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We study the dynamical response of frustrated, quasi-one-dimensionaé $p@isenberg antiferromagnets

at finite temperatures. We allow for the presence of a Dzyaloshinskii-Moriya interaction. We concentrate on a
model of weakly coupled planes of anisotropic triangular lattices. Combining exact results for the dynamical
response of one-dimensional Heisenberg chains with a random-phase approximation in the frustrated interchain
couplings, we calculate the dynamical susceptibility in the disordered phase. We investigate the instability of
the disordered phase to the formation of collective modes. We find a very weak instability to the formation of
incommensurate magnetic order and determine the ordering temperature and wave vector. We also determine
the effects of uniform magnetic fields on the ordering transition.
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[. INTRODUCTION tum magnets are very interesting and continue to attract
much experiment&l’~**and theoreticaf~*® attention.
A defining property of guasi-one-dimensiordD) mag- We focus on calculating the dynamical magnetic suscep-

nets is the weakness of the interchain coupling, whose presbility y(w,k), which is related to the dynamical structure
ence nevertheless usually leads to three-dimensional ordefactor S(w,k) relevant for inelastic neutron-scattering ex-
ing. It is natural to consider the ratio of the transition periments by

temperaturel . to the bandwidth of the excitation spectrum
D as a quantitative measure of one dimensionality. In sys-
tems wherel' ./D<1 the ordering transition occurs in a state
where spins on each chain are already highly “collectiv-
ized.” This means that a very significant proportion of the NOte that throughout this paper we will mainly present plots
spectral weight is concentrated in a piece of the spin-spi®f —Im x(w,k) rather than of the structure factor itself; the
correlation function, which is essentially one dimensidnél. trivial prefactor in Eq.(1) can be easily restored if desired.
This suggests that the most natural approach to the problem

of phase transitions in such systems is to treat them as Il. MODEL

instabilities® driven by weak interchain interactions, of an our work is inspired by the recent experiments on the
ensemble of 1D chains. This approach utilizes the knowledg?rustrated Spirg ma%net C;/CuCI4.4'7‘9 It waz suggested in

of the correlation functions of individual 1D chains, obtained Refs. 4 and 9 that GEuUC, is described by a Heisenberg

by various nonperturbative 'm.ethods. In this way one WIIImodel on weakly coupled planes of anisotropic triangular
automatically reproduce a distinct feature of quasi-1D Malrattices. Within the planes the exchange couplings are as in-
nets, namely the presence of a broad incoherent continuUf\-ated in Fig. 1.

in the dynamical structure factor. Hence this approach is Neighboring planes are coupled by a weak antiferromag-

quite different from the conventional spin-wave theory, netic exchangel®. In Cs,CuCl, neighboring planes are
which uses individual spins as elementary building blocks.

Spin-wave theory is known to work well for the coherent - o - °
(single-particle parts of the spectra, but it is notoriously dif- st i
ficult to obtain the incoherent parts within this approach. N 4 ’ 4
Therefore it works poorly in one dimension, especially for
spin$ magnets, where the incoherence is very strong. The
latter is due to the fact that excitations of a spirHeisen-
berg chain carry quantum numbers different from those of
spin waves. .
Some of us have already applied the approach based on A0
weakly coupled chains to describe the ordered phase of cubic
lattice quasi-1D antiferromagnétsee also Refs. 30 and 85 v N LR Ry
In the present work we apply an analogous method to the - - -
disordered phase and the ordering transition in quasi-1D, FIG. 1. Exchange paths within the planes: solid lines de-
frustrated sping antiferromagnets with Dzyaloshinskii- note the strong exchangk, dotted lines the weaker, frustrated
Moriya (DM) interaction. The effects of frustration on quan- exchangel, .

S*B(w,K)= — Imy“®(w,k). (1)
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slightly shifted with respect to one another, but in order to
keep things simple we ignore this shift. The effective mag- oy r 1
netic Hamitonian is thus given by

Kk k,k+1
H= ; Hf)lgme_i_ H i(nterplar)m’

=
K = = = LLI 2 | p
Hé|&ne=JuiEj S,j,k'SJrl,j,k"'\]Lizj Sk m
1S 11kt Si—1j+1xls (2
Kk+1) _ 2 2
7_[i(nterglar)u-:‘_JziEj Si,j,k'si,j,k+1-
i 0 ) L
. . 0 /2 n 3n/2 2%
In the present work we analyze the mo@2) in a quasi-1D Kk

framework. We choose to view the Hamiltonié®) as spin-
% chains with exchanga‘, Coup|ed by aweaker’ frustrating, FIG. 2. Two-spinon dispersion for the isotropic Heisenberg
nearest-neighbor exchange within a plane. Finally there is chain. Also in_d_icated are the sections for which we plot the dynami-
a very weak antiferromagnetic couplidg between neigh- ~cal susceptibility.
boring planes.

Experimental estimates for the exchange couplings in lll. DYNAMICAL SUS?EPT'B'L'TY OF A SINGLE SPIN-
Cs,CuCl, are J;=0.37 meV, J, /3j=0.331), and J,/J, 2 XXZ CHAN
~0.05***Although the interchain coupling, /J; is consid- Let us first consider a single Heisenberg chain with
erable, the smallness of the ratio of transition temperature tox y-jike” exchange anisotropy §A<1,
bandwidthT/7J;~0.05 indicates that the type of approach
we are advocating might be applicable to,CsCl,.

In addition to the exchange interactions present in(Ey. Hxxz=J1 2 S'S41+9/S1+ASS,,. 4
we allow for the presence of a DM interaction. Our motiva- .
tion is once again the situation in £3uCl,, where a DM We will be particularly interested in the reginde~1. The
interaction appears to be preseft’® although it is not spectrum of low-lying excitations consists of a two-spinon
straightforward to estimate its magnitude. This is because theontinuuni® and is shown in Fig. 2 for the isotropic cade

IDM:ilzk D[S kX Ss1)l-

u

superexchange between two Cu spimeccurs through two  =1. There are gapless modes at small momentum and at
CI™ ligands and not a single one. One possible DM interacmomentumar, where most of the spectral weight is concen-
tion that respects the crystal symmetry of,CsCl, is trated. Spinons carry quantum numi&s + 1/2 and no one-
spinon excitations are present.
The large distance behavior of the finite temperature dy-
©® namical susceptibili i ini
ptibility can be determined by combining re-
_ _ _ ~ sults obtained from the Bethe-Ansatz solufibff of Eq. (4)
Note that this form of the DM interaction only couples spinsith field theory technique® 2’
on the same chain. We mainly concentrate on a DM interac-
tion of the type(3) but discuss how to treat more general A\ 4n—4112
forms in Sec. IX. X7, x)=(=1)*A\(n) 1—(?) }
The outline of this paper is as follows. In Sec. Ill we
review results for the dynamical susceptibility of a single T2 2
spin4 Heisenberg chaifwith exchange anisotropyln Sec. (_)
IV we study the effects of a frustrated interchain coupling %
between spirg chains. We determine the finite temperature ) _ | mT i
dynamical structure factor by combining the results for S'”"{T(X_'”T) S'”"{T(X“‘”)
single chains with a random-phase approximation in the in- (5)
terchain couplings. We show that an instability towards an
incommensurate, ordered state develops at a critical temperblere 7 is related to the exchange anisotrapyby
ture, which we determine as well. In Sec. V we study the
effects of a uniform magnetic field. In Secs. VI, VII, and VI n=1—arccogA)/m (6)
we carry out the analogous program for spirchains with and
DM interaction. In Sec. IX we show how to treat more gen-

e_ral DM mteracuons within our calculational scheme. Sec- u=Jjaosin(my)/(2—27) )
tion X contains a summary of our results and our conclu-
sions. is the spin velocity.
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The nonuniversal amplituda,(7) has been determined 30 ' ' '
by Lukyanov and Zamolodchikd¥,
20 | ®=005 | ©=0.10
n
"z
2(1-7n) 10 |
A=
7| 2ty 0 N B Y S O
2(1-7) 15m/16 n 171/16 15m/16 n 171/16
k k
=dt sinh( 7t) o
Xex‘{‘fo T(sinr(t)cosr[(l—n)t]_”e : ' ' '
(8) ®=0.15 ©=0.20
Finally, A is a nonuniversal scale, which recently has beer
calculated in the isotropic caSe M
A1J=~24.27. (9) ‘ .

