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Decomposition of the relativistic hyperfine interaction operator: Application to the ferromagnetic
alloy systems fcc FeNi,_,, fcc FePd;_,, and fcc CqPt;_,
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A scheme developed by Pyper to decompose within relativistic Hartree-Fock theory the hyperfine interaction
operator into the conventional Fermi contact, spin dipolar and orbital contributions is modified to split the
hyperfine field of magnetic solids calculated in a fully relativistic way on the basis of spin-density-functional
theory in an analogous way. The resulting expressions are used to examine the hyperfine fields for the disor-
dered alloy systems fcc fi, _,, fcc FgPd,_,, and fcc CgPt;_, making use of the spin-polarized relativ-
istic Korringa-Kohn-Rostoker coherent-potential approximation method of band-structure calculation. In par-
ticular the contribution of nos-electrons to the hyperfine fields are discussed in detail. Special emphasize is
laid on their relationship to the corresponding contributions to the spin and spin-orbit-induced orbital magnetic
moments.
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[. INTRODUCTION starting from an expansion of the relativistic electronic wave
function in powers of Z/c),*° Breit derived relativistic cor-
A sound theoretical description of the magnetic hyperfinerections to the Fermi-contact tefhilhis line was also fol-
interaction was first given by Ferfin 1930. Starting from  lowed by many other authors as for example by Pyykkd
the Dirac equation he found for the nonrelativistic limit three his coworkers. These authors also pointed out that the use of
distinct contributions to the magnetic hyperfine interactiona scalar-relativistic Hamiltonian for the band-structure calcu-
operatorH ¢ (a straightforward nonrelativistic derivation for lation is not compatible with the nonrelativistic expression
these contributions can be found, for example, in Ref. 2 for the Fermi contact hyperfine Hamiltoni&h: .8 In particu-
The first one is the Fermi-contact contributibli that stems lar it was found that this inconsistent approach leads to hy-
from the spin magnetic moment of the electrons. Because jerfine fields that are much too laf§& Among others this
is proportional to the delta functiod(r), with the nuclear Was demonstrated by the work of Bjel et al'® Starting
position atr =0, only s electrons contribute to the hyperfine ffom & decompostion of the relativistic hyperfine Hamil-
field of spontaneously magnetized solids t#a. The other ~tonian these authors in addition derived an expressiohifor
two contributions tcH,; are the spin dipolar and orbital con- that is consistent ywth a scalar-relativistic band-structure cal-
tributions, H i, and oy, respectively. In contrast telg, ~ culation and that is generally accepted now.
only electronic states with an orbital angular momentum  Apart from the approach to account for relativistic influ-
#0 would contribute to hyperfine fields via these terms.ences on the hyperfine interaction by including correspond-
However, the hyperfine fields correspondingHg,, vanish  ing corrections, several investigations can be found in the
within a nonrelativistic or scalar relativistic calculation be- literature that are based on the Dirac equation and the proper
cause the electronic orbital angular momentum is quencheelativistic form of the hyperfine interaction operati,
if the spin-orbit-coupling is neglecte@Here one should note (Ref. 11 (see below. For solids the first steps in this direc-
that there are nevertheless contributions, for example, to théon have been made by Tterlikkist al*? Calculating the
spin-lattice relaxation rate due td,,,.) For lattice sites hyperfine field of the elemental ferromagnets Fe, Co, and Ni
with cubic symmetry there are no contributions to the hyperin a fully relativistic way, Eberet al. could unambiguously
fine fields due td;, . For a lower symmetry this term gives determine the relativistic enhancement of these fields com-
rise to an anisotropy that is normally relatively snials a  pared to a nonrelativistic calculatidfIn addition, it could
consequence, in calculating the hyperfine fields of magnetibe demonstrated that there are quite appreciable contribu-
solids normally only the Fermi contact terkfi: is consid-  tions due to nors electrons that are connected with the pres-
ered. ence of the spin-orbit coupling. By corresponding calcula-
Because of the spatial dependence of the hyperfine intetions for disordered transition metal alloys, where one has
action operator and the conventional relativistic correctionghe concentration as an independent parameter to vary, it
(spin-orbit-coupling, mass velocity, and Darwin tejrtisthe  could be shown that these nereontributions to the hyper-
Schralinger equation it is quite obvious that the influence offine field go nicely parallel with the spin-orbit-induced or-
relativistic effects shows up already for relatively light nu- bital magnetic moment¥. For that reason, these contribu-
clei. Unfortunately, many authors tried to take this situationtions to the hyperfine field were intuitively called orbital.
into account by including the so-called scalar-relativisticThis was supported by a further analysis of the data based on
mass velocity and Darwin corrections only in the calculationan expression due to Abragam and Pfydhat connects or-
of the electronic band structure while the hyperfine field in-bital contributions to the magnetic moment and the hyperfine
teraction operator was left unchanged. On the other handield. To allow for a more detailed and sound analysis of
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hyperfine fields based on the relativistic hyperfine interaction To deal with the Dirac equation based on the Hamiltonian
operatorH,,;, Ebert suggested to perform a Gordon decom-given in Eq.(1), it is convenient to split the electronic system
position of the electronic current density and derived thisinto a subsystem consisting of the tightly bound core elec-
way a consistent relativistic counterpart to the non-trons and one due to the valence-band electrons. Due to the

relati\iiéstic _ spin dipolar hyperfine interaction operator spin-dependent terrB,(r), the corresponding wave func-
Haip.~ This approach was also used by Pyper who pertions have in general no unique spin-angular character but

formed a complete decomposition K¢ within the frame-  are a superposition of various contributions. For the core
work of Hartree-Fock theorv. As it will be shown below, wave functiongbnA one has for examdé

this approach can be transferred with minor modifications to
the treatment of magnetic solids done on the basis of spin- - -
density-functional theory. CDnA(rvE):E; Dparalr,B), ©)

In the following section the relativistic calculation of hy- A
perfine fields for magnetic solids will be reviewed in short.where n is the principal quantum number ant=(«,u)
This is followed by a derivation of the relativistic expression combines the spin-orbit and magnetic quantum numbers. In
for the Fermi contact, spin dipolar, and orbital hyperfineEqg. (3) A indicates the spin-angular character of the domi-
fields. Results obtained for the disordered alloy systems fcoating contribution tab,, , while A’ gives the spin-angular
FeNi,_, fcc FgPd,_,, and fcc CoPt; _, will be presented character of the various contributions that have the conven-
in Sec. Ill and discussed in some detail. A short summaryional form?°
and conclusions will be given at the end.

gara(r,E)xar(r)
(4)

if A a(FE)x—ar(T)

with — A =(—«,u). Here the large and small components
Within the present work we used the relativistic version ofare composed of the radial wave functiomg ,(r,E) and

spin-density-functional theorygSDFT) (Refs. 18,19 to cal-  f,.,(r,E) and the spin-angular functior8:

culate the electronic structure of the investigated system in a

Il. THEORETICAL FRAMEWORK q)A’A(r'E):(

A. Electronic structure calculations

self-consistent way. This implies in particular that the corre- A 1 B p—mg,~
sponding Dirac Hamiltoniai, is given by XA(r)_mS;;l,z ClIZ1m=ms,ms Y ") Xm,, (5)
Hp=Ca-p+BmE+V(r)+ Lo Bey(r). (1) with the Clebsch-Gordon coefficien®&(I 1j;m,,ms).

