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Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor
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The influence of geometry and morphology of superconducting structure on critical currents and magnetic
flux trapping in percolative type-II superconductors is considered. The superconductor contains clusters of
normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The
main features of these clusters are studied in detail: the cluster statistics is analyzed, the fractal dimension of
their boundary is estimated, the distribution of critical currents is obtained, and its peculiarities are explored. It
is examined thoroughly how the finite-resolution capacity of the cluster geometrical size measurement affects
the estimated value of the fractal dimension. The effect of fractal properties of the normal phase clusters on the
electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of
cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal
dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters
intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.
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I. INTRODUCTION

An important property of clusters of normal phase in
superconductor consists in their capability to trap a magn
flux. By virtue of their capacity to hold the vortices from
moving under the action of the Lorentz force, such clust
can act as effective pinning centers.1–4 This feature is used
widely in the making new composite superconducting ma
rials of high-current-carrying capability.5,6 The morphologi-
cal characteristics of clusters of normal phase exert an ap
ciable effect on the magnetic flux dynamics
superconductors, especially when the clusters have fra
boundaries.7–9 In the present work the geometric probabili
properties of such fractal clusters are considered in de
and their influence on the dynamics of trapped magnetic
and critical currents is analyzed.

The notion of a fractal as an object of fractional dime
sion was first introduced by Mandelbrot10 and has received a
lot of applications in various domains of science.11–14 The
fractal approach has been found to be most useful in an
vestigation of inhomogeneous materials. There are m
possibilities, both the determinate fractals and the stocha
ones to be formed in composite superconductors. As an
ample of the first kind the multilayered structures prepa
by electron-beam deposition of superconductor~Nb! and
normal metal~Cu! layers with a fractal stacking sequence
sapphire substrates can be mentioned.15 In order to obtain
stochastic fractal clusters, it is essential that a process
diffusion-limited aggregation would take place in the cou
of the synthesis of materials.14 A similar process can be re
alized, for instance, when thin films are evaporated. So
Ref. 16 films of fractal structure have been grown by vap
deposition of Au on silicon substrates with a silicon nitri
buffer sublayer. It is worthy of note that porous, random,
highly ramified clusters are not necessarily all fractals.
fractal cluster has such a property that its characteristic m
sures~in what follows, the perimeter and the enclosed ar!
have to obey a certain scaling law that includes an expon
named the fractal dimension.11,14
0163-1829/2001/64~9!/094519~13!/$20.00 64 0945
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Fractal clusters can be also formed in such highly inh
mogeneous materials as high-temperature supercondu
~HTS’s!. So the fractal dissipative regime has been obser
in high-resolution measurements of the dynamical resista
of ~BiPb!2Sr2Ca2Cu3O101y ~BPSCCO! composites contain-
ing normal phase inclusions of Ag.8,17 The fractal properties
of the normal phase clusters contained in YBa2Cu3O72x
~YBCO! films, which were prepared by magnetron sputt
ing on sapphire substrates with a cerium oxide buffer s
layer, have been found in Ref. 9. Percolation clusters prov
another example of fractals in superconductors.18 Although,
mathematically, the percolation cluster is a fractal at
threshold point only, the fractal approach works well for a
clusters which have a scaling feature.19 In that case norma
phase clusters may be formed by the inclusion of differ
chemical compositions, as well as domains of the redu
superconducting order parameter can act as such cluster8,20

The existence of fractal inclusions of this kind can be de
onstrated by fractal dissipation, which has been observe
nontextured polycrystalline YBCO and GdBCO bu
samples.8 The fractal structure of clusters near the perco
tion threshold in epitaxial YBCO films has been fully co
sidered in Ref. 21. Of special interest are the works of Su
eanuet al.3,4 where the fractal penetration of magnetic flu
in thin HTS films has been investigated by the use
magneto-optics. Epitaxial Tl2Ba2CuO61x films were grown
by magnetron sputtering on SrTiO3 substrates, and YBCO
films were prepared by pulsed laser deposition on NdGa3
substrates. The cluster structure of such films is clearly
ible in the atomic force microscopy picture published in R
4, whereas the magnetic flux penetrating into the sam
from the outside has a well-definite fractal front.

A further consideration will be concerned with the supe
conductor containing fractal inclusions of a normal pha
which are out of contact with one another. Let us assume
these inclusions are oriented in such a way that their ex
along one of the directions far exceeds other linear siz
Similar columnar defects are of most interest for creat
artificial pinning centers.6,9,22–24When such a superconduc
©2001 The American Physical Society19-1
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Y. I. KUZMIN PHYSICAL REVIEW B 64 094519
ing structure is cooled below the critical temperature in
magnetic field along the direction of the longest size of th
inclusions, the magnetic flux will be frozen in the norm
phase clusters. Even after the external field has been tu
off, the flux trapped in these clusters is kept unchanged
to the currents that are steadily circulating around th
through the superconducting loops. The distribution of
trapped magnetic flux resulting from such a magnetization
the field-cooling regime will be two dimensional. A simila
distribution can easily be realized in superconducting fil
where normal phase inclusions are created during the gro
process at the sites of defects on the boundary with the
strate in such a way that their orientation is normal to
surface of the film.6,23,24Let us suppose that the film surfac
fraction covered by the normal phase is below the perc
tion threshold for the transfer of magnetic flux@50% for two-
dimensional~2D! percolation25#. In this case the relative por
tion of the superconducting phase exceeds the percola
threshold, so there is a superconducting percolation clust
the plane of the film where a transport current can flow. S
a structure provides for effective pinning and thereby rai
the critical current, because the magnetic flux is locked
finite clusters of a normal phase, and so the vortices can
leave them without crossing the surrounding supercond
ing space. If the transport current is passed through
sample, the trapped magnetic flux remains unchanged
long as the vortices are still held in the normal phase c
ters. When the current is increased, the magnetic flux s
to break away from the clusters of pinning force weaker th
the Lorentz force created by the transport current. As
takes place, the vortices will first pass through the weak li
which connect the normal phase clusters between th
selves.

