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Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor
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The influence of geometry and morphology of superconducting structure on critical currents and magnetic
flux trapping in percolative type-ll superconductors is considered. The superconductor contains clusters of
normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The
main features of these clusters are studied in detail: the cluster statistics is analyzed, the fractal dimension of
their boundary is estimated, the distribution of critical currents is obtained, and its peculiarities are explored. It
is examined thoroughly how the finite-resolution capacity of the cluster geometrical size measurement affects
the estimated value of the fractal dimension. The effect of fractal properties of the normal phase clusters on the
electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of
cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal
dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters
intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.
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I. INTRODUCTION Fractal clusters can be also formed in such highly inho-
mogeneous materials as high-temperature superconductors

An important property of clusters of normal phase in a(HTS's). So the fractal dissipative regime has been observed
superconductor consists in their capability to trap a magnetii high-resolution measurements of the dynamical resistance
flux. By virtue of their capacity to hold the vortices from of (BiPb),SrL,CaCu;04¢., (BPSCCQO composites contain-
moving under the action of the Lorentz force, such clusterdng normal phase inclusions of &g’ The fractal properties
can act as effective pinning centéré. This feature is used of the normal phase clusters contained in YBaO;_,
widely in the making new composite superconducting mate{YBCO) films, which were prepared by magnetron sputter-
rials of high-current-carrying capabilif The morphologi- ing on sapphire substrates with a cerium oxide buffer sub-
cal characteristics of clusters of normal phase exert an appréayer, have been found in Ref. 9. Percolation clusters provide
ciable effect on the magnetic flux dynamics in another example of fractals in superconduct8ralthough,
superconductors, especially when the clusters have fractahathematically, the percolation cluster is a fractal at the
boundarie<® In the present work the geometric probability threshold point only, the fractal approach works well for any
properties of such fractal clusters are considered in detaiklusters which have a scaling featdfein that case normal
and their influence on the dynamics of trapped magnetic fluphase clusters may be formed by the inclusion of different
and critical currents is analyzed. chemical compositions, as well as domains of the reduced

The notion of a fractal as an object of fractional dimen-superconducting order parameter can act as such cligters.
sion was first introduced by Mandelbtband has received a The existence of fractal inclusions of this kind can be dem-
lot of applications in various domains of scierfée'® The  onstrated by fractal dissipation, which has been observed in
fractal approach has been found to be most useful in an inRontextured polycrystalline  YBCO and GdBCO bulk
vestigation of inhomogeneous materials. There are mangamples The fractal structure of clusters near the percola-
possibilities, both the determinate fractals and the stochastiton threshold in epitaxial YBCO films has been fully con-
ones to be formed in composite superconductors. As an exsidered in Ref. 21. Of special interest are the works of Surd-
ample of the first kind the multilayered structures preparectanuet al®>* where the fractal penetration of magnetic flux
by electron-beam deposition of superconductdb) and in thin HTS films has been investigated by the use of
normal metalCu) layers with a fractal stacking sequence onmagneto-optics. Epitaxial JBa,CuQ; 4 flms were grown
sapphire substrates can be mentiotteth order to obtain by magnetron sputtering on SrTjGubstrates, and YBCO
stochastic fractal clusters, it is essential that a process likBIms were prepared by pulsed laser deposition on NdGaO
diffusion-limited aggregation would take place in the coursesubstrates. The cluster structure of such films is clearly vis-
of the synthesis of materiat§.A similar process can be re- ible in the atomic force microscopy picture published in Ref.
alized, for instance, when thin films are evaporated. So irl, whereas the magnetic flux penetrating into the sample
Ref. 16 films of fractal structure have been grown by vaporfrom the outside has a well-definite fractal front.
deposition of Au on silicon substrates with a silicon nitride A further consideration will be concerned with the super-
buffer sublayer. It is worthy of note that porous, random, orconductor containing fractal inclusions of a normal phase,
highly ramified clusters are not necessarily all fractals. Awhich are out of contact with one another. Let us assume that
fractal cluster has such a property that its characteristic medhese inclusions are oriented in such a way that their extent
sures(in what follows, the perimeter and the enclosed areaalong one of the directions far exceeds other linear sizes.
have to obey a certain scaling law that includes an exponer&imilar columnar defects are of most interest for creating
named the fractal dimensidih* artificial pinning center§>2>=*When such a superconduct-
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ing structure is cooled below the critical temperature in the
magnetic field along the direction of the longest size of these ’tT ’r)r
inclusions, the magnetic flux will be frozen in the normal

phase clusters. Even after the external field has been turned % %f// ",’2 Mo

off, the flux trapped in these clusters is kept unchanged due /ﬂ ) F
to the currents that are steadily circulating around them

through the superconducting loops. The distribution of the I,T I,T
trapped magnetic flux resulting from such a magnetization in
the field-cooling regime will be two dimensional. A similar
distribution can easily be realized in superconducting films
where normal phase inclusions are created during the growth FIG. 1. Schematic representation for the magnetic flux exit from
process at the sites of defects on the boundary with the sula- normal phase cluster through the weak link. For simplicity a
strate in such a way that their orientation is normal to thesingle weak link is shown in each branch of the superconducting
surface of the filn?32*Let us suppose that the film surface loop around the normal phase inclusion. Hére:l;+1, is the
fraction covered by the normal phase is below the percolatransport currently, is the current related to the trapped magnetic
tion threshold for the transfer of magnetic fllB0% for two-  flux @, andF, is the Lorentz force(a) The magnetic flux remains
dimensional2D) percolatiod’]. In this case the relative por- trapped in the cluster as long Bst14<I¢, wherel is the critical
tion of the superconducting phase exceeds the percolatigfirent of the weak link(b) As soon asl,+14=I. the Lorentz
threshold, so there is a superconducting percolation cluster {{grce expels the flux through the right weak link which has become
the plane of the film where a transport current can flow. Sucﬁeﬂstlve.(c) As a result the clusteri dogs not gontaln the magnetlc
a structure provides for effective pinning and thereby raisedUx anymore, whereas the weak link in the right branch is super-
the critical current, because the magnetic flux is locked jnFonducting anewprovided thatl ,<l.).

finite clusters of a normal phase, and so the vortices cannot

leave them without crossing the surrounding superconductveak links, which may be grain or crystallite boundaries as
ing space. If the transport current is passed through theell as barriers arising from the secondary degrading the
sample, the trapped magnetic flux remains unchanged awnstoichiometric crystal into the domains with a high and
long as the vortices are still held in the normal phase cluslow content of oxyger®*°*'Moreover, a magnetic field fur-
ters. When the current is increased, the magnetic flux startber reduces the coherence lenfftiihus resulting in more

to break away from the clusters of pinning force weaker thareasy weak link formation. In conventional low-temperature
the Lorentz force created by the transport current. As thisuperconductors, which are characterized by a large coher-
takes place, the vortices will first pass through the weak linkence length, weak links can be formed due to the proximity
which connect the normal phase clusters between theneffect in sites of minimum distance between the next normal
selves. phase clusters.