- ) ) - Within the present work, the valence-band electrons are
Herea is the vector of 4 4 standard Dirac matric&sandp represented by the corresponding Green’s function

is the momentum operator. The potentifr) is the spin- (¢ ;' E), that is determined by the use of multiple scatter-
independent part of the effective single-particle potential '[hafng theory?2:23

consists in turn of its Coulomb and exchange correlation
part. The spin-dependent part of the potential is represented

by the effective magnetic field G(r,r',E)=2, Z\(r.E)7\\ (E)Z},(r",E)
AN’
. - . . SE.nm] . R
Beff(1) =Bex(r) +——=——. 2 =3 [ E)IVN(T L E)O(r —T)
om(r) Y
In general an external fiel,,(r) may contribute to +IN(rE)ZV(r " E)O(r—1")]80n, (6)

éeff(F). Because we are interested in the following in spon-

H n n
taneously magnetized solids, this term can be ignored. Th\é’he.re the wave fungtlonEA and ‘]A. are the pro_perly nor-
N R . } malized regular and irregular solutions to the Dirac equation
second contribution t@.(r) represents the spin polariza- ¢ 5 single atomic potential well at site As for the core
tion of the system and is expressed by the variation of th%vave functions®, , they have in general no unique spin-

exchange-correlation enerdy,. with respect to the spin  gnq,jar character, i.e., they are given by expressions similar

magnetizatio(r). To emphasize the origin @(r) and : n
to distinguish it from the hyperfine field,; to be introduced to Egs. (3) and (4). The scattermg path opergt@ﬁA,(E)

o I ) accounts for all multiple scattering processes in the extended
below, it will be denoted,(r) in the following. solid. Crudely spoken the imaginary part of the site-diagonal

For transition metal systems calculations based on thg ' n
S : . Scattering path operator Im ,,(E) can be seen as a mea-
SDFT give in general very good results for spin-magnetic gp P miA (E)

moments. For the spin-orbit-induced orbital moments, how=>4r€ for theA_-hke local dens@ of states..

ever, the results are often found to be too small compared Representing the electronic §t[ucture in terms of the cor-
with experiment® However, this shortcoming of plain SDFT responding Green's functio®(r,r ',E) instead of using
does not affect the relationship between the orbital contribuBloch wave functionst ,i(r,E,i) and the associated eigen-
tion to the magnetic moment and the hyperfine fields, that ivaluesk,, has the great advantage that it is straightforward

one of the main issues of this study. to deal with disordered alloys. This feature is exploited here
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by making use of multiple-scattering theory in combinationof E, ; or B;, respectively, ang.,,, . As emphasized above,
with the coherent-potential-approximatiofiCPA) alloy  the contributions to the hyperfine fieR),; due to nons elec-
theory?? trons will vanish in the nonrelativistic limit and cubic sym-
metry. The inclusion of spin-orbit coupling, however, leads
B. Relativistic calculations of the hyperfine fields of magnetic 0 nonzero contributions even for cubic symmetiryfact the
solids presence of a finite magnetization breaks Eéhe cubic symmetry
N . . even for a crystallographic cubic lattice git€ One therefore
The relguwsuc form fo_r the hyperfine Interaction operator . v, fing oﬁt Whe?he? these hyperfine field contributions of
that describes the coupling of the electronic current denS|t¥10an electrons are primarily due to their spin or orbital mo-

j=eca to the vector potentiah, created by the nuclear tjon. A first answer to this question can be obtained by mak-

magnetic dipole&n was given by Breit? ing use of an expression suggested in a somewhat different
o context by Abragam and Pryc@ For the present situation
Hpr=ea-A,(r) (7)  one may expect for a givenvalue that the orbital contribu-
tions Bg?[')', of the valence electrons s are connected to
=ea-(u,X1)AL(r), (8)  the corresponding contributions a,,;, by
whereA,(r) r_epresents thg radial dependgnc_e of thg nuclear BZ?y';(ﬁP)*ZMBU*?’)WomJ _ (12)
vector potential. For a point nucleds,(r) is simply given
by r—3. For the applications to be presented below the angular mo-

According to the decomposition of the electronic systemmentum expansion has been restricted tg,.=2. This im-
the contributions of the tightly bound core electrons and ofplies that Eq.(12) will be applied individually forp andd
the valence band electrons to the hyperfine interaction energstates.

En are calculated separately. The contribut&ff'® to Ep;
stemming from the core electrons is obtained straightfor- Decomposition of the relativistic hyperfine operator

wardly from the expressioft S _
The expression given in E§12) allows one only to esti-

core mate the orbital part of the nasvhyperfine fields. A rigorous
Ent :% (PralHni @) (9 decomposition of the hyperfine field, on the other hand, can
be obtained by a corresponding decomposition of the relativ-

In terms of the electronic Green’s function the contribu-iStic hyperfine HamiltoniaHy,¢ . This has been achieved by

tion of the valence-band electronsEg; is given by Blligel et al. using the elimination techniqu€ Although this
approach has been worked out so far only for the case of a

1 Er . spin-independent potential, it nevertheless supplied a firm
Elﬁ?lz_;Tf Imf dEf d*rHuG(r,r,E), (100 and consistent theoretical basis to deal with the Fermi-
contact interaction on the basis of a scalar-relativistic band-
where the energy integration extends over the range of thstructure calculation. As an alternative to the approach of
occupied part of the valence band up to the Fermi energlligel et al.,a decomposition of the hyperfine field can also
Er. be achieved by a Gordon decomposition of the electronic
In dealing with the expectation values in E¢®). and(10) current density in Eq(7). Here we adapted the derivation
or corresponding expressio(gee below, the nuclear part of  given by Pyper, who considered all partstf; or |, respec-
the combined nuclear and electronic wave function is notively, within the framework of Hartree-Fock theory.
given explicitely here. In addition, for the sake of simplicity, ~ To account for the most general situation we start from
a nucleus with spin quantum numbler 1 is assumed. This the Dirac and its adjoint equation, that determine the so-
simplifies the notation, but has no influence on the result fogalled left- and right-hand solutions®y and ®F,
the hyperfine fieldBy, that is usually introduced to discuss respectively?>2
the magnetic hyperfine interaction in spontaneously magne-

tized solids. The hyperfine fiel8y; represents the nuclear Hp|®RY=E,|DR), (13

Zeeman splitting and can be seen as an isotope-independent

interaction parameter that is related to the hyperfine interac- <q)L|HT _ EA<¢L| (14)
AlPDp= Al

tion energyEy; by
Using the Dirac Hamiltonian given in Eql) together with
Bhi=Ent/tn- 1Y) atomic Rydberg units, one gets
As for E ¢, the hyperfine fieldBy is split into its core and
valence-band contributiorB:%"® andBY3', respectively.

With the hyperfine interaction operatéty,; given in Eq.
(10) replaced by the operatargBl, one gets the spin-orbit-
induced orbital magnetic moment,,,, .*® Due to the angular
momentum expansion of the Green’s function implied by Eq. (D |=(DL|(E\—V—Bo-By—ca- 5)}33. (16)
(6) one is immediately led to a corresponding decomposition c?

