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Finite-temperature dynamical magnetic susceptibility of quasi-one-dimensional frustrated
spin-1
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We study the dynamical response of frustrated, quasi-one-dimensional spin-1
2 Heisenberg antiferromagnets

at finite temperatures. We allow for the presence of a Dzyaloshinskii-Moriya interaction. We concentrate on a
model of weakly coupled planes of anisotropic triangular lattices. Combining exact results for the dynamical
response of one-dimensional Heisenberg chains with a random-phase approximation in the frustrated interchain
couplings, we calculate the dynamical susceptibility in the disordered phase. We investigate the instability of
the disordered phase to the formation of collective modes. We find a very weak instability to the formation of
incommensurate magnetic order and determine the ordering temperature and wave vector. We also determine
the effects of uniform magnetic fields on the ordering transition.
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I. INTRODUCTION

A defining property of quasi-one-dimensional~1D! mag-
nets is the weakness of the interchain coupling, whose p
ence nevertheless usually leads to three-dimensional o
ing. It is natural to consider the ratio of the transitio
temperatureTc to the bandwidth of the excitation spectru
D as a quantitative measure of one dimensionality. In s
tems whereTc /D!1 the ordering transition occurs in a sta
where spins on each chain are already highly ‘‘collect
ized.’’ This means that a very significant proportion of t
spectral weight is concentrated in a piece of the spin-s
correlation function, which is essentially one dimensional.1–4

This suggests that the most natural approach to the prob
of phase transitions in such systems is to treat them
instabilities,5 driven by weak interchain interactions, of a
ensemble of 1D chains. This approach utilizes the knowle
of the correlation functions of individual 1D chains, obtain
by various nonperturbative methods. In this way one w
automatically reproduce a distinct feature of quasi-1D m
nets, namely the presence of a broad incoherent contin
in the dynamical structure factor. Hence this approach
quite different from the conventional spin-wave theo
which uses individual spins as elementary building bloc
Spin-wave theory is known to work well for the cohere
~single-particle! parts of the spectra, but it is notoriously di
ficult to obtain the incoherent parts within this approac
Therefore it works poorly in one dimension, especially f
spin-12 magnets, where the incoherence is very strong.
latter is due to the fact that excitations of a spin-1

2 Heisen-
berg chain carry quantum numbers different from those
spin waves.

Some of us have already applied the approach base
weakly coupled chains to describe the ordered phase of c
lattice quasi-1D antiferromagnets6 ~see also Refs. 30 and 35!.
In the present work we apply an analogous method to
disordered phase and the ordering transition in quasi-
frustrated spin-12 antiferromagnets with Dzyaloshinski
Moriya ~DM! interaction. The effects of frustration on qua
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tum magnets are very interesting and continue to att
much experimental4,7–11and theoretical12–18 attention.

We focus on calculating the dynamical magnetic susc
tibility x(v,kW ), which is related to the dynamical structu
factor S(v,kW ) relevant for inelastic neutron-scattering e
periments by

Sab~v,kW !52
1

12exp~2v/T!
Im xab~v,kW !. ~1!

Note that throughout this paper we will mainly present plo
of 2Im x(v,kW ) rather than of the structure factor itself; th
trivial prefactor in Eq.~1! can be easily restored if desired

II. MODEL

Our work is inspired by the recent experiments on t
frustrated spin-12 magnet Cs2CuCl4.4,7–9 It was suggested in
Refs. 4 and 9 that Cs2CuCl4 is described by a Heisenber
model on weakly coupled planes of anisotropic triangu
lattices. Within the planes the exchange couplings are as
dicated in Fig. 1.

Neighboring planes are coupled by a weak antiferrom
netic exchangeJz. In Cs2CuCl4 neighboring planes are

FIG. 1. Exchange paths within the planes: solid lines d
note the strong exchangeJi , dotted lines the weaker, frustrate
exchangeJ' .
©2001 The American Physical Society25-1
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slightly shifted with respect to one another, but in order
keep things simple we ignore this shift. The effective ma
netic Hamitonian is thus given by

H5(
k

Hplane
(k) 1H interplane

(k,k11) ,

Hplane
(k) 5Ji(

i , j
SW i , j ,k•SW i 11,j ,k1J'(

i , j
SW i , j ,k

•@SW i , j 11,k1SW i 21,j 11,k#, ~2!

H interplane
(k,k11) 5Jz(

i , j
SW i , j ,k•SW i , j ,k11 .

In the present work we analyze the model~2! in a quasi-1D
framework. We choose to view the Hamiltonian~2! as spin-
1
2 chains with exchangeJi , coupled by a weaker, frustrating
nearest-neighbor exchangeJ' within a plane. Finally there is
a very weak antiferromagnetic couplingJz between neigh-
boring planes.

Experimental estimates for the exchange couplings
Cs2CuCl4 are Ji50.37 meV, J' /Ji.0.33(1), and Jz /Ji
'0.05.4,19Although the interchain couplingJ' /Ji is consid-
erable, the smallness of the ratio of transition temperatur
bandwidthTc /pJi'0.05 indicates that the type of approa
we are advocating might be applicable to Cs2CuCl4.

In addition to the exchange interactions present in Eq.~2!
we allow for the presence of a DM interaction. Our motiv
tion is once again the situation in Cs2CuCl4, where a DM
interaction appears to be present4,7–9,19 although it is not
straightforward to estimate its magnitude. This is because
superexchange between two Cu spin-1

2 occurs through two
Cl2 ligands and not a single one. One possible DM inter
tion that respects the crystal symmetry of Cs2CuCl4 is

IDM5(
i , j ,k

DW •@SW i , j ,k3SW i 11,j ,k#. ~3!

Note that this form of the DM interaction only couples spi
on the same chain. We mainly concentrate on a DM inter
tion of the type~3! but discuss how to treat more gener
forms in Sec. IX.

The outline of this paper is as follows. In Sec. III w
review results for the dynamical susceptibility of a sing
spin-12 Heisenberg chain~with exchange anisotropy!. In Sec.
IV we study the effects of a frustrated interchain coupli
between spin-12 chains. We determine the finite temperatu
dynamical structure factor by combining the results
single chains with a random-phase approximation in the
terchain couplings. We show that an instability towards
incommensurate, ordered state develops at a critical temp
ture, which we determine as well. In Sec. V we study t
effects of a uniform magnetic field. In Secs. VI, VII, and VI
we carry out the analogous program for spin-1

2 chains with
DM interaction. In Sec. IX we show how to treat more ge
eral DM interactions within our calculational scheme. Se
tion X contains a summary of our results and our conc
sions.
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III. DYNAMICAL SUSCEPTIBILITY OF A SINGLE SPIN-
1
2 XXZ CHAIN

Let us first consider a single Heisenberg chain w
‘‘ XY-like’’ exchange anisotropy 0<D<1,

HXXZ5Ji(
j

Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z . ~4!

We will be particularly interested in the regimeD'1. The
spectrum of low-lying excitations consists of a two-spin
continuum20 and is shown in Fig. 2 for the isotropic caseD
51. There are gapless modes at small momentum an
momentump, where most of the spectral weight is conce
trated. Spinons carry quantum numberS561/2 and no one-
spinon excitations are present.

The large distance behavior of the finite temperature
namical susceptibility can be determined by combining
sults obtained from the Bethe-Ansatz solution21,22 of Eq. ~4!
with field theory techniques,23–27

xxx~t,x!5~21!xAx~h!F12S L

T D 4h24G1/2

3F S pT

u D 2

sinhFpT

u
~x2 iut!GsinhFpT

u
~x1 iut!GG

h/2

.

~5!

Hereh is related to the exchange anisotropyD by

h512arccos~D!/p ~6!

and

u5Jia0 sin~ph!/~222h! ~7!

is the spin velocity.