Such weak links form readily in HTS characterized by an  As soon as the transport current is turned on, this one is
extremely short coherence length. Various structural defectsidded to all the persistent currents, which maintain the mag-
which would simply cause some additional scattering at longnetic flux to be trappedFig. 1(a)]. Each of these currents,
coherence length, give rise to the weak links in HTS. Theresuch ad 4 in Fig. 1, is circulating through the superconduct-
is a hierarchy of weak links over a wide range of scales inng loop around the normal phase cluster wherein the corre-
HTS526-29At an atomic level the weak links are formed by sponding portion of the magnetic flux is trapped. The loop
the structural atomic defects, primarily, by oxygen contains weak links that join the adjacent normal phase clus-
vacancie$/It is significant that just these vacancies arisenters transversely to the path of the current. As the transport
from the oxygen atom deficit underlie the origin of HTS current is increased, there will come a point when the overall
phenomenon by itself. On a mesoscopic scale twin boundeurrent flowing through the weak link will exceed the critical
aries are mainly responsible for weak link existefft& 2  value, so this link will turn into a resistive state. As this takes
Twins form especially readily in YBCO superconductors in- place, the space distribution of the currents throughout the
asmuch as their unit cell is only close to the orthorhombicsuperconducting cluster is changed in such a way that the
one. The twins can be spaced up to several nanometers apassistive subcircuit will be shunted by the superconducting
so even single crystals may have the fine substructure causpdths where weak links are not damaged[¥ég. 1(b)]. The
by twins. The effect of twins on the magnetic flux motion in magnetic field created by this redistributed transport current
HTS has been studied by many authtg'°It is known that  acts via the Lorentz force on the current circulating around
the HTS magnetization depends strongly on the orientatiothe normal phase cluster. As a consequence, the magnetic
of twin plans with respect to the applied magnetic figldt  flux trapped therein will be forced out through the resistive
has been found that the flux can easily move along twirweak link, which has become permeable to the vortices
plans but not crosswisg:**38A strong anisotropy of mag- [Figs. 4b) and 1c)].
netic flux motion along and across twins has been also ob- This paper is organized as follows: The geometric statis-
served in thin HTS films® At the present time, it is well tical properties of the normal phase clusters in YBCO super-
established that magnetic flux can penetrate easily along thenducting films are studied, and the fractal dimension of
weak links formed by twind*3>4%At last, on a macroscopic their boundaries is estimated in Sec. Il. The dependence of
scale there are manifold structural defects which can fornthe trapped magnetic flux on the transport current as well as

a b c
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the pinning gain caused by the cluster fractality are analyzethat the pinning force is weaker for larger clusters. Hence,
in Sec. lll. The voltage-currentM-1) characteristics of su- the current is smaller at which the magnetic flux ceases to be
perconductors containing fractal clusters of a normal phastrapped inside the cluster and leaves it through the weak
are obtained in Sec. IV. A geometric probability analysis oflinks in the form of vortices driven by the Lorentz force. The

the weak link distribution over the cluster perimeter is madeexit of a vortex from a normal phase cluster can be treated as
in Appendix A. Some mathematical details concerning thea problem of a random walk particle reaching an absorbing

V-1 characteristics are presented in Appendix B. border*® However, unlike the classical problem of the distri-
bution of the exit pointgsee, e.g., Ref. 46here the bound-
Il. FRACTAL GEOMETRY OF NORMAL PHASE ary of the area is not absorbing all over, but there are only
CLUSTERS discrete absorption points, which are randomly arranged

) _ _ along the cluster perimeter. These points of absorption are
Thus, whatever the microscopic nature of weak links maygcated just at the sites where weak links are going out on the
be, they form the channels for vortex transport. It appeargoundary of the cluster. Hereafter we shall call them the
that according to their configuration each normal phase clusyoints of entry of vortices into weak links or, simply, entry
ter has its own value of the critical current of depinning, points. In addition to that, the situation is complicated by the
which contributes to the overall statistical distribution. Whenfractality of the cluster boundary as well as by the fact that a
a transport current is gradually increased, the vortices wilkandom walker is permanently subjected to the Lorentz
break away first from clusters of small pinning force and,fgrce.
therefore, of small critical current. Thus the decrease in the g simplicity suppose that after the vortex reaches the
trapped magnetic fluA® is proportional to the number of entry point it passes all the way between two adjacent nor-
all normal phase clusters of critical currents less than a pres@ha| phase clusters without being trapped inside the weak
valuel. Therefore, the relative decrease in the trapped fluXink itself. Here the magnetic flux is transferred by Josephson
can be expressed with the cumulative probability functionyortices. The Josephson penetration depth is large enough in
F=F(I) for the distribution of the critical currents of clus- the considered materials so that the size of the region, where
ters: the vortex is localized, greatly exceeds the characteristic
AD length of all possible structural defects_t_hat can occur along
5 = F(l), where F(1)=Pr{VI,<l}. (1) th_e transport cha_nnel. Thus the probability tha_t such a vortex
will be trapped in passing through a weak link under the

The right-hand side of Eq(l) is the probability that any action of the Lorentz force is very small. This assumption
jth cluster has a critical currenf less than a given upper 29rées well with the results of research on magnetic flux
bound]. motion along weak link$;>>*"*8including twins3334384%¢

On the other hand, the magnetic flux trapped in a singléhe same time, it allows us to highlight the role played by the
cluster is proportional to its ared, so the decrease in the CluSter boundary in the magnetic flux trapping. _
total trapped flux can be represented by the cumulative prob- Next, we shall consider the simplest case of a uniform
ability function W=W(A) for the distribution of the areas of distribution of entry points over the cluster perimeter with
the normal phase clusters, which is a measure of the numb&f€ distribution function
of clusters of area smaller than a given valuefof

