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Decomposition of the relativistic hyperfine interaction operator: Application to the ferromagnetic
alloy systems fcc FexNi1Àx , fcc FexPd1Àx , and fcc CoxPt1Àx

M. Battocletti and H. Ebert
Department Chemie-Physikalische Chemie, Universita¨t München, Butenandtstrasse 5-13, D-81377 Mu¨nchen, Germany

~Received 30 January 2001; published 8 August 2001!

A scheme developed by Pyper to decompose within relativistic Hartree-Fock theory the hyperfine interaction
operator into the conventional Fermi contact, spin dipolar and orbital contributions is modified to split the
hyperfine field of magnetic solids calculated in a fully relativistic way on the basis of spin-density-functional
theory in an analogous way. The resulting expressions are used to examine the hyperfine fields for the disor-
dered alloy systems fcc FexNi12x , fcc FexPd12x , and fcc CoxPt12x making use of the spin-polarized relativ-
istic Korringa-Kohn-Rostoker coherent-potential approximation method of band-structure calculation. In par-
ticular the contribution of non-s electrons to the hyperfine fields are discussed in detail. Special emphasize is
laid on their relationship to the corresponding contributions to the spin and spin-orbit-induced orbital magnetic
moments.
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I. INTRODUCTION

A sound theoretical description of the magnetic hyperfi
interaction was first given by Fermi1 in 1930. Starting from
the Dirac equation he found for the nonrelativistic limit thr
distinct contributions to the magnetic hyperfine interact
operatorHh f ~a straightforward nonrelativistic derivation fo
these contributions can be found, for example, in Ref.!.
The first one is the Fermi-contact contributionHF that stems
from the spin magnetic moment of the electrons. Becaus
is proportional to the delta functiond(rW), with the nuclear
position atrW50, only s electrons contribute to the hyperfin
field of spontaneously magnetized solids viaHF . The other
two contributions toHh f are the spin dipolar and orbital con
tributions, Hdip and Horb , respectively. In contrast toHF ,
only electronic states with an orbital angular momentuml
Þ0 would contribute to hyperfine fields via these term
However, the hyperfine fields corresponding toHorb vanish
within a nonrelativistic or scalar relativistic calculation b
cause the electronic orbital angular momentum is quenc
if the spin-orbit-coupling is neglected.~Here one should note
that there are nevertheless contributions, for example, to
spin-lattice relaxation rate due toHorb .) For lattice sites
with cubic symmetry there are no contributions to the hyp
fine fields due toHdip . For a lower symmetry this term give
rise to an anisotropy that is normally relatively small.3 As a
consequence, in calculating the hyperfine fields of magn
solids normally only the Fermi contact termHF is consid-
ered.

Because of the spatial dependence of the hyperfine in
action operator and the conventional relativistic correctio
~spin-orbit-coupling, mass velocity, and Darwin terms! to the
Schrödinger equation it is quite obvious that the influence
relativistic effects shows up already for relatively light n
clei. Unfortunately, many authors tried to take this situat
into account by including the so-called scalar-relativis
mass velocity and Darwin corrections only in the calculat
of the electronic band structure while the hyperfine field
teraction operator was left unchanged. On the other ha
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starting from an expansion of the relativistic electronic wa
function in powers of (Z/c),4,5 Breit derived relativistic cor-
rections to the Fermi-contact term.6 This line was also fol-
lowed by many other authors as for example by Pyykko¨ and
his coworkers.7 These authors also pointed out that the use
a scalar-relativistic Hamiltonian for the band-structure cal
lation is not compatible with the nonrelativistic expressi
for the Fermi contact hyperfine HamiltonianHF .8 In particu-
lar it was found that this inconsistent approach leads to
perfine fields that are much too large.8,9 Among others this
was demonstrated by the work of Blu¨gel et al.10 Starting
from a decompostion of the relativistic hyperfine Ham
tonian these authors in addition derived an expression forHF

that is consistent with a scalar-relativistic band-structure c
culation and that is generally accepted now.

Apart from the approach to account for relativistic infl
ences on the hyperfine interaction by including correspo
ing corrections, several investigations can be found in
literature that are based on the Dirac equation and the pr
relativistic form of the hyperfine interaction operatorHh f

~Ref. 11! ~see below!. For solids the first steps in this direc
tion have been made by Tterlikkiset al.12 Calculating the
hyperfine field of the elemental ferromagnets Fe, Co, and
in a fully relativistic way, Ebertet al. could unambiguously
determine the relativistic enhancement of these fields c
pared to a nonrelativistic calculation.13 In addition, it could
be demonstrated that there are quite appreciable contr
tions due to non-s electrons that are connected with the pre
ence of the spin-orbit coupling. By corresponding calcu
tions for disordered transition metal alloys, where one h
the concentration as an independent parameter to var
could be shown that these non-s contributions to the hyper-
fine field go nicely parallel with the spin-orbit-induced o
bital magnetic moments.14 For that reason, these contribu
tions to the hyperfine field were intuitively called orbita
This was supported by a further analysis of the data base
an expression due to Abragam and Pryce15 that connects or-
bital contributions to the magnetic moment and the hyperfi
field. To allow for a more detailed and sound analysis
©2001 The American Physical Society17-1
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hyperfine fields based on the relativistic hyperfine interact
operatorHh f , Ebert suggested to perform a Gordon deco
position of the electronic current density and derived t
way a consistent relativistic counterpart to the no
relativistic spin dipolar hyperfine interaction operat
Hdip .16 This approach was also used by Pyper who p
formed a complete decomposition ofHh f within the frame-
work of Hartree-Fock theory.17 As it will be shown below,
this approach can be transferred with minor modifications
the treatment of magnetic solids done on the basis of s
density-functional theory.