FIG. 2. Two-spinon dispersion for the isotropic Heisenbe
chain. Also indicated are the sections for which we plot the dyna
cal susceptibility.
5-2
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FINITE-TEMPERATURE DYNAMICAL MAGNETIC . . . PHYSICAL REVIEW B 64 094425
The nonuniversal amplitudeAx(h) has been determine
by Lukyanov and Zamolodchikov,28

Ax~h!5
1

8~12h!2F GS h

2~12h! D
2ApGS 1

2~12h! D G
h

3expF2E
0

`dt

t S sinh~ht !

sinh~ t !cosh@~12h!t#
2he22tD G .

~8!

Finally, L is a nonuniversal scale, which recently has be
calculated in the isotropic case29

L/Ji'24.27. ~9!

The third factor on the right-hand side~RHS! of Eq. ~5!
stems from a renormalization-group~RG! improvement in
the leading irrelevant perturbation to the conformally inva
ant scaling limit of Eq.~4!.26 There are further logarithmic
corrections to Eq.~5!, some of which have been calculated
the isotropic case27 and lead to~small! corrections to some o
the formulas we give below. We note that the RG improv
ment in Eq.~5! was done using the inverse temperature
the RG scale. It would be interesting to investigate the
fects of working with two scales, i.e., the inverse temperat
and the Euclidean distance. The RG improvements are
portant only in the vicinity of the isotropic pointD51.

The frequency and momentum dependent dynamical
ceptibility is obtained by Fourier transformation and analy
continuation of the time-ordered imaginary time correlati
function ~5! ~see Refs. 24, 29, 31, and 32!:

xxx~v,p1k!

5F~T!

GS h

4
2 i

v2uk

4pT D
GS 12

h

4
2 i

v2uk

4pT D
GS h

4
2 i

v1uk

4pT D
GS 12

h

4
2 i

v1uk

4pT D .

~10!

HereF(T) is given by

2Ax~h!

sinS p
h

2 DG2S 12
h

2 D
u F12S L

T D 4h24G1/2F u

2pTG22h

.

~11!

The result~10! is valid for momentum transfers close to th
antiferromagnetic wave numberq'p, low energiesv/Ji
!1, and low temperaturesT/Ji!1.

The result for the isotropic pointD51 is obtained by
taking the limit h→1. In this limit Ax diverges and
A12(L/T)4h24 goes to zero according to

Ax~h!→ 1

2~2p!3/2A12h
, ~12!

A12~L/T!4h24→2A12hAln~L/T!, ~13!
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so that their product tends toAln(L/T)/(2p)3/2.
In Fig. 3 we show the imaginary part of the transver

susceptibility in the isotropic case for the ‘‘constant-ener
scans’’ indicated in Fig. 2. The two-spinon continuum
clearly visible. The maxima at fixed frequency occur close
the boundaries of the two-spinon continuum.

The longitudinal dynamical susceptibility is given by

xzz~v,p1k!

5F8~T!

GS 1

4h
2 i

v2uk

4pT D
GS 12

1

4h
2 i

v2uk

4pT D
GS 1

4h
2 i

v1uk

4pT D
GS 12

1

4h
2 i

v1uk

4pT D ,

~14!
whereF8(T) is given by33

F8~T!52Az~h!
sin~p/2h!G2~121/2h!

u F u

2pTG221/h

3F12S L

T D 2h22G1/2F11S L

T D 2h22G23/2

,

Az~h!5
2

p2F GS h

2~12h! D
2ApGS 1

2~12h! D G
1/h

3expF E
0

`dt

t S sinh@~2h21!t#

sinh~ht !cosh@~12h!t#

2
2h21

h
e22tD G . ~15!

For D,1 the longitudinal structure factor at low energies
weaker than the transverse one. In Fig. 4 we compare
transverse and longitudinal susceptibilities for anXXZ chain
with D50.9.

FIG. 3. Imaginary part of the dynamical susceptibilit
2Im xxx(v,k) in units of 1/Ji for the isotropic Heisenberg chain a
a function ofq for four different values ofv/Ji at a temperature of
kBT/Ji50.01.
5-3
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IV. DYNAMICAL SUSCEPTIBILITY FOR COUPLED
HEISENBERG CHAINS

Let us now take into account the interchain couplingsJ'

and Jz . We do this by a random-phase approximati
~RPA!,34,35which in the present context can be understood
the leading term of an expansion in the inverse coordina
number of the lattice. The dynamical susceptibility of~three-
dimensionally! coupled chains are of the form

x3d
aa~v,kW !5

xaa~v,k!

122J~k,ky ,kz!x
aa~v,k!

, ~16!

wherea5x,y,z andxaa(v,k) is the dynamical susceptibil
ity of a single chain. The Fourier transform of the intercha
spin-spin couplingsJ(k,ky ,kz) is given by

J~kx ,ky ,kz!5Jz cos~kz!1J'@cos~ky!1cos~kx2ky!#.
~17!

We recall that we have assumed the coupling along thz
direction ~between planes! to be antiferromagnetic, i.e. un
frustrated. We can recover the results for a weak, frustra
coupling between planes withJz!J' by simply settingJz
50 in our formulas. Whenever we thus refer toJz50 in the
following, this should be understood as corresponding t
weak, frustrated coupling along thez direction.

In the experiments on Cs2CuCl4 the dynamical structure
factor was measured for momentum transfers along the c
direction. We therefore concentrate on such momen
transfers in the framework of our approach.

The elementary cell and the first Brillouin zone of th
planar triangular lattice are shown in Fig. 5. If one probes
magnetic properties of the crystal along the direction of
spin chains, the wave-vector transfer follows the traject
ky5kx/2 mod (2p) in the first Brillouin zone and has

FIG. 4. Minus the imaginary part of the transverse~full line!
versus longitudinal dynamical susceptibility~dashed line! in the an-
isotropic HeisenbergXXZ chain withD50.9.
09442
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been represented by three arrows in Fig. 5. We see tha
wave-number transfer along the chain direction varies in
interval @0,4p#.

In Figs. 6 and 7 we plot~minus! the imaginary part of
x3d

xx(v,kW ) for momentum transfers along the chain directi
for four different values ofv/Ji . We have chosen param
eters such that J' /Ji50.1, T/Ji50.01, Jz50 and
J' /Ji50.1, T/Ji50.02, Jz50.01, respectively. In both
cases the temperature is chosen to be above the transiti
an ordered state~see below! as it must for our approach to
apply.

Figures 6 and 7 show very clearly that the main effect
the frustrated interchain coupling is to make the line sha
asymmetric. The susceptibility of uncoupled chains for mo
mentum transfer along the chain direction is symme

FIG. 5. Primitive cell of the triangular lattice and correspondi
first Brillouin zone. Wave numbers corresponding to moment
transfer along the chain direction are indicated by arrows.

FIG. 6. Imaginary part of the dynamical susceptibili

2Im x3d
xx(v,kW ) for momentum transfers along the chain directio

The parameters areJ' /Ji50.1, T/Ji50.01, andJz50. We see that
the frustrated interchain coupling leads to an asymmetric line sh
5-4
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FINITE-TEMPERATURE DYNAMICAL MAGNETIC . . . PHYSICAL REVIEW B 64 094425
around the antiferromagnetic wave numberk5p as can be
seen, for example, in Fig. 3. This symmetry is lost when
interchain coupling is taken into account. The asymme
increases with increasingJ' . The curves forJz50 andJz
50.01 are qualitatively similar. Another important feature
the imaginary part of the dynamical susceptibility is that
looks incommensurate—the maximum occurs at an incom
mensurate value of the momentum transfer along the c
direction. This is most easily seen in a contour plot such
Fig. 8, where the dynamical structure factorSxx(v,kW ) is
shown as a function of energy and momentum transfer al
the chain direction. The dynamical structure factor in t
disordered phase of Cs2CuCl4 displays both incommensura
bilities and an asymmetric structure.4

FIG. 7. 2Im x3d
xx(v,kW ) for momentum transfers along the cha

direction. The parameters areJ' /Ji50.1, T/Ji50.02, andJz/Ji
50.01.