2 oo N
|d>§>=;B(EA—V—BU-Bxc—ca-p>|<b§>, (15)
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A Gordon decomposition of the electronic current densityyribution due toEy;. For a highly symmetric field,(r),

can be achieved now by starting from the expression

1
Ehf:§(<q)k|th|q)§'>+<(Dk|th|q)§’>)- 17

Inserting Eqs.(15) and (16) into the second and first term,
respectively, of Eq(17), one is led to three distinct contri-
butions toE;:

M

B - - - -
Efi="(PRIEsBa-Ar+a-ABE,|OF) (18

S ¢ > e R
Enc=ue(®5|—a ppa-A,—a-ABa-pl@y,) (19
V_MB L = - =
Ehf_?<q)A|_(V+,80"Bxc)Ba'An

—a-AB(V+ BBy DR ). (20)

Using the energy-dependent teffj; in Eq. (18) in connec-
tion with Eqg. (9) or Eq. (10), respectively, one ha&,
=E,.. As a consequence, the contributiBfy vanishes ex-
actly because of the relatiofa;= — «;B8. Concerning the
potential-dependent terEﬁ{f in Eg. (20) one can see that this

term vanishes also for the same reasdi?x'@‘= 0. For afinite
field B,.#0 one has instead,

MB - = > > S s s o
E?{f:_?<q)|/_\|(0"Bxc)(a'An)+(a'An)(U'Bxc)|¢)i'>'
(21

Replacinga by yso where

0 1,
V5= I, 0
(I, is the 2<2 unit matri¥ is one of the Dirac matricé$
and making use of the relation

(0 A (0 By =Ay By tio(AXByo), (22
one ends up with
v KB, 1y 7 3 R
Ehf:_2?<®A|75An'Bxc|q)A'>- (23

In general one assumes for the Dirac Hamiltonian in eqh
(1) that the magnetization within an atomic cell points along
a unique directioniaZ that is not necessarily identical with the
crystallographicz axis. In that case the spin-dependent term

of the potential is simply given bBo,B,.(r). The nuclear

spin, on the other hand, will be aligned along the direction o
the magnetization, i.e., the localaxis. As a consequence,

the resulting vector potentiain(F) will always be perpen-

dicular to éxc(F)= BXC(F)éZ. This means that the contribu-

tion E?{f, as given by Eq(23), will also vanish. For the more

general situation, where one allows the fiélg(r) to vary
its orientation within an atomic ceff, there might be a con-

however, it will still vanish because of cancellations in the
integral in Eq.(23). Finally, the factor 1¢ will ensure that a
finite result forEY; will be small compared to the ter@:?

to be discussed in detail below.

The above discussion dfY; was based on the SDFT
Hamiltonian given in Eq.(1). However, the same line of
arguments apply if a more complex Hamiltonian is used, that
is derived for example within the framework of current-
density-functional theoryCDFT) (Ref. 28 or that includes
Brooks’ orbital polarizationOP) term?2°30

As discussed in detail by Pypéthe decomposition given

by Egs.(18)—(20) is only useful if the momentum operatpr

can be treated as an unitary operator, because otherwise one
is led to surface integrals when dealing with E#9). This
requirement is automatically fulfilled if one accounts for the
finite size of a nucleus. Assuming in particular a nuclear
model, in which the entire nuclear magnetization resides on
the surface of a sphere of finite raditg, one has for the
radial distribution of the vector potential:

! f
E or r<rp

An(r)= L (24)
— for r=r,

w

r

The termE;p in Eq. (19), that depends on the spin and
orbital degree of freedom of the electron, can now be further
transformed:

Enf=—ina(®5|[(a-A)(a- V)~ (- V)(a-A)]|DF).
(25)

The term between the bra and ket can be identified with the
corresponding hyperfine operatdg,:

Hir= _iMBﬁ;k oo (ViAn+AnVi)

—iMB[g; T2V iAnj+ A V)). (26)

Further transformations of the first sum in Eg6) shows
at it represents the coupling of the nuclear to the electronic
spin:

HiP W= pugB0-[VX (pnX 1) AL(N)]. (27)

f

Inserting the explicit form of the vector potential,(r) al-

lows one to splitH™X®) into the Fermi contact and spin

dipolar hyperfine interaction operators,

- 21
HFZZMBIBMn'Ur_3®(rn_r) (28)

n
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1 . .. . 4k :
Hdip:MBﬁ_El[S(:U*n'r)(o"r)_(ﬂn'a')rz]@(r_rn)a AN =i 2—’“5“, e O~ w1
r 4k“—1 4 Kk—k'
(29)
where the theta function® restrict the operators to the — 1_ i S —rri1|Ounr - (33
ranger <r, andr =r ,, respectively. Apart from the facte, 4 \k—«' ' a
the resulting relativistic operators are obviously very similar
to their nonrelativistic counterparts. Here the argumentg andr of the radial wave functions
Using the gauge property-A,=0, the second term g, (r,E) and f,(r,E) as well as their dependency on the
Hi X in Eq. (26) is given by magnetic quantum number has been suppressed. In addi-
tion, the fact thatb,, has in general no unique spin-angular
H3X) =240 8A,p. (30)  character has been ignored here for the sake of cleafsess
- Ed. (3)]-
For the specific nuclear model represented by @¢) one In principle, the evaluation of the matrix elements in Eq.
finally has (32) implies an integration over the whole space. Because of
. the short range nature of the magnetic hyperfine interaction
Horb=21BAn(r) n- 1, (31)  [see Eq(24)], it is well justified to restrict the integration to

. . . an atomic cell. Accordinglyy ., Stands for the muffin tin

where we have |denyf|ed the operaﬂdrﬁ?@) in Eq. (30 radiusr ,,; or Wigner-Seitz radius,ys depending on whether

with the orbital hyperfine operatét,y,, that again turns out 5 1 ffin-tin or atomic-sphere-approximation geom#thyas

to be nearly identical to its nonrelativistic counterpart. been adopted for the potential and charge distribution.
Finally, it should be noted that a Gordon decomposition of g gne notes, only mixed combinations of the radial wave

the hyperfine operator within the framework of Hartree-Fock - ~tions of the typey,f ., occur in Eq.(32) because of the
theory leads to additional terms. In particular a purely rela'structure of the matriéeg- . This is in contrast to the matrix
tivistic term occurs, that involves a commutator with the elements of the operatollsl;F Hyio, andHg,p. AS a conse-
nonlocal part Qf tDe potential energy entering the Hartreeiquence of the Gordon decc,)mpé)ps’ition ofotrhe current density,
Fock Hamiltoniarr. there are only terms connecting two large components or two
minor components as, for examptg,g,. -
D. Matrix elements and selection rules For the Fermi-contact operatéfy one finds,

When calculating the matrix elements of the various hy-
perfine interaction operators, these can be split into a radial
and an angular part. In general one has to distinguish be- <(I)I/_\|HF|(I)§I>:2MB/-Ln
tween the left- and right-hand solutiof®| and [®F,),
respectively, to the Dirac equation. Fortunately, for the Dirac ] .
Hamiltonian given in Eq(1) the radial wave functions of —AF ,f nderfK,_ (34)
both sets of solutions are the same for most situatiofs. AT o ra
For that reason one has only to distinguish their spin-angular
parts, as it is indicated by the superscriptin Eq. (6). Fur-  with the angular matrix elements
thermore, we are interested here in the hyperfine fields of
spontaneously magnetized solids. For this type of systems it

r

Fo[™ ?
Ajpr | drg. g, —
0 rm

n

is in general well justified to assume that the spin and orbital AF | _ 5 s

magnetization within an atomic cell are oriented along a AA! K+ 1727k

common axis, that specifies the loeadirection(see above

In that case, it is sufficient in Eq§7), (28), (29), and(31) to 1 W 2

consider only the—z part of the scalar products that involve -2 4 o O~ 1| Oppr - (39

the nuclear magnetic dipole operajoy.