In the following section the relativistic calculation of hy
perfine fields for magnetic solids will be reviewed in sho
This is followed by a derivation of the relativistic expressi
for the Fermi contact, spin dipolar, and orbital hyperfi
fields. Results obtained for the disordered alloy systems
FexNi12x , fcc FexPd12x , and fcc CoxPt12x will be presented
in Sec. III and discussed in some detail. A short summ
and conclusions will be given at the end.

II. THEORETICAL FRAMEWORK

A. Electronic structure calculations

Within the present work we used the relativistic version
spin-density-functional theory~SDFT! ~Refs. 18,19! to cal-
culate the electronic structure of the investigated system
self-consistent way. This implies in particular that the cor
sponding Dirac HamiltonianHD is given by

HD5caW •pW 1bmc21V~rW !1bsW •BW e f f~rW !. ~1!

HereaW is the vector of 434 standard Dirac matrices20 andpW

is the momentum operator. The potentialV(rW) is the spin-
independent part of the effective single-particle potential t
consists in turn of its Coulomb and exchange correlat
part. The spin-dependent part of the potential is represe
by the effective magnetic field

BW e f f~rW !5BW ext~rW !1
dExc@n,mW #

dmW ~rW !
. ~2!

In general an external fieldBW ext(rW) may contribute to
BW e f f(rW). Because we are interested in the following in spo
taneously magnetized solids, this term can be ignored.
second contribution toBW e f f(rW) represents the spin polariza
tion of the system and is expressed by the variation of
exchange-correlation energyExc with respect to the spin
magnetizationmW (rW). To emphasize the origin ofBW e f f(rW) and
to distinguish it from the hyperfine fieldBh f to be introduced
below, it will be denotedBW xc(rW) in the following.

For transition metal systems calculations based on
SDFT give in general very good results for spin-magne
moments. For the spin-orbit-induced orbital moments, ho
ever, the results are often found to be too small compa
with experiment.13 However, this shortcoming of plain SDF
does not affect the relationship between the orbital contri
tion to the magnetic moment and the hyperfine fields, tha
one of the main issues of this study.
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To deal with the Dirac equation based on the Hamilton
given in Eq.~1!, it is convenient to split the electronic syste
into a subsystem consisting of the tightly bound core el
trons and one due to the valence-band electrons. Due to
spin-dependent termBW xc(rW), the corresponding wave func
tions have in general no unique spin-angular character
are a superposition of various contributions. For the c
wave functionsFnL one has for example21

FnL~rW,E!5(
L8

FnL8L~rW,E!, ~3!

where n is the principal quantum number andL5(k,m)
combines the spin-orbit and magnetic quantum numbers
Eq. ~3! L indicates the spin-angular character of the dom
nating contribution toFnL , while L8 gives the spin-angula
character of the various contributions that have the conv
tional form:20

FL8L~rW,E!5S gL8L~r ,E!xL8~ r̂ !

i f L8L~r ,E!x2L8~ r̂ !
D ~4!

with 2L5(2k,m). Here the large and small componen
are composed of the radial wave functionsgL8L(r ,E) and
f L8L(r ,E) and the spin-angular functions:20

xL~ r̂ !5 (
ms561/2

CS l
1

2
j ;m2ms ,msDYl

m2ms~ r̂ !xms
, ~5!

with the Clebsch-Gordon coefficientsC( l 1
2 j ;ml ,ms).

Within the present work, the valence-band electrons
represented by the corresponding Green’s funct
G(rW,rW 8,E), that is determined by the use of multiple scatt
ing theory:22,23

G~rW,rW 8,E!5 (
LL8

ZL
n ~rW,E!tLL8

nn8 ~E!ZL8
n83

~rW 8,E!

2(
L

@ZL
n ~rW,E!JL

n3~rW 8,E!Q~r 82r !

1JL
n ~rW,E!ZL

n3~rW 8,E!Q~r 2r 8!#dnn8 , ~6!

where the wave functionsZL
n and JL

n are the properly nor-
malized regular and irregular solutions to the Dirac equat
for a single atomic potential well at siten. As for the core
wave functionsFnL they have in general no unique spin
angular character, i.e., they are given by expressions sim

to Eqs. ~3! and ~4!. The scattering path operatortLL8
nn8 (E)

accounts for all multiple scattering processes in the exten
solid. Crudely spoken the imaginary part of the site-diago
scattering path operator ImtLL8

nn (E) can be seen as a mea
sure for theL-like local density of states.

Representing the electronic structure in terms of the c
responding Green’s functionG(rW,rW 8,E) instead of using
Bloch wave functionsCnkW(rW,EnkW) and the associated eigen
valuesEnkW , has the great advantage that it is straightforwa
to deal with disordered alloys. This feature is exploited h
7-2
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DECOMPOSITION OF THE RELATIVISTIC HYPERFINE . . . PHYSICAL REVIEW B 64 094417
by making use of multiple-scattering theory in combinati
with the coherent-potential-approximation~CPA! alloy
theory.22

B. Relativistic calculations of the hyperfine fields of magnetic
solids

The relativistic form for the hyperfine interaction operat
that describes the coupling of the electronic current den
jW5ecaW to the vector potentialAW n created by the nuclea
magnetic dipolemW n was given by Breit:11

Hh f5eaW •AW n~rW ! ~7!

5eaW •~mW n3rW !An~r !, ~8!

whereAn(r ) represents the radial dependence of the nuc
vector potential. For a point nucleusAn(r ) is simply given
by r 23.

According to the decomposition of the electronic syste
the contributions of the tightly bound core electrons and
the valence band electrons to the hyperfine interaction en
Eh f are calculated separately. The contributionEh f

core to Eh f

stemming from the core electrons is obtained straight
wardly from the expression:21

Eh f
core5(

nL
^FnLuHh fuFnL&. ~9!

In terms of the electronic Green’s function the contrib
tion of the valence-band electrons toEh f is given by

Eh f
val52

1

p
Tr Im EEF

dEE d3rH h fG~rW,rW,E!, ~10!

where the energy integration extends over the range of
occupied part of the valence band up to the Fermi ene
EF .