FIG. 8. Dynamical structure factorSxx(v,kW ) for momentum
transfers along the chain direction. The parameters areJ' /Ji
50.2, T/Ji50.05, andJz/Ji50.02.
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A. Instability condition and critical temperature

The RPA expression for the dynamical susceptibility
valid in the disordered phase, i.e., at temperatures above
transition to an ordered state. One can obtain an estimate
the ordering temperatureTc by considering the condition fo
an instability to develop in form of a zero-frequency pole
x3d(v,kW ).34,35This pole indicates that the system is unsta
with respect to developing collective modes. In the case
an antiferromagnet on a cubic lattice the instability sign
the spontaneous breakdown of spin rotational symmetry
the emergence of Ne´el order and the collective modes are t
corresponding Goldstone modes~spin waves!. For the case
of a quasi-1D antiferromagnet on a cubic lattice, the criti
temperature obtained in this way is comparable to the exp
mentally measured Ne´el temperature for KCuF3.

35,2 The
leading corrections in the inverse coordination number of
lattice can be calculated as well.36 In our case the instability
condition reads

2J~k,ky ,kz!x
aa~0,k!uT5Tc

51, ~18!

wherea5x,z. We find that fora5z the condition~18! leads
to a weaker instability, i.e., occurring at a lower temperatu
except in the case of zero exchange anisotropy. We there
concentrate ona5x from now on. The instability will de-
velop at the maximum ofJ(k,ky ,kz) xxx(0,k). The maxi-
mum of the susceptibility of a single chainxxx(0,k) occurs at
k5p, but becauseJ(k,k/2,0)50 vanishes at this point the
maximum ofJxxx will be shifted away from the antiferro
magnetic wave number.

ExtremizingJ(k,ky ,kz)x
xx(0,k) with respect toky andkz

yields ky5k/2 mod (2p) and kz5p. Setting ky
5k/2, kz5p we find that the maximum of the resultin
expression occurs at a valuek5p1k0 such that

p sinh~uk0/2Tc!

cosh~uk0/2Tc!2cosS ph

2 D 1
2pTc

u

cos~k0/2!

Jz /J'12 sin~k0/2!

22 ImCS h

4
1 i

uk0

4pTc
D50, ~19!

where C(x) is the digamma function. Equations~19! and
~18! with k5p1k0 , ky5(p1k0)/2, kz5p constitute
two equations for the two unknownsk0 andTc . Let us em-
phasize that a solution withk05” 0 corresponds to an insta
bility at an incommensurate wave numberp1k0. This sug-
gests that the resulting order occurs along the chain direc
with characteristic wave numberp1k0.

In general, Eqs.~18! and~19! can only be solved numeri
cally, which is easily done. An exception is the special ca
Jz50 andD51 ~isotropic point!, for which we can derive
analytic expressions.

1. Isotropic point„hÄ1…

In the absence of an exchange anisotropy Eq.~19! simpli-
fies further,
5-5
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BOCQUET, ESSLER, TSVELIK, AND GOGOLIN PHYSICAL REVIEW B64 094425
2pTc

uk0
1p tanh~uk0/2Tc!22 ImCS 1

4
1 i

uk0

4pTc
D50.

~20!

Solving for x05k0 /(4pTc), we find

x05
\u

a0

k0

4pTc
'60.31, ~21!

where we have restored units (k0 is measured in units of the
lattice spacinga0 and T in units of kB). We note thatk0
Þ0, which means that the instability develops at anincom-
mensuratewave number close top.

The remaining Eq.~18! then becomes

2J~k0,0,0!x~0,k0!522@Jz12J' sin~k0/2!#x~0,k0!

5
1

~2p!3/2UGS 1

4
1 ix0D

GS 3

4
1 ix0DU

2

3S Jz

Tc
1

4px0J'a0

\u DAln~L/Tc!

'0.25S Jz

Tc
18x0

J'

Ji
DAln~L/Tc!51. ~22!

Here we have used the result for the spin velocity of
isotropic Heisenberg spin-1

2 chainu5pJia0/2.
Let us first ignore the effects of the couplingJz between

planes. This case would correspond to a situation where
coupling in z direction is also frustrated, but much small
thanJ' . The critical temperature and ordering wave numb
are then given by

Tc'L exp@22.60~Ji /J'!2#, ~23!

uk0u'2.48
L

Ji
exp@22.60~Ji /J'!2#. ~24!

These clearly show that the instability due to the fru
trated interchain coupling isextremely weak. First, the criti-
cal temperature is orders of magnitude lower than its co
terpart for the square lattice. This is an indication how we
the tendency to order is on a frustrated lattice. Even fo
large interchain couplingJi /J'50.4, the critical temperature
is only Tc'9.1026 K. The ordering wave number is sim
larly small. Our results should be compared to the ze
temperature results for the ordering wave number of Refs
and 15. The authors of Ref. 14 used linked-cluster expan
methods to study ground-state properties and excited s
at zero temperature of a rather general frustrated mo
which contains the anisotropic triangular lattice as a spe
case. They obtain numerically~in their notations our antifer-
romagnetic wave number corresponds top/2)

q.arccosS 1

426Ji /J'
D , ~25!
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which yields a much larger incommensuration than our
sult. In Ref. 15 a Heisenberg model on an anisotropic tri
gular lattice was studied by enlarging the spin-rotatio
symmetry group from SU~2! to Sp(N) and then carrying out
a large-N expansion. It was concluded that for weakJ'

,0.125Ji there is no incommensuration at all. Given th
approximate nature of our results, they are certainly comp
ible with such a scenario.

In our approach the instability in the SU~2! invariant case
is actually caused by the marginally irrelevant curre
current interaction that gives rise to logarithmic correctio
The weakness of the instability is due to the fact that it
caused by precisely these logarithmic corrections.

2. General case

In the general caseJz5” 0 it is not possible to obtain
simple analytic expressions like Eqs.~23! and ~24! for Tc
and k0, respectively, and we have to resort to a numeri
solution of ~18! and ~19!. We present the results for variou
values ofJz andJ' in Table I.

We see that increasingJz leads to a significant increase o
the transition temperatureand the ordering wave number
whereas increasing the frustrated couplingJ' mainly in-
creases the value ofk0. The interesting observation is that
purely antiferromagnetic coupling between the chains le
not only to a higher transition temperature~as expected!, but
also to a significantly larger value of the ordering wave nu
ber. If we take values similar to those for Cs2CuCl4 (J' /J
'0.33, Jz /Ji'0.05) we obtain a transition temperature
tc50.084 and an incommensurability ofk050.083. If we
take subleading corrections in the RG improvement i
account27 these values increase totc50.108 andk050.104,
respectively.

These values~which should be taken with a degree
caution asJ' is not small! are roughly comparable to what i
observed for Cs2CuCl4,4 wheretc'0.145 andk0'0.186. As
is shown in Sec. VII, the presence of a DM interaction c
further increasetc andk0.

We may also study the effects of an exchange anisotr
D,1 along thez direction is spin space@the chain Hamil-
tonian then is given by Eq.~4!#. The analysis is completely

TABLE I. Transition temperaturestc5Tc /Ji and ordering wave
numbersk0 for isotropic exchange interaction and various values
the frustrated (J') and antiferromagnetic (Jz) interchain couplings.

Jz /Ji J' /Ji 50.1 J' /Ji 50.2 J' /Ji 50.3

0 tc52.9102112 tc51.410227 tc56.910211

k057.3102112 k053.610227 k051.710210

0.01 tc50.015 tc50.017 tc50.019
k050.005 k050.011 k050.019

0.02 tc50.029 tc50.032 tc50.036
k050.009 k050.020 k050.034

0.04 tc50.056 tc50.060 tc50.066
k050.017 k050.036 k050.060

0.1 tc50.13 tc50.14 tc50.15
k050.036 k050.076 k050.13
5-6
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analogous the isotropic case. We find that the anisotropy
hances both the transition temperature and the ordering w
number. For example, forD50.8, Jz50.01Ji , and J'

50.1Ji we obtaink050.007, tc50.023. ForD50.5, Jz

50.01Ji , andJ'50.1Ji we havek050.013, tc50.033.