1

AD w(l)= E’ (4)
' 1-W(A), where W(A)=PHVA;<A}. (2
which gives the density of probability to find a weak link at

The distribution functionlW=W(A) of the cluster areas the pointl on the perimeter of the complete length(see
can be found by a geometric probability analysis of electrorAPpendix A). Also suppose that the concentration of entry
photomicrographs of Superconducting f||ﬁ?rsln the most pOintS into weak links per unit perimeter Iength is constant
genera| way the cluster area distribution can be described tfpr all clusters regardless of their size. For the uniform dis-
a gamma distributiofi® In the practically important case of tribution of Eq.(4) this concentratiom is independent of the

YBCO films containing columnar defeét€***the exponen- point position, so the mean number of entry poiitsalong

tial distribution is realized: the cluster perimeter is proportional to its length:
A _
W(A)=1— ex =) (3) N= %n(l)dl=nP. (5)
whereA is the mean area of the cluster. Finally, let us assume that all clusters are statistically self-

Thus, in order to clear up how the transport current actsimilar and that all clusters of equal perimeter have the same
on the trapped magnetic flux, it is necessary to find out thginning force and, therefore, equal critical current.
relationship between the distribution of the critical currents In order to find the relationship between the size of a
of the clusterdEqg. (1)] and the distribution of their areas cluster and its critical current, we have to solve such a ques-
[Eq. (2)]. To do this, the geometric size of the normal-phasetion: what quantity should be used as a measure of the cluster
cluster has to be related to its critical current. It seems naturaize? Obviously, both the area and the perimeter length
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(along with any increasing functions of these vajuyg®vide  Hence, we may write the following relationship between the
such a measure. At the same time, the cluster area is a megtitical current of the cluster and its geometric size:
sure of the magnetic flux trapped inside. Eventually, to clear
up how the transport current affects the trapped flux, the
critical current must be related to the area of the cluster.

On the other hand, the pinning force corresponds to such
a current at which the vortices break away from the cluster. Thus this expression is true for the simplest case of a
As the transport current is increasing, the Lorentz forceuniform distribution of entry points, which is assumed to be
which expels the magnetic flux, increases as well. The vortexhe same for all clustersee Appendix A Such a simplifi-
leaves the normal phase cluster when the Lorentz force beation allows us to emphasize that in the case being consid-
comes greater than the pinning force. At the same timegred the magnetic flux is held in the normal phase cluster by
growing in current will result in a redistribution of the mag- its boundary.
netic flux, which will penetrate deeper and deeper into a Thus, to deal with the distribution function of E@), the
transition layer on that side of the surrounding superconductelation between the perimeter and area of clusters should be
ing space where the Lorentz force is direcfsde Fig. 1b)]. studied. It might be natural to suppose that the perimeter-area
The flux penetration into this transition layer has a fractalrelation obeys the well-known geometric formuRe: yA.
behavior, but unlike the case considered in Refs. 3 and 4, thdowever, it would be a very rough approximation offly;’
flux front is built up on the fractal phase boundary. In orderbecause this relationship holds for Euclidean geometric ob-
to leave the normal phase cluster, vortices have to reach tfigcts but on no account for the fractals. As was first found in

entry points. The exit of the magnetic flux can be considered?€f- 9, the fractal nature of the normal phase clusters exerts
as the result of random walks of vortices driven by the Lor-2n @ppreciable effect on the dynamics of a magnetic flux in
entz force, which is pushing them into weak links. A similar superconductors. For fractal clusters a relation between the

approach has been successfully used in Ref. 2, where t%erlmeter and area has the form

| ¢ — ¢

(6)

Z|l -
|+~

extreme fronts of the magnetic flux penetrating in a 1D su- Poc AD2 )
perconducting quantum interference deviSQUID) array '
were found. where D is the fractal dimension of the cluster perimeter

Undoubtedly, it is necessary to keep in mind that real(so-called coastline dimensiph
Josephson vortices arise only when magnetic flux enters into The relation of Eq(7) is consistent with the generalized
weak links, which causes the supercurrents in the transitiofuclid theorent*?which states that the ratios of the corre-
layer to redistributé® When the random walk vortex, which sponding measures are equal when reduced to the same di-
has not reached the entry point yet, is mentioned, it is primension. Hence it follows tha@'®=A'? which is valid
marily meant that the equivalent space distribution of superPoth for Euclidean clustergthe Hausdorff-Besicovitch di-
currents creates the same magnetic field. This fact—that tH&€Nsion of their perimeter coincides with the topological
fractal cluster coastline is highly “indented—causes the©n€: D=1) and for fractal clusters(the Hausdorff-
entry points to differ in accessibility for vortices depending Besicovitch dimension of their boundary strictly exceeds the

on their position on the boundary—they are located intop'(l')fl]oegff:(l:tgllmdfgz:’?snoor]f aa:'n:?::nlgé estimated by means of
“skerries” or on “protuberances® It may occur that a vor- ion vald . y

tex will not enter the weak link at all, but to the contrary will a regression analysis of the sampling of the areas and perim-

fek | «dead end.” In th ¢ simol h th eters of the normal phase clusters. Such a geometric prob-
stick In some “dead enad.” in th€ most simple approac eability analysis was carried out by the procedure described in
following outcomes of the random walks may happém:

; Ref. 9. For this purpose an electron photomicrograph of
the vortex enters the weak link and leaves the .normal pPhasegco film prepared by magnetron sputtering, which was
cluster,(b) the vortex does not enter the weak link and con-gjmjlar to that published earlier in Ref. 24, has been scanned.
tinues its random walks, ar(d) the vortex does not enter the The perimeters and areas of clusters have been measured by
weak link and remains to be locked in the “dead end.” Thecovering their digitized pictures with a square grid of spacing
wider the transition layer, where the magnetic flux penetrategox 60 nnf. The results of the statistical treatment of these
as the current increases, the more entry points become accefta are presented in Table I. The normal phase has occupied
sible for vortices. The mean number of entry poifNsavail-  20% of the total surface only, so the transport current can
able on the cluster perimeter provides the probability meaflow through the sufficiently dense percolation superconduct-
sure of the number of the random walk outcomes, which aréng cluster. The primary sampling contains 528 normal phase
favorable for the vortex to go out. In the case of the uniformclusters located on the scanned region of a total area of 200
entry point distribution of Eq(4) and at a constant concen- wm?. The distribution of the cluster areas is fitted well to the
tration of weak links for all clusters, from E¢) it follows  exponential cumulative probability function of E@) with a

thatNo P; thus the perimeter length also represents the probmean cluster ared=0.0765 um?. All points of the primary
ability measure of the amount of favorable outcomes for thesampling are marked by crosses in plot 1 of Fig. 2, which
vortex to leave the cluster. The more entry points into weakshows the perimeter-area relation for the normal phase clus-
links are accessible for random walk vortices, the smaller igers. Figure 2 also demonstrates such an important peculiar-
the Lorentz force required to expel the flux from a cluster.ity of this relation: the scaling law of Ed7) is valid in the
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TABLE |. Statistics of normal phase clusters and estimation of the fractal dimension.