In dealing with the expectation values in Eqs.~9! and~10!
or corresponding expressions~see below!, the nuclear part of
the combined nuclear and electronic wave function is
given explicitely here. In addition, for the sake of simplicit
a nucleus with spin quantum numberI 51 is assumed. This
simplifies the notation, but has no influence on the result
the hyperfine fieldBh f , that is usually introduced to discus
the magnetic hyperfine interaction in spontaneously mag
tized solids. The hyperfine fieldBh f represents the nuclea
Zeeman splitting and can be seen as an isotope-indepen
interaction parameter that is related to the hyperfine inte
tion energyEh f by

Bh f5Eh f /mn . ~11!

As for Eh f , the hyperfine fieldBh f is split into its core and
valence-band contributionsBh f

core andBh f
val , respectively.

With the hyperfine interaction operatorHh f given in Eq.
~10! replaced by the operatormBb l z one gets the spin-orbit
induced orbital magnetic momentmorb .13 Due to the angular
momentum expansion of the Green’s function implied by E
~6! one is immediately led to a corresponding decomposit
09441
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of Eh f or Bh f , respectively, andmorb . As emphasized above
the contributions to the hyperfine fieldBh f due to non-s elec-
trons will vanish in the nonrelativistic limit and cubic sym
metry. The inclusion of spin-orbit coupling, however, lea
to nonzero contributions even for cubic symmetry~in fact the
presence of a finite magnetization breaks the cubic symm
even for a crystallographic cubic lattice site!.24 One therefore
has to find out whether these hyperfine field contributions
non-s electrons are primarily due to their spin or orbital m
tion. A first answer to this question can be obtained by m
ing use of an expression suggested in a somewhat diffe
context by Abragam and Pryce.15 For the present situation
one may expect for a givenl value that the orbital contribu
tions Borb,l

val of the valence electrons toBh f are connected to
the corresponding contributions tomorb by

Borb,l
val(AP)'2mB^r 23& lmorb,l . ~12!

For the applications to be presented below the angular
mentum expansion has been restricted tol max52. This im-
plies that Eq.~12! will be applied individually forp and d
states.

C. Decomposition of the relativistic hyperfine operator

The expression given in Eq.~12! allows one only to esti-
mate the orbital part of the non-s-hyperfine fields. A rigorous
decomposition of the hyperfine field, on the other hand,
be obtained by a corresponding decomposition of the rela
istic hyperfine HamiltonianHh f . This has been achieved b
Blügel et al.using the elimination technique.10 Although this
approach has been worked out so far only for the case
spin-independent potential, it nevertheless supplied a fi
and consistent theoretical basis to deal with the Fer
contact interaction on the basis of a scalar-relativistic ba
structure calculation. As an alternative to the approach
Blügel et al.,a decomposition of the hyperfine field can al
be achieved by a Gordon decomposition of the electro
current density in Eq.~7!. Here we adapted the derivatio
given by Pyper, who considered all parts ofHh f or jW, respec-
tively, within the framework of Hartree-Fock theory.

To account for the most general situation we start fro
the Dirac and its adjoint equation, that determine the
called left- and right-hand solutions,FL

L and FL
R ,

respectively:25,26

HDuFL
R&5ELuFL

R&, ~13!

^FL
L uHD

† 5EL^FL
L u. ~14!

Using the Dirac Hamiltonian given in Eq.~1! together with
atomic Rydberg units, one gets

uFL
R&5

2

c2
b~EL2V2bsW •BW xc2caW •pW !uFL

R&, ~15!

^FL
L u5^FL

L u~EL2V2bsW •BW xc2caW •pQ !b
2

c2
. ~16!
7-3
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M. BATTOCLETTI AND H. EBERT PHYSICAL REVIEW B64 094417
A Gordon decomposition of the electronic current dens
can be achieved now by starting from the expression

Eh f5
1

2
~^FL

L uHh fuFL8
R &1^FL

L uHh fuFL8
R &!. ~17!

Inserting Eqs.~15! and ~16! into the second and first term
respectively, of Eq.~17!, one is led to three distinct contri
butions toEh f :

Eh f
E 5

mB

c
^FL

L uELbaW •AW n1aW •AW nbEL8uFL8
R & ~18!

Eh f
SO5mB^FL

L u2aW •pQ baW •AW n2aW •AW nbaW •pW uFL8
R & ~19!

Eh f
V 5

mB

c
^FL

L u2~V1bsW •BW xc!baW •AW n

2aW •AW nb~V1bsW •BW xc!uFL8
R &. ~20!

Using the energy-dependent termEh f
E in Eq. ~18! in connec-

tion with Eq. ~9! or Eq. ~10!, respectively, one hasEL

5EL8 . As a consequence, the contributionEh f
E vanishes ex-

actly because of the relationba i52a ib. Concerning the
potential-dependent termEh f

V in Eq. ~20! one can see that thi

term vanishes also for the same reason ifBW xc50. For a finite
field BW xcÞ0 one has instead,

Eh f
V 52

mB

c
^FL

L u~sW •BW xc!~aW •AW n!1~aW •AW n!~sW •BW xc!uFL8
R &.

~21!

ReplacingaW by g5sW where

g55S 0 I 2

I 2 0 D
(I 2 is the 232 unit matrix! is one of the Dirac matrices20

and making use of the relation

~sW •AW n!~sW •BW xc!5AW n•BW xc1 isW ~AW n3BW xc!, ~22!

one ends up with

Eh f
V 522

mB

c
^FL

L ug5AW n•BW xcuFL8
R &. ~23!

