radiusr 0

for the in-plane current of a PV stack is aboutlab ~Ref. 6!#,
H05F0 /gs2, andHl

x5gF0 /lab
2 . The third term is the en-

ergy of the unperturbed PV lattice, while the last term cor
sponds to the ‘‘crossing-lattice pinning’’ contribution, whic
can significantly decrease the free energyFc in the in-plane
field interval gF0 /lab

2 &Bx&F0 /gs2. The difference be-
tween the ‘‘crossing-lattice pinning’’ contributions to the fre
energy in the cases of lowBx,gBz and highBx.gBz in-
plane fields@see Eqs.~39! and ~46!# emerges because th
number of PV lines is sufficient to occupy all JV’s@Fig. 3~b!#
at Bx,gBz while some JV strings do not carry PV row
@Fig. 3~c!# in the opposite case. By analyzing Eqs.~45! and
~46!, we can conclude that, at least forBx&gF0 /lab

2 and
Bx*F0 /gs2, the tilted lattice exists near theab plane since
the condition Ft,Fc is held due to the inequalityHJ
,Hc1' . The tilted lattice is replaced by the crossing-latti
with increasing the out-of-plane magnetic field aboveBz
5Bx /g. However, it is difficult to determine the contour o
the possible phase line between the crossing and tilted vo
structures, since it requires the more precise calculation
the free energiesFc and Ft in the regionBx,gBz . In the
intermediate in-plane magnetic fieldsgF0 /lab

2 &Bx

&F0 /gs2, the ‘‘crossing lattice pinning’’ could make the
crossing structure more energetically preferable with resp
to the tilted lattice. In that case, the crossing lattice~CII! @see
Fig. 3~b!# with a,aJ transforms into the crossing lattic
~CIII ! @see Fig. 3~c!# with the extremely dilute PV sublattice
a.aJ at the angleu5arctan(Bx /Bz);arctang.

Therefore, we find a complicated picture of phase tran
tions between the tilted vortex structure and the cross
vortex structure in the casegs,lab . The proposed phas
diagram24 is shown in Fig. 5. As it was suggested earlier7 and
according to our calculations by using Eq.~43!, the tilted
vortex structure~TI! of inclined PV stacks@see Fig. 4~a!# can
1-10
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be replaced by the crossing lattice quite close to thec axis
~see phase diagram obtained forg5500, inset in Fig. 5!.
Nevertheless, in the highc-axis magnetic fields, the calcu
lated in-plane magnetic fields of this transition are high
than those obtained by using the model developed
Koshelev.7 This difference comes from the shear contributi
to EJ , which was omitted in Ref. 7. The crossing lattic
which exists in a wide angular range, can have different s
structures. At high enough out-of-plane fieldsBz.F0 /g2s2,
the ‘‘shifted’’ PV sublattice is realized in the crossing-lattic
structure~CI! @see Fig. 3~a!#. In this substructure, the JV
currents shift the PV’s mostly along thex axis. The ‘‘shifted’’
phase can transform into the ‘‘trapped’’ PV lattice~CII! when
the energy gain related to the ‘‘crossing-lattice pinning’’ e
ceeds the energy needed for the additional shear deform
~the dashed line in Fig. 5 separating CI and CII has b
obtained from the conditionEtr5Eshear). Around the line
Bx5gBz , the lattice CII can be changed by the tilted latti
~TII ! with JV strings linked by PV kinks@Fig. 4~b!# or by the
crossing-lattice structure~CIII ! at which all PV stacks are
placed on a few JV’s. The domain in theHc-Hab phase dia-
gram with the lattice CIII is determined by the conditio
Fc,Ft , whereFt andFc are defined by Eqs.~45! and~46!,
respectively. With increasing temperature, the region of
lattice CIII becomes narrower and disappears at a cer
temperature~see Fig. 6!. The proposed phase diagram su
gests the possibility of the reentrant tilted-crossing-tilt
phase transition as the magnetic field~at least with lowB
&gF0 /lab