157/16 n 17n/16 15n/16 T 177/16

The third factor on the right-hand sid&kRHS of Eq. (5) ko k o
stems from a renormalization-grol®G) improvement in FIG. 3. Imaginary part of the dynamical susceptibility

the leading irrelevant perturbation to the conformally invari- — M x**(@,k) in units of 10; for the isotropic Heisenberg chain as
ant scaling limit of Eq.(4 26 There are further logarithmic @ function ofq for four different values ofv/J; at a temperature of
corrections to Eq(5), some of which have been calculated in ksT/J;=0.01.
the isotropic casé and lead tgsmal)) corrections to some of
the formulas we give below. We note that the RG improve-SO that their product tends tdn(A/T)/(2m)*
ment in Eq.(5) was done using the inverse temperature as N Fig. 3 we show the imaginary part of the transverse
the RG scale. It would be interesting to investigate the efSusceptibility in the isotropic case for the “constant-energy
fects of working with two scales, i.e., the inverse temperaturgcans” indicated in Fig. 2. The two-spinon continuum is
and the Euclidean distance. The RG improvements are inf-léarly visible. The maxima at fixed frequency occur close to
portant only in the vicinity of the isotropic point=1. the boundaries of the two-spinon continuum.

The frequency and momentum dependent dynamical sus- The longitudinal dynamical susceptibility is given by
ceptibility is obtained by Fourier transformation and analytic 2 4, 1K)
continuation of the time-ordered imaginary time correlationX '

function (5) (see Refs. 24, 29, 31, and)32 1 w—uk 1  w+tuk
I'\—-i rf—-i
« K —o'(T) 4y 47T 4y 47T
X, }F 1 1 w-—uk rl1 1  w+uk)’
7_jeuk n_etuk 4y ' anT 4y ' awT
4 47T 4 A7 T (14
=&(T) 7 o—uk 7 otuk| where®’(T) is given by*
F(l_Z_' 477T) ( 4 " aaT , sin(w/2p)T2(1-1/29)[ u 2747
(10 ®N==Adm) u 2T
Hered(T) is given by A\27~2|12 A\27=2] 7302
X|1-|= 1+| = :
T T
. n n
S|n(7r§)1“2(1—§) A\A—412 | 12-7 1“( n 1y
I D .=
(11) A 77)_772 1
o il
The result(10) is valid for momentum transfers close to the 2(1-mn)
zin;iferr(()jn;agntetic Wa\t/e r_glj‘r]nielww low energiesw/J; Xex;{det sinf{ (27— 1)t]
<1, and low temperatureb/Jj<1. T\si n 1=t
The result for the isotropic poinA=1 is obtained by 0 sin(pt)cost (1= 7)t]
taking the limit »—1. In this limit A, diverges and B Zﬂ—le_Zt (15
J1—(AIT)*7-% goes to zero according to 7
A n)— ; (12)  ForA<1 the longitudinal structure factor at low energies is
2(2m)%%\1- 5 weaker than the transverse one. In Fig. 4 we compare the
transverse and longitudinal susceptibilities forX¥XZ chain
V1= (AIT)*77 4521 9\In(AIT), (13)  with A=0.9.
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I k FIG. 5. Primitive cell of the triangular lattice and corresponding

) ) _ . first Brillouin zone. Wave numbers corresponding to momentum
FIG. 4. Minus the imaginary part of the transver$ell line)  transfer along the chain direction are indicated by arrows.
versus longitudinal dynamical susceptibiligashed lingin the an-

isotropic Heisenberg&X XZ chain withA=0.9. . .
P X been represented by three arrows in Fig. 5. We see that the

wave-number transfer along the chain direction varies in the
interval [ 0,4 ].

In Figs. 6 and 7 we plofminug the imaginary part of
Let us now take into account the interchain couplidgs  y%{(w,k) for momentum transfers along the chain direction

and J,. We do this by a random-phase approximationfor four different values ofw/J;. We have chosen param-
(RPA),****which in the present context can be understood asters such thatJ, /3j=0.1, T/J=0.01, J*=0 and

the leading term of an expansion in the inverse coordinatiory 13j=0.1, T/J;=0.02, J?=0.01, respectively. In both
number of the lattice. The dynamical susceptibility(thiree-  cases the temperature is chosen to be above the transition to

IV. DYNAMICAL SUSCEPTIBILITY FOR COUPLED
HEISENBERG CHAINS

dimensionally coupled chains are of the form an ordered statésee below as it must for our approach to
apply.
) Y (w,K) Figures 6 and 7 show very clearly that the main effect of
X34 (0,K)= : — , (16)  the frustrated interchain coupling is to make the line shape
1-23(k,ky k) x**(w,k) asymmetric The susceptibility of uncoupled chains for mo-

mentum transfer along the chain direction is symmetric
wherea=x,y,z and y““(w,k) is the dynamical susceptibil-
ity of a single chain. The Fourier transform of the interchain : : : : :
spin-spin couplings(k,k, ,k,) is given by 30 ©=005 ©=0.10

I(ky Ky k,) =3, cogk,) +J, [ cogk,) +cog k,—k,) . 20r 1

A7)l

We recall that we have assumed the coupling alongzthe
direction (between plangsto be antiferromagnetic, i.e. un-
frustrated. We can recover the results for a weak, frustratec
coupling between planes with,<J, by simply settingJ, ' . ' ' ' '
=0 in our formulas. Whenever we thus referkg=0 in the o=0.15 ©=0.20
following, this should be understood as corresponding to a
weak, frustrated coupling along tlzedirection.

In the experiments on GEuUCl, the dynamical structure
factor was measured for momentum transfers along the chai
direction. We therefore concentrate on such momentum . . . . . .
transfers in the framework of our approach. 15m/16 T 17715 15w/16 T 17015

The elementary cell and the first Brillouin zone of the
planar triangular lattice are shown in Fig. 5. If one probes the FIG. 6. Imaginary part of the dynamical susceptibility
magnetic properties of the crystal along the direction of the-1m y¥(w,k) for momentum transfers along the chain direction.
spin chains, the wave-vector transfer follows the trajectoryrhe parameters ags /J;=0.1, T/J;=0.01, andJ*=0. We see that
ky=k,/2 mod (2m) in the first Brillouin zone and has the frustrated interchain coupling leads to an asymmetric line shape.