In general one assumes for the Dirac Hamiltonian in E
~1! that the magnetization within an atomic cell points alo
a unique directionêz that is not necessarily identical with th
crystallographicz axis. In that case the spin-dependent te
of the potential is simply given bybszBxc(rW). The nuclear
spin, on the other hand, will be aligned along the direction
the magnetization, i.e., the localz axis. As a consequence
the resulting vector potentialAW n(rW) will always be perpen-
dicular to BW xc(rW)5Bxc(rW)êz . This means that the contribu
tion Eh f

V , as given by Eq.~23!, will also vanish. For the more

general situation, where one allows the fieldBW xc(rW) to vary
its orientation within an atomic cell,27 there might be a con
09441
y

.

f

tribution due toEh f
V . For a highly symmetric fieldBW xc(rW),

however, it will still vanish because of cancellations in t
integral in Eq.~23!. Finally, the factor 1/c will ensure that a
finite result forEh f

V will be small compared to the termEh f
SO

to be discussed in detail below.
The above discussion ofEh f

V was based on the SDFT
Hamiltonian given in Eq.~1!. However, the same line o
arguments apply if a more complex Hamiltonian is used, t
is derived for example within the framework of curren
density-functional theory~CDFT! ~Ref. 28! or that includes
Brooks’ orbital polarization~OP! term.29,30

As discussed in detail by Pyper17 the decomposition given
by Eqs.~18!–~20! is only useful if the momentum operatorpW
can be treated as an unitary operator, because otherwise
is led to surface integrals when dealing with Eq.~19!. This
requirement is automatically fulfilled if one accounts for t
finite size of a nucleus. Assuming in particular a nucle
model, in which the entire nuclear magnetization resides
the surface of a sphere of finite radiusr n , one has for the
radial distribution of the vector potential:17

An~r !55
1

r n
3

for r ,r n

1

r 3
for r>r n .

~24!

The term Eh f
SO in Eq. ~19!, that depends on the spin an

orbital degree of freedom of the electron, can now be furt
transformed:

Eh f
SO52 imB^FL

L u@~sW •AW n!~sW •¹W !2~sW •¹Q !~sW •AW n!#uFL8
R &.
~25!

The term between the bra and ket can be identified with
corresponding hyperfine operatorHh f

SO:

Hh f
SO52 imBb(

j Þk
s jsk~¹ jAnk1An j¹k!

2 imBb(
j

s j
2~¹ jAn j1An j¹ j !. ~26!

Further transformations of the first sum in Eq.~26! shows
that it represents the coupling of the nuclear to the electro
spin:

Hh f
SO(1)5mBbsW •@¹W 3~mW n3rW !An~r !#. ~27!

Inserting the explicit form of the vector potentialAn(r ) al-
lows one to splitHh f

SO(1) into the Fermi contact and spi
dipolar hyperfine interaction operators,

HF52mBbmW n•sW
1

r n
3
Q~r n2r ! ~28!
7-4
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Hdip5mBb
1

r 5
@3~mW n•rW !~sW •rW !2~mW n•sW !r 2#Q~r 2r n!,

~29!

where the theta functionsQ restrict the operators to th
ranger<r n andr>r n , respectively. Apart from the factorb,
the resulting relativistic operators are obviously very simi
to their nonrelativistic counterparts.

Using the gauge property¹W •AW n50, the second term
Hh f

SO(2) in Eq. ~26! is given by

Hh f
SO(2)52mBbAW n•pW . ~30!

For the specific nuclear model represented by Eq.~24! one
finally has

Horb52mBbAn~r !mW n• lW, ~31!

where we have identified the operatorHh f
SO(2) in Eq. ~30!

with the orbital hyperfine operatorHorb , that again turns ou
to be nearly identical to its nonrelativistic counterpart.

Finally, it should be noted that a Gordon decomposition
the hyperfine operator within the framework of Hartree-Fo
theory leads to additional terms. In particular a purely re
tivistic term occurs, that involves a commutator with t
nonlocal part of the potential energy entering the Hartr
Fock Hamiltonian.17

D. Matrix elements and selection rules

When calculating the matrix elements of the various h
perfine interaction operators, these can be split into a ra
and an angular part. In general one has to distinguish
tween the left- and right-hand solutions^FL

L u and uFL8
R &,

respectively, to the Dirac equation. Fortunately, for the Di
Hamiltonian given in Eq.~1! the radial wave functions o
both sets of solutions are the same for most situations.25,26

For that reason one has only to distinguish their spin-ang
parts, as it is indicated by the superscript3 in Eq. ~6!. Fur-
thermore, we are interested here in the hyperfine fields
spontaneously magnetized solids. For this type of system
is in general well justified to assume that the spin and orb
magnetization within an atomic cell are oriented along
common axis, that specifies the localz direction~see above!.
In that case, it is sufficient in Eqs.~7!, ~28!, ~29!, and~31! to
consider only thez–z part of the scalar products that involv
the nuclear magnetic dipole operatormW n .

With this simplification, one gets the conventional expre
sion for the matrix elements connected with the total hyp
fine interaction operatorHh f given in Eq.~7!:13,20

^FL
L uHh fuFL8

R &52 iemnALL8
h f F E

0

r n
dr~gk f k81 f kgk8!

r 3

r n
3

1E
r n

r max
dr~gk f k81 f kgk8!G ~32!

with the angular matrix elements
09441
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ALL8
h f

5 i F 4km

4k221
dkk81A1

4
2S m

k2k8
D 2

dk,2k821

2A1

4
2S m

k2k8
D 2

dk,2k811Gdmm8 . ~33!

Here the argumentsE and r of the radial wave functions
gk(r ,E) and f k(r ,E) as well as their dependency on th
magnetic quantum numberm has been suppressed. In add
tion, the fact thatFL has in general no unique spin-angul
character has been ignored here for the sake of clearness@see
Eq. ~3!#.