Such weak links form readily in HTS characterized by
extremely short coherence length. Various structural defe
which would simply cause some additional scattering at lo
coherence length, give rise to the weak links in HTS. Th
is a hierarchy of weak links over a wide range of scales
HTS.6,26–29At an atomic level the weak links are formed b
the structural atomic defects, primarily, by oxyge
vacancies.27,30It is significant that just these vacancies aris
from the oxygen atom deficit underlie the origin of HT
phenomenon by itself. On a mesoscopic scale twin bou
aries are mainly responsible for weak link existence.28,31–35

Twins form especially readily in YBCO superconductors
asmuch as their unit cell is only close to the orthorhom
one. The twins can be spaced up to several nanometers a
so even single crystals may have the fine substructure ca
by twins. The effect of twins on the magnetic flux motion
HTS has been studied by many authors.32–40It is known that
the HTS magnetization depends strongly on the orienta
of twin plans with respect to the applied magnetic field.37 It
has been found that the flux can easily move along t
plans but not crosswise.33,34,38A strong anisotropy of mag
netic flux motion along and across twins has been also
served in thin HTS films.39 At the present time, it is well
established that magnetic flux can penetrate easily along
weak links formed by twins.34,35,40At last, on a macroscopic
scale there are manifold structural defects which can fo
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weak links, which may be grain or crystallite boundaries
well as barriers arising from the secondary degrading
nonstoichiometric crystal into the domains with a high a
low content of oxygen.29,30,41Moreover, a magnetic field fur-
ther reduces the coherence length,42 thus resulting in more
easy weak link formation. In conventional low-temperatu
superconductors, which are characterized by a large co
ence length, weak links can be formed due to the proxim
effect in sites of minimum distance between the next norm
phase clusters.

As soon as the transport current is turned on, this on
added to all the persistent currents, which maintain the m
netic flux to be trapped@Fig. 1~a!#. Each of these currents
such asI F in Fig. 1, is circulating through the superconduc
ing loop around the normal phase cluster wherein the co
sponding portion of the magnetic flux is trapped. The lo
contains weak links that join the adjacent normal phase c
ters transversely to the path of the current. As the trans
current is increased, there will come a point when the ove
current flowing through the weak link will exceed the critic
value, so this link will turn into a resistive state. As this tak
place, the space distribution of the currents throughout
superconducting cluster is changed in such a way that
resistive subcircuit will be shunted by the superconduct
paths where weak links are not damaged yet@Fig. 1~b!#. The
magnetic field created by this redistributed transport curr
acts via the Lorentz force on the current circulating arou
the normal phase cluster. As a consequence, the mag
flux trapped therein will be forced out through the resisti
weak link, which has become permeable to the vortic
@Figs. 1~b! and 1~c!#.

This paper is organized as follows: The geometric sta
tical properties of the normal phase clusters in YBCO sup
conducting films are studied, and the fractal dimension
their boundaries is estimated in Sec. II. The dependenc
the trapped magnetic flux on the transport current as wel

FIG. 1. Schematic representation for the magnetic flux exit fr
a normal phase cluster through the weak link. For simplicity
single weak link is shown in each branch of the superconduc
loop around the normal phase inclusion. HereI t5I 11I 2 is the
transport current,I F is the current related to the trapped magne
flux F, andFL is the Lorentz force.~a! The magnetic flux remains
trapped in the cluster as long asI 21I F,I c , whereI c is the critical
current of the weak link.~b! As soon asI 21I F>I c the Lorentz
force expels the flux through the right weak link which has beco
resistive.~c! As a result the cluster does not contain the magne
flux anymore, whereas the weak link in the right branch is sup
conducting anew~provided thatI 2,I c).
9-2
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DYNAMICS OF THE MAGNETIC FLUX TRAPPED IN . . . PHYSICAL REVIEW B64 094519
the pinning gain caused by the cluster fractality are analy
in Sec. III. The voltage-current (V-I ) characteristics of su
perconductors containing fractal clusters of a normal ph
are obtained in Sec. IV. A geometric probability analysis
the weak link distribution over the cluster perimeter is ma
in Appendix A. Some mathematical details concerning
V-I characteristics are presented in Appendix B.

II. FRACTAL GEOMETRY OF NORMAL PHASE
CLUSTERS

Thus, whatever the microscopic nature of weak links m
be, they form the channels for vortex transport. It appe
that according to their configuration each normal phase c
ter has its own value of the critical current of depinnin
which contributes to the overall statistical distribution. Wh
a transport current is gradually increased, the vortices
break away first from clusters of small pinning force an
therefore, of small critical current. Thus the decrease in
trapped magnetic fluxDF is proportional to the number o
all normal phase clusters of critical currents less than a pr
value I. Therefore, the relative decrease in the trapped
can be expressed with the cumulative probability funct
F5F(I ) for the distribution of the critical currents of clus
ters:

DF

F
5F~ I !, where F~ I !5Pr$;I j,I %. ~1!

The right-hand side of Eq.~1! is the probability that any
j th cluster has a critical currentI j less than a given uppe
boundI.

On the other hand, the magnetic flux trapped in a sin
cluster is proportional to its areaA, so the decrease in th
total trapped flux can be represented by the cumulative p
ability functionW5W(A) for the distribution of the areas o
the normal phase clusters, which is a measure of the num
of clusters of area smaller than a given value ofA:

DF

F
512W~A!, where W~A!5Pr$;Aj,A%. ~2!

The distribution functionW5W(A) of the cluster areas
can be found by a geometric probability analysis of elect
photomicrographs of superconducting films.23 In the most
general way the cluster area distribution can be describe
a gamma distribution.43 In the practically important case o
YBCO films containing columnar defects23,24,44the exponen-
tial distribution is realized:

W~A!512 expS 2
A

Ā
D , ~3!

whereĀ is the mean area of the cluster.
Thus, in order to clear up how the transport current a

on the trapped magnetic flux, it is necessary to find out
relationship between the distribution of the critical curre
of the clusters@Eq. ~1!# and the distribution of their area
@Eq. ~2!#. To do this, the geometric size of the normal-pha
cluster has to be related to its critical current. It seems nat
09451
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that the pinning force is weaker for larger clusters. Hen
the current is smaller at which the magnetic flux ceases to
trapped inside the cluster and leaves it through the w
links in the form of vortices driven by the Lorentz force. Th
exit of a vortex from a normal phase cluster can be treate
a problem of a random walk particle reaching an absorb
border.45 However, unlike the classical problem of the dist
bution of the exit points~see, e.g., Ref. 46!, here the bound-
ary of the area is not absorbing all over, but there are o
discrete absorption points, which are randomly arrang
along the cluster perimeter. These points of absorption
located just at the sites where weak links are going out on
boundary of the cluster. Hereafter we shall call them
points of entry of vortices into weak links or, simply, ent
points. In addition to that, the situation is complicated by t
fractality of the cluster boundary as well as by the fact tha
random walker is permanently subjected to the Lore
force.