15m/16 r 17r15 15m/16 n 17r/15
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FIG. 7. —Im x¥(w,k) for momentum transfers along the chain
direction. The parameters ad /J;=0.1, T/J;=0.02, andJ*J,
=0.01.
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A. Instability condition and critical temperature

The RPA expression for the dynamical susceptibility is
valid in the disordered phase, i.e., at temperatures above the
transition to an ordered state. One can obtain an estimate for
the ordering temperatufg, by considering the condition for
an instability to develop in form of a zero-frequency pole in

xad @,K) .2+ This pole indicates that the system is unstable
with respect to developing collective modes. In the case of
an antiferromagnet on a cubic lattice the instability signals
the spontaneous breakdown of spin rotational symmetry via
the emergence of Nd order and the collective modes are the
corresponding Goldstone modéspin waveg For the case

of a quasi-1D antiferromagnet on a cubic lattice, the critical
temperature obtained in this way is comparable to the experi-
mentally measured N# temperature for KCufF>? The
leading corrections in the inverse coordination number of the
lattice can be calculated as w&llln our case the instability
condition reads

23(k,ky ko) x*“(0K) |71 =1, (18

around the antiferromagnetic wave numiies 7 as can be  wherea=x,z. We find that fora'= z the condition(18) leads
seen, for example, in Fig. 3. This symmetry is lost when theg a weaker instability, i.e., occurring at a lower temperature,
interchain coupling is taken into account. The asymmetryexcept in the case of zero exchange anisotropy. We therefore

increases with increasind, . The curves forJ,=0 andJ,

concentrate ore=x from now on. The instability will de-

=0.01 are qualitatively similar. Another important feature of yelop at the maximum ob(k,ky ,k,) x*(0k). The maxi-
the imaginary part of the dynamical susceptibility is that it mum of the susceptibility of a single chai*(0.k) occurs at

looks incommensurate-the maximum occurs at an incom-

k=, but becausd(k,k/2,0)=0 vanishes at this point the

mensurate value of the momentum transfer along the chaigaximum ofJy** will be shifted away from the antiferro-
direction. This is most easily seen in a contour plot such agagnetic wave number.

Fig. 8, where the dynamical structure factsf(w,k) is

shown as a function of energy and momentum transfer alongields k,=k/2 mod (2n)
the chain direction. The dynamical structure factor in the=k/2,

disordered phase of gSuCl, displays both incommensura-
bilities and an asymmetric structute.

w/Jdy 0.

FIG. 8. Dynamical structure facto®*(w,k) for momentum
transfers along the chain direction. The parameters JreJ,
=0.2, T/JH=0.05, and]Z/JH=O.02.

ExtremizingJ(k,k, ,k,) x’**(0k) with respect tk, andk,
and k*=m. Setting k,
k,=# we find that the maximum of the resulting
expression occurs at a valles m+ Kk, such that

a sinh(uky/2T ) 27T, cogKky/2)
u J,/J, +2sinky/2
cosr(ukO/ZTC)—cos(?) 2 kol2)
n . uky |
—2Im\If(Z+|47T_I_C =0, (19

where ¥ (x) is the digamma function. Equatior{49) and

(18) with k=m+ky, ky=(m+Kko)/2, k,=m constitute
two equations for the two unknowrg andT.. Let us em-
phasize that a solution witky# 0 corresponds to an insta-
bility at an incommensurate wave numbet-ky. This sug-
gests that the resulting order occurs along the chain direction
with characteristic wave number+ k.

In general, Egs(18) and(19) can only be solved numeri-
cally, which is easily done. An exception is the special case
J,=0 andA =1 (isotropic poinj, for which we can derive
analytic expressions.

1. Isotropic point(n=1)

In the absence of an exchange anisotropy(E€). simpli-
fies further,
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27T, 1 uko TABLE I. Transition temperaturelg=T_/J and ordering wave
—— + taniuky/2T,) —2 ImW¥ 2 +i 1T ) =0. numbersk, for isotropic exchange interaction and various values of
uko Tle (20 the frustrated , ) and antiferromagnetic]{) interchain couplings.
Solving forxo=ko/(47T,), we find 3.1 3113 =0.1 J, 13 =02 J, 13 =03
AU K 0 t,=2.910 12 t,=1.410 %" t.=6.910 1
Xo=2 7 OT ~+0.31, (22) ko=7.31012  k,=3.610%  k,=1.7101°
8o 4mle 0.01 t.=0.015 t,=0.017 t,=0.019
where we have restored unitisy(is measured in units of the ko=0.005 ko=0.011 ko=0.019
lattice spacinga, and T in units of kg). We note thatk, 0.02 t;=0.029 t.=0.032 t.=0.036
#0, which means that the instability develops atimcom- ko=0.009 ko=0.020 ko=0.034
mensuratevave number close tar. 0.04 t.=0.056 t.=0.060 t.=0.066
The remaining Eq(18) then becomes ko=0.017 ko=0.036 ko=0.060
0.1 t.=0.13 t.=0.14 t.=0.15
2J(kg,0,0) x(0 ko) = —2[J,+2J, sin(ky/2)]x(0kKp) ko=0.036 ko=0.076 ko=0.13
1 2
' =+ixq . . . .
1 4 which yields a much larger incommensuration than our re-
- (2m)3? 3 sult. In Ref. 15 a Heisenberg model on an anisotropic trian-
r 2 +iXg gular lattice was studied by enlarging the spin-rotational

symmetry group from S(2) to Sp(N) and then carrying out
J. 4mxe.J a a largeN expansion. It was concluded that for wedk
X(T—Z"‘%) VIN(A/Te) <0.125); there is no incommensuration at all. Given the
¢ approximate nature of our results, they are certainly compat-
J, J, ible with such a scenario.
wO.ZE(T— +8x0J—) VIN(AIT,)=1. (22 In our approach the instability in the $2J invariant case
¢ ” is actually caused by the marginally irrelevant current-
Here we have used the result for the spin velocity of thecurrent interaction that gives rise to logarithmic corrections.
isotropic Heisenberg spiigl-chainu=7-rJ||a0/2. The weakness of the instability is due to the fact that it is
Let us first ignore the effects of the couplidg between  caused by precisely these logarithmic corrections.
planes. This case would correspond to a situation where the
coupling inz direction is also frustrated, but much smaller 2. General case
thanJ, . The critical temperature and ordering wave number

: In the general casd,#0 it is not possible to obtain
are then given by

simple analytic expressions like Eq®3) and (24) for T,
~ _ 2 and kg, respectively, and we have to resort to a numerical
Te~A exi = 2.609)/3,)7], 23 solutign of (18) and (19). We present the results for various
A values ofJ, andJ, in Table I.
Kol %2_48\]_ exd —2.60J; 13,)2]. (24) We set_e'that increasind leads to a S|g'n|f|cant increase of
[ the transition temperaturand the ordering wave number,
) N whereas increasing the frustrated couplihg mainly in-
These clearly show that the instability due to the frus-creases the value &, The interesting observation is that a
trated interchain coupling isxtremely weakFirst, the criti-  rely antiferromagnetic coupling between the chains leads
cal temperature is orders_ of ma_gn_ltude_lov_ver _than its couNp ot only to a higher transition temperatues expected but
terpart for the square Igttlce. This is an |nd|cat|on how weak; 5o to a significantly larger value of the ordering wave num-
the tendency to order is on a frustrated lattice. Even for o, |t we take values similar to those for L&Cl, (J, /1
large interchain coupling;/J, = 0.4, the critical temperature ~0.33, J,/J;~0.05) we obtain a transition temperature of
is only T,~9.10 ® K. The ordering wave number is simi- t,=0.084 and an incommensurability &=0.083. If we
larly small. Our results should be compared to the zeroiaye sybleading corrections in the RG improvement into

temperature results for the ordering wave number of Refs. 14,47 these values increase to=0.108 anck,=0.104
and 15. The authors of Ref. 14 used linked-cluster eXpa”Sior‘bspectively. 0 ’

methods to study ground-state properties and excited states thage valuegwhich should be taken with a degree of
at zero temperature (.Jf a ra}ther general fr.ustrated mod.e aution as], is not small are roughly comparable to what is
which contains the anisotropic triangular lattice as a speci bserved for CECUCL,,* wheret,~0.145 andky~0.186. As

’ C . . .

case. They obtain numerical(jn their notations our antifer- is shown in Sec. VI, the presence of a DM interaction can
romagnetic wave number correspondsmi(2) further increase, andkq
c .