In principle, the evaluation of the matrix elements in E
~32! implies an integration over the whole space. Because
the short range nature of the magnetic hyperfine interac
@see Eq.~24!#, it is well justified to restrict the integration to
an atomic cell. Accordingly,r max stands for the muffin tin
radiusr mt or Wigner-Seitz radiusr WS depending on whethe
a muffin-tin or atomic-sphere-approximation geometry26 has
been adopted for the potential and charge distribution.

As one notes, only mixed combinations of the radial wa
functions of the typegk f k8 occur in Eq.~32! because of the
structure of the matricesa i . This is in contrast to the matrix
elements of the operatorsHF , Hdip , andHorb . As a conse-
quence of the Gordon decomposition of the current dens
there are only terms connecting two large components or
minor components as, for example,gkgk8 .

For the Fermi-contact operatorHF one finds,

^FL
L uHFuFL8

R &52mBmnFALL8
F E

0

r n
drgkgk8

r 2

r n
3

2A2L,2L8
F E

0

r n
dr f k f k8

r 2

r n
3G ~34!

with the angular matrix elements

ALL8
F

5F2
m

k11/2
dkk8

22A1

4
2S m

k2k8
D 2

dk,2k821Gdmm8 . ~35!

Analogously, the matrix elements of the spin dipolar opera
Hdip are given by the expression:

^FL
L uHdipuFL8

R &5mBmnFALL8
dip E

r n

r max
drgkgk8

1

r

2A2L,2L8
dip E

r n

r max
dr f k f k8

1

r G ~36!

with the corresponding angular matrix elements
7-5
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ALL8
dip

5F4m~k11!

4k221
dkk82A1

4
2S m

k2k8
D 2

dk,2k821

23A1

4
2S m

k2k8
D 2

dk,2k811Gdmm8 . ~37!

As mentioned above, the relativistic hyperfine operat
HF andHdip are very similar in form to their nonrelativisti
counterparts. However, one notes that there might now
contributions to the hyperfine fieldBh f of non-s electrons via
the Fermi-contact operatorHF and ofs electrons via the spin
dipolar operatorHdip . It will be shown below that primarily
the p1/2 electrons give such unconventional contributions
the hyperfine field via the Fermi-contact operatorHF .

Finally, the matrix elements of the orbital operatorHorb
are given by the expression:

^FL
L uHorbuFL8

R &52mBmnALL8
orb F E

0

r n
drgkgk8

r 2

r n
3

1E
r n

r max
drgkgk8

1

r G
22mBmnA2L2L8

orb F E
0

r n
dr f k f k8

r 2

r n
3

1E
r n

r max
dr f k f k8

1

r G ~38!

with the angular matrix elements

ALL8
orb

5Fm~k11!

k11/2
dkk81A1

4
2S m

k2k8
D 2

dk2k821Gdmm8 .

~39!

As for the operatorsHF and Hdip , the relativistic orbital
hyperfine interaction operatorHorb is very similar in form to
its nonrelativistic counterpart. However, one has to point
that a finite nucleus has explicitly been assumed in Eq.~31!.
Accordingly, the corresponding matrix eleme
^FL

L uHorbuFL8
R & splits in a natural way into a contributio

for r<r n and r>r n as it can be seen in Eq.~38!. As a
consequence, there is in principle now anordinary orbital
hyperfine field (r>r n) as well as acontactorbital hyperfine
field (r<r n). In practice, however, the contact part will b
very small and for that reason this decomposition will not
considered extensively in the following.

The expressions for the various angular matrix eleme
ALL8

h f , ALL8
F , ALL8

dip , andALL8
orb in Eqs.~33!, ~35!, ~37!, and

~39!, respectively, are highly symmetric because one m
interchange everywherek and k8 without changing the re-
sult. This property is ensured by the selection rules fork and
k8 and reflects the relationshipALL85AL8L . Obviously, all
angular matrix elements have the common selection rulm
5m8, reflecting that the magnetic quantum numberm is a
good quantum number even for a spin-polarized solid.
09441
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all operators one has a nonvanishing matrix element fok
5k8 andk52k821. These two relations lead to the term
s1/22s1/2, p1/22p1/2, p3/22p3/2, d3/22d3/2, . . . and
p1/22p3/2, d3/22d5/2, f 5/22f 7/2, . . . , respectively, implying
the angular momentum selection rulel 5 l 8. For the full hy-
perfine interaction operatorHh f one has a third term in Eq
~33! with k52k811 leading tos1/22d3/2, p3/22f 5/2, . . .
and the restrictionl 2 l 8562 for the angular momentum
quantum numbers. As one can see from Eq.~37!, corre-
sponding terms occur also for the spin dipolar hyperfine
eratorHdip , while these terms seem to be absent in the c
of the Fermi contact and orbital operatorsHF and Horb ,
respectively. However, inspection of Eqs.~35! and ~39!
shows that nonvanishing matrix elements occur also for
Fermi contact and orbital operators fork52k811, because
of the coupling mediated via the minor components. For
ample, fork521 andk8512 (s1/2–d3/2) one has for the
minor components the angular matrix elementA11m,22m ,
that is nonzero because of the second term in Eq.~35! or
~39!, respectively. Altogether, one has obviously the sa
selection rules for all four operators considered abo
namely:k5k8 andk52k821 andk52k811, wherek
andk8 refer to the spin-angular character of the large co
ponents. However, one notes from Eqs.~34! and~38! that the
matrix elements forl 2 l 8562, corresponding tok52k8
11, stem exclusively from the minor components. Only f
the spin dipolar operator there is also a contribution via
large components. Because the corresponding radial m
element involves the product of two radial wave functio
with l 2 l 8562, it is much smaller than those forl 2 l 850.
As a consequence, one can expect that all matrix elem
corresponding to the selection rulek52k811 are quite
small.13 For this reason these terms will be neglected in
following. An additional justification for this simplification
comes from the fact that for the valence states the ma
elements are weighted by the scattering-path operatortLL8 .
For lÞ l 8 these quantities are in general quite small co
pared to the diagonal terms withl 5 l 8. This applies in par-
ticular for systems with high symmetry.