V. THE EFFECT OF A UNIFORM MAGNETIC FIELD

As we have mentioned in the introduction, the inspirati
for the present work are the observed properties
Cs2CuCl4. The effects of an applied magnetic field7,4 are
particularly intriguing. Let us therefore turn to the study
the effects of a uniform field on the dynamical susceptibil
ordering temperature, and ordering wave number. To
end, we must modify the dynamical susceptibility of a sing
chain by taking into account the effect of the field. This c
be done by utilizing exact results obtained by the Be
Ansatz22 ~see the Appendix of Ref. 37 for a brief summary!.
For simplicity we consider the case of a single, isotro
HeisenbergXXX chain (D51). In zero field we have full
spin rotational symmetry and transverse and longitud
susceptibilites coincide. There are gapless, transverse,
longitudinal excitations atk5p and the spectral weight o
the dynamical structure factor is concentrated in the reg
around k5p. Application of a magnetic field breaks th
symmetry between transverse and longitudinal suscepti
ties.

The transverse susceptibility at low energies is domina
by the contribution from the gapless states atk5p in Fig.
9~a!, whereas the most important contributions to the lon
tudinal susceptibility at low energies comes from the gapl
states at the incommensurate wave numbersp6d(H) in Fig.
9~b!.

At T50 the large-distance asymptotics of the transve
spin-spin correlation functions in real space is
qs

e
n

09442
n-
ve

f

,
is

e

c

l
nd

n

li-

d

i-
s

e

^Sx~t,y!Sx~0,0!&.Ax~H !
~21!y/a0

uy1 iu~H !tuh(H)
. ~26!

The magnetic-field-dependent spin velocityu(H) and expo-
nenth(H) can be calculated to high precision from the B
the Ansatz by solving certain linear integral equations.22 The
amplitudeAx(H) is not known analytically but has very re
cently been calculated numerically for several values ofH
using a density-matrix renormalization-group algorithm.38

The asymptotic behavior~26! holds for distances
ut1 iy /u(H)u large compared to 1/H. The asymptotic behav
ior of the spin-spin correlator at very large distances
changed by the application of a magnetic field, but at ‘‘int
mediate’’ distances the field does not play the same role
order to utilize Eq.~26! we therefore need sufficiently larg
magnetic fields. This is the case we are interested in.
small fields Eq.~26! holds only at extremely large distance
and it is better to take the field into account in RG improv
perturbation theory.

The dynamical susceptibility can now be determined
Fourier transforming Eq.~26! and then analytically continu
ing the result to real frequencies. The calculation is ana
gous to the one in zero field35 and one obtains the following
result for the low-energy transverse susceptibility of a sing
isotropic HeisenbergXXX chain (D51) in a magnetic field

FIG. 9. Two-spinon continuum for the isotropic Heisenbe
chain in a magnetic field.~a! States withDSz51; ~b! states with
DSz50.
xxx~v,p2k,H !5F~T,H !

GS h~H !

4
2 i

v2u~H !k

4pT D
GS 12

h~H !

4
2 i

v2u~H !k

4pT D
GS h~H !

4
2 i

v1u~H !k

4pT D
GS 12

h~H !

4
2 i

v1u~H !k

4pT D , ~27!

whereuku!1 andF(T,H) is given by

F~T,H !52Ax~H !
sin@ph~H !/2#G2@12h~H !/2#

u~H ! Fu~H !

2pT G22h(H)

. ~28!
his
t of
us-
in

ture
The presently available results for the unknowns in E
~26! and ~27! are summarized in Table II.

As noted above, the result~27! is least reliable at low
fields as it is obtained by Fourier transforming the larg
distance asymptotics of the real-space correlation functio

Using the results summarized in Table II in Eq.~27! we
.

-
.

obtain the transverse susceptibility for a single chain. T
result can now again be combined with an RPA treatmen
the interchain couplings to obtain an expression for the s
ceptibility of the quasi-1D. Following the same steps as
the absence of a field we can determine a critical tempera
and ordering wave number.
5-7
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In Fig. 10 we plot the ordering temperature and wa
number as a function of the applied field. We see that at
both increase with the field, butTc(H) eventually goes
through a maximum and then decreases. This is in qualita
agreement with what has been observed for Cs2CuCl4. If we
switch on an exchange anisotropy along thez direction in
spin space the qualitative behavior of theTc andk0 as func-
tions of H remain the same.

So far we have only considered the transverse suscep
ity. In the presence of a field we still have to check f
possible instabilities in the longitudinal susceptibility as t
maxima of xxx(0,k,H) and xzz(0,k,H) occur for different
values ofk. It is important to note that the physical nature
a longitudinal instability is very different from that of
transverse one. The latter is associated with the spontan
breakdown of the spin rotational symmetry around the dir
tion of the magnetic field, whereas a longitudinal instabil
does not break any continuous symmetries, but rather co
sponds to the formation of a spin-density wave in the grou
state.

TABLE II. MagnetizationM (H), spin velocityu(H), exponent
h(H), and amplitudeAx(H) for different values of the uniform
magnetic fieldH.

M~H! H/Ji Ax(H) h(H) u(H)/Jia0

0.05 0.422 0.121 0.837 1.501
0.10 0.792 0.120 0.782 1.398
0.15 1.109 0.118 0.735 1.259
0.20 1.373 0.117 0.692 1.093
0.25 1.585 0.112 0.653 0.911
0.30 1.748 0.106 0.617 0.721
0.35 1.866 0.095 0.584 0.529
0.40 1.944 0.081 0.554 0.342
0.45 1.987 0.061 0.526 0.165
an
in
r

co
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The longitudinal susceptibility in a field can be calculate
along the same lines as outlined above for the transve
ones. However, the longitudinal real-space correlation fu
tion decaysfaster with distance as the field is increase
Therefore it is likely that Fourier transforming the large
distance asymptotics leads to a less reliable result than
the transverse susceptibilities. It would be very interesting
investigate this issue by numerical methods. Fourier trans
mation of the large-distance asymptotics and analytical c
tinuation yields

FIG. 10. Upper two graphs: critical temperatureTc and ordering
wave numberk0 extracted from the transverse susceptibility
functions of the applied fieldB5H/Ji for isotropic Heisenberg
chains coupled by a frustrated in-plane couplingJ'50.1Ji and an-
tiferromagnetic inter-plane couplingJz50.01Ji . Lower two
graphs: the same forJ'50.2Ji .
xzz~v,p6d2k,H !5F8~T,H !

GS 1

4h~H !
2 i

v2u~H !k

4pT D
GS 12

1

4h~H !
2 i

v2u~H !k

4pT D
GS 1

4h~H !
2 i

v1u~H !k

4pT D
GS 12

1

4h~H !
2 i

v1u~H !k

4pT D , ~29!

whered52pM (H) andF8(T,H) is given by

F8~T,H !52Az~H !
sin@p/2h~H !#G2@121/2h~H !#

u~H ! Fu~H !