2 or high B*F0 /gs2 absolute value! is tilted

FIG. 5. The proposed phase diagram of the vortex-solid phas
the oblique magnetic fields calculated using Eqs.~39!, ~40!, ~43!,
~45!, and~46! with parameters mentioned in the text,T545 K, g
5100, andn51. The dotted line is the lineBx5gBz , while the
shaded area marks the region inside which the transition from
crossing lattice CII to the tilted lattice TII or the crossing latti
CIII happens. The arrows from enframed TI and TII are direc
toward the regions where these vortex structures are realized. I
the part of the phase diagram close to thec axis for strongly aniso-
tropic superconductors withg5500 (gs.lab) and T545 K; the
solid line marking the transition from the tilted lattice TI to th
crossing lattice is obtained from Eq.~43!, while the dashed line
corresponding to the same transition is calculated by using Eq~6!
of Ref. 7. The parameters are chosen to give some insight to
behavior of Bi2Sr2CaCu2O82d in the oblique magnetic fields.
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away from thec axis to theab plane. Such possibility for
low fields was earlier mentioned in the works11,13 in which
the interaction of crossed sublattices was not conside
Moreover, we note that the instability of the tilted lattice w
found numerically by Thompson and Moore25 ~for g&100)
only at the intermediate-field orientations 0°,u1,u,u2
,90°, which could also support the discussed scenario.
parameters taken for theHc-Hab phase diagram atT
545 K ~Fig. 5! and the Hab-T phase diagram at the
magnetic-field orientationBz5Bx /g ~Fig. 6! were chosen to
give some insight into the behavior of vortex array
Bi2Sr2CaCu2O818 ~BSCCO! in the tilted magnetic fields
~see further discussion! as lab52000/A12T2/Tc

2 Å , jab

530/A12T/Tc Å , s515 Å , Tc590 K, g5100 (g
5500 for the inset in Fig. 5 andg5150 for the inset in Fig.
6!.

V. CONCLUSION

This theoretical investigation was partially motivated
the recent intensive experimental studies of the vortex-lat
melting transition26–30 as well as transitions in the vortex
solid phase29,31 in Bi2Sr2CaCu2O81d single crystals. The ob-
served linear decay of thec-axis melting-field componen
Hc

m with in-plane field26,27 was interpreted7 as an indication
of the crossing-vortex lattice. Thus, the tilted lattice could
replaced by the crossing vortex structure quite near thc
axis. According to our calculations, the angle where suc
transition may occur is about 7° atBz'100 Oe andg
'500 while that angle reaches 14.5° in the higher out-
plane fieldBz5500 Oe, which correlates well with the dis
appearance of the hexagonal order along thec axis found by
neutron measurements.32 With further tilting of the magnetic
field, the linear dependence of thec-axis melting-field com-

in

e

d
et:

he

FIG. 6. TheHab-T phase diagram of the vortex-solid phase
the field oriented near theab plane (Bx /Bz5g5100). The region
of the crossing-lattice phase~CIII ! becomes narrower and finall
disappears with increasing temperature. Inset: the same phase
gram forg5150. The dotted lines correspond to the experimenta
determined temperature dependenceHab

m }12T2/Tc
2 of the in-plane

characteristic fields of the vortex-lattice melting transition
Bi2Sr2CaCu2O81d in the tilted fields30 ~for instance, symbols rep
resented in the inset exhibit the temperature dependence o
maximum in-plane field of the vortex-lattice melting transition!.
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ponent Hc
m(Hab) abruptly transforms into a wea

dependence,27–29 which, as was shown,28 cannot be ex-
plained in the frame of the model.7 Such behavior suggests
phase transition in the vortex-solid phase in tilted magn
fields in Bi2Sr2CaCu2O81d , which was detected in the re
cent ac magnetization measurements.29,31As was mentioned
by Ooi et al.,31 the behavior of the new anomaly of the loc
magnetization in BSCCO attributed to the phase transitio
the vortex solid slightly reminds of the peak effect related
the vortex pinning, which, in turn, could be induced by t
vortex trapping by planar defects.21 Such analogy, as well a
a very weak dependence of thec-axis magnetic-field compo
nentHc* of the phase transition on in-plane magnetic field31

in a wide angular range could suggest the transition from
‘‘shifted’’ PV sublattice ~CI! to the ‘‘trapped’’ PV sublattice
~CII! in the crossing lattice structure. Our estimation of t
c-axis field Hc

trap of the transition from CI to CII@Hc
trap

'450 Oe forg5100 atT545 K ~see Fig. 5!# ~Ref. 33! is in
a reasonable agreement with experimental findings31 Hc* (T
545 K)'430 Oe. Near theab plane, the properties of th
observed anomaly changes abruptly and the fieldHc* sharply
goes to zero,31 which may indicate a transformation23 in the
JV lattice or a trace of the phase transition from TII to CI
At higher in-plane fields, the determined stepwise behavi28

of the vortex-lattice melting transition may be related to t
existence of one more phase transition in the solid ph
Interestingly enough, all characteristic in-plane fields of
vortex-lattice melting transition depend on temperatur30

proportionally to 12T2/Tc
2 , which is similar to the calcu-

lated temperature dependence of the phase transition
CIII to TII ~see Fig. 6!.