III. RESULTS AND DISCUSSION

So far only very few fully relativistic calculations for hy
perfine fields in magnetically ordered solids can be found
the literature. The pure elements Fe, Co, and Ni have b
studied first by Ebertet al.13 using the spin-polarized relativ
istic Korringa-Kohn-Rostoker ~SPR-KKR! formalism
sketched in Sec. II. This work was continued by studyi
diluted31 and concentrated14,29disordered transition metal al
loys. In particular the influence of extensions to the pla
SDFT Hamiltonian given in Eq.~1! was studied.29 Apart
from these studies one has to mention in addition the work
Shick and Gubanov32 and Guo and Ebert3 who used the spin-
polarized relativistic linear muffin-tin orbital method o
band-structure calculation to investigate among others
pure elements Fe, Co, and Ni as well as transition m
multilayer systems. In the following, results obtained by u
ing the SPR-KKR-CPA method~see Sec. II A! will be pre-
sented. In contrast to all previous investigations, a finite s
7-6
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DECOMPOSITION OF THE RELATIVISTIC HYPERFINE . . . PHYSICAL REVIEW B 64 094417
for the nucleus has been assumed. The corresponding nu
radii r n are for Fe: 8.2231025 a.u., Co: 8.3331025 a.u., Ni:
8.4431025 a.u., Pd: 1.0131024 a.u., and Pt: 1.2331024

a.u. These values have been fixed using the empirical r
tion r n51.128A1/3 fm ~Ref. 33! with A being the mass num
ber for the most abundant isotope.

A. Hyperfine Fields in FexNi1Àx , FexPd1Àx , and CoxPt1Àx

For the three disordered alloy systems FexNi12x ,
FexPd12x , and CoxPt12x the calculated hyperfine fieldsBh f
are given for the various components in Figs. 1–3 as a fu
tion of the concentration. The theoretical results are base
the total hyperfine interaction operator given in Eq.~7! and
have been split into their core@see Eq.~9!# and valence-band
@see Eq.~10!# contributions. To emphasize the relativist
influences, the contributions toBh f due to non-s electrons
are given separately. In addition, experimental data
shown as far as possible. Comparing the experimental fi
with the theoretical results, one finds that the later ones ar
general too low. The dependency of the fields on the conc
tration, on the other hand, is reproduced by the calculati
in a rather satisfying way. From the decomposition of t
theoretical fields into core and valence-band contributio
Bcore andBval, respectively, one finds that the concentrati
dependency is primarily stemming from the valence-ba

FIG. 1. Hyperfine fieldsBh f of Fe ~top! and Ni ~bottom! in the
disordered alloy system FexNi12x . Apart from the total field, the
contributions of the core, valence band as well as non-s electrons
are given separately. Experimental data were taken from Ref. 5
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part. In particular one notes thatBval changes in severa
cases its sign, whileBcore is always negative and varies on
moderately with concentration. Because of these proper
of Bcore and Bval together with the nearly concentration
independent deviation of the total theoretical from the cor
sponding experimental fields one may ascribe this devia
to the core contribution. In fact it has been concluded fro
several previous investigations10,13,21 that the core-
polarization mechanism is not dealt with in a satisfying w
within the framework of SDFT. Several attempts to remo
these problems by applying self-interaction corrections,34,35

relativistic corrections to the exchange-correlation potentia35

or gradient corrections to the local-spin-density approxim
tion @Ref. 34# did not improve the situation. Only recently,
could be demonstrated by Akai and Kotani36 that a construc-
tion of the exchange-correlation potential using t
optimized-potential method~OPM! leads to a very satisfying
agreement with experiment. In particular it turned out,
expected from the previous investigations, that primarily
core hyperfine fields are increased in magnitude, while
remaining contributions are more or less unaffected wh
applying the OPM scheme.

To get a deeper understanding of the core polarization,
contributions toBcore stemming from cores and non-s elec-
trons are given separately in Figs. 4–6 for Ni, Pd, and
respectively, in the various alloy systems investigated h
As one can clearly see,Bcore is by far dominated by itss
contribution. For all 3d elements the contribution toBcore

.

FIG. 2. As for Fig. 1 but for Fe and Pd in FexPd12x . The
experimental data stem from Ref. 56.
7-7
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M. BATTOCLETTI AND H. EBERT PHYSICAL REVIEW B64 094417
stemming from the 2p- and 3p-core shells amounts to abou
0.5%. For Pd and Pt, that can be seen to be representativ
4d- and 5d-transition metal elements, respectively, the co
p-shells contribute 2–3 and around 7%, respectively, wh
contributions coming from cored andf shells can be ignored
These percentages are more or less independent of the
centration. The rapid increase with atomic number of
non-s contribution toBcore points out that these are here

FIG. 3. As for Fig. 1 but for Co and Pt in CoxPt12x . The
experimental data stem from Ref. 56.

FIG. 4. Angular momentum resolved magnetic momentsmspin,l

and core hyperfine fieldsBl
core of Ni in FexNi12x . The contribu-

tions of thes andp electrons,Bs
core andBp

core , respectively, to the
core hyperfine fields are given separately.
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pure relativistic origin. In fact, within a nonrelativistic o
scalar relativistic calculation, such contributions could st
only from the dipolar hyperfine Hamiltonian in the case
noncubic symmetry.