2pT G221/h(H)

. ~30!
e
ate

ion
The amplitudeAz(H) is again known numerically,38 so that
we can repeat the analysis carried out above for the tr
verse susceptibility. We find that in general an instability
the longitudinal susceptibility exists at a critical temperatu
comparable to the one for the transverse instability. The
responding characteristic wave numberk0 is located in the
vicinity of p6d5p62pM (H), whereM (H) is the mag-
netization of uncoupled chains. Note thatp6d are the points
s-

e
r-

where incommensurable soft modes exist in theDSz50 sec-
tor of the excitation spectrum of individual chains@see Fig.
9~b!#. For large values of the applied fieldH, p6d ap-
proach 0 and 2p, respectively. We note that in this regim
the further complication arises that it is no longer appropri
to neglect the contributions@as has been done in Eq.~29!# of
the smooth, nonoscillating terms in the spin-spin correlat
functions.
5-8
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FINITE-TEMPERATURE DYNAMICAL MAGNETIC . . . PHYSICAL REVIEW B 64 094425
As a function of the applied fieldH, the transition tem-
perature of the longitudinal instabilitytc

long(H) first in-
creases, goes through a maximum and then decreases a
This is similar to what we obtained for the transverse ins
bility. However, in contrast to the transverse instability t
maximum oftc

long(H) occurs at small magnetization.
Which instability is dominant is rather sensitive to th

values of J' , Jz and the applied fieldH. For J'

50.1Ji , Jz50.01Ji we find that the transverse instabilit
occurs at a higher temperature except for small fields, wh
the longitudinal susceptibility appears to dominate. On
other hand, as we have pointed out above, for small fie
our results for the Fourier transforms are least reliable.

So far we have worked with a spin rotationally symmet
Hamiltonian. Let us now consider the effects of an excha
anisotropy. We have to distinguish two cases, depend
whether or not the applied field is along the direction of t
exchange anisotropy. In the former case the analysis is c
pletely analogous to the spin rotationally symmetric case
we find a behaviorTc(H) andk0(H) very similar to Fig. 10.
The transition temperature increases with increasing fi
goes through a maximum, and eventually decreases aga

Let us now turn to the case where we have an excha
anisotropy in thez direction and apply the field along thex
direction. The effect of the magnetic field is now to gener
an excitation gap. This can be seen as follows. The ch
Hamiltonian is

HXXZ,H5Ji(
j

Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z 1H(
j

Sj
x

5H01H1 , ~31!

whereH0 is the Hamiltonian of the anisotropic spin-1
2 chain

and

H15H(
j

Sj
x . ~32!

Let us study the effect of the perturbing operator by boson
ing at the critical point defined byH0 and then perturbing
this fixed point theory by Eq.~32!. The bosonized form of
H0 is

H05
1

2E dx@~]xQ!21~]xF!2#, ~33!

whereF is a canonical bosonic field andQ is the dual field.
The uniform part of thex component of the magnetization
given by the product of two operators

H cos~A2phQ! cos~A2p/hF!, ~34!

where h has been defined in Eq.~6!. These operators ar
formally relevant and not being Lorentz scalars they belo
to the class of perturbations with nonzero conformal sp
Such operators require a special treatment~see Ref. 39,
Chaps. 8 and 20 and references therein!. In particular, to
second order, the following two spin-zero fields are gen
ated:
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cos~A8phQ!, cos~A8p/hF!. ~35!

The resulting problem has been considered in detail in Ch
20 of Ref. 39. Because we haveh,1, the renormalization-
group equations flow to a sine-Gordon model in the d
field. For weak fieldsH, a spectral gap of order of

M}H ~36!

is generated. The gap grows with increasing magnetic fi
Clearly, the growth of the gap will lead to a decrease in
transition temperatureTc—the effect observed in Cs2CuCl4
when the field is applied along thec direction.

There is a second way to see that application of a unifo
field at an angle to the exchange anisotropy induces a s
tral gap.40 If we consider the Hamitonian

HZXX,H5Ji(
j

Sj
ySj 11

y 1Sj
zSj 11

z 1DSj
xSj 11

x 1H(
j

Sj
z

~37!

and bosonize the isotropic Heisenberg chain in a field fi
and then take the exchange anisotropy into account as a
turbation, we obtain a sine-Gordon model for the du
field.40,37 The cosine term in the sine-Gordon model is r
evant and generates a spectral gap. The spectrum of the
Gordon model consists of soliton and antisoliton only a
the dynamical structure factor~in the xy plane! displays an
incoherent two-particle continuum. This suggests that the
ementary excitations aremassive spinons.

VI. A SINGLE SPIN- 1
2 XXX CHAIN WITH DM

INTERACTION

As discussed in Ref. 9, DM interactions may play a ro
in accounting for all the observed properties of Cs2CuCl4.
We therefore consider now a single, isotropic spin-1

2 Heisen-
berg chain with a DM interaction along thez direction in
spin space,

HDM5J8(
j 51

L

Sj
xSj 11

x 1Sj
ySj 11

y 1Sj
zSj 11

z 1D(
j

Sj
xSj 11

y

2Sj
ySj 11

x . ~38!

It is well known that Eq.~38! with periodic boundary condi-
tions is equivalent to anXXZ chain with twisted boundary
conditions. Indeed, a local rotation around thez axis,

Sj
15e2 i j uS̃j

1 , Sj
25ei j uS̃j

2 ,
~39!

Sj
z5S̃j

z ,

with u52arctan(D/J8) maps the Hamiltonian~38! onto

HDM5J(
j 51

L

S̃j
xS̃j 11

x 1S̃j
yS̃j 11

y 1DS̃j
zS̃j 11

z . ~40!

Here J5J8/cosu and D5cosu. For a system with open
boundary conditions there are no further changes. In part
lar, we can rest assured that bulk correlation functions in
~38! can be obtained from bulk correlators in the anisotro
5-9
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spin-12 Heisenberg chain. The excitation spectrum of a sp
1
2 Heisenberg chain with DM interaction can be obtain
from that of the correspondingXXZ chain by taking into
account the shift in momentum induced by the mapping~39!.
In Fig. 11 we show the qualitative excitation spectrum w
quantum numbersDSz561 around momentump. There
are incommensurate soft modes atp6u. Excitations with
DSz50 stay commensurate, i.e., become soft at momen
p.

Using the above mapping we can now express bulk c
relation functions of the spin-1

2 chain with DM interaction in
terms of correlation functions of anXXZ chain with ex-
changeJ/cosu and anisotropyD5cosu. For example,

^Sj
1Sj 1k

2 &DM5eiku^S̃j
1S̃j 1k

2 &XXZ ,
~41!

^Sj
2Sj 1k

1 &DM5e2 iku^S̃j
2S̃j 1k

1 &XXZ ,

where we have used that by global spin rotational symm
~of the bulk! around thez axis,

^S̃j
xS̃j 1k

x &XXZ5^S̃j
yS̃j 1k

y &XXZ , ^S̃j
xS̃j 1k

y &XXZ50. ~42!

This allows us to express the dynamical magnetic susce
bility of the model~38! in terms of the results for the Heisen
bergXXZ chain,

xDM
12~v,k!5x12~v,k2u!,

xDM
21~v,k!5x21~v,k1u!, ~43!

xDM
zz ~v,k!5xzz~v,k!.

In Fig. 12 we plot2Im xDM
67(v,k) for a DM angle ofu

50.1 as a function ofq for four different values ofv/Ji at a
temperature ofkBT/Ji50.01. Had we plotted instead

FIG. 11. Schematic two-spinon dispersion in the vicinity ofk
5p in the sectorDSz561 for the isotropic Heisenberg chain wit
DM interaction.
09442
-

m

r-

ry

ti-

xxx~v,k!5
1

4
@x12~v,k2u!1x21~v,k1u!#, ~44!

we would have seen an incommensurate four-peak struc
Because of the chirality introduced by the interaction,xDM

12

and xDM
21 now differ @uW z•SW (kW )3SW (2kW ) has a nonvanishing

expectation value#.

VII. DYNAMICAL SUSCEPTIBILITY FOR COUPLED
HEISENBERG CHAINS WITH DM INTERACTION

In the presence of a DM interaction along thez direction
in spin space, the RPA result for the dynamical susceptibi
of coupled chains is given by

x3d
12~v,kW !5

x
12

~v,k2u!

12J~k,ky ,kz!x
12

~v,k2u!
,

x3d
21~v,kW !5x3d

12~v,kW ,u→2u!, ~45!

x3d
zz~v,kW !5

xzz~v,k!

122J~k,ky ,kz!x
zz~v,k!