1 ) We may also study the effects of an exchange anisotropy

q:arcco%m (25) A<1 along thez direction is spin spacfthe chain Hamil-
TRV

tonian then is given by Eq4)]. The analysis is completely
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analogous the isotropic case. We find that the anisotropy en
hances both the transition temperature and the ordering wav
number. For example, fon=0.8, J,=0.01), and J; = wf
=0.1); we obtaink,=0.007, t.=0.023. ForA=0.5, J,
=0.01]), andJ, =0.1) we havek,=0.013, t.=0.033.

V. THE EFFECT OF A UNIFORM MAGNETIC FIELD 0 0 570

0 n n

As we have mentioned in the introduction, the inspiration g5 g Two-spinon continuum for the isotropic Heisenberg
for the present work are the observed properties Ohain in a magnetic fielda States withAS’=1; (b) states with
Cs,CuCl,. The effects of an applied magnetic fiefdare As?=0.
particularly intriguing. Let us therefore turn to the study of Ja
the effects of a uniform field on the dynamical susceptibility, (S(7,y)S(0,0)=A(H) (—1)¥% (26)
ordering temperature, and ordering wave number. To this ' ' X ly+iu(H) 7| 7H”

e ey 1 S"1he magnot e ependent spn vlo) and e
B . : nent n(H) can be calculated to high precision from the Be-
be don2e by utilizing exact results obtained by the Bethne ansatz by solving certain linear integral equatiéhishe
Ansat_f (see the Appendix of Ref. 37 for a brief summery 4mplitudeA (H) is not known analytically but has very re-
For simplicity we consider the case of a single, isotropiccently been calculated numerically for several valuedHof
HeisenbergXXX chain (A=1). In zero field we have full using a density-matrix renormalization-group algoritffim.
spin rotational symmetry and transverse and longitudinal The asymptotic behavior(26) holds for distances
susceptibilites coincide. There are gapless, transverse, afd+iy/u(H)| large compared to H. The asymptotic behav-
longitudinal excitations ak= and the spectral weight of ior of the spin-spin correlator at very large distances is
the dynamical structure factor is concentrated in the regiofhanged by the application of a magnetic field, but at “inter-
around k= . Application of a magnetic field breaks the mediate” distances the field does not play the same role. In

symmetry between transverse and longitudinal susceptibilid™de" t0 utilize Eq(26) we therefore need sufficiently large
ties magnetic fields. This is the case we are interested in. For

mall fields Eq{(26) holds only at extremely large distances

The transverse susceptibility at low energies is dominateind it is better to take the field into account in RG improved
by the contribution from the gapless statekatw in Fig.  perturbation theory.

9(a), whereas the most important contributions to the longi-  The dynamical susceptibility can now be determined by
tudinal susceptibility at low energies comes from the gaplessourier transforming Eq(26) and then analytically continu-

states at the incommensurate wave numherss(H) in Fig.  ing the result to real frequencies. The calculation is analo-

9(b). gous to the one in zero fieltland one obtains the following
At T=0 the large-distance asymptotics of the transverseesult for the low-energy transverse susceptibility of a single,

spin-spin correlation functions in real space is isotropic HeisenbergX XX chain (A=1) in a magnetic field

F(W(H)_.M_U(H)k) (n(H)_.w+u(H)k>

y - 4 ' 4aT 4 ' 4aT
xHem =R (1 0 eSO [, ) w7 W) 20
L e R )
where|k|<1 and®(T,H) is given by
i H)/2]T2[1— n(H)/2][ u(H)]?>~ 7"
(I)(T,H)z—AX(H)SIr[Tm( )u](H)[ n(H) ]{;(WT} 29

The presently available results for the unknowns in Eqsobtain the transverse susceptibility for a single chain. This
(26) and (27) are summarized in Table Il. result can now again be combined with an RPA treatment of
As noted above, the resu(R7) is least reliable at low the interchain couplings to obtain an expression for the sus-
fields as it is obtained by Fourier transforming the large-ceptibility of the quasi-1D. Following the same steps as in
distance asymptotics of the real-space correlation function.the absence of a field we can determine a critical temperature
Using the results summarized in Table Il in E@7) we  and ordering wave number.
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TABLE Il. MagnetizationM (H), spin velocityu(H), exponent 0.04 — . . . . .
n(H), and amplitudeA,(H) for different values of the uniform 0.10 +
magnetic fieldH. o /’—\

M(H) HIJ, A(H) 7(H) u(H)/3a " = 005t

0.01 r

0.05 0.422 0.121 0.837 1.501

0.10 0.792 0.120 0.782 1.398 0 015 1 1f5 0 015 1 1j5

0.15 1.109 0.118 0.735 1.259 B B

0.20 1.373 0.117 0.692 1.093

0.25 1.585 0.112 0.653 0.911 004 ' ' 08 ' '

0.30 1.748 0.106 0.617 0.721 0.03 ;

0.35 1.866 0.095 0.584 0.529 02y

0.40 1.944 0.081 0.554 0.342 B =

0.45 1.987 0.061 0.526 0.165 oot | ] err

i i 0 . L 0 L L
In Fig. 10 we plot the ordering temperature and wave 0.5 ; 15 0.5 :3 1.5

number as a function of the applied field. We see that at firs.
both increase with the field, buf (H) eventually goes — ,
through a maximum and then decrecfflse)s. This is inngalitative FIG. 10.bU;I)(per two gr?jprfls. crmr::al temperatdfigand ord_g_rll_ng
agreement with what has been observed fo/GTl,. If we \fNave. num ferho eXtr‘?Ctde p Ir(OB”l; /‘3 trfans.verse .Su|s_|ce.pt' ;)'ty as
switch on an exchange anisotropy along thdirection in uhngtuons N It deb appfue e 4 Inola or Isotropic e'sec'; €19
spin space the qualitative behavior of theandk, as func- chains coupled by a frustrated in-plane foqul@fo'u” and an-
tions of H remain the same. tlferron‘.lagnetlc |nter-rilane couplingl,=0.01J;. Lower two

So far we have only considered the transverse susceptibi?—raphs' the same fal, =0.2J; .
ity. In the presence of a field we still have to check for
possible instabilities in the longitudinal susceptibility as the The longitudinal susceptibility in a field can be calculated
maxima of x**(0k,H) and xy**(0k,H) occur for different along the same lines as outlined above for the transverse
values ofk. It is important to note that the physical nature of ones. However, the longitudinal real-space correlation func-
a longitudinal instability is very different from that of a tion decaysfaster with distance as the field is increased.
transverse one. The latter is associated with the spontaneotiberefore it is likely that Fourier transforming the large-
breakdown of the spin rotational symmetry around the direcdistance asymptotics leads to a less reliable result than for
tion of the magnetic field, whereas a longitudinal instability the transverse susceptibilities. It would be very interesting to
does not break any continuous symmetries, but rather corréavestigate this issue by numerical methods. Fourier transfor-
sponds to the formation of a spin-density wave in the groundanation of the large-distance asymptotics and analytical con-
state. tinuation yields

F( 1 _w—u(H)k) ( 1 _w+u(H)k)

7z 4 _ox 4n(H) ! AnT 477(H)_I 47T
XHo,mxo=kH)=0 (T.H) ( 1 ,w—u(H)k) ( 1 .w+u(H)k)’ (29
Y am  T aaT T ap(H) ' 4aT
whereé=27M(H) and®’(T,H) is given by
i w/2n(H)T?[1—1/25(H H) 12— Un(H)
@'(T,H)=—AZ(H)SW[W 7( )L]j(H[) n(H)] l;(WT)} 30