For simplicity suppose that after the vortex reaches
entry point it passes all the way between two adjacent n
mal phase clusters without being trapped inside the w
link itself. Here the magnetic flux is transferred by Josephs
vortices. The Josephson penetration depth is large enoug
the considered materials so that the size of the region, wh
the vortex is localized, greatly exceeds the characteri
length of all possible structural defects that can occur alo
the transport channel. Thus the probability that such a vo
will be trapped in passing through a weak link under t
action of the Lorentz force is very small. This assumpti
agrees well with the results of research on magnetic fl
motion along weak links,2,35,47,48including twins.33,34,38,40At
the same time, it allows us to highlight the role played by t
cluster boundary in the magnetic flux trapping.

Next, we shall consider the simplest case of a unifo
distribution of entry points over the cluster perimeter w
the distribution function

C~ l !5
1

P
, ~4!

which gives the density of probability to find a weak link
the point l on the perimeter of the complete lengthP ~see
Appendix A!. Also suppose that the concentration of en
points into weak links per unit perimeter length is consta
for all clusters regardless of their size. For the uniform d
tribution of Eq.~4! this concentrationn is independent of the
point position, so the mean number of entry points,N̄, along
the cluster perimeter is proportional to its length:

N̄5 R n~ l !dl5nP. ~5!

Finally, let us assume that all clusters are statistically s
similar and that all clusters of equal perimeter have the sa
pinning force and, therefore, equal critical current.

In order to find the relationship between the size of
cluster and its critical current, we have to solve such a qu
tion: what quantity should be used as a measure of the clu
size? Obviously, both the area and the perimeter len
9-3
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Y. I. KUZMIN PHYSICAL REVIEW B 64 094519
~along with any increasing functions of these values! provide
such a measure. At the same time, the cluster area is a
sure of the magnetic flux trapped inside. Eventually, to cl
up how the transport current affects the trapped flux,
critical current must be related to the area of the cluster.

On the other hand, the pinning force corresponds to s
a current at which the vortices break away from the clus
As the transport current is increasing, the Lorentz for
which expels the magnetic flux, increases as well. The vo
leaves the normal phase cluster when the Lorentz force
comes greater than the pinning force. At the same ti
growing in current will result in a redistribution of the mag
netic flux, which will penetrate deeper and deeper into
transition layer on that side of the surrounding supercond
ing space where the Lorentz force is directed@see Fig. 1~b!#.
The flux penetration into this transition layer has a frac
behavior, but unlike the case considered in Refs. 3 and 4
flux front is built up on the fractal phase boundary. In ord
to leave the normal phase cluster, vortices have to reach
entry points. The exit of the magnetic flux can be conside
as the result of random walks of vortices driven by the L
entz force, which is pushing them into weak links. A simil
approach has been successfully used in Ref. 2, where
extreme fronts of the magnetic flux penetrating in a 1D
perconducting quantum interference device~SQUID! array
were found.

Undoubtedly, it is necessary to keep in mind that r
Josephson vortices arise only when magnetic flux enters
weak links, which causes the supercurrents in the transi
layer to redistribute.49 When the random walk vortex, whic
has not reached the entry point yet, is mentioned, it is
marily meant that the equivalent space distribution of sup
currents creates the same magnetic field. This fact—that
fractal cluster coastline is highly ‘‘indented’’—causes t
entry points to differ in accessibility for vortices dependi
on their position on the boundary—they are located
‘‘skerries’’ or on ‘‘protuberances.’’50 It may occur that a vor-
tex will not enter the weak link at all, but to the contrary w
stick in some ‘‘dead end.’’ In the most simple approach t
following outcomes of the random walks may happen:~a!
the vortex enters the weak link and leaves the normal ph
cluster,~b! the vortex does not enter the weak link and co
tinues its random walks, and~c! the vortex does not enter th
weak link and remains to be locked in the ‘‘dead end.’’ T
wider the transition layer, where the magnetic flux penetra
as the current increases, the more entry points become a
sible for vortices. The mean number of entry points,N̄, avail-
able on the cluster perimeter provides the probability m
sure of the number of the random walk outcomes, which
favorable for the vortex to go out. In the case of the unifo
entry point distribution of Eq.~4! and at a constant concen
tration of weak links for all clusters, from Eq.~5! it follows
thatN̄}P; thus the perimeter length also represents the pr
ability measure of the amount of favorable outcomes for
vortex to leave the cluster. The more entry points into we
links are accessible for random walk vortices, the smalle
the Lorentz force required to expel the flux from a clust
09451
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Hence, we may write the following relationship between t
critical current of the cluster and its geometric size:

I}
1

N̄
}

1

P
. ~6!

Thus this expression is true for the simplest case o
uniform distribution of entry points, which is assumed to
the same for all clusters~see Appendix A!. Such a simplifi-
cation allows us to emphasize that in the case being con
ered the magnetic flux is held in the normal phase cluster
its boundary.

Thus, to deal with the distribution function of Eq.~1!, the
relation between the perimeter and area of clusters shoul
studied. It might be natural to suppose that the perimeter-a
relation obeys the well-known geometric formulaP}AA.
However, it would be a very rough approximation only,23,24

because this relationship holds for Euclidean geometric
jects but on no account for the fractals. As was first found
Ref. 9, the fractal nature of the normal phase clusters ex
an appreciable effect on the dynamics of a magnetic flux
superconductors. For fractal clusters a relation between
perimeter and area has the form

P}AD/2, ~7!

where D is the fractal dimension of the cluster perimet
~so-called coastline dimension!.11

The relation of Eq.~7! is consistent with the generalize
Euclid theorem,11,12 which states that the ratios of the corr
sponding measures are equal when reduced to the sam
mension. Hence it follows thatP1/D}A1/2, which is valid
both for Euclidean clusters~the Hausdorff-Besicovitch di-
mension of their perimeter coincides with the topologic
one: D51) and for fractal clusters~the Hausdorff-
Besicovitch dimension of their boundary strictly exceeds
topological dimension of a line:D.1).

The fractal dimension value can be estimated by mean
a regression analysis of the sampling of the areas and pe
eters of the normal phase clusters. Such a geometric p
ability analysis was carried out by the procedure describe
Ref. 9. For this purpose an electron photomicrograph
YBCO film prepared by magnetron sputtering, which w
similar to that published earlier in Ref. 24, has been scann
The perimeters and areas of clusters have been measure
covering their digitized pictures with a square grid of spac
60360 nm2. The results of the statistical treatment of the
data are presented in Table I. The normal phase has occu
20% of the total surface only, so the transport current c
flow through the sufficiently dense percolation supercondu
ing cluster. The primary sampling contains 528 normal ph
clusters located on the scanned region of a total area of
mm2. The distribution of the cluster areas is fitted well to t
exponential cumulative probability function of Eq.~3! with a
mean cluster areaĀ50.0765 mm2. All points of the primary
sampling are marked by crosses in plot 1 of Fig. 2, wh
shows the perimeter-area relation for the normal phase c
ters. Figure 2 also demonstrates such an important pecu
ity of this relation: the scaling law of Eq.~7! is valid in the
9-4
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TABLE I. Statistics of normal phase clusters and estimation of the fractal dimension.