With this simplification, one gets the conventional expres-

sion for the matrix elements connected with the total hyper/Analogously, the matrix elements of the spin dipolar operator

fine interaction operatdH,; given in Eq.(7):132° Haip are given by the expression:
L R : hf "n rs L R dip Tmax 1
<(I)A|th|q)A’>:_le/“LnAAA’ fO dr(gka'+ngK’)r_3 <(I)A|Hdip|(I)A’>:1u“BMn AAA’ drgKgK’F
n n
"max dip "max 1
+[Mang .+ g (32 TASa A (39
rn
with the angular matrix elements with the corresponding angular matrix elements
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. Au(r+1) 1 1 2 all operators one has a nonvanishing matrix elementxfor
A'K,: O~ i , S nl -1 =k’ andk=—«'—1. These two relations lead to the terms
4k°—1 K=K S127Su2,  Puz— P2, P32 Pap, d3p—dsp, ... and
P12=Pai2, dap—ds2, fso—f72, ... , respectively, implying
_3 1 [ »m s s 37) the angular momentum selection rdkel’. For the full hy-
A Y e R perfine interaction operatdt,; one has a third term in Eq.

(33) with k=—«k'+1 leading t0Sy;,—ds3/, Pap—Ts5p, - ..

As mentioned above, the relativistic hyperfine operatorsand the restrictionl —1"=*+2 for the angular momentum
He andH;, are very similar in form to their nonrelativistic quantum numbers. As one can see from E2j), corre-
counterparts. However, one notes that there might now beponding terms occur also for the spin dipolar hyperfine op-
contributions to the hyperfine fieBl,; of nons electrons via ~ eratorHg;,, while these terms seem to be absent in the case
the Fermi-contact operatét: and ofs electrons via the spin  of the Fermi contact and orbital operatdrs: and H,p,,
dipolar operatoH;, . It will be shown below that primarily ~respectively. However, inspection of Eq5 and (39)
the p,, electrons give such unconventional contributions toshows that nonvanishing matrix elements occur also for the

the hyperfine field via the Fermi-contact operatty. Fermi contact and orbital operators for= — x’ + 1, because
Finally, the matrix elements of the orbital operatdg,,  Of the coupling mediated via the minor components. For ex-
are given by the expression: ample, fork=—1 andk’=+2 (sy,—d3) one has for the
minor components the angular matrix elemént,, 5, ,
. r2 that is nonzero because of the second term in (Bf) or
<(D1L\|Horb|(bif>:2MBMnAxr/l\)r f drg,g. — (39), respectively. Altogether, one has obviously the same
0 "n selection rules for all four operators considered above,
] 1 namely:k=k" andk=—«'—1 andk=—«'+1, wherex
+J "drg.g ,_] and ' refer to the spin-angular character of the large com-
n e ponents. However, one notes from E@%) and(38) that the
5 matrix elements fol —|'==*=2, corresponding toc= — «’
2 A°TD jrndrf f r +1, stem exclusively from the minor components. Only for
HBMN A A -2/ 0 the spin dipolar operator there is also a contribution via the
" large components. Because the corresponding radial matrix
Imax 1 element involves the product of two radial wave functions
+f derfK'F] (38  with I—1"==2, it is much smaller than those for-1"=0.
n As a consequence, one can expect that all matrix elements
with the angular matrix elements corresponding to the selection rule=—«'+1 are quite
small®® For this reason these terms will be neglected in the
(k1) 1 1 following. An additional justification for this simplification .
A%{’,: — St \[>— S r—1| O, - comes from the fact that for the valence states the matrix
k+1/2 4 \k—«' . elements are weighted by the scattering-path operatgr.

(39 For [ #1" these quantities are in general quite small com-
pared to the diagonal terms with=1". This applies in par-

As for the operatorHg and Hg;,, the relativistic orbital ticular for systems with high symmetry.

hyperfine interaction operatét,,,, is very similar in form to
its nonrelativistic counterpart. However, one has to point out
that a finite nucleus has explicitly been assumed in(Bd). [l. RESULTS AND DISCUSSION

Accordingly, the corresponding matrix  element L .

L R L . _— So far only very few fully relativistic calculations for hy-
(@x[Hor|Py,) splits in .a natural way mto a contribution perfine fields in magnetically ordered solids can be found in
for r<r, andr=r, as it can be seen in Eq38). As @  he Jiterature. The pure elements Fe, Co, and Ni have been
consequence, there is in principle now amdinary orbital  gydied first by Eberet al1® using the spin-polarized relativ-
hyperfine field (=r,) as well as aontactorbital hyperfine  gtic Korringa-Kohn-Rostoker (SPR-KKR  formalism
field (r=ry,). In practice, however, the contact part will be gketched in Sec. Il. This work was continued by studying
very small and for that reason this decomposition will not begjjytec and concentraté#?? disordered transition metal al-
considered extensively in the following. _ loys. In particular the influence of extensions to the plain

The expressions for the various angular matrix element§peET Hamiltonian given in Eq(1) was studied® Apart
AV AT L ATR andASY in Egs.(33), (35), (37), and  from these studies one has to mention in addition the work of
(39), respectively, are highly symmetric because one mayhick and Guband¥ and Guo and Ebettvho used the spin-
interchange everywhere and «’ without changing the re- polarized relativistic linear muffin-tin orbital method of
sult. This property is ensured by the selection rulesf@nd  band-structure calculation to investigate among others the
«' and reflects the relationshify ,»=A,, . Obviously, all  pure elements Fe, Co, and Ni as well as transition metal
angular matrix elements have the common selection gule multilayer systems. In the following, results obtained by us-
=u’, reflecting that the magnetic quantum numbeiis a  ing the SPR-KKR-CPA methotsee Sec. Il A will be pre-
good quantum number even for a spin-polarized solid. Fosented. In contrast to all previous investigations, a finite size
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FIG. 1. Hyperfine field8; of Fe (top) and Ni (bottom in the FIG. 2. As for Fig. 1 but for Fe and Pd in ffed,_,. The
disordered alloy system Ri;_,. Apart from the total field, the experimental data stem from Ref. 56.
contributions of the core, valence band as well as si@bectrons
are given separately. Experimental data were taken from Ref. 56.part. In particular one notes th&’@' changes in several

cases its sign, whilB°°"® is always negative and varies only

for the nucleus has been assumed. The corresponding nuclé@pderately with concentration. Because of these properties
radii r, are for Fe: 8.2X 10" a.u., Co: 8.3%10 °a.u., Ni:  of B and B*® together with the nearly concentration-
8.44x10°° a.u., Pd: 1.0x10 % a.u., and Pt: 1.2810° 4  independent deviation of the total theoretical from the corre-
a.u. These values have been fixed using the empirical relgiPonding experimental fields one may ascribe this deviation
tion r,,=1.128AY3 fm (Ref. 33 with A being the mass num- to the core contribution. In fact it has been concluded from
ber for the most abundant isotope. several previous investigatiofd3?! that the core-
polarization mechanism is not dealt with in a satisfying way
within the framework of SDFT. Several attempts to remove
these problems by applying self-interaction correctifis,