Primary sampling

Truncated sampling

Sampling size 528 380
MeanA (um?) 0.0765 0.1002
Sample standard deviation &8f(um?) 0.0726 0.0729
Standard error of estimate fér (um?) 3.16x10°° 3.74x10°3
Total scanned (un) 40.415 38.093
Min value of A (um?) 2.07x10°2 0.0269
Max value ofA (um?) 0.4015 0.4015
MeanP (um) 1.293 1.616
Sample standard deviation Bf (xm) 0.962 0.949
Standard error of estimate f&r (um) 0.0419 0.0487
Total scanned (wm) 682.87 614.19
Min value of P (um) 0.096 0.515
Max value ofP (um) 5.791 5.791
Correlation coefficient 0.929 0.869
Estimated fractal dimensiob 1.44 1.47
Standard deviation db 0.02 0.03

range of almost three orders of magnitude in cluster areapparent kinks or crossovers on the graph. This enables the
The scaling perimeter-area behavior means that there is rfeactal dimensiorD of the cluster perimeter to be estimated
characteristic length scale between .rh and 10um inthe  from the slope of the regression line of the form of K,

linear size of the normal phase cluster. Whatever the shap8us a least-squares treatment of the perimeter-area data for
and size of the clusters may be, all points fall closely on théhe primary sampling gives an estimate Df= 1.44=0.02

same straight line in logarithmic scale, so that there are n#/ith correlation coefficient 0.929. .
This point—that the value found of the coastline fractal

dimension differs appreciably from unity—engages great at-
i . tention. What this means is that the fractal properties of the
cluster boundary are of prime importance here. Two straight
lines (5) in Fig. 2 bound the range of the slopes that the
dependences of the perimeter on the cluster area can have for
any arbitrary fractal dimension. The least slope corresponds
to Euclidean clusterd=1); the greatest one relates to clus-
ters of the greatest possible coastline dimension, which is
equal to the topological dimension of a smooth surfade (
=2). Such a fractal dimension is inherent, for example, in
Peano curves, which fill the whole plateWhatever the
geometric morphological properties of clusters may be, the
slope of their perimeter-area graphs will be always bounded
by these two limiting lines.

When we deal with the geometric features of the normal
phase clusters, we are considering the cross section of the
extended columnar defects by the plane carrying a transport
current. Therefore, though normal phase clusters are self-
affine fractals:>!*it is possible to examine their geometric
probability properties in the planar section only, where the
boundaries of the clusters are statistically self-similar.

Next, using the relation of Eq(7) between the fractal
FIG. 2. Perimeter-area relationship for the normal phase cluster@€rimeter and the area of the cluster, as well as the formula

with fractal boundary. Plofl) shows the data of the primary sam- Of EQ. (6), we get the following expression for the critical
pling (528 points, plot (2) shows the data of the truncated sampling current: | = AP where « is the form factor. In accor-
(380 points, line (3) is the least-squares regression line for thedance with starting formulas of E¢l) and Eq.(2), the ex-
primary sampling, and lin¢4) is the least-squares regression line ponential distribution of cluster areas of E8) gives rise to
for the truncated sampling. Two lin€S) display the range of slope an exponential-hyperbolic distribution of critical currents:
that the perimeter-area curves can have for any possible fractal 2D +1
2+D
F(i)= exp{ — )

oo
AW -

P (um)

0.1 truncated sampling

D=1.47+0.03

0.01 primary sampling

D =144 £ 0.02

0.001 1 L1l L Lol L L1111l
0.001 0.01 0.1 1

A (um?)

dimensionD (D=1 for clusters of Euclidean boundaf,=2 for
clusters of boundary with the maximum fractality 2

i72/D

, ®
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1.2 D/2

A

A

24D (2+D)/2
>

1.0 |-

Figure 3 shows that in the range of curremts6 the
empirical distribution function, which describes the morpho-
logical properties of the superconducting strucfyret (1)],
coincides ideally with the cumulative probability function
[curve (2)] for the coastline fractal dimension @ =1.44.
Starting with the value of the current6 the crossover is
observed, resulting in the empirical distribution function
passing to the dependence for Euclidean clust®rs-1).

This transition to the Euclidean region is over at large trans-
0.4 port currents, when the magnetic flux changes mainly for the
| start of resolution deficiency breaking of the vortices away from the small clusters the
smaller clusters have the larger pinning forcehe observed
02 I crossover has its origin in the finite-resolution capability of
measuring the cluster geometric sizes. The distinctive feature
: of the topologically one-dimensional fractal curve is that its
S N B T B I S measured lengtR depends on the measurement accuracy in
0 5 10 15 20 25 30 35  suchaway thaPxs' P, whered is the yardstick size used
to measure this length and (—ng is the Hausdorff codimen-
sion for the Euclidean 1D spackln our case such a fractal

FIG. 3. Effect of a transport current on the magnetic flux trappedcurve is represented by the boundary of the normal phase
in fractal clusters of a normal phase. Step line with open cirdes cluster. That is why just the statistical distribution of the
is the sample empirical function of the critical current distribution, cluster areas, rather than their perimeters, is fundamental for
line (2) shows the decrease in the trapped flux for fractal clusters ofinding the critical current distribution of E¢8). The topo-
coastline dimensiob = 1.44, and ling3) shows the decrease in the logical dimension of the perimeter is equal to unity and does
trapped flux for Euclidean clusters of coastline dimendioal. not coincide with its Hausdorff-Besicovitch dimension,

which strictly exceeds unity. Therefore the perimeter length
wherei=1/I, is the dimensionless transport current and of a fractal cluster is not well defined, because its value
diverges as the yardstick size is reduced infinitely. On the