Primary sampling Truncated sampling
Sampling size 528 380

MeanA (mm2) 0.0765 0.1002
Sample standard deviation ofA (mm2) 0.0726 0.0729
Standard error of estimate forA (mm2) 3.1631023 3.7431023

Total scannedA (mm2) 40.415 38.093
Min value of A (mm2) 2.0731023 0.0269
Max value ofA ~mm2! 0.4015 0.4015
MeanP (mm) 1.293 1.616
Sample standard deviation ofP (mm) 0.962 0.949
Standard error of estimate forP (mm) 0.0419 0.0487
Total scannedP (mm) 682.87 614.19
Min value of P (mm) 0.096 0.515
Max value ofP (mm) 5.791 5.791
Correlation coefficient 0.929 0.869
Estimated fractal dimensionD 1.44 1.47
Standard deviation ofD 0.02 0.03
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range of almost three orders of magnitude in cluster a
The scaling perimeter-area behavior means that there i
characteristic length scale between 0.1mm and 10mm in the
linear size of the normal phase cluster. Whatever the sh
and size of the clusters may be, all points fall closely on
same straight line in logarithmic scale, so that there are

FIG. 2. Perimeter-area relationship for the normal phase clus
with fractal boundary. Plot~1! shows the data of the primary sam
pling ~528 points!, plot ~2! shows the data of the truncated sampli
~380 points!, line ~3! is the least-squares regression line for t
primary sampling, and line~4! is the least-squares regression li
for the truncated sampling. Two lines~5! display the range of slope
that the perimeter-area curves can have for any possible fra
dimensionD (D51 for clusters of Euclidean boundary,D52 for
clusters of boundary with the maximum fractality!.
09451
a.
no
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e
o

apparent kinks or crossovers on the graph. This enables
fractal dimensionD of the cluster perimeter to be estimate
from the slope of the regression line of the form of Eq.~7!;
thus a least-squares treatment of the perimeter-area dat
the primary sampling gives an estimate ofD51.4460.02
with correlation coefficient 0.929.

This point—that the value found of the coastline frac
dimension differs appreciably from unity—engages great
tention. What this means is that the fractal properties of
cluster boundary are of prime importance here. Two strai
lines ~5! in Fig. 2 bound the range of the slopes that t
dependences of the perimeter on the cluster area can hav
any arbitrary fractal dimension. The least slope correspo
to Euclidean clusters (D51); the greatest one relates to clu
ters of the greatest possible coastline dimension, which
equal to the topological dimension of a smooth surfaceD
52). Such a fractal dimension is inherent, for example,
Peano curves, which fill the whole plane.11 Whatever the
geometric morphological properties of clusters may be,
slope of their perimeter-area graphs will be always boun
by these two limiting lines.

When we deal with the geometric features of the norm
phase clusters, we are considering the cross section o
extended columnar defects by the plane carrying a trans
current. Therefore, though normal phase clusters are s
affine fractals,13,14 it is possible to examine their geometr
probability properties in the planar section only, where t
boundaries of the clusters are statistically self-similar.

Next, using the relation of Eq.~7! between the fracta
perimeter and the area of the cluster, as well as the form
of Eq. ~6!, we get the following expression for the critica
current: I 5aA2D/2, wherea is the form factor. In accor-
dance with starting formulas of Eq.~1! and Eq.~2!, the ex-
ponential distribution of cluster areas of Eq.~3! gives rise to
an exponential-hyperbolic distribution of critical currents:

F~ i !5 expF2S 21D

2 D 2/D11

i 22/DG , ~8!
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wherei[I /I c is the dimensionless transport current and

I c5S 2

21D D (21D)/2

a~Ā!2D/2

is the critical current of the resistive transition.
Thus, the geometric probability properties of the norm

phase clusters are responsible for the main features of
critical current statistical distribution. In turn, given the di
tribution of Eq.~8!, the change in the trapped magnetic fl
caused by the transport current can be found with the ai
Eq. ~1!. Two of these graphs are displayed in Fig. 3 both
the fractal clusters of coastline dimensionD51.44 found
above@curve ~2!# and for the Euclidean ones@curve ~3!#.

In order to get the relationship between the dynamics
the trapped magnetic flux and geometric morphologi
properties of the superconducting structure, the sample
pirical functionF* 5F* ( i ) of the distribution of the critical
currents has been computed. This function gives a statis
estimate of the cumulative probability functionF5F( i ).
First, the empirical distribution functionW* 5W* (A) for the
primary sampling of the areas of the normal phase clus
has been found. The valueW* (A) was calculated for each
order statistic as the relative number of clusters of a
smaller than a given valueA. Next, the empirical distribution
of the critical currents was computed for the same-order
tistics @step line with open circles~1! in Fig. 3# using the
following transformations:

F* 512W* ,

FIG. 3. Effect of a transport current on the magnetic flux trapp
in fractal clusters of a normal phase. Step line with open circles~1!
is the sample empirical function of the critical current distributio
line ~2! shows the decrease in the trapped flux for fractal cluster
coastline dimensionD51.44, and line~3! shows the decrease in th
trapped flux for Euclidean clusters of coastline dimensionD51.
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Figure 3 shows that in the range of currentsi ,6 the
empirical distribution function, which describes the morph
logical properties of the superconducting structure@plot ~1!#,
coincides ideally with the cumulative probability functio
@curve ~2!# for the coastline fractal dimension ofD51.44.
Starting with the value of the currenti 56 the crossover is
observed, resulting in the empirical distribution functio
passing to the dependence for Euclidean clusters (D51).
This transition to the Euclidean region is over at large tra
port currents, when the magnetic flux changes mainly for
breaking of the vortices away from the small clusters~as the
smaller clusters have the larger pinning force!. The observed
crossover has its origin in the finite-resolution capability
measuring the cluster geometric sizes. The distinctive fea
of the topologically one-dimensional fractal curve is that
measured lengthP depends on the measurement accuracy
such a way thatP}d12D, whered is the yardstick size used
to measure this length and (12D) is the Hausdorff codimen-
sion for the Euclidean 1D space.11 In our case such a fracta
curve is represented by the boundary of the normal ph
cluster. That is why just the statistical distribution of th
cluster areas, rather than their perimeters, is fundamenta
finding the critical current distribution of Eq.~8!. The topo-
logical dimension of the perimeter is equal to unity and do
not coincide with its Hausdorff-Besicovitch dimensio
which strictly exceeds unity. Therefore the perimeter len
of a fractal cluster is not well defined, because its va
diverges as the yardstick size is reduced infinitely. On
other hand, the topological dimension of the cluster are
the same as the Hausdorff-Besicovitch one~both are equal to
2!. Thus, the area restricted by the fractal curve is a w
defined finite quantity.