In summary, we discussed the crossing-lattice structur
a strongly anisotropic layered superconductor in the fram
work of the extended anisotropic London theory. The ren
malization of the JV energy in the crossing-lattice struct
was calculated in the cases of the dense PV lattice as we
the dilute PV lattice. It was shown, that the ‘‘crossing-latti
pinning’’ can induce the rearrangement of the PV sublatt
in the crossing lattice structure as soon as the out-of-p
magnetic field becomes lower than a certain critical val
The free-energy analysis indicates a possibility of the re
trant tilted-crossing-tilted lattice phase transition with inc
nation of the magnetic field away from thec axis to theab
plane in the case oflab.gs.

APPENDIX A: APPROXIMATE SUMMATION IN
EQUATION „10…

Our aim is to sum the sequence

F0 (
n52`

`

ikzu~k!
f ~kz ,ky22pn/b!2~Bz/2F0!ikzu~2k!

11lab
2 kz

21lc
2~ky22pn/b!2

5 ikzC1~ky ,kz!u~k!1~Bz/2F0!kz
2C~ky ,kz!u~k!u~2k!.

~A1!

Equation~17! for C(ky ,kz) can be directly obtained by us
ing the well-known mathematical equality
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(
n

1

r 21~ t12pn/a!2
5

a

2r

sinh~ra!

cosh~ra!2cos~ ta!

with real numbersr , t, anda.
Next the sum C1(ky ,kz)5F0(Qy52pn/bf (kz ,ky

2Qy)/@11lab
2 kz

21lc
2(ky2Qy)

2# needs to be estimated. B
using inequalitykz&1/s, we obtain f (kz ,ky2Qy)' f J(ky
2Qy) where f J'1 for uky2Qyu&1/lJ and is zero other-
wise. In the case of the dense PV lattice (b!lJ) we retain
only the term withn50 in the sum and get the expressio
C1(ky.1/lJ)50 and C1(ky&1/lJ)5F0 /(11lab

2 kz
2

1lc
2ky

2). Taking into account the inequalityky,1/lJ!1/b
and A11lab

2 kz
2b/lc,b/(gs)!1, one can rewriteC1(ky

,1/lJ ,b!lJ).C(ky ,kz). Thus, we come to Eq.~16!.
For the case of the dilute PV lattice (lJ!b), many terms

give contributions to the sumC1.F0(n52N
N 1/@11lab

2 kz
2

1lc
2(ky22pn/b)2#, since inequalityuky22pn/bu,1/lJ is

held until n exceedsN@1. Thus, the functionC1 is esti-
mated as

C1~ky ,kz!'C~ky ,kz!2
F0b

p E
1/lJ

` dx

11lab
2 kz

21lc
2x2

.

~A2!

Finally, we obtainC15@12b(ky ,kz)#C with

b~ky ,kz!'
cosh~A11lab

2 kz
2b/lc!2cos~kyb!

sinh~A11lab
2 kz

2b/lc!

3F12
2

p
arctanS lc

lJA11lab
2 kz

2D G . ~A3!

At ukzu!1/s, it is easy to show thatb&lJ /b!1, and the
approximationC15C used in Eq.~16! is excellent. Only for
kz;1/s, the functionC1 can differ from the functionC by a
factor of about unity in the case of the dilute PV lattice~the
factor is 12b'0.5 in the framework of our rough conside
ation!. However, the correct estimation of the value of t
factor depends on the type of the smoothing function a
requires more precise analysis than that in the framewor
the London approach. Therefore, we can always ass
C15C in our semiquantitative consideration.

APPENDIX B: EVALUATION OF INTEGRALS
IN EQS. „23…, „24…, AND „36…

In this appendix, the integrals in Eqs.~23!, ~24!, and~36!
are evaluated. We start with the dense PV lattice,a!lJ . In
the regionqz,1/b, the tilt energy is small, Eq.~15!. There-
fore, the denominators of the integrands in Eqs.~23! and~24!
are substantially larger than those in the caseqz.1/b and we
can roughly neglect the contribution related to the reg
qz,1/b. Using Eq. ~25! for the tilt energy in the domain
qz.1/b, the integrals~23! and ~24! can be rewritten as fol-
lows:
1-12
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I 52E
21/lJ

1/lJ
dqyE

1/b

1/s

dqz

f ~qy
2!

11lc
2qy

21lab
2 qz

21Bz
2qz

2/@4p~Ū441C̄44qz
21C66qy

2!#
, ~B1!

where f (qy
2)5F0

2/32p3 for Eq. ~23! and f 5lJqy
2 for Eq. ~24!. After multiplying numerator and denominator by the factor

Ū441C̄44qz
21C66qy

2 , the expression~B1! is reduced to

I 52E
21/lJ

1/lJ
dqyE

1/b

1/s

dqz

~Ū441C̄44qz
21C66qy

2! f ~qy
2!