08

i

o \(@+D)2 other hand, the topological dimension of the cluster area is
=] —= a(A) PP the same as the Hausdorff-Besicovitch dbeth are equal to
2+D 2). Thus, the area restricted by the fractal curve is a well-

) . o - defined finite quantity.

is the critical current of the resistive transition. Taking into account the effect of the measurement accu-
Thus, the geometric probability properties of the normaliaey the perimeter-area relationship of Ef).can be rewrit-

phase clusters are responsible for the main features of thg a5

critical current statistical distribution. In turn, given the dis-

tribution of Eq.(8), the change in the trapped magnetic flux P(8)= &' P[A(8)]P%, 9
caused by the transport current can be found with the aid Qf hich holds true when the yardstick lenggfis small enough

Eq. (1). Two of these graphs are displayed in Fig. 3 both fory, measure accurately all boundaries of the smallest cluster
the fractal clusters of coastline dimensi@n=1.44 found i, the sampling. When the resolution is deficient, the Euclid-

above[curve(2)] and for the Euclidean ongsurve(3)]. ~ ean part of the perimeter length will dominate the fractal one,
In order to get the relationship between the dynamics 0k, there is no way to find the fractal dimension using the

the trapped magnetic flux and geometric morphologicakajing relation of Eq(9). It means that if the length of a

properties of the superconducting structure, the sample eMzacial curve was measured too roughly with a very large
pirical functionF* =F* (i) of the distribution of the critical ya4sick, its fractal properties could not be detected, and
currents has been computed. This function gives a statisticgerefore such a geometric object would manifest itself as an

e_stlmate of t_h_e cur_nul_amv_e probapmty functidr="F(i). Euclidean one. It is just a resolution deficiency of this kind
First, the empirical distribution functioW* =W*(A) forthe  occurs at the crossover point in Fig. 3. Starting with the
primary sampling of the areas of the normal phase clusterg|ster area less than 0.023n? (corresponding to the cur-
has been found. The valu&™ (A) was calculated for each gontg ofi >6) it is impossible to measure all “skerries” and
order statistic as the relative number of clusters of areagorgs” on the cluster coastlines, whereas all the clusters of
smaller than a given valuk. Next, the empirical distribution 5165 |ess than the size of the measuring cell (3.6
of the critical currents was computed for the same-order stas -3 wm?, which relates to the currents bf 23) exhibit

tistics [step line with open circle¢l) in Fig. 3] using the  hemselves as objects of Euclidean boundarizs (). This
following transformations: resolution deficiency can be also observed in Fig. 2: some
crosses at its lower left corner are arranged discretely with

F*=1-W*, spacing equal to the limit of resolutiof60 nm), because
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some marks for smallest clusters coincide because of thieemely “flat” in the vicinity of the coordinate origin. It is

finite resolution of the picture digitization procedure. easy to show that all its derivatives are equal to zero at the
The coastline fractal dimension was found above bypoint of i =0:

means of regression analysis of the whole primary sampling,

where very small clusters of sizes lying at the breaking point d«

of the resolution limit were also included. Therefore, it is —_kF(O)=0 for any value of k.

necessary to control how much the estimated value of the di

fractal dimension could be distorted by the presence of such

small clusters in that sampling. For this purpose the trun- Therefore even the Taylor series expansion in the vicinity

cated sampling has been formed in such a way that only 380f the origin converges to zero, instead of the quanfity

clusters of area greater than 0.02687, for which the reso- itself. This mathematical feature has a clear physical mean-

lution deficiency has not appeared, have been selected froMg: so small a transport current does not affect the trapped

the primary sampling. The corresponding points are plottednagnetic flux because there are no pinning centers of such

as open circle$2) in Fig. 2, whereas the results of a statis- small critical currents in the overall statistical distribution, so

tical treatment of this truncated sampling are presented in théhat all the vortices are still too strongly pinned to be broken

third column of Table I. The least-squares estimation of thes@way. As can be seen from Fig. 3, the change in the magnetic

perimeter-area data gives a value of coastline fractal dimerflux becomes appreciable after the transition into a resistive

sion of D=1.47+0.03 with correlation coefficient 0.869. state only(in the transport current range of1).

The slope of the regression line for the truncated sampling The relative change in the trapped flixd/®, which can

[dotted line(4) in Fig. 2] is slightly steeper than for the be calculated from Eq8), also defines the density of vorti-

primary ongsolid line (3)]. It is natural because the presenceces,n, broken away from the pinning centers by the curient

in the primary sampling of small clusters, which exhibit

themselves as Euclidean ones at the given resolution, leads ) B (i, ., ., BA®D

to underrating the magnitude found of the fractal dimension. n(i)= C}T(Jof(' )di’= Dy D 1D

Nevertheless, the values of fractal dimensions found for both

samplings virtually do not differ within the accuracy of the yhereB is the magnetic field and,=hc/(2e) is the mag-

statistical estimation. This is due to the high robustness ofetic flux quantum If is Planck’s constant is the velocity

the procedure of the fractal dimension estimation on the bayt jight, and e is the electron charge The graph of the

sis of the scaling relation of Eq7): all points both for the  change in the trapped flux as a function of transport current,

primary sampling and for the truncated one fall on the samyhich is shown in Fig. 3, coincides qualitatively with the

straight line, without any bends or brealsee Fig. 2 Atthe  ¢yryes obtained in experiments on the magnetization of

same time, it is necessary to note that the empirical distribuygco films subjected to current puls&& Figure 3 also

tion function approactisee Fig. 3 provides the most data- gjisplays such a practically important property of supercon-

sensitive technique of estimating the resolution capability regycting structure containing fractal clusters of a normal

quired to study the fractal properties of clusters. phase: the fractality intensifies the magnetic flux trapping,

hindering its breaking away from pinning centers, and

. PINNING GAIN FOR THE MAGNETIC FLUX thereby enhances the critical current which the sample is

TRAPPED IN FRACTALLY BOUNDED CLUSTERS OF A capable of withstanding, remaining in a superconducting
NORMAL PHASE state. Really, the transport current of magnitige? causes

43% of the total trapped magnetic flux to break away from

The cumulative probability function of E¢8) found al- X . .
lows us to fully describe the effect of the transport current onthe usual Euclidean clustefsurve(3)], whereas this value is

the trapped magnetic flux. Using this function, the probabil—equal only to 25% for fractal normal phase clusters of coast-