Taking into account the effect of the measurement ac
racy, the perimeter-area relationship of Eq.~7! can be rewrit-
ten as

P~d!}d12D@A~d!#D/2, ~9!

which holds true when the yardstick lengthd is small enough
to measure accurately all boundaries of the smallest clu
in the sampling. When the resolution is deficient, the Euc
ean part of the perimeter length will dominate the fractal o
so there is no way to find the fractal dimension using
scaling relation of Eq.~9!. It means that if the length of a
fractal curve was measured too roughly with a very lar
yardstick, its fractal properties could not be detected, a
therefore such a geometric object would manifest itself as
Euclidean one. It is just a resolution deficiency of this ki
occurs at the crossover point in Fig. 3. Starting with t
cluster area less than 0.023mm2 ~corresponding to the cur
rents ofi .6) it is impossible to measure all ‘‘skerries’’ an
‘‘fjords’’ on the cluster coastlines, whereas all the clusters
area less than the size of the measuring cell (
31023 mm2, which relates to the currents ofi .23) exhibit
themselves as objects of Euclidean boundaries (D51). This
resolution deficiency can be also observed in Fig. 2: so
crosses at its lower left corner are arranged discretely w
spacing equal to the limit of resolution~60 nm!, because

d

,
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DYNAMICS OF THE MAGNETIC FLUX TRAPPED IN . . . PHYSICAL REVIEW B64 094519
some marks for smallest clusters coincide because of
finite resolution of the picture digitization procedure.

The coastline fractal dimension was found above
means of regression analysis of the whole primary sampl
where very small clusters of sizes lying at the breaking po
of the resolution limit were also included. Therefore, it
necessary to control how much the estimated value of
fractal dimension could be distorted by the presence of s
small clusters in that sampling. For this purpose the tr
cated sampling has been formed in such a way that only
clusters of area greater than 0.0269mm2, for which the reso-
lution deficiency has not appeared, have been selected
the primary sampling. The corresponding points are plot
as open circles~2! in Fig. 2, whereas the results of a stat
tical treatment of this truncated sampling are presented in
third column of Table I. The least-squares estimation of th
perimeter-area data gives a value of coastline fractal dim
sion of D51.4760.03 with correlation coefficient 0.869
The slope of the regression line for the truncated samp
@dotted line ~4! in Fig. 2# is slightly steeper than for the
primary one@solid line~3!#. It is natural because the presen
in the primary sampling of small clusters, which exhib
themselves as Euclidean ones at the given resolution, l
to underrating the magnitude found of the fractal dimensi
Nevertheless, the values of fractal dimensions found for b
samplings virtually do not differ within the accuracy of th
statistical estimation. This is due to the high robustness
the procedure of the fractal dimension estimation on the
sis of the scaling relation of Eq.~7!: all points both for the
primary sampling and for the truncated one fall on the sa
straight line, without any bends or breaks~see Fig. 2!. At the
same time, it is necessary to note that the empirical distr
tion function approach~see Fig. 3! provides the most data
sensitive technique of estimating the resolution capability
quired to study the fractal properties of clusters.

III. PINNING GAIN FOR THE MAGNETIC FLUX
TRAPPED IN FRACTALLY BOUNDED CLUSTERS OF A

NORMAL PHASE

The cumulative probability function of Eq.~8! found al-
lows us to fully describe the effect of the transport current
the trapped magnetic flux. Using this function, the proba
ity density f ( i )[dF/di for the critical current distribution
can be readily derived:

f ~ i !52/DS 21D

2 D 2/D11

i 22/D21

3expF2S 21D

2 D 2/D11

i 22/DG . ~10!

This function is normalized to unity over all possible positi
values of the critical current. The use of the exponent
hyperbolic critical current distribution of Eq.~8! allows us to
avoid the inevitable uncertainty caused by truncation of n
physical negative values of depinning currents, as ta
place, for example, in the case of a normal distribution.51,52

The exponential-hyperbolic distribution of Eq.~8! has
such an important property: the functionF5F( i ) is ex-
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tremely ‘‘flat’’ in the vicinity of the coordinate origin. It is
easy to show that all its derivatives are equal to zero at
point of i 50:

dk

dik
F~0!50 for any value of k.

Therefore even the Taylor series expansion in the vicin
of the origin converges to zero, instead of the quantityF
itself. This mathematical feature has a clear physical me
ing: so small a transport current does not affect the trap
magnetic flux because there are no pinning centers of s
small critical currents in the overall statistical distribution,
that all the vortices are still too strongly pinned to be brok
away. As can be seen from Fig. 3, the change in the magn
flux becomes appreciable after the transition into a resis
state only~in the transport current range ofi .1).

The relative change in the trapped fluxDF/F, which can
be calculated from Eq.~8!, also defines the density of vorti
ces,n, broken away from the pinning centers by the curreni:

n~ i !5
B

F0
E

0

i

f ~ i 8!di85
B

F0

DF

F
, ~11!

whereB is the magnetic field andF0[hc/(2e) is the mag-
netic flux quantum (h is Planck’s constant,c is the velocity
of light, and e is the electron charge!. The graph of the
change in the trapped flux as a function of transport curre
which is shown in Fig. 3, coincides qualitatively with th
curves obtained in experiments on the magnetization
YBCO films subjected to current pulses.23,24 Figure 3 also
displays such a practically important property of superc
ducting structure containing fractal clusters of a norm
phase: the fractality intensifies the magnetic flux trappi
hindering its breaking away from pinning centers, a
thereby enhances the critical current which the sample
capable of withstanding, remaining in a superconduct
state. Really, the transport current of magnitudei 52 causes
43% of the total trapped magnetic flux to break away fro
the usual Euclidean clusters@curve~3!#, whereas this value is
equal only to 25% for fractal normal phase clusters of coa
line dimensionD51.44@curve~2!#. It is equivalent to a pin-
ning reinforcement of 73% in the latter case. Thus the p
ning amplification due to the fractality can be characteriz
by the pinning gain factor

kD[
DF~D51!