,

whereJ(k,ky ,kz) is given by Eq.~17! andxab(v,k) is the
dynamical susceptibility of a single Heisenberg chain. W
note that the RPA expressions forx3d

aa(v,kW ), a5x,y, are
not simply Eq.~16! with xaa(v,k) replaced byxDM

aa (v,k).
Instead,x3d

xx5x3d
yy andx3d

xy52x3d
yx are obtained fromx3d

12 and
x3d

21 by

x3d
xx5

1

4
~x3d

121x3d
-1!, x3d

xy5
1

4i
~x3d

122x3d
21!. ~46!

In Figs. 13 and 14 we plot the imaginary parts of the dynam
cal susceptibilitiesx3d

12(v,k)xDM
21(v,k) as functions of the

FIG. 12. Imaginary part of the dynamical susceptibili
2Im xDM

12(v,k) ~full line! and 2Im xDM
21(v,k) ~dashed-dotted

line! as functions ofq for four different values ofv/J at a tempera-
ture of kBT/J50.01. The DM angle is chosen to beu50.1.
5-10
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momentum transfer along the chain direction for a DM an
of u50.1, Jz50 ~the behavior forJz5” 0 is qualitatively
the same! and two different values ofJ' . The effect of the
frustrated interchain coupling is again to remove the symm
try aroundk5p.

Let us now determine the transition temperature and
dering wave number in the presence of a DM interaction.
will see that the effect of the DM interaction is to signifi
cantly increase both quantities. The instability conditio
read

J~k,ky ,kz!x
12~0,k2u!51,

~47!
J~k,ky ,kz!x

21~0,k1u!51,

FIG. 13. 2Im x3d
12(v,kW ) ~solid line! and 2Im x3d

21(v,kW )
~dashed-dotted line! for a DM angle u50.1, J' /Ji50.1, T/Ji
50.02, andJz50. The frustrated interchain coupling breaks t
symmetry aroundk5p.

FIG. 14. 2Im x3d
12(v,kW ) ~solid line! and 2Im x3d

21(v,kW )
~dashed-dotted line! for a DM angle ofu50.1, J' /Ji50.2, T/Ji
50.04, andJz50.
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where the 1D dynamical susceptibilities fulfilx12(0,k)
5x21(0,k). As before the instability develops at the max
mum of J(k,ky ,kz)x

12(0,k6u). In the absence of a DM
interaction (u50) this maximum was shifted away from th
maximum of the susceptibility for a single chain atk5p,
becauseJ(k,k/2,p) vanished precisely atk5p. In the pres-
ence of a DM interaction the maxima of the single-cha
susceptibility occurs atp6u and the effect of the frustrate
interchain coupling is therefore different. We find that t
numerical value ofk at which the instability develops is
largely determined by the DM interaction and to a les
degree by the frustration. However, the frustrated interch
coupling destroys the symmetry in momentum space aro
k5p and determines whether the instability will develop
the vicinity of p1u or of p2u. The fact that the transition
temperature is increased by the DM interaction can be
derstood by considering the susceptibility of a single ch
with DM interaction. As we have shown in Sec. VI the co
responding Hamiltonian maps onto an an anisotropic Heis
bergXXZ chain. It follows from Eq.~10! that for D,1 the
transverse susceptibility is enhanced as compared to the
tropic caseD51, which in turn leads to a higherTc .

Solving Eq. ~47! and the equation for the maximum o
J(k,ky ,kz)x

12(0,k6u) numerically, we obtain the result
for the transition temperatureTc and ordering wave numbe
k0 shown in Table III.

We see that a strong DM interaction leads to much lar
values forTc and k0 than a frustrated interchain couplin
alone. For the values of couplings observed
Cs2CuCl4 J'50.33J, Jz'0.05J, D'0.05J we obtain
tc50.11, k050.14, which are close to the measured v
ues. However, recent evidence suggests that the DM inte
tion in Cs2CuCl4 is not of the kind considered in thi
section.19

VIII. DM INTERACTION AND A MAGNETIC FIELD

Finally, let us investigate the case where we have bot
DM interaction and a magnetic field. Now it is crucia

TABLE III. Transition temperaturestc5Tc /Ji and ordering
wave numbersk0 for various values of the frustrated (J') inter-
chain coupling and DM angleu. The interplane couplingJz is taken
to be zero. The effect of a smallJz on Tc , k0 is negligible com-
pared to the effect of the DM interaction.

u J' /Ji50.1 J' /Ji50.2 J' /Ji50.3

0.05 tc50.008 tc50.017 tc50.028
k050.053 k050.061 k050.076

0.10 tc50.016 tc50.032 tc50.051
k050.10 k050.12 k050.14

0.15 tc50.023 tc50.046 tc50.073
k050.16 k050.18 k050.21

0.20 tc50.031 tc50.060 tc50.095
k050.21 k050.23 k050.27
5-11
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BOCQUET, ESSLER, TSVELIK, AND GOGOLIN PHYSICAL REVIEW B64 094425
whether or not the field is applied along the direction sing
out by the DM interaction. If it is, the system remains ga
less and we can proceed along the same lines as before.
magnetic field is applied at an angle to the DM interactio
we believe that an excitation gap is generated.42 Let us con-
sider the former case. The chain Hamiltonian is of the fo

HDM,H5J8(
j 51

L

Sj
xSj 11

x 1Sj
ySj 11

y 1Sj
zSj 11

z 1D(
j

Sj
xSj 11

y

2Sj
ySj 11

x 1H(
j

Sj
z . ~48!

By means of the unitary transformation~39! this maps onto
an anisotropic HeisenbergXXZ chain in a field

HDM,H5J(
j 51

L

S̃j
xS̃j 11

x 1S̃j
yS̃j 11

y 1DS̃j
zS̃j 11

z 1H(
j

S̃j
z ,

~49!

whereJ5J8/cosu andD5cosu @u52arctan(D/J8) as be-
fore#. The model~49! remains gapless and we can determ
the finite temperature dynamical susceptibility by the sa
methods we used in the absence of a DM interaction in S
V above. The result for the transverse susceptibility is of
form ~27!, where the exponenth(H,D) and velocity
u(H,D) can again be determined from the Bethe Ansa
whereas the amplitudeAx(H) is known numerically.38 Tak-
ing the interchain couplings into account in RPA and th
looking for instabilities as before, we obtain the resu
shown in Fig. 15.

The behavior ofTc(H) and k0(H) as functions of the
applied field is similar to what we found in the absence o

FIG. 15. Critical temperatureTc and ordering wave numberk0

as functions of the applied fieldB5H/Ji for isotropic Heisenberg
chains with a DM interaction, coupled by a frustrated in-plane c
pling J'50.1Ji and no antiferromagnetic interplane couplingJz

50. The DM angle is indicated in the figures.
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DM interaction. However, like for the zero-field case
strong DM interaction leads to a significant increase in
absolute values ofTc andk0.

IX. GENERAL DZYALOSHINSKII-MORIYA
INTERACTION

In this section we discuss how to treat more general ty
of DM interactions within the framework of our couple
chain approach.

A. Dzyaloshinskii-Morya interaction along the chains

In a compound such as Cs2CuCl4, the three-dimensiona
elementary cell contains four Cu21 ions.41 Two of them, say
~1! and ~2!, lie within a planar layer and are coupled by
relatively strong, frustrated exchange interaction. The ot
two, say~3! and ~4!, lie in the layer above and are couple
weakly to ~1! and ~2!.9

In the case where it involves spins along the chain dir
tion, the most general form of the DM interaction which
allowed by symmetries9 is

IDM5(
n,m

DW 1•@SW n,m
(1) 3SW n11,m

(1) #1DW 2•FSW n,m1
1
2

(2)
3SW

n11,m1
1
2

(2) G .
~50!

Generically, this interaction requires the distinction betwe
the sets~1! and~2!. ~Up to now, we had only considered th
caseDW 15DW 2.!