: : S : L L line dimensiorD = 1.44[curve(2)]. It is equivalent to a pin-
gndggsrlg;g(”l;agrlizvlgé.for the critical current distribution ning reinforcement of 73% in the latter case. Thus the pin-

ning amplification due to the fractality can be characterized

D\2D+1 by the pinning gain factor
f(i)=2/D T) j—2b-1
‘ Ad(D=1)
2+D 2/D+1 D= ,
Xex;{_(T 20| (10) A®(current value oD)

) o ] ) ) ~which is equal to the relative decrease in the fraction of
This function is normalized to unity over all possible positive magnetic flux broken away from fractal clusters of coastline

hyperbolic critical current distribution of E¢8) allows usto  — 1) Thjs quantity can be calculated from the following
avoid the inevitable uncertainty caused by truncation of nonsgrmula:

physical negative values of depinning currents, as takes

place, for example, in the case of a normal distribufibt. 4D\ 2D+ 3,375
The exponential-hyperbolic distribution of E¢8) has ko= ex _) j—2o_ 2T
such an important property: the functidh=F(i) is ex- 2 i2
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FIG. 4. Pinning gain for an arbitrary coastline fractal dimension 0 > 4 6 8 10

of the cluster perimeter.

The characteristic dependences of the pinning gain on the FIG. 5. Influence of the fractal dimension of the perimeter of
transport current as well as on the fractal dimension ar@ormal phase clusters on the critical current distribution. The inset
given in Fig. 4. The highest amplification is reached whenshows the dependences of the average critical cuiramd mode
the cluster boundaries have the greatest possible fractalityaode {i) of this distribution on the coastline fractal dimension.
maxokp =k,= exp (4i —3.375)42], with the maximum ok,
at transport currenit=1.6875. Let us note that the pinning can be described by the dependences of the average and
gain characterizes the properties of a superconductor in th@ode of the critical current distribution on the fractal dimen-
range of the transport currents corresponding to a resistivsion, as is shown in the inset of Fig. 5. The mode of the
state {>1). At smaller current the total trapped flux remains distribution, which is equal to the value of the critical current
unchangedsee Fig. 3 for a lack of pinning centers of such that provides the maximum of the probability density of Eq.
small critical currents, so the breaking away of the vorticeg10), depends linearly on the fractal dimensianode {i)
has not started yet. When the vortices start to leave the noe=(2+ D)/2. The average critical current obeys a much more
mal phase clusters and move through the weak links, theistrong superlinear law specified by Euler gamma function:
motion induces an electric field, which, in turn, creates a

2+D (2+D)/2 ( D)

voltage drop across the sample. Thus, at a transport current — rl1-
2

greater than the current of the resistive transition some finite = 2

resistance appears, so that the passage of electric current is N )
accompanied by energy dissipation. The motion Of each deThe mean_\/alue of the critical current for Euclidean clusters
pinned vortex causes local heating. As for any hard supeiis equal toi (D=1)=(3/2)*?/7=3.2562, while for clusters
conductor(type Il, with pinning centensthis dissipation does of maximum fractality this value becomes infinite(D

not mean the destruction of phase coherence yet. Some dis-2)_. . Figure 5 clearly demonstrates that increasing the
sipation always accompanies any motion of a magnetic flufractal dimension gives a growth of the contribution made by
that can happen in a hard superconductor even at low trangtysters of greater critical current to the overall distribution,

port current. Therefore the critical current in such materialsresumng just in an enhancement of the magnetic flux trap-
cannot be specified as the greatest nondissipative currerging

The superconducting state collapses only when the growth of
dissipation becomes avalanche-like as a result of thermo-
magnetic instability.

The principal reason for pinning enhancement due to the By virtue of the fact that any motion of the magnetic flux
fractality of the normal phase clusters lies in the fundamentatauses energy dissipation in superconductors, the question of
properties of the critical current distribution. Figure 5 dem-how such a process could be prevented, or only suppressed,
onstrates the peculiarities of the fractal probability densityis of prime practical importance. The study of resistive state
specified by Eq(10). As in Fig. 2, the thin lines show the peculiarities leads to conclusions on the influence of the clus-
extreme cases of Euclidean clusteB={1) and clusters of ter fractality on the electric field induced by the flux motion.
boundaries with maximum fractalityD(=2). As may be In the resistive state the hard superconductor is adequately
clearly seen from these graphs, the bell-shaped curve of thepecified by itsv-1 characteristic. The critical current distri-
distribution broadens out, moving towards greater magnibution of Eq.(10) allows us to find the electric field arising
tudes of current as the fractal dimension increases. This shiftom the magnetic flux motion after the vortices have been

IV. ELECTRIC FIELD IN THE RESISTIVE STATE
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broken away from the pinning centers. Inasmuch as eact 10
normal phase cluster contributes to the total critical current
distribution, the voltage across a supercondusterV(i) is

the response to the sum of effects made by the contributior
from each cluster. Such a response can be expressed as
convolution integral

V=RfJOi(i—i’)f(i’)di’, (12 [y

whereR; is the flux flow resistance. A similar approach is
used universally to consider the behavior of clusters of
pinned vortex filamentg® and to analyze the critical scaling
of V-1 characteristics of superconductéfghat is to say, in

all the cases where the distribution of the depinning currents
occurs. The present consideration will be primarily concen-
trated on the consequences of the fractal nature of the norme
phase clusters specified by the distribution of 8d), so all

the problems related to the possible dependence of the flu:
flow resistanceR; on the transport current will not be taken

up here. FIG. 6. Voltage-current characteristics of superconductors con-
Let us consider the simplest case wherein all of the pintaining fractal clusters of a normal phase. Dotted lid# corre-

ning centers would have an identical critical currgntso all  sponds to thes-shaped distribution of the critical currents, ling@s

the vortices would be broken away simultaneouslyiat to the extreme dependences of the voltage across a superconductor

=i.. Then, referring to Eq(11), their density would have on the transport current in the case of Euclidean clustBrs 1)

the following form: and clusters of boundaries with maximum fractali® #2), and

line (3) to the V-1 characteristic of the superconductor containing

normal phase clusters of fractal dimension of the perim&er

n= EJI S(i'—idi'= Eh(i —i.) =1.44. The inset shows the region near the resistive transition in an
Dy o ¢ d, o enlarged scale. The initial dissipative range betwegrandi, is
clearly seen.
where (i) is the Dirac delta function and
2+D 2/D+1
V=Rfex;{— —) 2P
hi 1 for i=0, 2
)= .
=10 for i<0, i [2tD <2+D>’2U D D [2+D\*P*t
Tz 22\ 2] )

is the Heaviside step function.