In discussing experimental data for hyperfine fields it
often assumed that there is a simple relationship between
hyperfine field and the various atomic magnetic moments
a multicomponent system.37–39One example for such a rela
tion is the expression:37

Ba5aamspin,a1bam̄spin , ~40!

wherea denotes the selected component,m̄spin is the aver-
age spin moment for the system whileaa andba are param-
eters adjusted to experiment. Previous investigations37 dem-
onstrated that this expression is in general oversimplifi
Nevertheless, one can at least justify the first term as it
be seen in Figs. 4–6. Obviously, the various contributions
Bcore vary in parallel with the dominating spin magnetic m
mentmspin,d of the d-like valence electrons. As it is demon
strated by the results given in Fig. 7, one finds in particu
that the ratiosRd

core5Bcore/mspin,d are essentially concentra
tion independent. This applies not only for thes part of
Bcore, but also for its spin-orbit-inducedp part.

In the past in general only the ratioRcore5Bcore/mspin
has been considered within theoretical inves
gations,10,16,40–42wheremspin also includes the contribution

FIG. 5. As for Fig. 4, but for Pd in FexPd12x .

FIG. 6. As for Fig. 4, but for Pt in CoxPt12x .
7-8
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DECOMPOSITION OF THE RELATIVISTIC HYPERFINE . . . PHYSICAL REVIEW B 64 094417
of the s andp electrons. For Ni, Pd, and Pt some repres
tative values forRcore are2124 kG/mB , 2256 kG/mB and
2820 kG/mB , respectively~these values have been tak
for xNi50.8, xPd50.7, andxPt50.6, respectively, from the
corresponding dashed curves in Fig. 7!. These values are
completely in line with previous work. For Ni, for example
Blügel et al.10 found from scalar relativistic calculation
Rcore52120 kG/mB , while Ebert16 obtained
2125 kG/mB within a fully relativistic calculation. Here
one has to note that unlikeRd

core , the ratioRcore may have a
non-negligible concentration dependency. As Fig. 7 sho
this can be ignored for Ni in FexNi12x but not in the case o
Pd and Pt in FexPd12x and CoxPt12x , respectively. The rea
son for the concentration dependency ofRcore is obviously
the fact that the non-s contributions to the spin magneti
moment may have a concentration dependency quite di
ent from that of thed electrons. As it can be seen from Fi
7 this clearly applies for Pd in FexPd12x and Pt in CoxPt12x .

B. Decomposition of the valence hyperfine field

To allow for an analysis of the valence-band hyperfi
field Bval in analogy to that of the core hyperfine fieldBcore

given above, the corresponding angular momentum reso
contributions toBval are given for FexNi12x , FexPd12x and
CoxPt12x , respectively, in Figs. 8–10. One immediately re
ognizes that for all three alloy systems the magnitude of
valence hyperfine fieldBval as well as its concentration de
pendency is essentially given by thes-like contributions.
Only Co in CoxPt12x , for which quite larged like contribu-
tions occur, makes an exception to this general trend. Q
similar to the situation for the core hyperfine field, one c
recognize in Figs. 8 –10 a close relationship of the vale
hyperfine field and the spin magnetic moments. Here, h
ever, this one-to-one correspondence is restricted to thes-like
contributionsBs

val and mspin,s . In addition, one notes tha
these two quantities are not strictly proportional to one
other. This is exemplified by Fe and Co for whichBs

val and
mspin,s change their sign at different concentrations. Nev
theless, one can trace back a major contribution toBs

val to a

FIG. 7. The ratioRcore5Bcore/mspin and Rd
core5Bcore/mspin,d

for Ni, Pd, and Pt in FexNi12x , FexPd12x and CoxPt12x , respec-
tively. The concentration refers to the alloy partnerA (A5Fe, Co,
respectively!.
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population difference of thes-like minority and majority spin
states that is directly reflected bymspin,s .43,44An additional
source forBs

val is the polarization of the wave functions du
to the surrounding spin magnetization. These sources
Bs

val in binary alloys had often been represented by
expression:39,41,42

Ba5aamspin,a1bamspin,axa1bbmspin,b~12xa!,
~41!

whereb stands for the second alloy partner andaa , ba(b)
are fitted to experimental data. Although this ansatz can
justified to some extent on the basis of linear-respo
theory,45 one has to emphasize that it leads in general
concentration-dependent fit parametersaa , ba(b) .46 For this
reason it is only of limited usefulness in practice.

C. Orbital hyperfine fields

As mentioned already above, the non-s contributions to
the core hyperfine fieldBcore occur only because of the rela
tivistic formalism used here. This also applies for the con
butions to the valence hyperfine field coming from nons
electrons. As was shown in Figs. 8–10, these contribute in
cases in an appreciable way to the valence fieldBval. For Co

FIG. 8. Valence hyperfine field for Fe~top! and Ni ~bottom! in
the disordered alloy system FexNi12x . In addition to the total va-
lence fieldBval ~tot! the s, p, andd contributions are given sepa
rately. The line marked with bullets represents the correspond
spin magnetic momentmspin,s of thes electrons that has been scale
by the given factor.
7-9
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M. BATTOCLETTI AND H. EBERT PHYSICAL REVIEW B64 094417
in CoxPt12x these contributions even have a remarkable
fluence on the concentration dependency of the total hy
fine field.

To allow for a more detailed discussion of the hyperfi
field contributionsBl

val of the non-s-valence electrons, thes
are given in Figs. 11–13 together with the correspond
orbital fieldsBorb,l

val . In these figures the fieldsBorb,p
val of thep

electrons have been omitted for the 3d elements, becaus
they are much smaller than those due to thed electrons. As it
is demonstrated by the results for Pd and Pt, thep fields
increase quite rapidly with atomic number and for Pt they
in the same order of magnitude as thed contributions.

Within a nonrelativistic or scalar relativistic approach t
orbital angular momentum is completely quenched in a so
This quenching of the orbital angular momentum is inco
plete if spin-orbit coupling is taken into account and as
consequence there are spin-orbit-induced orbital contr
tions to the magnetic momentmorb as well as to the hyper
fine fieldBorb . As mentioned already above, an approxim
relationship between these two quantities is supplied by
~12!. Accordingly, having calculatedmorb,l , this equation al-
lows to get a reasonable estimate for the orbital hyper
field Borb,l

val . For non-s electrons the remaining hyperfin
fields Bdip

val due to the dipolar interaction can finally be es
mated from,

Bdip
val'Btot

val2Borb
val . ~42!