As a consequence, and from now on, the Heisenb
chains forming up the triangular planar lattice will not ne
essarily be considered all equivalent, but belonging alter
tively to sets~1! or ~2!. This doubles the primitive cell cho
sen in Fig. 5 in they direction. The magnetic Hamiltonian
that takes the difference between the two types of spins
account is

HDM5Ji(
m,n

SW n,m
(1)

•SW n11,m
(1) 1SW n,m11/2

(2)
•SW n11,m11/2

(2)

1J'(
m,n

SW n,m
(1)

•~SW n,m11/2
(2) 1SW n,m21/2

(2) !

1J'(
m,n

SW n,m11/2
(2)

•~SW n11,m
(1) 1SW n21,m11

(1) !1IDM .

~51!

Due to the doubling in they direction, the Fourier transform
of the interchain spin-spin couplings is now

J~kW !52J'@cos~ky/2!1cos~kx2ky/2!#. ~52!

In order to choose the quantization axes for sets~1! and ~2!
we introduce the unit vectors

uW 15DW 1 /uDW 1u, uW 25DW 2 /uDW 2u, ~53!

vW 5uW 13uW 2 /uuW 13uW 2u. ~54!

-
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The spins along the chains of type~1! and~2! will be quan-
tized in local coordinate systems with axes (vW ,uW 13vW ,uW 1) and
(vW ,uW 23vW ,uW 2), respectively. We denote the angle betweenuW 1

and uW 2 by z and define two DM angles byu1

52arctan(uDW 1u/Ji), u252arctan(uDW 2u/Ji).
Specializing to Cs2CuCl4, we note that the space symm

try group for this material isPnma. This group contains
symmetry elements which map the spin chains of differ
types onto each other, which leads to the following rest
tions of the DM vectorsDW 1 andDW 2. They are perpendicula
to the chain direction, perpendicular to each other and
equal length. This yields thatu15u2 in this case; see Ref. 9
for a detailed symmetry analysis.

Next we define the usual step operators forj 51,2:

S( j )
6 5S( j )

x 6 iS( j )
y . ~55!

Notice that because of our choice of the quantization a
the lettersx,y,z refer to different directions forj 51 and j
52. In Fourier space, the total Hamiltonian is

HDM5Ji (
kW ; j 51,2

cos~kx2u j !

cosu j
S( j )

1 ~kW !S( j )
2 ~2kW !

1Ji (
kW ; j 51,2

coskxS( j )
z ~kW !S( j )

z ~2kW !1cosz(
kW

J~kW !

3@S(1)
y ~kW !S(2)

y ~2kW !1S(1)
z ~kW !S(2)

z ~2kW !#

1sinz(
kW

J~kW !@S(1)
z ~kW !S(2)

y ~2kW !2S(1)
y ~kW !S(2)

z ~2kW !#

1(
kW

J~kW !S(1)
x ~kW !S(2)

x ~2kW !. ~56!

Next we will write the ‘‘effective’’ quadratic spin Hamil-
tonian corresponding to the random-phase approximation
order to do so, we define

S j5
1

2
$@x j

xx~kx1u j !#
211@x j

xx~kx2u j !#
21%,

D j5
1

2i
$@x j

xx~kx1u j !#
212@x j

xx~kx2u j !#
21%, ~57!

V j5@x j
zz~kx!#

21.

Here x j
xx and x j

zz denote the time-ordered imaginary-tim
correlation functions for chain~j! in the presence of the DM
interaction with couplingDW j . They are related to the trans
verse and longitudinal dynamical susceptibilities for chain~j!
by a Wick rotation and a global minus sign.

The effective RPA correlation functions between spin o
erators (S1

x ,S1
y ,S1

z ,S2
x ,S2

y ,S2
z)(kW ) and spin operators

(S1
x ,S1

y ,S1
z ,S2

x ,S2
y ,S2

z) t(2kW ) are then given by the inverse o
the bilinear form
09442
t
-

f

s,

In

-

3
S1 D1 0 J 0 0

2D1 S1 0 0 J cosz J sinz

0 0 V1 0 2J sinz J cosz

J 0 0 S2 D2 0

0 J cosz 2J sinz 2D2 S2 0

0 J sinz J cosz 0 0 V2

4 .

~58!

The emergence of a pole in the dynamical susceptibility c
responds to the vanishing of the determinant of this mat
This leads to the following necessary condition:

05J62@~11cos2z!S1S21sin2z~S1V21S2V1!

1V1V2 cos2z22D1D2 cosz#J41$~11cos2z!

3V1V2S1S21sin2z@V1S1~S2
21D2

2!

1V2S2~S1
21D1

2!#1cos2z~S1
21D1

2!~S2
21D2

2!

22V1V2D1D2 cosz%J22V1V2~S1
21D1

2!~S2
21D2

2!.

~59!

In the particular case whenuW 15uW 2, but u1 is not necessarily
equal tou2, the condition simplifies to

05@12J2x1
zz~k!x2

zz~k!#@12J2x1
xx~k1u1!x2

xx~k1u2!#

3@12J2x1
xx~k2u1!x2

xx~k2u2!#, ~60!

wherek stands forkx . If in addition touW 15uW 2 we also have
u15u2 then we recover, as we must, the instability con
tions discussed before. The dynamical susceptibilities can
calculated, by inverting Eq.~58!, then continuing analyti-
cally on the frequencies.

B. Dzyaloshinskii-Moriya interaction along the
interchain bonds

Up to this point we have only considered the case wh
the DM interaction involves spin along the chains. It w
recently suggested to us by R. Coldea and A. Tennant19 that
the DM interaction in Cs2CuCl4 may also involve pairs of
spin along the interchain couplings.

The direction of the DM vector in this case is again co
strained by crystal symmetries.19 The DM vector is perpen-
dicular to the triangular planes and is staggered along
chain direction as shown in Fig. 16.

For Cs2CuCl4 the DM vector appears to be staggered b
tween triangular layers as well.19 In what follows we will
first consider the simpler case in which there is no stagge
between layers in order to keep our formulas simple.

We again need to distinguish between spin chains of t
~1! and ~2!. The calculations are similar to the ones of Se
IX A. Since the longitudinal spin operatorsS( j )

z do not couple
to the transverse ones, the transverse and longitudinal
ceptibilities can be calculated separately. In Fourier spa
the Hamiltonian takes the form
5-13
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HDM5H01Hint ,

H05Ji (
kW ; j 51,2

(
a

coskxS( j )
a ~kW !S( j )

a ~2kW !,

Hint5(
kW

SW~kW !TA~kW !SW†~2kW !1(
kW

2J̃~kW !S(1)
z ~kW !S(2)

z ~2kW !

1(
kW

(
j 51,2

Jz coskzS( j )
z ~kW !S( j )

z ~2kW !, ~61!

whereD denotes the DM coupling,

SW~kW !T5@S(1)
1 ~kW !,S(2)

1 ~kW !#,

J̃~kW !5J'@cos~ky/2!1cos~kx2ky/2!#, ~62!

K~kW !5D@sin~ky/2!1sin~kx2ky/2!#,

andA(kW ) is the 232 matrix

F Jz coskz J̃1K

J̃1K Jz coskzG . ~63!

It will be convenient to define

Lu~kW !5 J̃~kW !1K~kW !

5
J'

cosu FcosS ky

2
1u D1cosS kx2

ky

2
1u D G , ~64!

whereu52arctan(D/J').
We denote by x12(kW )[x21(kW ) the time-ordered

imaginary-time transverse correlation function between sp
S( j )

1 (kW ) and spinS( j )
2 (2kW ) in the absence of the intercha

coupling and DM interaction. This is of course simply th
correlation function of a single one-dimensional chain.

The RPA expressions for the transverse correlation fu
tions between spin operatorsSa(kW ) and S b

†(2kW ) (a,b
51,2) are given by the matrix elements of the inverse of
following 232 matrix:

FIG. 16. Schematic representation of the orientation of the
lowed directions of the DM vector within one layer for the ca
where the interaction involves spins along the interchain bonds
09442
s

c-

e

F @x12#211Jz coskz Lu

Lu @x12#211Jz coskzG . ~65!