~11lc
2qy

21lab
2 qz

2!~Ū441C66qy
2!1F ~11lc

2qy
21lab

2 qz
2!C̄441

Bz
2

4pGqz
2

. ~B2!
-
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The term (11lc
2qy

21lab
2 qz

2)C̄44 can be neglected with re
spect toBz

2/4p in the denominator. Indeed, the maximu

value of lc
2qy

2C̄44 @see Eq. ~25!# is about lc
2C̄441/lJ

2

;BzF0 /lJ
2!Bz

2 , while the maximum value oflab
2 qz

2C̄44 is

lc
2C̄441/lJ

2(lJ /gs)2, which is even smaller sincelJ,gs
@see Eq.~26!#. Next, the integration in Eq.~B2! over qz can
be taken easily,

I 54E
1/lc

1/lJ
dqyf ~qy

2!S C̄44

Bz
2/4p1lab

2 ~Ū441C66qy
2!

1

s

1
1

lcqy

AŪ441C66qy
2u* ~qy!

ABz
2/4p1lab

2 ~Ū441C66qy
2!
D , ~B3!

where the functionu* , defined as

u* ~qy!5arctanH qy
21

gs
A11Bz

2/@4plab
2 ~Ū441C66qy

2!#J
2arctanH qy

21

gb
A11Bz

2/@4plab
2 ~Ū441C66qy

2!#J ,

determines the lower cutting value 1/lcut of qy . Namely, by
using Eq.~26! we can assume that the argument of the fi
arc tangent in the last expression is larger than 1, for m
values ofqy . Then, the value ofu* (qy) is aboutp/2 if the
argument of the second arc tangent is smaller than 1; ot
wise u* is close to zero. Thus, we obtain the expression
lcut ,

lcut'
bg

A11
Bz

2

4plab
2 ~Ū441C66lcut

22!

'
A2bg

F 12
b2g2

d2
1AS b2g2

d2
21D 2

14
~lab

e f f!2b2g2

lab
2 d2 G 1/2

;min~lc ,min„gb,max~blc /lab
e f f ,Ablcd/lab

e f f!…!,
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where we denoted5AC66/Ū44;lab and take into accoun
that lcut should be smaller thanlc . As a result, the integra
~B3! can be evaluated as

I 54E
1/lc

1/lJ
dqyf ~qy

2!
C̄44

Bz
2/4p1lab

2 ~Ū441C66qy
2!

1

s

12pE
1/lcut

1/lJ
dqyf ~qy

2!
1

lcqy

AŪ441C66qy
2

ABz
2/4p1lab

2 ~Ū441C66qy
2!

.

~B4!

In case of the dense PV lattice, the first integral is small a
can be neglected. In addition, we also can omit the te
C66qy

2 in the expressionBz
2/4p1lab

2 C66qy
2 . Finally, we have

I ~a!lJ!52p
1

lclab
e f fE1/lcut

1/lJ f ~qy
2!dqy

qy
A11

C66

Ū44

qy
2.

~B5!

After taking f (qy
2)5lJqy

2 in Eq. ~B5! and by ignoring

C66qy
2/Ū44 in the caselJ.lab or by neglecting unity in the

opposite case, we obtain the expression
lJ'max(lcs/lab

ef f ,A@lcs/lab
e f f#d). It coincides with Eq.

~26! since d'lab . The energy of JV, Eq.~27!, is easily
derived if one putsf (qy

2)5F0
2/(32p3) in Eq. ~B5!.

Next, we roughly estimate the first integral in Eq.~36!.
The inequality (11lc

2qy
21lab

2 qz
2)C̄44!Bz

2 is still correct in
the domainqz!g/b, qy!1/b for Bz@F0 /lc

2 . Thus, we can
get the estimation~B4! also for the dilute case (a.gs).
However, in contrary to the dense PV lattice, the contribut
related to the first term in Eq.~B4! remains important,

I ~a@lJ!54
C̄44g

Ū44b~lab
e f f!2E1/lc

m1 /b

dqyf ~qy
2!

1
2p

lclab
e f fE1/lcut

m2 /b

dqy

f ~qy
2!

qy
A11

C66

Ū44

qy
2. ~B6!

Here, we have introduced numerical parametersm1 andm2,
since the upper limits of integration are not well defined. T
corresponding contribution to the energy is obtained from
last equation forf 5F0

2/32p3 as presented in the text.
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