DF~current value ofD !
,

which is equal to the relative decrease in the fraction
magnetic flux broken away from fractal clusters of coastl
dimensionD compared to the case of Euclidean onesD
51). This quantity can be calculated from the followin
formula:

kD5 expF S 21D

2 D 2/D11

i 22/D2
3.375

i 2 G .
9-7
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Y. I. KUZMIN PHYSICAL REVIEW B 64 094519
The characteristic dependences of the pinning gain on
transport current as well as on the fractal dimension
given in Fig. 4. The highest amplification is reached wh
the cluster boundaries have the greatest possible fracta
maxDkD5k25 exp@(4i23.375)/i 2#, with the maximum ofk2
at transport currenti 51.6875. Let us note that the pinnin
gain characterizes the properties of a superconductor in
range of the transport currents corresponding to a resis
state (i .1). At smaller current the total trapped flux remai
unchanged~see Fig. 3! for a lack of pinning centers of suc
small critical currents, so the breaking away of the vortic
has not started yet. When the vortices start to leave the
mal phase clusters and move through the weak links, t
motion induces an electric field, which, in turn, creates
voltage drop across the sample. Thus, at a transport cu
greater than the current of the resistive transition some fi
resistance appears, so that the passage of electric curre
accompanied by energy dissipation. The motion of each
pinned vortex causes local heating. As for any hard su
conductor~type II, with pinning centers! this dissipation does
not mean the destruction of phase coherence yet. Some
sipation always accompanies any motion of a magnetic
that can happen in a hard superconductor even at low tr
port current. Therefore the critical current in such materi
cannot be specified as the greatest nondissipative cur
The superconducting state collapses only when the growt
dissipation becomes avalanche-like as a result of ther
magnetic instability.

The principal reason for pinning enhancement due to
fractality of the normal phase clusters lies in the fundame
properties of the critical current distribution. Figure 5 de
onstrates the peculiarities of the fractal probability dens
specified by Eq.~10!. As in Fig. 2, the thin lines show the
extreme cases of Euclidean clusters (D51) and clusters of
boundaries with maximum fractality (D52). As may be
clearly seen from these graphs, the bell-shaped curve o
distribution broadens out, moving towards greater mag
tudes of current as the fractal dimension increases. This

FIG. 4. Pinning gain for an arbitrary coastline fractal dimens
of the cluster perimeter.
09451
e
e

n
ty:

he
ve

s
r-
ir

a
nt

te
t is
e-
r-

is-
x
s-
s
nt.
of
o-

e
al
-
y

he
i-
ift

can be described by the dependences of the average
mode of the critical current distribution on the fractal dime
sion, as is shown in the inset of Fig. 5. The mode of t
distribution, which is equal to the value of the critical curre
that provides the maximum of the probability density of E
~10!, depends linearly on the fractal dimension:mode f( i )
5(21D)/2. The average critical current obeys a much mo
strong superlinear law specified by Euler gamma functio

ī 5S 21D

2 D (21D)/2

GS 12
D

2 D .

The mean value of the critical current for Euclidean clust
is equal toī (D51)5(3/2)3/2Ap53.2562, while for clusters
of maximum fractality this value becomes infinite:ī (D
52)→`. Figure 5 clearly demonstrates that increasing
fractal dimension gives a growth of the contribution made
clusters of greater critical current to the overall distributio
resulting just in an enhancement of the magnetic flux tr
ping.

IV. ELECTRIC FIELD IN THE RESISTIVE STATE

By virtue of the fact that any motion of the magnetic flu
causes energy dissipation in superconductors, the questio
how such a process could be prevented, or only suppres
is of prime practical importance. The study of resistive st
peculiarities leads to conclusions on the influence of the c
ter fractality on the electric field induced by the flux motio
In the resistive state the hard superconductor is adequa
specified by itsV-I characteristic. The critical current distr
bution of Eq.~10! allows us to find the electric field arisin
from the magnetic flux motion after the vortices have be

FIG. 5. Influence of the fractal dimension of the perimeter
normal phase clusters on the critical current distribution. The in

shows the dependences of the average critical currentī and mode
mode f( i ) of this distribution on the coastline fractal dimension.
9-8
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DYNAMICS OF THE MAGNETIC FLUX TRAPPED IN . . . PHYSICAL REVIEW B64 094519
broken away from the pinning centers. Inasmuch as e
normal phase cluster contributes to the total critical curr
distribution, the voltage across a superconductorV5V( i ) is
the response to the sum of effects made by the contribu
from each cluster. Such a response can be expressed
convolution integral

V5RfE
0

i

~ i 2 i 8! f ~ i 8!di8, ~12!

whereRf is the flux flow resistance. A similar approach
used universally to consider the behavior of clusters
pinned vortex filaments;53 and to analyze the critical scalin
of V-I characteristics of superconductors,52 that is to say, in
all the cases where the distribution of the depinning curre
occurs. The present consideration will be primarily conc
trated on the consequences of the fractal nature of the no
phase clusters specified by the distribution of Eq.~10!, so all
the problems related to the possible dependence of the
flow resistanceRf on the transport current will not be take
up here.

Let us consider the simplest case wherein all of the p
ning centers would have an identical critical currenti c , so all
the vortices would be broken away simultaneously ai
5 i c . Then, referring to Eq.~11!, their density would have
the following form:

n5
B

F0
E

0

i

d~ i 82 i c!di85
B

F0
h~ i 2 i c!,

whered( i ) is the Dirac delta function and

h~ i ![H 1 for i>0,

0 for i ,0,

is the Heaviside step function.
Thus, the trapped flux would change by 100% at on

DF/F5h( i 2 i c). Let us note that in this casei c51 due to
the convenient normalization chosen above:i[I /I c .

In the model case of ad-shaped distribution of the critica
currents the voltage across a superconductor in the flux
regime, according to Eq.~12!, would obey the simple linea
law V5Rf( i 2 i c)h( i 2 i c). The correspondingV-I character-
istic is shown in Fig. 6 by the dotted line~1!.

For the fractal distribution of critical currents the situatio
is quite different, because the vortices are being broken a
now in a wide range of transport currents. After substitut
of the function of Eq.~10! into Eq.~12!, upon integration by
parts, the voltage across a superconductor can be expre
with the cumulative probability function of Eq.~8!:

V5RfE
0

i

F~ i 8!di8, ~13!

integration of which gives
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V5Rf expF2S 21D

2 D 2/D11

i 22/DG
3H i 2S 21D

2 D ~21D !/2

UFD

2
,
D

2
,S 21D

2 D 2/D11

i 22/DG J ,

~14!

whereU(a,b,z) is Tricomi confluent hypergeometric func
tion.