For the three disordered alloy systems,Nig ,, relativistic corrections to the exchange-correlation potefitial
FePd,_,, and CqPt;_, the calculated hyperfine field3,; or gradient corrections to the local-spin-density approxima-
are given for the various components in Figs. 1-3 as a function [Ref. 34 did not improve the situation. Only recently, it
tion of the concentration. The theoretical results are based orould be demonstrated by Akai and Kot&rthat a construc-
the total hyperfine interaction operator given in Ef. and tion of the exchange-correlation potential using the
have been split into their cofsee Eq(9)] and valence-band optimized-potential metho@PM) leads to a very satisfying
[see EQ.(10)] contributions. To emphasize the relativistic agreement with experiment. In particular it turned out, as
influences, the contributions B, due to nons electrons expected from the previous investigations, that primarily the
are given separately. In addition, experimental data areore hyperfine fields are increased in magnitude, while the
shown as far as possible. Comparing the experimental fieldemaining contributions are more or less unaffected when
with the theoretical results, one finds that the later ones are iapplying the OPM scheme.
general too low. The dependency of the fields on the concen- To get a deeper understanding of the core polarization, the
tration, on the other hand, is reproduced by the calculationsontributions toB°°"® stemming from core and nons elec-
in a rather satisfying way. From the decomposition of thetrons are given separately in Figs. 4—6 for Ni, Pd, and Pt,
theoretical fields into core and valence-band contributionstespectively, in the various alloy systems investigated here.
Bc°r® and B2, respectively, one finds that the concentrationAs one can clearly se®°°'® is by far dominated by its
dependency is primarily stemming from the valence-bandontribution. For all 8 elements the contribution tB°'®

A. Hyperfine Fields in FeNi,_,, Fe,Pd;_,, and CoPt;_,
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FIG. 5. As for Fig. 4, but for Pd in E@d, .

pure relativistic origin. In fact, within a nonrelativistic or
scalar relativistic calculation, such contributions could stem
only from the dipolar hyperfine Hamiltonian in the case of
noncubic symmetry.

In discussing experimental data for hyperfine fields it is
often assumed that there is a simple relationship between the
hyperfine field and the various atomic magnetic moments in
a multicomponent systefi=3°One example for such a rela-
tion is the expressiof:

_ . ] . I ) ] . .
10000—20 20 60 80 100 _
at. %Co Ba:aaﬂspin,a+baﬂspinr (40)
where @ denotes the selected componaﬁ;pm is the aver-
age spin moment for the system whag andb, are param-
eters adjusted to experiment. Previous investigatiodem-
. onstrated that this expression is in general oversimplified.
Stg[;m::ng ggm tgep?'tﬁn? m-ct?re shellts zémounts to ?bt(_)ut tJ\Ievertheless, one can at least justify the first term as it can
70 For Fd and I, that can be seen 1o be representative Igf, oo o i, Figs. 4—6. Obviously, the various contributions to
4d- and H-transition metal elements, respectively, the Coregcore vary in parallel with the dominating spin magnetic mo-
p—she_lls pontribute_z 2-3 and around 7%, respectiyely, Wh”ement,uspmd of the d-like valence electrons. As it is demon-
contributions coming from coréandfsh_ells can be ignored. strated by’the results given in Fig. 7, one finds in particular
These percentages are more or less independent of the cop- . core. ocore :

. I . ) at the ratioRy™ "= B*" ugpin g are essentially concentra-
centration. The rapid increase with atomic number of thetion independent. This apnlies not onlv for tsepart of
non-s contribution toB®°'® points out that these are here of geore butpalso for its spinf)(?rbit-inducen [))/art P

In the past in general only the ratR°°"®=B°" gy,
has been considered within theoretical investi-

FIG. 3. As for Fig. 1 but for Co and Pt in Bt _,. The
experimental data stem from Ref. 56.

0.9
. 08 gations)***4%~4*ayhere i, also includes the contributions
/m
= o7 o
=
:;_é 0.6 .
= 0.5 £
S 04 g 02 =BS""x0.001]
2 03 :‘”
E 02 £ 0.1
|0 o)
=
0.0 g 00
at. %Fe &
FIG. 4. Angular momentum resolved magnetic momexds, 0.1
and core hyperfine fieldBf°® of Ni in Fe,Ni;_,. The contribu- at. %Co
tions of thes andp electronsB:°"® and Bff”e, respectively, to the )
core hyperfine fields are given separately. FIG. 6. As for Fig. 4, but for Pt in C#t,_, .
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FIG. 7. The ratioR®°"®=B"% g, and Rg°"*=B"% ugping — T T
for Ni, Pd, and Pt in FeNi; _,, FgPd,_, and CqPt;_,, respec- —_ i
tively. The concentration refers to the alloy part#e(A=Fe, Co, \:f
respectively. 2
. i%
of the s andp electrons. For Ni, Pd, and Pt some represen- 'g i
tative values foR®°"® are— 124 kGlug, —256 kGlug and =
—820 kGlug, respectively(these values have been taken g i
for xn;=0.8, Xpq=0.7, andxp;= 0.6, respectively, from the 5 I ]
corresponding dashed curves in Fig. These values are m 150k Wopins N ]|
completely in line with previous work. For Ni, for example, e
Bliigel et all® found from scalar relativistic calculations 0 20 40 60 80 100
Re°T®=—120 kGlug, while Ebert®  obtained at. %Fe

—125 kG/ug within a fully relativistic calculation. Here
one has to note that unlikeS°"®, the ratioR°°"® may have a
non-negligible concentration dependency. As Fig. 7 show
this can be ignored for Ni in K#&li;_, but not in the case of
Pd and Pt in FPd,_, and CqQPt,_,, respectively. The rea-
son for the concentration dependencyR5°'® is obviously
the fact that the nos-contributions to the spin magnetic

moment may have a concentration dependency quite differ- , . . L . .
ent from that of thed electrons. As it can be seen from Fig. population difference of th-like minority and majority spin

. . ) : states that is directly reflected hyspins.****An additional
7 this clearly applies for Pd in kBd, - and Ptin CoPL . source forBY?' is the polarization of the wave functions due

to the surrounding spin magnetization. These sources for
B. Decomposition of the valence hyperfine field BY? in binary alloys had often been represented by the

FIG. 8. Valence hyperfine field for Fgop) and Ni (bottorm) in
sIhe disordered alloy system fii, _,. In addition to the total va-
lence fieldB*2 (tot) the s, p, andd contributions are given sepa-
rately. The line marked with bullets represents the corresponding
spin magnetic moments;, s of thes electrons that has been scaled
by the given factor.

. 1394142
To allow for an analysis of the valence-band hyperfineexF’ress'Oﬁ-9
field B*3' in analogy to that of the core hyperfine fieBd°"®
given above, the corresponding angular momentum resolved ~ Ba=8&atspinat DattspinaXatDgrespins(1—Xa),
contributions toB'?' are given for FeNi;_,, FePd,_, and
Co.Pt; _, respectively, in Figs. 8—10. One immediately rec'whereﬁ stands for the second alloy partner amg, b,

ognizes that fo_r al Fhresalellloy system_s the magmtu.de of th%’we fitted to experimental data. Although this ansatz can be
valence hyperfine fiel@'® as well as its concentration de-

pendency is essentially given by tleike contributions. justifieds to some extent on the ba;is of Iinear-response
Only Co in CgPt_, for which quite larged like contribu- theory’® one has to emphasize that it leads in general to

; . ) _concentration- ndent fit param .48 For thi
tions occur, makes an exception to this general trend. QunCO centration-depende parametays bas) orthis

similar to the situation for the core hyperfine field, one Can?eason itis only of limited usefulness in practice.

recognize in Figs. 8 —10 a close relationship of the valence

hyperfine field and the spin magnetic moments. Here, how- C. Orbital hyperfine fields

ever, this one-to-one correspondence is restricted te-like As mentioned already above, the nsmontributions to
contributionsB2* and pspins- In addition, one notes that the core hyperfine fiel8°°"® occur only because of the rela-
these two quantities are not strictly proportional to one antivistic formalism used here. This also applies for the contri-
other. This is exemplified by Fe and Co for WhiBI;ia' and  butions to the valence hyperfine field coming from rson-
Mspins Change their sign at different concentrations. Never-electrons. As was shown in Figs. 8—10, these contribute in all
theless, one can trace back a major contributioBﬁi toa cases in an appreciable way to the valence #8Rl. For Co