The amplitudeA,(H) is again known numericalf? so that ~ where incommensurable soft modes exist inA#=0 sec-

we can repeat the analysis carried out above for the tranger of the excitation spectrum of individual chaifsee Fig.
verse susceptibility. We find that in general an instability in9(b)]. For large values of the applied field, ==+ ap-

the longitudinal susceptibility exists at a critical temperatureproach 0 and z, respectively. We note that in this regime
comparable to the one for the transverse instability. The corthe further complication arises that it is no longer appropriate
responding characteristic wave numbgris located in the to neglect the contributiof@s has been done in EQ9)] of
vicinity of w=é=m=27M(H), whereM(H) is the mag- the smooth, nonoscillating terms in the spin-spin correlation
netization of uncoupled chains. Note that § are the points  functions.
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As a function of the applied fieltH, the transition tem- cog\8m7®), cog 8wl nd). (35)
perature of the longitudinal instabilitg/®"9(H) first in-

creases, goes through a maximum and then decreases agdift® resulting problem has been considered in detail in Chap.
This is similar to what we obtained for the transverse insta20 0f Ref. 39. Because we have<1, the renormalization-
bility. However, in contrast to the transverse instability the9rOUP_equations flow to a sine-Gordon model in the dual
maximum Oftlcong(H) occurs at small magnetization. field. For weak fieldH, a spectral gap of order of
Which instability is dominant is_rathgr sensitive to the M o H (36)
values of J,, J, and the applied fieldH. For J, _ o _ o
=0.1J;, J,=0.01); we find that the transverse instability iS generated. The gap grows with increasing magnetic field.
occurs at a higher temperature except for small fields, wherglearly, the growth of the gap will lead to a decrease in the
the longitudinal susceptibility appears to dominate. On thdransition temperaturé .—the effect observed in GEuCl,
other hand, as we have pointed out above, for small field&hen the field is applied along theedirection.
our results for the Fourier transforms are least reliable. There is a second way to see that application of a uniform
So far we have worked with a spin rotationally symmetricfield at an angle to the exchange anisotropy induces a spec-
Hamiltonian. Let us now consider the effects of an exchang&al gap®° If we consider the Hamitonian
anisotropy. We have to distinguish two cases, depending
whether or not the applied field is along the direction of the HZXXH:JHE SIS, + SIS +ASIS  + HY S
exchange anisotropy. In the former case the analysis is com- ’ ] ]
pletely analogous to the spin rotationally symmetric case and (37)

we find a behavioll;(H) andko(H) very similar to Fig. 10.  anq hosonize the isotropic Heisenberg chain in a field first
The transition temperature increases with increasing fle_Idand then take the exchange anisotropy into account as a per-
goes through a maximum, and eventually decreases againyrhation, we obtain a sine-Gordon model for the dual

Let us now turn to the case where we have an exchangfe|q 4037 The cosine term in the sine-Gordon model is rel-
anisotropy in thez direction and apply the field along the  gyant and generates a spectral gap. The spectrum of the sine-
direction. The effect of the magnetic field is now to generatezorgon model consists of soliton and antisoliton only and
an excitation gap. This can be seen as follows. The chaig,e dynamical structure factdin the xy plang displays an
Hamiltonian is incoherent two-particle continuum. This suggests that the el-

ementary excitations amassive spinons
HXXZ,H:JHZ S}(S}(+1+SJ}/SJY+1+AS]ZSJ'Z+1+HZ SJ?( 1
J J VI. A SINGLE SPIN- 53 XXX CHAIN WITH DM

=Ho+Hj, (31) INTERACTION

As discussed in Ref. 9, DM interactions may play a role
in accounting for all the observed properties of,CsCl,.
We therefore consider now a single, isotropic spikteisen-
berg chain with a DM interaction along thedirection in

Hi=H> S (32)  spin space,
i
L
Let us study the effect of the perturbing operator by bosoniz- HDM:J’Z S, +9,  +SS DZ S
ing at the critical point defined b¥{, and then perturbing j=1 ]
this fixed point theory by Eq(32). The bosonized form of

whereH, is the Hamiltonian of the anisotropic spinehain
and

Ho is —S/S,;. (39)
It is well known that Eq(38) with periodic boundary condi-
1 tions is equivalent to aixXXZ chain with twisted boundary
_- 2 2
Ho_zf dX[(9x®)"+ (xP)7], (33 conditions. Indeed, a local rotation around thaxis,
where® is a canonical bosonic field aréd is the dual field. S]-+ =gl €§j+ . S = gl H‘j— ,
The uniform part of thex component of the magnetization is (39)
given by the product of two operators =37
(AN
H cog V27 70) cog \ 2w/ nd), (34  with #=—arctanD/J") maps the Hamiltonia(38) onto

where n has been defined in E@6). These operators are -

formally relevant and not being Lorentz scalars they belong HDM:JZ SfT+1+S¥~S}/+1+ASJZ~jZ+1- (40)

to the class of perturbations with nonzero conformal spin. )=

Such operators require a special treatmésde Ref. 39, Here J=J'/cosf and A=cosf. For a system with open
Chaps. 8 and 20 and references therein particular, to  boundary conditions there are no further changes. In particu-
second order, the following two spin-zero fields are generiar, we can rest assured that bulk correlation functions in Eq.
ated: (38) can be obtained from bulk correlators in the anisotropic
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™) 0=0.05 ©=0.10
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=0.15 ®=0.20
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2 n 3n/2 11mn/12 T 13m/12 11m/12 T 13n/12
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FIG. 11. Schematic two-spinon dispersion in the vicinitykof FIG;712. Imaginary part of the7+dynamical susceptibility
=7 in the sector\ S?= + 1 for the isotropic Heisenberg chain with — M xom (@,k) (full line) and —Im xpy (w,k) (dashed-dotted
DM interaction. line) as functions ofj for four different values ofv/J at a tempera-

ture ofkgT/J=0.01. The DM angle is chosen to lge=0.1.

spin4 Heisenberg chain. The excitation spectrum of a spin-
3 Heisenberg chain with DM interaction can be obtained
from that of the correspondinXXZ chain by taking into
account the shift in momentum induced by the mapp38).

In Fig. 11 we show the qualitative excitation spectrum with e i S
quantum numberd = +1 around momentumr. There Because of the chlra!tyalnzrodlicedﬁby the interactigfiy
are incommensurate soft modes 7t ¢. Excitations with ~ and xpy now differ [u,- S(k) X S(—k) has a nonvanishing
AS*=0 stay commensurate, i.e., become soft at momenturgxpectation valug

o

1
X (w,k)= Z[X+_(w,k— O)+x "(wk+0)], (49

we would have seen an incommensurate four-peak structure.

Using the above mapping we can now express bulk cor- VII. DYNAMICAL SUSCEPTIBILITY FOR COUPLED
relation functions of the spig-chain with DM interaction in HEISENBERG CHAINS WITH DM INTERACTION
terms of correlation functions of aXXZ chain with ex-

changel/cosf and anisotropy = cosé. For example, In the presence of a DM interaction along thdirection

in spin space, the RPA result for the dynamical susceptibility
- g/ et of coupled chains is given b

<Sj+Sj+k>DM:elk0<Sj+Sj+k>XXZ- P g Y

. et (41 ro 0 X+7(w,k—0)

S S =e %S S , w,K)= = )

(S Sj'som (S S xxz X3d 1—J(k,ky,kz)x+ (@.K—0)

where we have used that by global spin rotational symmetry ) R
(of the bulk around thez axis, Xad (©0,K)=x3q4 (©,K,6——8), (45)

<§}(é}(+k>XXZ: (é}/é}/+k>xx21 <§}(é}/+k>XXZ: 0. (42 - X4 o,K)
X3 w,k)= 7 ]
This allows us to express the dynamical magnetic suscepti- 1-23(k,ky k) x*(,k)
bility of the model(38) in terms of the results for the Heisen- whereJ(k,k, ,k,) is given by Eq.(17) and y*#(w,k) is the
berg XXZ chain, dynamical susceptibility of a single Heisenberg chain. We
o=t (o k— note _that the RPA ex.pressions fRfq(w,k), a=xy, are
Xom (@ K)=x""(@.k=0), not simply Eq.(16) with y**(w,k) replaced byy“ (w,k).
Instead x55= x%} and x 3= — x%; are obtained fronyz, and