In extreme cases forD51 and forD52 the expression of
Eq. ~14! can be simplified~see Appendix B!:

~a! Euclidean clusters (D51):

V5RfF i expS 2
3.375

i 2 D 2A3.375perfcSA3.375

i D G ,

~15!

where erfc(z) is the complementary error function.
~b! Clusters of boundary with the maximum fractali

(D52):

V5RfF i expS 2
4

i D14EiS 2
4

i D G , ~16!

where Ei(z) is the exponential integral function.

FIG. 6. Voltage-current characteristics of superconductors c
taining fractal clusters of a normal phase. Dotted line~1! corre-
sponds to thed-shaped distribution of the critical currents, lines~2!
to the extreme dependences of the voltage across a supercond
on the transport current in the case of Euclidean clusters (D51)
and clusters of boundaries with maximum fractality (D52), and
line ~3! to the V-I characteristic of the superconductor containi
normal phase clusters of fractal dimension of the perimeterD
51.44. The inset shows the region near the resistive transition i
enlarged scale. The initial dissipative range betweeni on and i c is
clearly seen.
9-9
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Y. I. KUZMIN PHYSICAL REVIEW B 64 094519
The V-I characteristics of a superconductor contain
fractal normal phase clusters are presented in Fig. 6. All
curves virtually start with the transport current value oi
51, which agrees with the beginning of the resistive st
found above from cumulative probability function of Eq.~8!.
When the current increases the trapped flux remains
changed until the vortices start to break away from the p
ning centers. As long as the magnetic flux does not move
electric field is arisen. Two thin lines~2!, calculated using the
formulas of Eq.~15! and Eq.~16!, bound the region theV-I
characteristics can fall within for any possible values of fra
tal dimension. As an example, curve~3! demonstrates the
V-I characteristic of a superconductor containing frac
clusters of previously obtained coastline dimensionD
51.44.

The inset of Fig. 6 shows the region of resistive transit
under magnification. As may be seen from this graph,
critical currenti c is preceded by some initial region of th
finite voltage drop starting withi on , so the resistive transi
tion of the V-I characteristic is not absolutely abrupt. Th
magnitude of this onset currenti on is determined by the finite
resolution along the ordinate axis rather than having so
threshold value. The existence of this initial section on
V-I characteristic arises from the tail of the distribution
Eq. ~10! in the range of small currents, where the breaking
vortices away from the large clusters occurs. A similar reg
of initial dissipation has been observed by Presteret al.8,17 in
HTS–normal-metal~BPSCCO-Ag! composite tapes.

Figure 6 shows that the fractality reduces appreciably
electric field arising from the magnetic flux motion. Th
effect is especially strong in the range of the currents 1, i
,3, where the pinning enhancement has a maximum as
~see also Fig. 4!. Both these effects have the same natu
inasmuch as their cause consists in the peculiarities of
fractal distribution of critical currents of Eq.~10!. As is seen
from Fig. 5, an increase of fractality causes a signific
broadening of the tail of the distributionf 5 f ( i ). It means
that more and more small clusters, which can best trap
magnetic flux, are being involved in the process. Hence
density of vortices broken away from pinning centers by
Lorentz force is reducing, so the smaller part of the magn
flux can flow, creating a smaller electric field. In turn, th
smaller the electric field is, the smaller is the energy dis
pated when the transport current passes through the sam
Therefore, the decrease in the heat evolution, which co
cause a transition of the superconductor into a normal s
means that the current-carrying capability of the superc
ductor containing such fractal clusters is enhanced.

Thus, Fig. 6, as well as Fig. 4, obviously demonstra
such a practically important result: the fractality of th
boundary of the normal phase clusters, which act as pinn
centers, prevents the destruction of superconductivity b
transport current and, therefore, causes the critical curren
increase.

V. CONCLUSION

Thus, the fractal properties of normal phase clusters h
an essential influence on the dynamics of the trapped m
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netic flux. The crucial change of the critical current distrib
tion caused by increasing the coastline fractal dimension
the normal phase clusters forms the basis of this effect.
most important result is that the fractality of cluster boun
aries strengthens the flux pinning and thereby hinders
destruction of superconductivity by the transport current,
sulting in an enhancement of the current-carrying capab
of a superconductor. This phenomenon provides possibili
for increasing the critical current value of composite sup
conductors by optimizing their geometric morphologic
properties.

APPENDIX A: GEOMETRIC PROBABILITY ANALYSIS
OF THE DISTRIBUTION OF ENTRY POINTS INTO

WEAK LINKS OVER THE PERIMETER OF A NORMAL
PHASE CLUSTER

In the most general way the problem of the entry po
into a weak link distribution can be treated in terms of pa
integrals.54

The random distribution of entry points over the perime
can vary from one cluster to another, so that each nor
phase cluster has an entry point distribution functionc( l ) of
its own, which belongs to some function classV. Here l is
the coordinate measured along the cluster perimeter.
probability distribution of functionsc( l ) over all clusters
can be characterized by the functional Pr$c( l )%, which is
equal to the probability of finding a given functionc( l ).

The most probable function of the entry point distributio
can be expressed by the path integral

C~ l ![c~ l !5E
(V)

Dc~ l !c~ l !Pr$c~ l !%, ~A1!

which gives the mean over all functions of classV.
The path integral Fourier transform on the probabil

functional Pr$c( l )% represents the characteristic functiona54

H@k~ l !#5
* (V)Dc~ l !exp@ i rdlk~ l !c~ l !#Pr$c~ l !%

* (V)Dc~ l !Pr$c~ l !%
,

~A2!

wherek( l ) is the element of the reciprocal function spac
and integration in the kernel is carried out over the clus
perimeter:l P(0,P).

In the simplest case, when all clusters are of an eq
entry point distribution, which coincides with the most pro
able one of Eq.~A1!, the probability functional Pr$c( l )% is
zero for all c( l ) that differ from C( l ), whereas Pr$C( l )%
51. As this takes place the characteristic functional of E
~A2! becomes

H@k~ l !#5 expF i R dlk~ l !C~ l !G . ~A3!

If all entry points had fixed coordinatesl j instead of the
random ones, their distribution would bec( l )5b( j 51

N d( l
2 l j ) whereN is the number of entry points along the perim
9-10



k

e

t

DYNAMICS OF THE MAGNETIC FLUX TRAPPED IN . . . PHYSICAL REVIEW B64 094519
eter of the cluster involved andd( l ) is the Dirac delta func-
tion. The constantb is being chosen to normalizec( l ) to
unity: rdlc( l )51, so thatbN51.