(41)
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FIG. 9. As for Fig. 8 but for Fe and Pd in fred, _, . FIG. 10. As for Fig. 8 but for Co and Pt in ¢Jet,_, .

in Co,Pt,_, these contributions even have a remarkable in- [N contrast to this approximate approach to decompose the
fluence on the concentration dependency of the total hypefotal hyperfine field, the expressions presented in the last
fine field. section allow in particular a correct and rigorous calculation
To allow for a more detailed discussion of the hyperfineof the orbital hyperfine field. Corresponding results for the
field contributionsB’2' of the nons-valence electrons, these d-valence electrons based on E®1) are given in Figs.
are given in Figs. 11-13 together with the correspondingt1—13 for the various components in the alloy systems
orbital fieldsBy?) , . In these figures the field)% | of thep -&Niy_, FgPd,_, and CgPt _,. Because the hyperfine
electrons have been omitted for thel 2lements, because 1€/dS due top-valence electrons increase strongly with

they are much smaller than those due todtedectrons. As it atomic number, these are given in addition in the case of Pd
is demonstrated by the results for Pd and Pt, phitelds and Pt. For comparison Figs. 11-13 also show the corre-

increase quite rapidly with atomic number and for Pt they areSpondlng resqlts for the vaIenpe electrons .W'th angular mo-
in the same order of magnitude as theontributions. mentuml| obtained on the basis of the relation suggested by

Within a nonrelativistic or scalar relativistic approach theAbragam and Pryce. As it can be seen from Fig. 14 forthe

B _3 .
orbital angular momentum is completely quenched in a solid®/€ctrons, the expectation valge )4 entering the corre-

This quenching of the orbital angular momentum is incom—Spo.nding Eq(12) does not vary much with concentration for
plete if spin-orbit coupling is taken into account and as a2 9'ven cor_nponent.vﬁ(sA% consequence, the approximate or-
consequence there are spin-orbit-induced orbital contribu?it@! hyperfine fieldBqr, ™ is essenpz;\\IFl’y proportional to the
tions to the magnetic momenpt,,, as well as to the hyper- Orbital momentu,y, . Although By turns out In most
fine fieldB,,,. As mentioned already above, an approximate¢ases to be a reasonable good approximation for the true
relationship between these two quantities is supplied by Ediyperfine fieldBy?, |, this does not imply thaBy?,, is

(12). Accordingly, having calculategd,,, |, this equation al-  strictly proportional toup, . Co in CqPt_, supplies the
lows to get a reasonable estimate for the orbital hyperfinénost striking example for this, becauB&3 1" and BY3 |

field Bg?tl)l- For nons electrons the remaining hyperfine seen as a function of concentration change their sign at dif-

fields B4 due to the dipolar interaction can finally be esti- ferent concentrationtsee top part of Fig. 13
Figures 11-13 demonstrate that the reliability of the ap-

mated from, ! Jem _ i
proximate expression in Eq12) varies quite strongly from

val . oval ool system to system. For theeelectrons of Fe in E&i;_, one

Bdip™~Btot ~ Borb - (42 finds a remarkable good agreement betw@d ") and

094417-10
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FIG. 11. Orbital and total valence hyperfine fielﬁé’,‘;‘é'd and
B‘éa' , respectively, for thel electrons of Feétop) and Ni(botton) in
the disordered alloy system fii;, _, . In addition, the orbital fields
BY34™) according to the approximate expression due to Abragam
and PrycdEqg. (12)] are given.

FIG. 12. As for Fig. 11 but for Fe and Pd in JRe), . For Pd
the corresponding fields of theelectrons are given in addition.

D. Correct splitting of the hyperfine fields

In the last section the proper relativistic form for the or-
Bg?,'n. For the other cases investigated here, quite probital hyperfine interaction operator given by E@®1) has
nounced deviations occur. As mentioned already, the modieen used to check the quality of the approximate expression
severe case is Co in @@t _, when considering the fields of given by Abragam and Pryce. In the following, a more de-
the d electrons. But also for thp electrons deviations up to tailed analysis of the various parts of the relativistic hyper-
50% may occur as it was found for Pd inJPe,_,. Due to fine interaction operator in terms of its Fermi contact, dipolar
the very different situations encounterd here, one can expe@® Well as its orbital part will be given.
in spite of these deviations, that Ed=2) will in many cases Because all calculations presented here have been per-
supply a reasonable good estimate for the magnitude of th@'med assuming a finite-size nucleus, there might in prin-
orbital hyperfine field. In particular its concentration depen-CiP/é b€ a contribution to the hyperfine field of theelec-

dence should be reproduced quite well, leading to a simplgons. via the Ferml-contact. terEq. (28)]'. Hovyever, the
amplitude of the corresponding wave functions in the nuclear

and straightforward connection between this important con-

Lo o . . _regime is so small that even for Pt the resulting Fermi-
tr:]'zz:'on to the hyperfine field and the orbital magnetic mo contact field is smaller than 18 kG. As a consequence, the

Fermi-contact field can safely be ignored against the other
Comparing the proper orbital fielB%3, with the corre- Y g 9

k X ] contributions. This implies that the difference between the
sponding total hyperfine field of the ngavalence electrons  tota| and the orbital hyperfine fields of theslectrons shown
one finds that it gives at least for tlkelectrons the main

in Figs. 11-13 is due to the dipolar hyperfine interactisee
contribution. This implies that using the ternbital for the

Eq. (29)]. The corresponding fields are obviously quite small
total field, as it was done in the pdstt*is indeed justified to

compared with the orbital ones and have in all cases the
some extent. The difference between the orbital fi@§%  same sign. Here it is interesting to note that the dipolar fields
and the corresponding total oB&2', that can be quite large,

represent a deviation of the spin magnetization from cubic

is of course due to the Fermi contact and the dipolar intersymmetry that here is only due to the spin-orbit coupling.
action contributions. These will be investigated in more de-This means in particular that this field is a direct counterpart

tail in the next section. to the expectation value of the magnetic dipolar operitor
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TABLE |. Decomposition of the hyperfine field of the elec-

trons according to the Fermi contaét)( dipolar(Dip), and orbital
(Orb) hyperfine interaction Hamiltonian. All fields are given in kG.

& By F Dip Orb Total

av]

T:’ Fe in Fg Nig 4 -0.187 -0.112 0.819 0.520

"m Ni in FeyeNig 4 —0.307 —0.232 1.577 1.038
Fe in Fg ¢Pdy4 -0.144 0.142 0.169 0.167
Pd in Fg ¢Pd, 4 —1.254 —2.460 7.881 4.167
Coin Cq Pty 4 —0.149 -0.127 0.782 0.506
Pt in Cq P4 —43.484 4911 67.074 28.501

This is exemplified in Table | that shows the Fermi contact,
the dipolar and orbital hyperfine fields of tpeclectrons for

the various components of some selected alloys. In line with
the fact that these field contributions are of pure relativistic
origin, they are rather small compared to the total hyperfine
field. Nevertheless, one notes that the Fermi-contact part
(first column in Table ) is quite appreciable and in the same
order of magnitude as the total field of tpeelectrons(last
column in Table ). In addition, one can see that the ratio of
the magnitudes of the Fermi contact and total fields increases
rapidly with atomic number: 0.29, 0.30, and 1.53, respec-
tively, for the elements Ni, Pd, and Pt listed in Table |. The
reason for the occurrence of a Fermi-contact contribution for
the p electrons, that cannot be understood within a nonrela-
tivistic or scalar relativistic approach, is twofold. On the one
hand, as discussed above for thelectrons, the wave func-

FIG. 13. As for Fig. 11 but for Co and Pt in ¢, _,. For Pt  tions of thep electrons penetrate the finite-size nucleus. On
the corresponding fields of theelectrons are given in addition.  the other hand, the relativistic wave function for electrons
with p4» (k= +1) character is finite at the nuclear site even
for a point nucleus. As a consequence, the total hyperfine
field for py), electrons is larger than fqus, electrons, with
“the difference rapidly increasing with atomic numb&from
this, one may conclude that the nonvanishing amplitude of
the py, wave function at the nuclear site=€0) is the main
reason for the appreciable Fermi-contact contribution to the
hyperfine field of thep-valence electrons.