Xad by

Xom (@,K)=x""(w,k+6), (43

XZDZM(ka):XZZ(wik)' l l
) Xa=7(Xaa T Xaa)  Xao= 77 (Xaa ~Xad)- (46)
In Fig. 12 we plot—Im ypy (w,k) for a DM angle oféd
=0.1 as a function of) for four different values ofo/Jjata  In Figs. 13 and 14 we plot the imaginary parts of the dynami-
temperature okgT/Jj=0.01. Had we plotted instead cal susceptibilitiesysy (w,K) xpu (@,K) as functions of the
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' ' ' ' TABLE . Transition temperatureg.=T./J; and ordering
0 @00 A 1 @=0.10 wave numbers, for various values of the frustrated () inter-
.l [ | chain coupling and DM anglé. The interplane coupling, is taken

[ " to be zero. The effect of a smal, on T,, kg is negligible com-
w0l " i | S pared to the effect of the DM interaction.
P P
oo ; \
ol A AN . A A 0 J, 19=0.1 J, 13=0.2 J, 13=03
7n/ 151/16 n 177/16  9m/8 7n8  15m/16 n 17n/16  9m/8
k k 0.05 t.=0.008 t.=0.017 t.=0.028
. . . . ko=0.053 ko=0.061 ko=0.076
@=0.15 @=0.20
0.10 t.=0.016 t,=0.032 t,=0.051
AN A 0.15 t,=0.023 t,=0.046 t,=0.073

YA AR A AN ko=0.16 ko=0.18 ko=0.21

w8 15w16 = 17w16 98 7w 15wi6  ®  17w16  9m8
K k 0.20 t,=0.031 t,=0.060 t,=0.095
FIG. 13. —Im x4y (w,k) (solid line and —Im yay (w,K) ko=0.21 ko=0.23 ko=0.27

(dashed-dotted linefor a DM angle =0.1, J, /3;=0.1, T/J;
=0.02, andJ*=0. The frustrated interchain coupling breaks the

symmetry around= . where the 1D dynamical susceptibilities fulfi™~(0k)

=x~"(0Kk). As before the instability develops at the maxi-
el
momentum transfer along the chain direction for a DM angldUm of J(k.ky ,k;) x "~ (0k=6). In the absence of a DM
interaction @=0) this maximum was shifted away from the

of #=0.1, J,=0 (the behavior forJ,#0 is qualitatively : o ) !
the sameand two different values ol . The effect of the ~Maximum of the susceptibility for a single chain lat m,
becausel(k,k/2,7r) vanished precisely &= . In the pres-

frustrated interchain coupling is again to remove the symme= : X ) : .
try aroundk= . ence of a DM interaction the maxima of the single-chain

Let us now determine the transition temperature and Or'_susceptibility occurs atr= ¢ and the effect of the frustrated

dering wave number in the presence of a DM interaction. wdntérchain coupling is therefore different. We find that the
will see that the effect of the DM interaction is to signifi- "umerical value ofk at which the instability develops is

cantly increase both quantities. The instability conditions'@9€ly determined by the DM interaction and to a lesser

read

I(k,ky k) x T (0k—6)=1,

47

I(k,ky k)x ™ (0k+6)=1,

30 . . .
©=0.05 8

20 +

A ‘\‘

®=0.10

N
.

\
\

/
/\\
) \
, LN

0 L L
7n/8  15m/16 n 171/16
k

9n/8

7n/8  15m/16 T 171/16  9n/8
k

=0.15

’ ‘\‘
//\L N

®=0.20

A

)

{~-—
AR
= R Ll 1 A i

7n/8  15m/16 T
k

171/16

9n/8

7m/8  15m/16 T 17m/16  9n/8
k

FIG. 14. —Im x4y (»,K) (solid line and —Im 34 (w,K)
(dashed-dotted linefor a DM angle of#=0.1, J, /J;=0.2, T/J;

=0.04, andJ*=0.

degree by the frustration. However, the frustrated interchain
coupling destroys the symmetry in momentum space around
k= and determines whether the instability will develop in
the vicinity of =+ 6 or of w— 6. The fact that the transition
temperature is increased by the DM interaction can be un-
derstood by considering the susceptibility of a single chain
with DM interaction. As we have shown in Sec. VI the cor-
responding Hamiltonian maps onto an an anisotropic Heisen-
bergXXZ chain. It follows from Eq.(10) that for A<1 the
transverse susceptibility is enhanced as compared to the iso-
tropic caseA =1, which in turn leads to a highér, .

Solving Eq.(47) and the equation for the maximum of
J(k,ky,kZ)X**(O,ki #) numerically, we obtain the results
for the transition temperatufg; and ordering wave number
ko shown in Table III.

We see that a strong DM interaction leads to much larger
values forT. and ky than a frustrated interchain coupling
alone. For the values of couplings observed in
Cs,CuCl, J,=0.33), J,~0.05]J, D=0.05 we obtain
t.=0.11, ky=0.14, which are close to the measured val-
ues. However, recent evidence suggests that the DM interac-
tion in CsCuCl, is not of the kind considered in this
section®®

VIIl. DM INTERACTION AND A MAGNETIC FIELD

Finally, let us investigate the case where we have both a
DM interaction and a magnetic field. Now it is crucial
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0.04 ' ' 03 ' ' DM interaction. However, like for the zero-field case a
strong DM interaction leads to a significant increase in the
0.03 - q 6=0.10
/’—\ 02 r 1 absolute values of . andkg.
= < ——_’_’_/
0.01 | 6=0.10 ] 01 F 1 IX. GENERAL DZYALOSHINSKII-MORIYA
INTERACTION
0 L 1 1 0 L 1 1 ) . )
05 1 1.5 0.5 1 15 In this section we discuss how to treat more general types
B B of DM interactions within the framework of our coupled
0.35 — : , chain approach.
0.04 /’\ A. Dzyaloshinskii-Morya interaction along the chains
6=0.20
= £ 025 ”J In a compound such as g3uCl,, the three-dimensional
0.03 | 0=0.20 1 elementary cell contains four €t ions** Two of them, say
(1) and (2), lie within a planar layer and are coupled by a
05 ] s 0.15 o ] s relatively strong, frustrated exchange interaction. The other
’ B | ’ B ' two, say(3) and(4), lie in the layer above and are coupled
3 _ weakly to(1) and(2).°
FIG. 15. Critical temperatur&. and ordering wave numbég, In the case where it involves spins along the chain direc-

as functions of the applied field=H/J for isotropic Heisenberg
chains with a DM interaction, coupled by a frustrated in-plane cou
pling J, =0.1J; and no antiferromagnetic interplane couplidg
=0. The DM angle is indicated in the figures.

tion, the most general form of the DM interaction which is
‘allowed by symmetri€sis

Tow=2, D1-[STnx Sy ml+ Do §(2)+1X§(2+)1 L
whether or not the field is applied along the direction singled nm mtz o R 0
out by the DM interaction. If it is, the system remains gap- (50
less and we can proceed along the same lines as before. If tigenerically, this interaction requires the distinction between
magnetic field is applied at an angle to the DM interactionthe setg1) and(2). (Up to now, we had only considered the
we believe that an excitation gap is generdfetet us con- caseD,=D,.)