Now suppose that all the points of entries into weak lin
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ith
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s

are randomly distributed with uniform probability over th
cluster perimeter, so the probability of finding anyj th point
within some intervaldl j is proportional to its length. In tha
case the characteristic functional of Eq.~A2! takes the form
H@k~ l !#5
r . . . r) j 51

N dl j exp@ ib( j 51
N rdlk~ l !d~ l 2 l j !#

r . . . r) j 51
N dl j

5
1

PN ) j 51
N R dl je

ibk( l j )5QN, ~A4!
e

of

is
be
s

inte-
r-
where

Q[
1

P R dleibk( l ). ~A5!

Expanding the functioneibk( l ) in a power series atN@1, and
taking into account the conditionbN51, we may write

Q5 expF i
b

P R dlk~ l !G ,
which, after substitution into Eq.~A4!, gives

H@k~ l !#5 expF ib
N

P R dlk~ l !G . ~A6!

The found characteristic functional of Eq.~A6! found has
the form of Eq.~A3! with the entry point distribution func-
tion

C~ l !5
1

P
. ~A7!

This means that all clusters have the same uniform dis
bution of the entry points of Eq.~A7!, for which the prob-
ability of finding a weak link at any point of the perimeter
independent of its position.

The uniform distribution of entry points into weak link
can be considered as the realization of a Poisson ran
process. If the mean number of entry pointsN̄ along the
cluster perimeter is large enough (N̄@1), then expressions
for the characteristic functional of Eq.~A6! as well as for the
distribution function of Eq.~A7! remain unchanged.

In the case of a Poisson distribution the entry points
arranged along the perimeter randomly and uniformly w
constant concentrationn5N̄/P per unit perimeter length
Then, for a preset point located on the perimeter at the c
dinate l the probability to find the entry point within th
interval (l ,l 1D l ) is equal tonD l 1o(D l ), whereo(D l ) is
infinitesimal compared withD l .

The characteristic functional for the Poisson distributio54

has the form

H@k~ l !#5(
N

~QN̄!N

N!
e2N̄5eN̄(Q21),
i-

m

e

r-

which, after substitution of the expression forQ of Eq. ~A5!,
becomes

H@k~ l !#5 expFn R dl~eibk( l )21!G .
If we expandeibk( l ) in a series anew, for clusters of a larg
mean number of entry points (N̄@1) we get

H@k~ l !#5 expF ib
N̄

P R dlk~ l !G ,

which coincides again with the characteristic functional
Eq. ~A3! for the entry point distribution functionC( l )
51/P, which is common to all the clusters.

It is significant that the function of Eq.~A7! gives the
isotropic distribution of entry points over the perimeter. Th
enables the role of fractality of the cluster boundaries to
emphasized, because it is known4 that anisotropy suppresse
the fractal flux penetration in the superconducting area.

APPENDIX B: ELECTRIC VOLTAGE ACROSS A
SUPERCONDUCTOR CAUSED BY MAGNETIC FLUX

MOTION IN THE EXTREME CASES OF EUCLIDEAN
CLUSTERS AND CLUSTERS OF MAXIMUM

FRACTALITY

In order to obtain the expressions of Eqs.~14!–~16! for
the voltage across a superconductor, it is necessary to
grate the cumulative probability function for the critical cu
rent distribution of Eq. ~8!. The substitution of an
exponential-hyperbolic distribution of Eq.~8! in Eq. ~13!
gives

V

Rf
5E

0

i

dx exp~2Cx22/D!, where C[S 21D

2 D 2/D11

.

~B1!

Using the change of variable of the formy[Cx22/D, we can
get the following expression:
9-11
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V

Rf
5

D

2
CD/2E

Ci22/D

`

dye2yy2~21D !/2,

which, upon integration by parts, becomes

V

Rf
5 i exp~2Ci22/D!2CD/2GS 12

D

2
,Ci22/DD , ~B2!

where G(n,z)[*z
`dye2yyn21 is the incomplete gamma

function. This function can be represented as

G~n,z!5e2zU~12n,12n,z!, ~B3!

where U(a,b,z)[@G(a)#21*0
`dye2zyya21(11y)b2a21 is

the Tricomi confluent hypergeometric function andG(a)
[*0

`dye2yya21 is the Euler gamma function.
Thus, with the help of Eq.~B3!, the expression for the

voltage across a superconductor of Eq.~B2! can be written in
its final form

V

Rf
5 exp~2Ci22/D!F i 2CD/2US D

2
,
D

2
,Ci22/DD G .

~B4!

This formula is similar to the expression of Eq.~14!. The
correspondingV-I characteristic of a superconductor calc
lated using this expression atD51.44 is shown in Fig. 6 by
curve ~3!.

Equation ~B4! can be transformed into a more simp
form in two special cases:

~a! For clusters of Euclidean boundary (D51): At D
51 the following representation is valid for Tricomi conflu
ent hypergeometric function:

US 1

2
,
1

2
,zD5Apezerfc~Az!,
09451
-

where erfc(z)[(2/Ap)*z
`dye2y2

is the complementary er
ror function. The substitution of this representation into E
~B4! gives the same expression for the voltage across a
perconductor as the formula of Eq.~15!:

V

Rf
5 i expS 2

C

i 2D 2ApCerfcSAC

i D , ~B5!

where, according to Eq.~B1!, C53.375.
~b! For clusters of boundaries with maximum fractali

(D52): At D52 there is such a representation for the T
comi confluent hypergeometric function:

U~1,1,z!52ezEi~2z!,

where Ei(2z)[*2`
2z dy

ey

y
, z.0, is the exponential integra

function. Taking into account this formula, the express
~B4! for the voltage across a superconductor can be rewri
as

V

Rf
5 i expS 2

C

i D1CEiS 2
C

i D , ~B6!

where, according to Eq.~B1!, C54. The last formula coin-
cides with the expression of Eq.~16!.

The formulas of Eqs.~B5! and ~B6! describe the depen
dences of the voltage across a superconductor in a resi
state on the transport current for extreme values of the co
line fractal dimension. Two correspondingV-I curves are
shown in Fig. 6 by thin lines~2!. Whatever the geometric
morphological properties of the normal phase clusters m
be, the V-I characteristics of a superconductor will fa
within the region bounded by those two limiting curves, as
shown in Fig. 6@like curve ~3! drawn forD51.44].
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