Finally, in Figs. 15—17 the decomposition of the hyperfine
fields of thes-like valence band electrons is given for the
BT — three investigated alloy systems. In all cases one finds a
12l Pt nearly linear dependence on the concentration for the indi-

L vidual contributions. On the basis of a non- or scalar relativ-
10 istic treatment of the hyperfine interaction, one would expect
that the Fermi contact part completely dominates the fields of
Pd | the s-electrons. In contrast to this expectation one finds that
Ni the dipolar and orbital part contribute in a substantial way to

T the total field. This is quite astonishing, because scalar-
| relativistic calculations, that for cubic systems give a finite
K ] hyperfine field only via the Fermi contact Hamiltont&tead

. in general to results that are very close to the total hyperfine
020 20 60 80 100 field of thes-electrons calculated in a fully relativistic wa.
To understand this paradox situation, it is helpful to con-
at. BA sider the various angular matrix elements given in E85),

FIG. 14. The expectation valye ~3) for thed-electrons of Ni,  (37), and (39) for the quantum numberg=—1 and u=
Pd, and Ptin FNi,_,, FePd,_,, and CqPt,_,, respectively. The *1/2. From these one finds that the Fermi-contact field
concentration refers to the alloy partnar(A=Fe, Co, respec- stems only from the termg,g,, andf,f,, [see Eq.34)]
tively). with the same quantum numbefts=A’, while those with

at. %Co

=i[g—3r(o-r)]. This operator, that—apart from some
constants—differs from the dipolar hyperfine interaction op
eratorHg;, only by the factor ~3, occurs if one is dealing
with the so-called sum rules for the magnetic dichroism in
x-ray absorptiorf! 8

When dealing with thes- and p-like valence electrons the
situation gets much more complex than for thelectrons.

<c >, (a.u.)

N N
— r r
1

=]
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FIG. 15. Fermi contact, dipolar and orbital hyperfine fields for FIG. 16. As for Fig. 15 but for Fe and Pd in JRe}_, .
the s electrons of Fegtop) and Ni (botton) in the disordered alloy
system FeNiy . In addition, the sum of these field®?) is given.  one js led to a finite result because the product of a large and
a minor component is involvefEq. (34)]. The expression
A# A’ do not contribute becaus®, ,»=0. Comparing the for the matrix elements of the Fermi-contact Hamiltonian, on
contribution of the terms involving the large componegts  the other hand, diverges fo7r a vanishing nuclear radiu§ inl the
with that connected with the minor componerits one  case ofsy;, and py, states.’ Because the sum of the indi-
finds—as to be expected—that the later ones are about twgdual Fermi contact, dipolar and orbital contributions con-
orders of magnitude smaller than the first ones. The dipolaverges, one has to conclude that the later two terms also
as well as the orbital hyperfine field, on the other hand, sterdiverge as it can be seen directly from the explicit expres-
for s states exclusively from terms involving the minor com- sions given in Eqgs(36) and (38). This implies that in the
ponents, because of the selection rules imposed by the anglimit of a point nucleus the individual contributions will
lar matrix element$see Eqs(37) and(39)]. In addition, it  loose their original meaning. Furthermore, one notes that for
turns out that these are identical, i.e., one A€, =A%P?, Sz and also forpy, electrons the magnitude of the indi-
for k=—1. As a consequence, the resulting dipolar and orvidual terms depend very sensitively on the size of the
bital hyperfine field differ only because the later one included'Ucleus. For that reason a direct comparison of scalar-
also contributions from the nuclear regiéeee Eq.(38)] relativistic hyperfme fields is 'o'nly meanln.gful '|f these are
while the dipolar field is by definition restricted to sourcescompared with the total relativistic hyperfine field. Here it
outside the nucleugsee Eq.(36)]. For these reasons the should be noted that the conventional nonrelativistic descrip-
fieldsBYS ¢ andBy3), ¢ in Figs. 15—-17 are nearly identical for tion of the hyperfine interaction is recovered from the rela-
the ad elements and also for Pd. Only for Pt in @0 _, tivistic operators given in Eqg28), (29), and(31) by first

remarkable differences are fouritbwer part of Fig. 17. considering the limitc— for the speed of light.™” This

. leads to the nonrelativistic wave functions and hyperfine in-
Finally, one has to note that from the E{84), (35), (38), . ; o
and (39 one deduces the simple relationshiaf)',”gys teraction operator. Finally, the limit,—0 has to be taken.

=—2B{"), where the superscriffin) indicates that only the

regionr <r,, is considered for the integration in E@8) and

(f) indicates the contribution of the minor components to the

Fermi-contact field’ To investigate the relationship of the total hyperfine field
If one considers the limit of a vanishing nuclear radius forand the chosen nuclear model we consider in the following

the matrix elements of the total hyperfine operdteq. (7)]  the case of an Au-impurity dissolved substitutionally in bcc

E. Interpretation of the hyperfine field contributions and their
dependence on the nuclear radius,,
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Il, the major contributions to the hyperfine field stem
from thes electrons. According to the analysis given above,
these stem primarily from the region outside the nucleus
B =Byip s+ BB =2Byi, s=2031.8 kG. With this the
total contact field, i.e., Fermi contact plus orbital part, is
given as: Bcontacts:BF,S+Bgrnb),s:BF,szorb,s_Bdip,s
=—2967.2 kG, where the orbital paB(), contributes
only 76.4 kG. Fom states a corresponding decomposition is
less straightforward because the spin-orbit coupling splits
these into states witlp;,, and ps,, character, respectively.
0 20 420 60 80 100 However, an analysis of the numerical results for the qore
states reveals that the Fermi-contact field is primarily due to
py1, States. In addition, one can ascribe this contribution ex-
2000 ' - ' — > clusively to the corresponding minor component that has the
I o] spin-orbit charactek = — 1. This once more points out that it
1500 - ] is of pure relativistic origin.
| | While the core hyperfine field of thd- and f-electron
shells are completely negligible, there is a rather large
field due to thed-like valence electrons. This in turn is
dominated by its orbital part, that is connected with the spin-
orbit-induced orbital polarization of the electrons(see
above.