sider the former case. The chain Hamiltonian is of the form As a consequence, and from now on, the Heisenberg

chains forming up the triangular planar lattice will not nec-
L essarily be considered all equivalent, but belonging alterna-
Homu=J'2, SIS\, 1+S/S),,+S/S/, ,+D> S, tively to sets(1) or (2). This doubles the primitive cell cho-
=1 ! sen in Fig. 5 in they direction. The magnetic Hamiltonian
that takes the difference between the two types of spins into
—-S§/S{,;+H ; S (48)  account is

By means of the unitary transformati¢g9) this maps onto Hom=312 S S8 m+ S 172 St s 172
an anisotropic HeisenbedgyXZ chain in a field mn

L +‘]L% S (S s 12t Stom- 172)
HDM,H:J;:L }(é}(+1+sjy~s%/+1+Aijjz+1+H; S

(49 +‘]L% SPhi 12 (SH 1t S 1) + Zow -

whereJ=J'/cosf and A=cosé [f=—arctanD/J") as be- (51
fore]. The model(49) remains gapless and we can determine o ] ) )

the finite temperature dynamical susceptibility by the samdUe to the doubling in thg direction, the Fourier transform
methods we used in the absence of a DM interaction in Se@f the interchain spin-spin couplings is now

V above. The result for the transverse susceptibility is of the R

form (27), where the exponenty(H,D) and velocity J(k)=2J, [cogky/2) + cogky—k,/2)]. (52)
\l/Jv(hI-elz’rsa)lsCtig Z?ni;ﬂtubdziﬁirg IEﬁgVJ;OrT”;h;i (;legge_rgg_satz,m o_rder to choose t_he guantization axes for g$&jsand(2)
ing the interchain couplings into account in RPA and thenV® introduce the unit vectors
looking for instabilities as before, we obtain the results

shown in Fig. 15. U;=D1/|Dy|, u,=D,/|D, (53
The behavior ofT.(H) and ko(H) as functions of the R,
applied field is similar to what we found in the absence of a v=UX Uy /|Uy X Uy). (54)

094425-12



FINITE-TEMPERATURE DYNAMICAL MAGNETIC . .. PHYSICAL REVIEW B 64 094425

The spins along the chains of typ® and(2) will be quan- [ 3, Aq 0 J 0 0

tized in local coordinate systems with axest{; X v,u,) and A, 3, 0 0 Jcost Jsing

(v,u21<v,u2), respectlvely._We denote the angle betwegn 0 0 Q, 0 _Jsing Jcost

and u, by ¢ and define two DM angles by6, s A

= —arctan|D|/J)), 6,=—arctan|D,//J)). J 0 O_ 2 2 0
Specializing to CgCuCl,, we note that the space symme- 0 Jcos{ —Jsing —A, 3, 0

try group for this material isPnma This group contains 0 Jsing Jcost 0 0 Q,

symmetry elements which map the spin chains of different | i

types onto each other, which leads to the following restric- 59)

tions of the DM vectorD, andD,. They are perpendicular
to the chain direction, perpendicular to each other and offhe emergence of a pole in the dynamical susceptibility cor-
equal length. This yields thak, = 6, in this case; see Ref. 9 responds to the vanishing of the determinant of this matrix.
for a detailed symmetry analysis. This leads to the following necessary condition:

Next we define the usual step operators jferl,2:
0=J8—[(1+ o) 13, +SIPL(31Q,+3,0Q,)

+0,0Q,c08¢—2A,A,c0813*+{(1+cog?)

Notice that because of our choice of the quantization axis, XSS o+ SR QS (324 A2
the lettersx,y,z refer to different directions foj=1 andj rremime {a2a(22+47)

=2. In Fourier space, the total Hamiltonian is + QL3 ,(32+A2)]+coL(32+ A% (33+A2)
How=3 S cogky— ﬁj)S(Jr_ RS (— ) —2030,41A,c08{}37— 0, Qp(21+AD(25+A3).
=, cosf HI=() (59
LT, D e S et ey
XSy (K)Stay(—K)+ Sh1y(K) Sy (— K)] 0=[1-I*xF(K)XF(K) [ 1= Ix(k+ 61) x5 (k+ 62)]

" N R N . X[1= X (k= 01) x5 (k= 62)], (60)
+sing > I(K[S{(K) Sta(— k) — Sy (K Sy (— K] L
k wherek stands foik, . If in addition tou;=u, we also have
6,= 6, then we recover, as we must, the instability condi-
+ 0 J(K)SY(K) S5 —K). (56)  tions discussed before. The dynamical susceptibilities can be
- (1) (2) . . o -
K calculated, by inverting Eq(58), then continuing analyti-
cally on the frequencies.
Next we will write the “effective” quadratic spin Hamil-
tonian corresponding tp the random-phase approximation. In B. Dzyaloshinskii-Moriya interaction along the
order to do so, we define interchain bonds

1 Up to this point we have only considered the case when
EJ-:E{[XjXX(kXJr ej)]‘1+[X}‘X(kx— 0,11}, the DM interaction involves spin along the chains. It was
recently suggested to us by R. Coldea and A. TerRanat
the DM interaction in CgCuCl, may also involve pairs of

1 spin along the interchain couplings.
— XX N1 11 XX _pH1-1 p g pling
Ai_2i DXy (ke 0))] D (k=1 (57) The direction of the DM vector in this case is again con-
strained by crystal symmetrié$The DM vector is perpen-
0= v2(k.)]~1 dicular to the triangular planes and is staggered along the
j_[Xj (ko1

chain direction as shown in Fig. 16.

For CsCuCl, the DM vector appears to be staggered be-
tween triangular layers as wéfl.In what follows we will
first consider the simpler case in which there is no staggering
between layers in order to keep our formulas simple.

Here x;* and x{* denote the time-ordered imaginary-time
correlation functions for chaifj) in the presence of the DM
interaction with coupling§ j- They are related to the trans-
verse a_nd Iongif[udinal dynamical s.uscep.tibilities for chgin We again need to distinguish between spin chains of type
by ?h\évgfl?er(%\a/lgOSP?go?rgllgtti)grz rfﬂr??ﬁoilgrl;etween Spin o (1) and (2). The calculations are similar to the ones of Sec.

X oy o X oY oZ\(L _ PIN 0P A Since the longitudinal spin operato%) do not_coqple
erators  6,,51,51,%;,5;,5)(k) and spin  operators g the transverse ones, the transverse and longitudinal sus-
(S, 9,57,S5,$5,S5) (—k) are then given by the inverse of ceptibilities can be calculated separately. In Fourier space,
the bilinear form the Hamiltonian takes the form
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[x" 1 t+J,cosk, Ly
L, [x* "1 1+J,cosk,|- (69

The time-ordered imaginary-time two point correlation func-
tion of spins is obtained by adding the contributions from the
various sublattice correlators, i.e., by taking, e.g.,

1 . .
3 2 (SRS (= K). (66)

After analytic continuation we obtain the following RPA for-

FIG. 16. Schematic representation of the orientation of the alyn,ia for the transverse dynamical susceptibilities:

lowed directions of the DM vector within one layer for the case
where the interaction involves spins along the interchain bonds.

Hom=Ho+ Hint,

Ho=J) 2 2 coskeSH(K)Sf(—K),
kij=12 «

Hine= 2 S(KTAK)ST(—K)+ X 23(K)Sf1(K) Sfoy(—K)
k k
+ jElzchoskZSfj)(IZ)Sa)(—IZ), (61)
k J1=1,
whereD denotes the DM coupling,
S(K)T=[S(3y(K), S (K1,

~ >

(K)=J,[cogk,/2) + cogk,—k,/2)], (62)

K(k)=D[sin(k,/2)+sin(ky—k,/2)],
andA(E) is the 2<2 matrix

J,cosk, J+K
J+K  J,cosk, |- (63
It will be convenient to define
Lo(K)=J(K) +K(K)
J. k, k,
= o050 cos(§+0 +co{ kx—5+6 , (64

where §= —arctanD/J,).