Thus, the trapped flux would change by 100% at once:
A®/d=h(i—ic). Let us note that in this case=1 due 0 \yhereU(a,b,z) is Tricomi confluent hypergeometric func-
the convenient normalization chosen abowvei/l . tion.

In the model case of &shaped distribution of the critical In extreme cases fdd =1 and forD =2 the expression of
currents the voltage across a superconductor in the flux floty (14) can be simplifiedsee Appendix B
regime, according to Eq12), would obey the simple linear (a) Euclidean clusters=1):
law V=R;(i —i;)h(i—i;). The correspondiny-I character-
istic is shown in Fig. 6 by the dotted ling). 3375

For the fractal distribution of critical currents the situation V=R i exp( = ) - merfc(
is quite different, because the vortices are being broken away i2
now in a wide range of transport currents. After substitution (15
of the function of Eq(10) into Eq.(12), upon integration by ) )
parts, the voltage across a superconductor can be expresséere erfcg) is the complementary error function.

(14

Jﬁ)

W|th the Cumu|ative probabmty function of Eaj8) (b) CIUSterS Of boundary W|th the maXimum fractality
(D=2):
[
- N di’ 4 4
v RfLF(' yar, (13 V=R iexp(—i— +4Ei —i—) , (16
integration of which gives where Eif) is the exponential integral function.
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The V-1 characteristics of a superconductor containingnetic flux. The crucial change of the critical current distribu-
fractal normal phase clusters are presented in Fig. 6. All théion caused by increasing the coastline fractal dimension of
curves virtually start with the transport current valueiof the normal phase clusters forms the basis of this effect. The
=1, which agrees with the beginning of the resistive statemost important result is that the fractality of cluster bound-
found above from cumulative probability function of E§).  aries strengthens the flux pinning and thereby hinders the
When the current increases the trapped flux remains urdestruction of superconductivity by the transport current, re-
changed until the vortices start to break away from the pinsulting in an enhancement of the current-carrying capability
ning centers. As long as the magnetic flux does not move, nof a superconductor. This phenomenon provides possibilities
electric field is arisen. Two thin ling®), calculated using the for increasing the critical current value of composite super-
formulas of Eq.(15) and Eq.(16), bound the region th¥'-1 conductors by optimizing their geometric morphological
characteristics can fall within for any possible values of frac-properties.
tal dimension. As an example, cury8) demonstrates the

V-1 characteristic of a superconductor containing fractal ppeNDIX AT GEOMETRIC PROBARBILITY ANALYSIS

c_Iusters of previously obtained coastline dimensién OF THE DISTRIBUTION OF ENTRY POINTS INTO
- 1'44'_ . . L . WEAK LINKS OVER THE PERIMETER OF A NORMAL
The inset of Fig. 6 shows the region of resistive transition PHASE CLUSTER

under magnification. As may be seen from this graph, the
critical currenti, is preceded by some initial region of the In the most general way the problem of the entry point
finite voltage drop starting with,,, so the resistive transi- into a weak link distribution can be treated in terms of path
tion of the V-1 characteristic is not absolutely abrupt. The integrals>*
magnitude of this onset curreny, is determined by the finite ~ The random distribution of entry points over the perimeter
resolution along the ordinate axis rather than having soméan vary from one cluster to another, so that each normal
threshold value. The existence of this initial section on thephase cluster has an entry point distribution functjegi) of
V-I characteristic arises from the tail of the distribution of its own, which belongs to some function cle@s Herel is
Eq.(10) in the range of small currents, where the breaking ofthe coordinate measured along the cluster perimeter. The
vortices away from the large clusters occurs. A similar regiorprobability distribution of functions/(l) over all clusters
of initial dissipation has been observed by Prestaal®1’in  can be characterized by the functionaf (1)}, which is
HTS—normal-meta(BPSCCO-Ag composite tapes. equal to the probability of finding a given functiaf(l).

Figure 6 shows that the fractality reduces appreciably the The most probable function of the entry point distribution
electric field arising from the magnetic flux motion. This can be expressed by the path integral
effect is especially strong in the range of the currertsi 1
<3, where the pinning enhancement has a maximum as well —_—
(see also Fig. ¥ Both these effects have the same nature, v(h)=y)= f(ﬂ)Dlﬁ(')lﬁ(')Pr{lﬁ(|)}, (A1)
inasmuch as their cause consists in the peculiarities of the
fractal distribution of critical currents of E¢10). As is seen  \\hich gives the mean over all functions of cla@s

from Fig. 5, an increase of fractality causes a significant e path integral Fourier transform on the probability

broadening of the tail of the distributiof=f(i). It means  fynctional P{y(1)} represents the characteristic functiGfial
that more and more small clusters, which can best trap the

magnetic flux, are being involved in the process. Hence the -

density of vortices broken away from pinning centers by the  H[k(l)]= f(Q)Dw(I)exmgidlk(l)zA(l)]Pr{w(l)},
Lorentz force is reducing, so the smaller part of the magnetic S Dy(DHPR ()}

flux can flow, creating a smaller electric field. In turn, the (A2)

smaller the electric field is, the smaller is the energy dissi- . . .
pated when the transport current passes through the sampYéhere K(1) is the element of the reciprocal function space,

Therefore, the decrease in the heat evolution, which coulémd. mteg.ratlon In the kernel is carried out over the cluster
” . erimeter:l € (O,P).
cause a transition of the superconductor into a normal staté)

; - " In the simplest case, when all clusters are of an equal
means that the current-carrying capability of the supercon- L ) . :
. . entry point distribution, which coincides with the most prob-
ductor containing such fractal clusters is enhanced.