The time-ordered imaginary-time two point correlation fun
tion of spins is obtained by adding the contributions from t
various sublattice correlators, i.e., by taking, e.g.,

1

2 (
j ,l

^S( j )
1 ~kW !S( l )

2 ~2kW !&. ~66!

After analytic continuation we obtain the following RPA fo
mula for the transverse dynamical susceptibilities:

x3d
12~v,kW !5

x12~v,kx!

12@Lu~kW !1Jz coskz#x
12~v,kx!

,

~67!

x3d
21~v,kW !5x3d

12~v,2kW !.

Herex12(v,kx) is the dynamical susceptibility of a singl
one-dimensional chain. We note that we could have arri
at this result by first removing the DM interaction along t
interchain bonds by means of a unitary transformation i
way analogous to Eq.~39!. This induces an effective DM
interaction along the chains and the resulting Hamilton
can again be analyzed within RPA. After undoing the unita
transformation one recovers Eq.~67!.

The structure of the dynamical susceptibilities~67! is
quite similar to the one we obtained in the case where
DM interaction is along the chain direction~45!. There again
is an effective global shift of the momentum by a ‘‘DM
angle’’ u. However, now the angle depends on the ratio
the DM couplingD to the interchain couplingJ' rather than
the strong exchangeJi , which makes it much larger. Thi
leads to an enhancement of the effect of the DM interacti

The condition for the emergence of a transverse instab
towards the formation of a coherent mode reads

15max
kW

$@Lu~kW !1Jz coskz#x
12~v,kx!%. ~68!

One finds that the instability again occurs along the ch
direction, i.e.,ky5kx .

C. Taking into account the staggered layers

It was suggested in Ref. 19 that in Cs2CuCl4 the direction
of the DM vector alternates between neighboring layers. T
feature can be accomodated within our calculation as
lows.

Let us first suppose that the interlayer coupling const
Jz is negligible. Then the global transverse dynamical s
ceptibilities are given by the sums over the contributio
from the two types of layers. In this case the transverse s
ceptibility reads

l-
5-14
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x3d
12~v,kW !

5
x12~v,kx!@12J~kW !x12~v,kx!#

@~12Lu~kW !x12~v,kx!#@12L2u~kW !x12~v,kx!#
,

~69!
x3d

21~v,kW !5x3d
12~v,kW !.

As expected the transverse dynamical susceptibility has
its chiral nature, i.e., we now havex3d

215x3d
12 . This is in

marked contrast to the case where the DM interaction
volves spins along the chains, for which we always h
x3d

215” x3d
12 .

If Jz is not zero the calculations are slightly more comp
cated. One has now to distinguish spins in neighboring lay
and the elementary cell is doubled in thez direction. We will
denote the spin operators corresponding to the four s
per unit cell byS( j ,k)

a ( j ,k51,2). Let us also introduce th

function I (kW )5Jz cos(kz/2). Then the effective RPA
transverse correlation functions between s
operators (S(1,1)

1 ,S(2,1)
1 ,S(1,2)

1 ,S(2,2)
1 )(kW ) and (S(1,1)

2 ,S(2,1)
2 ,

S(1,2)
2 ,S(2,2)

2 )T(2kW ) are given by the inverse of the followin
bilinear form:

F @x12#21 Lu I 0

Lu @x12#21 0 I

I 0 @x12#21 L2u

0 I L 2u @x12#21

G . ~70!

The time-ordered imaginary-time two point function of sp
operators is again obtained by summing over the subla
contributions. After analytic continuation, we obtain the fo
lowing RPA expression for the transverse dynamical susc
tibility:

x3d
12~v,kW !5

x12~v,kx!@11N1~kW !x12~v,kx!#

$122J̃~kW !x12~v,kx!1N2~kW !@x12~v,kx!#
2%

,

~71!
where

N1~kW !5I ~kW !2 J̃~kW !,
~72!

N2~kW !5 J̃2~kW !2K2~kW !2I 2~kW !.

We again have that

x3d
21~v,kW !5x3d

12~v,kW !. ~73!

From Eq.~71! we obtain a modified set of instability cond
tions

~J~kW !6AK2~kW !1I 2~kW !!x12~0,kx!51. ~74!

Extremizing with respect tokz and ky yields the conditions
ky5kx andkz50.

If we specify the exchange couplings according to
values suggested for Cs2CuCl4 (Jz.0.05Ji , J'

.0.33Ji , D.0.05Ji) we obtain a critical temperature o
09442
st
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Tc50.727 K and an ordering wave number ofk050.154.
These are close to the experimental valuesTc50.62 K and
k050.186~see Table IV!.

X. SUMMARY AND CONCLUSIONS

In this work we have studied the dynamical response
frustrated quasi-1D spin-1

2 Heisenberg magnets in the diso
dered phase. The starting point of our approach are e
results for the finite-temperature dynamical susceptibility
an ensemble of uncoupled chains. Taking the couplings
tween chains into account within the framework of
random-phase approximation, we obtained an analytic
pression for the dynamical structure factor of the quasi-
system we are interested in. In the disordered phase the m
effects of the frustration are to generate anasymmetryof the
line shape and a shift of the apparent dispersion to an inc
mensurate wave vector.

By analyzing the instability of the disordered phase w
respect to the formation of collective modes we studied
transition to the low-temperature ordered phase. In partic
we determined the ordering temperature and ordering w
vector within the framework of our approach. We found th
there is a very weak instability towards an incommensura
ordered state.

We then considered the effects of an applied magn
field. We found that for isotropic Heisenberg magnets ap
cation of a magnetic field leads first to an increase in
transition temperatureTc(H) and for very large field to an
eventual decrease. In the presence of an exchange aniso
we found two distinct behaviors: if the field is applied alon
the direction of the anisotropy the situation is very similar
the isotropic case. Applying the field at an angle to the
isotropy generates a gap in the individual chains, which le
to a decrease ofTc(H) with H in the quasi-1D system. This
type of magnetic phase diagram is qualitatively similar
what has been observed in Cs2CuCl4.

In the second part of this work we took into account t
effects of various types of Dzyaloshinskii-Moriya intera

TABLE IV. Transition temperaturestc5Tc /Ji and ordering
wave numbersk0 for various values of the frustrated (J') inter-
chain coupling and interchain DM angleu5arctan(D/J'). The in-
terplane couplingJz is taken to be 0.05Ji .

u J' /Ji 50.1 J' /Ji 50.2 J' /Ji 50.3

0.05 tc50.070 tc50.078 tc50.092
k050.021 k050.046 k050.082

0.10 tc50.074 tc50.091 tc50.120
k050.022 k050.053 k050.103

0.15 tc50.079 tc50.109 tc50.153
k050.023 k050.062 k050.128

0.20 tc50.087 tc50.130 tc50.189
k050.025 k050.073 k050.153
5-15
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tions, which break spin rotational invariance. We first co
sidered DM interactions involving spins along the chain
rections and then DM interactions involving spins alo
interchain bonds. In the disordered phase the main effec
DM interactions is to generate stronger incommensuratio
DM interactions also leads to a significant enhancemen
the transition temperature and ordering wave number.

In general our results are qualitatively similar to what
observed experimentally in Cs2CuCl4. In presence of a DM
interaction of the kind proposed in Ref. 19 for Cs2CuCl4 we
obtain a transition temperature and ordering wave num
which are close to the experimental values. However, gi
that the interchain coupling is not small it is unclear ho
k,
.

da

s.

.

r-

.

i,

tt

. B

on

ism
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reliable the RPA approach is. In light of this fact it would b
very interesting to determine the leading corrections to R
which can be done for example along the lines of Ref. 36
also would be interesting to extend the coupled chains
proach to the ordered phase. This is not straightforward
to the presence of ‘‘twist’’ operators.17
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