For elements that have several isotopes with a finite mag-
netic moment, a determination of the hyperfine fields, e.g.,
via NMR leads in general to different fields for the various

at. %Co isotopes. This so-called hyperfine anomaly has been used in
_ _ the past to derive noncontact hyperfine fields from
FIG. 17. As for Fig. 15 but for Co and Ptin (R . experiment®~>! For this, one assumes that the fields of the

various isotopes differ only with respect to the contributions
Fe. The corresponding calculations have been performed istemming from the nuclear region, while the remaining con-
just the same way as for, e.g., the alloy systemR&o, in  tributions are independent of the isotope or nuclear proper-
the limit x—1. In particular the pOtential distortion of the ties, respe(‘_;’[ive|9_2 Usua”y the noncontact fields deduced
host in thg vicinity of th.e impurity as well as the relaxation from investigations based on the hyperfine anomaly are
of the lattice has been ignored. ~ called orbital fields. For Au in Fe Kawakamét al.>* ob-
_ The Fermi contact, dipolar, orbital, and total hyperfineyineq the value 16126 kG. Unfortunately, a direct com-
fields of Au obtained this way are given in Table Il in an o q6n of this field with the orbital fields given above is

angular momentum resolved way. For the§4e calculations thﬁowever not meaningful because these are based on different
nuclear radius has been setr{g=1.2396< 10" * a.u. accord- considerations

ing to the mass numbex=197. As one can see from Table To allow for a direct comparison it is sensible to investi-

gate the dependence of the hyperfine field on the nuclear
radiusr, to find out which of its parts is independent of the
nuclear size. For this purpose additional calculations have
been done with the nuclear radius decreased and increased

TABLE II. Angular resolved contributions of the core and va-
lence hyperfine fieldéin kG) for Au in Fe. These values have been
obtained using a finite size nucleus with=1.2396< 10" * a.u.

Core E Dip Orb Tot by 10%. The resulting relative changes with respect to the
first set of calculationgsee Table )l are summarized in
s —713.2 238.1 256.0  —219.2 Table IlI. As it was to be expected, the various contributions
p —-16.3 3.4 29.7 16.8 of the s electrons changed quite strongly with the nuclear
d 0.0 —-0.0 —-0.4 —-0.4 radius, although the corresponding total field shows only a
f 0.0 —-0.0 —-0.1 —-0.1 relatively small increase with, . This behavior has its origin
Tot —7295 241.4 285.2 —202.9 in the dependency of the various radial integrals on the
nuclear radius, as it was discussed above. The contact field
Valence increases in magnitude roughly to the same extent as the sum
s —2330.3 777.2 835.7 -717.3 of the orbital and dipolar fields. Because of their different
p —113.4 12.6 172.3 71.5 sign these changes nearly compensate each other. The same
d 0.0 3.2 67.6 70.8 behavior is found for the various contributions to the core
Tot —2443.7 793.0 1075.6 —575.1 and valence hyperfine field. It is remarkable that the most

pronounced changes are found for the dipolar contributions
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TABLE IIl. Changes in % of the various hyperfine field contri- corrections® that accounts for the spatial distribution of
butions for Au in Fe for calculations using the nuclear radii  the magnetic dipole moment within the nuclear regime and
=1.1396<10 * a.u. and',=1.3596< 10 * a.u. with respect to the jts influence on the hyperfine interaction. Setting up the
values given in Table Il obtained for,=1.2396<10"* (r1/r,  model specific for a given isotope, one can compare the re-

=0.919;r,/r,=1.096). sulting hyperfine field directly with experiment and it does
not have to rely on an additional analysis of the experimental
Core F Dip Orb Tot data.
1 ra I I I I i )

336 —3.62 4.65 —4.94 4.56 —4.85 0.64 —0.74 V. SUMMARY
3.19 -339 7.33 —7.75 1.03-111 0.20 -0.22 A scheme developed by Pyper within the framework of
0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 Hartree-Fock theory has been modified to allow a rigorous
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 decomposition of the hyperfine fields calculated in a fully
relativistic way on the basis of spin-density-functional
Valence theory. This decomposition into a Fermi contact, dipolar, and
s 335 —357 462 —490 453 -481 061 —0.70 Orbital part requires the adoption of a finite nuclear model.
b 316 —3.36 13.35-14.13 1.23-0.98 0.31 —0.36 Compa_red to a nonre_lz_itlwstlc or scalar relativistic approach
one arrives at the striking consequence that one may have a
d 000 000 003 000 000-0.01 000 0.00 oy contact contribution also from narelectrons and di-
polar as well as orbital contributions stemming fremelec-
trons. Corresponding calculations have been performed for

. . the disordered substitutional ferromagnetic alloy systems fcc
of the p electrons. Obviously, these depend quite strongly OkeNi, ,, fcc FePd,_,, and fcc CoPt_, making use of

the electronic properties in the vicinity of the nuclear radius.ipo spin-polarized relativistic version of the KKR-CPA

For the hyperfine fields of the andf electrons on the other maihod of band-structure calculation. These calculations re-
hand, the changes with the nuclear radius can be neglectegegied pronounced influences of relativistic effects on the
From these findings one has first of all to point out thaty,y serfine fields. In particular, appreciable contributions from
the use of the ternorbital hyperfine field for the theoretical o< electrons were obtained that cannot be understood
field is consistent because of the occurrence of the orbitg)inin 4 nonrelativistic or scalar relativistic theory. An esti-
angular momentum operator in E(8). However, a direct 516 of the orbital hyperfine field on the basis of an expres-
comparison with the noncontact hyperfine fields deduced;,n suggested by Abragam and Pryce has shown that these
from experiment via the hyperfine anomaly is not allowed. o & fields are primarily of orbital origin. This could be

To quk for'a relgtionship with the.experimenta_ll noncontact.,nfirmed by making use of the rigorous decomposition of
hyperfine fields it would be sensible to consider only theye ot fields into their Fermi contact, dipolar and orbital

orbital p as well as thed and f fields given in Table Il ,54q Ford electrons it turned out that, as expected earlier,
because of their very weak dependence on the nuclear radidge orpital part strongly dominates. Fprelectrons, on the
This way OEe gets for. AU in F‘_:" the vlalue 272 kG, that |I'esother hand, one finds indeed appreciable dipolar contribu-
about 100 kG above its experimental counterpart. An altefyjong 15 the total field. Finally, for the electrons there are

native to this pro;egdur_e is to sum all field contributions of 5yher hronounced dipolar and orbital fields. These are exclu-
the nons electrons:” This leads to a noncontact field of 159 sively connected with the minor component of the four-

kG that is in very good agreement with the experimental,omponent wave function and increase rapidly with atomic

value. However, the same procedure leads for Ir in Fe t0 & ,mper. A calculation of the various field contributions for
theoretical noncontact field of-26.6 kG. Experimental gigerent nuclear radii revealed in the case of Au in Fe a

values, based on a number of auxilglry assumptions, argyiher sensitive dependency. However, a satisfying interpre-
300+=200 kG[Ref. 53 and 155-90 kG These values are iaiion of the results of experimental hyperfine anomaly in-

reasonably well reproduced if one takes within the theoretiyegtigations seems to be somewhat problematic. Because of
cal considerations for thp electrons only the orbital part, ins it is suggested to use a more realistic nuclear model for

leading to +73.5 kG. In conclusion, one has to say thatyis purpose, that allows a more rigorous investigation of the
the calculations presented here were not able to EXpla'&otope effects.

the available experimental data for the noncontact fields in a

consistent and satisfying way. One reason for this could

be that some of the assumptions, on which the analysis of ACKNOWLEDGMENTS

the experimental data relies, are not fully justified. Another

possible source for the discrepancy is the chosen nuclear This work was funded by the DF®eutsche Forschungs-
model, that is quite unrealistic concerning its assumptiorgemeinschajft within the programTheorie relativistischer
on the distribution of the nuclear magnetization. For thesdeffekte in der Chemie und Physik schwerer Elemertd
reasons, to deal with the hyperfine anomaly in a more propdvenefited from collaborations within the European TMR-
way, it seems to be desirable to adopt a more realistic nuclearetwork onAb-initio Calculations of Magnetic Properties of
model. In particular it should include the Bohr-Weisskopf Surfaces, Interfaces, and Multilayers
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