Thus, Fig. 6, as well as Fig. 4, obviously demonstratesable one of Eq(A1), the probability functional Ri1)} is

such a practically important result: the fractality of the zero for all (1) that differ from ¥(1), whereas R (1)}

boundary of the normal phase clusters, which act as pinniniéj ﬁ:ctgrlsetskes place the characteristic functional of Eq.
centers, prevents the destruction of superconductivity by
transport current and, therefore, causes the critical current to

increase. HIk()]= exp{i fﬁ dIk(I)\If(I)}. (A3)

V. CONCLUSION If all entry points had fixed coordinatés instead of the

Thus, the fractal properties of normal phase clusters havegandom ones, their distribution would b,B(I)I,BEJ!\':l&(I
an essential influence on the dynamics of the trapped mag-1;) whereN is the number of entry points along the perim-
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eter of the cluster involved and(l) is the Dirac delta func- are randomly distributed with uniform probability over the

tion. The constanp is being chosen to normaliz¢(l) to  cluster perimeter, so the probability of finding ajth point

unity: ¢dly(1)=1, so thatBN=1. within some intervalll; is proportional to its length. In that
Now suppose that all the points of entries into weak linkscase the characteristic functional of E§2) takes the form

6. 951'[ _,dl; exmﬁE —$dlk(ho(l=1)] 1 N :
= ~ 110 _alBK(I)) — QN
HIk(1)] 59 dl PNH J:13§o||,e D=qQN, (A4)
|
where which, after substitution of the expression f@rof Eq. (A5),
becomes
1 :
=_ i BK(1)
5 3€ dle . (AB)
) — iBk(l
Expanding the functioe'#<() in a power series &> 1, and HLk(H]= exp{n % di(e'P0— 1)}'

taking into account the conditioAN=1, we may write

If we expande'#X() in a series anew, for clusters of a large
Q= exp{ 3§ d|k(|)} mean number of entry pointNE1) we get

which, after substitution into EqA4), gives

HIk(1)]= ex;{iﬁE§ dIk(I)}
(A6) P ’

N
HIk(1)]= exp[i,@B fﬁ dik(h|.

The found characteristic functional of E@6) found has ~ Which coincides again with the characteristic functional of
the form of Eq.(A3) with the entry point distribution func- EQ. (A3) for the entry point distribution function¥(l)
tion =1/P, which is common to all the clusters.
It is significant that the function of EqA7) gives the
isotropic distribution of entry points over the perimeter. This
=5 (A7) enables the role of fractality of the cluster boundaries to be
emphasized, because it is kndtthat anisotropy suppresses

This means that all clusters have the same uniform distrithe fractal flux penetration in the superconducting area.

bution of the entry points of EqA7), for which the prob-

ability of finding a weak link at any point of the perimeter is

The uniform distribution of entry points into weak links ~SUPERCONDUCTOR CAUSED BY MAGNETIC FLUX
can be considered as the realization of a Poisson randof{OTION IN THE EXTREME CASES OF EUCLIDEAN
process. If the mean number of entry poiMNsalong the CLUSTERS AND CLUSTERS OF MAXIMUM

. . — . FRACTALITY
cluster perimeter is large enoughi¥ 1), then expressions
for the characteristic functional of EGA6) as well as for the In order to obtain the expressions of Eq$4)—(16) for
distribution function of Eq(A7) remain unchanged. the voltage across a superconductor, it is necessary to inte-

In the case of a Poisson distribution the entry points argrate the cumulative probability function for the critical cur-
arranged along the perimeter randomly and uniformly withrent distribution of Eq. (8). The substitution of an
constant concentration=N/P per unit perimeter length. €Xponential-hyperbolic distribution of Ed8) in Eq. (13)
Then, for a preset point located on the perimeter at the cooiVes
dinate | the probability to find the entry point within the
interval (,I+Al) is equal tonAl+o(Al), whereo(Al) is

L . . i 2+D 2D+1
infinitesimal compared witlAl. _:J dxexp —Cx 2P), where C= _) )
The characteristic functional for the Poisson distributfon ’ 2
has the form (BY)
N
Hik()]=S = Q ) N_gN(Q-1) Using the change of variable of the forye Cx 2P, we can
N get the following expression:
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Vi D _n(* yo—(24D)f2 where erfcg)=(2/\/m)fZdye ¥ is the complementary er-
R, §C CifZIDdye y ' ror function. The substitution of this representation into Eq.

) ) ) (B4) gives the same expression for the voltage across a su-
which, upon integration by parts, becomes

perconductor as the formula of EA.5):

Y D
=i _Ci— 2D\ _ ~Db/2 _ i —2/D \V C C
R, | &R-CIT-C F(l 2 C! ) ®2) ﬁziex;{—3>—\/w_Cerfc(\/i——), (B5)
f i
where I'(v,z)=[7dye Yy’ ! is the incomplete gamma _
function. This function can be represented as where, according to EqB1), C=3.375. . _
(b) For clusters of boundaries with maximum fractality
I'v,z)=e ?U(1—v,1—v,2), (B3) (D=2): At D=2 there is such a representation for the Tri-
: comi confluent hypergeometric function:
where U(a,b,2)=[T'(a)] Lf5dye 2 Y(1+y)P-a1 is | contluent hyperg ic tuncti
the Tricomi confluent hypergeometric function aihqa) U(1,1z)= —€’Ei(—2),
=[gdye Yya 1 is the Euler gamma function. o
Thus, with the help of Eq(B3), the expressmn_for t_he where Ei(-z)=["2dy—, z>0, is the exponential integral
voltage across a superconductor of BBR) can be written in y
its final form function. Taking into account this formula, the expression
(B4) for the voltage across a superconductor can be rewritten
\V/ D D as
== exp(—Ci~?P) i—cD’ZU(E,E,Ci—Z’D }
f (B4) V_. c -
EZIEX - +CEi| — —/, (B6)
f

This formula is similar to the expression of E{.4). The

corresponding/-1 characteristic of a superconductor calcu-where, according to EqB1), C=4. The last formula coin-
lated using this expression Bt=1.44 is shown in Fig. 6 by cides with the expression of E¢L6).

curve(3). The formulas of Egs(B5) and (B6) describe the depen-
Equation (B4) can be transformed into a more simple dences of the voltage across a superconductor in a resistive
form in two special cases: state on the transport current for extreme values of the coast-
(@) For clusters of Euclidean boundar &€1): At D line fractal dimension. Two corresponding:! curves are
=1 the following representation is valid for Tricomi conflu- shown in Fig. 6 by thin lineg2). Whatever the geometric
ent hypergeometric function: morphological properties of the normal phase clusters may
11 be, the V-I characteristics of a superconductor will fall
_ 2 within the region bounded by those two limiting curves, as is
U(E’E’Z> = Jmeterfol2), shown in Fig. 6[like curve (3) drawn forD=1.44].
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