We denote by y™ " (k)=x (k) the time-ordered
imaginary-time transverse correlation function between spins

_ X" (w,ky)
1—[Ly(K)+J,cosk,]x* ~(w,ky)

X;’rdi(wrlz)
(67)
Xad (0,K)=x34 (@,—K).

Here x™ ~(w,k,) is the dynamical susceptibility of a single
one-dimensional chain. We note that we could have arrived
at this result by first removing the DM interaction along the
interchain bonds by means of a unitary transformation in a
way analogous to Eq39). This induces an effective DM
interaction along the chains and the resulting Hamiltonian
can again be analyzed within RPA. After undoing the unitary
transformation one recovers E@7).

The structure of the dynamical susceptibiliti€s?) is
quite similar to the one we obtained in the case where the
DM interaction is along the chain directidA5). There again
is an effective global shift of the momentum by a “DM
angle” 6. However, now the angle depends on the ratio of
the DM couplingD to the interchain coupling, rather than
the strong exchangé, which makes it much larger. This
leads to an enhancement of the effect of the DM interaction.

The condition for the emergence of a transverse instability
towards the formation of a coherent mode reads

1=max[L 4(Kk)+J,cosk,]x" " (w,ky)}. (68)
K

One finds that the instability again occurs along the chain
direction, i.e. k=K.

C. Taking into account the staggered layers

It was suggested in Ref. 19 that inL&aICl, the direction
of the DM vector alternates between neighboring layers. This

+ . . — = . . .
Si)(K) and spinS;y(—k) in the absence of the interchain foarre can be accomodated within our calculation as fol-
coupling and DM interaction. This is of course simply the |gys.

correlation function of a single one-dimensional chain.

Let us first suppose that the interlayer coupling constant

The RPA expressions for the transverse correlation funcyz js pegligible. Then the global transverse dynamical sus-

tions between spin operatorS,(k) and SK(—k) (a8

ceptibilities are given by the sums over the contributions

=1,2) are given by the matrix elements of the inverse of thedrom the two types of layers. In this case the transverse sus-

following 22 matrix:

ceptibility reads
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TABLE IV. Transition temperatures.=T./J; and ordering
wave numbers, for various values of the frustrated () inter-
chain coupling and interchain DM angke=arctanp/J,). The in-
terplane coupling), is taken to be 0.0F .

X34 (@,K)
X (@0,k)[1=I(K)x " (w,kyo)]
[(1-Ly(Kx" (0,kl[1—L_o(K)x " (0,k)]

69 0 J, 13 =01 J, 13, =0.2 J, 13, =03
—+ Syt — %
X3d (@,K)=x3q (@,K). 0.05 t.=0.070 t.=0.078 t.=0.092
As expected the transverse dynamical susceptibility has lost ko=0.021 Ko=0.046 ko=0.082
its chiral nature, i.e., we now havey," = x34 . This is in
marked contrast to the case where the DM interaction in- 2-10 tc=0.074 tc=0.091 tc=0.120
volves spins along the chains, for which we always had ko=0.022 Ko=0.053 ko=0.103
Xag Xaa - 0.15 t,=0.079 t,=0.109 t,=0.153
If J, is not zero the calculations are slightly more compli- : e c e
cated. One has now to distinguish spins in neighboring layers ko=0.023 ko=0.062 ko=0.128
and the elementary cell is doubled in thdirection. We will
denote the spin operators corresponding to the four sites 0-20 1c=0.087 c=0.130 c=0.189
per unit cell byS{ ;) (j,k=1,2). Let us also introduce the ko=0.025 ko=0.073 ko=0.153

function I(IZ)=JZcos(<Z/2). Then the effective RPA

transverse correlation functions between spin )
T.=0.727 K and an ordering wave number lgf=0.154.

operators $(+1,1);S(+2,1>,36,2)15?2,29('2) and Sg.1),S2,:
S@lz),S(zyz))T(— k) are given by the inverse of the following
bilinear form:

These are close to the experimental valligs0.62 K and
ko=0.186(see Table IV.

[X+_]_l Lo I 0 X. SUMMARY AND CONCLUSIONS
+-1-1
b R 0 l (70) In this work we have studied the dynamical response of
! 0 X1t Ly | frustrated quasi-1D spip-Heisenberg magnets in the disor-
0 | L_, [X+—]—1 dered phase. The starting point of our approach are exact

results for the finite-temperature dynamical susceptibility of

The time-ordered imaginary-time two point function of spin an ensemble of uncoupled chains. Taking the couplings be-
operators is again obtained by summing over the sublatticeveen chains into account within the framework of a

contributions. After analytic continuation, we obtain the fol- random-phase approximation, we obtained an analytic ex-
lowing RPA expression for the transverse dynamical susceppression for the dynamical structure factor of the quasi-1D

tibility:

X @k Ny (KX (w.k)]

{1-23(K)x " (w,k) +No(K)[ x " (0,k)]1%}
(72)

X;di(('()v'z)

where

N1 (k) =1(k) = 3(k),
IO, . R (72)
N,(k)=J2(k) — K2(k)— 12(Kk).
We again have that

Xad (@0,K)=x3q (0,K). (73

From Eg.(71) we obtain a modified set of instability condi-

tions
(JI(K) = VK2A(K)+12(K) x "~ (0k,)=1.

Extremizing with respect té&, andk, yields the conditions
ky=Kky andk,=0.

(74

system we are interested in. In the disordered phase the main
effects of the frustration are to generateamymmetryof the

line shape and a shift of the apparent dispersion to an incom-
mensurate wave vector.

By analyzing the instability of the disordered phase with
respect to the formation of collective modes we studied the
transition to the low-temperature ordered phase. In particular
we determined the ordering temperature and ordering wave
vector within the framework of our approach. We found that
there is a very weak instability towards an incommensurately
ordered state.

We then considered the effects of an applied magnetic
field. We found that for isotropic Heisenberg magnets appli-
cation of a magnetic field leads first to an increase in the
transition temperatur@.(H) and for very large field to an
eventual decrease. In the presence of an exchange anisotropy
we found two distinct behaviors: if the field is applied along
the direction of the anisotropy the situation is very similar to
the isotropic case. Applying the field at an angle to the an-
isotropy generates a gap in the individual chains, which leads
to a decrease of .(H) with H in the quasi-1D system. This
type of magnetic phase diagram is qualitatively similar to

If we specify the exchange couplings according to thewhat has been observed in LxCl,.

values
=0.33,

suggested  for  €B8uCl, (J,=0.08), J,
D=0.05J)) we obtain a critical temperature of

In the second part of this work we took into account the
effects of various types of Dzyaloshinskii-Moriya interac-
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tions, which break spin rotational invariance. We first con-reliable the RPA approach is. In light of this fact it would be
sidered DM interactions involving spins along the chain di-very interesting to determine the leading corrections to RPA,
rections and then DM interactions involving spins alongwhich can be done for example along the lines of Ref. 36. It
interchain bonds. In the disordered phase the main effect adlso would be interesting to extend the coupled chains ap-
DM interactions is to generate stronger incommensurationgroach to the ordered phase. This is not straightforward due
DM interactions also leads to a significant enhancement io the presence of “twist” operators.

the transition temperature and ordering wave number.

In general our results are qualitatively similar to what is
observed experimentally in @SuCl,. In presence of a DM
interaction of the kind proposed in Ref. 19 for,CsiCl, we We thank Radu Coldea and Alan Tennant for many stimu-
obtain a transition temperature and ordering wave numbetating discussions and explaining their experimental results
which are close to the experimental values. However, givetto us. This work was supported by the EPSRC under grants
that the interchain coupling is not small it is unclear how AF/100201(F.H.L.E) and GR/N19359M.B. and F.H.L.E).
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