FIG. 9. As for Fig. 8 but for Fe and Pd in FexPd12x .
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In contrast to this approximate approach to decompose
total hyperfine field, the expressions presented in the
section allow in particular a correct and rigorous calculat
of the orbital hyperfine field. Corresponding results for t
d-valence electrons based on Eq.~31! are given in Figs.
11–13 for the various components in the alloy syste
FexNi12x , FexPd12x , and CoxPt12x . Because the hyperfine
fields due to p-valence electrons increase strongly wi
atomic number, these are given in addition in the case of
and Pt. For comparison Figs. 11–13 also show the co
sponding results for the valence electrons with angular m
mentuml obtained on the basis of the relation suggested
Abragam and Pryce. As it can be seen from Fig. 14 for thd
electrons, the expectation value^r 23&d entering the corre-
sponding Eq.~12! does not vary much with concentration fo
a given component. As a consequence, the approximate
bital hyperfine fieldBorb,l

val(AP) is essentially proportional to the
orbital momentmorb,l . Although Borb,l

val(AP) turns out in most
cases to be a reasonable good approximation for the
hyperfine field Borb,l

val , this does not imply thatBorb,l
val is

strictly proportional tomorb,l . Co in CoxPt12x supplies the
most striking example for this, becauseBorb,l

val(AP) and Borb,l
val

seen as a function of concentration change their sign at
ferent concentrations~see top part of Fig. 13!.

Figures 11–13 demonstrate that the reliability of the a
proximate expression in Eq.~12! varies quite strongly from
system to system. For thed electrons of Fe in FexNi12x one
finds a remarkable good agreement betweenBorb,l

val(AP) and

FIG. 10. As for Fig. 8 but for Co and Pt in CoxPt12x .
7-10
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DECOMPOSITION OF THE RELATIVISTIC HYPERFINE . . . PHYSICAL REVIEW B 64 094417
Borb,l
val . For the other cases investigated here, quite p

nounced deviations occur. As mentioned already, the m
severe case is Co in CoxPt12x when considering the fields o
the d electrons. But also for thep electrons deviations up to
50% may occur as it was found for Pd in FexPd12x . Due to
the very different situations encounterd here, one can ex
in spite of these deviations, that Eq.~12! will in many cases
supply a reasonable good estimate for the magnitude of
orbital hyperfine field. In particular its concentration depe
dence should be reproduced quite well, leading to a sim
and straightforward connection between this important c
tribution to the hyperfine field and the orbital magnetic m
ment.

Comparing the proper orbital fieldBorb
val with the corre-

sponding total hyperfine field of the non-s-valence electrons
one finds that it gives at least for thed electrons the main
contribution. This implies that using the termorbital for the
total field, as it was done in the past,13,14is indeed justified to
some extent. The difference between the orbital fieldsBorb

val

and the corresponding total oneBval, that can be quite large
is of course due to the Fermi contact and the dipolar in
action contributions. These will be investigated in more d
tail in the next section.

FIG. 11. Orbital and total valence hyperfine fields,Borb,d
val and

Bd
val , respectively, for thed electrons of Fe~top! and Ni~bottom! in

the disordered alloy system FexNi12x . In addition, the orbital fields
Borb,d

val(AP) according to the approximate expression due to Abrag
and Pryce@Eq. ~12!# are given.
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D. Correct splitting of the hyperfine fields

In the last section the proper relativistic form for the o
bital hyperfine interaction operator given by Eq.~31! has
been used to check the quality of the approximate expres
given by Abragam and Pryce. In the following, a more d
tailed analysis of the various parts of the relativistic hyp
fine interaction operator in terms of its Fermi contact, dipo
as well as its orbital part will be given.

Because all calculations presented here have been
formed assuming a finite-size nucleus, there might in pr
ciple be a contribution to the hyperfine field of thed elec-
trons via the Fermi-contact term@Eq. ~28!#. However, the
amplitude of the corresponding wave functions in the nucl
regime is so small that even for Pt the resulting Ferm
contact field is smaller than 1023 kG. As a consequence, th
Fermi-contact field can safely be ignored against the ot
contributions. This implies that the difference between
total and the orbital hyperfine fields of thed electrons shown
in Figs. 11–13 is due to the dipolar hyperfine interaction@see
Eq. ~29!#. The corresponding fields are obviously quite sm
compared with the orbital ones and have in all cases
same sign. Here it is interesting to note that the dipolar fie
represent a deviation of the spin magnetization from cu
symmetry that here is only due to the spin-orbit couplin
This means in particular that this field is a direct counterp
to the expectation value of the magnetic dipolar operatoTW

m

FIG. 12. As for Fig. 11 but for Fe and Pd in FexPd12x . For Pd
the corresponding fields of thep electrons are given in addition.
7-11
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51
2@sW23rŴ(sW•rŴ)#. This operator, that—apart from som

constants—differs from the dipolar hyperfine interaction o
eratorHdip only by the factorr 23, occurs if one is dealing
with the so-called sum rules for the magnetic dichroism
x-ray absorption.47,48

When dealing with thes- andp-like valence electrons the
situation gets much more complex than for thed electrons.

FIG. 13. As for Fig. 11 but for Co and Pt in CoxPt12x . For Pt
the corresponding fields of thep electrons are given in addition.

FIG. 14. The expectation value^r 23&d for thed-electrons of Ni,
Pd, and Pt in FexNi12x , FexPd12x, and CoxPt12x , respectively. The
concentration refers to the alloy partnerA (A5Fe, Co, respec-
tively!.
09441
-

This is exemplified in Table I that shows the Fermi conta
the dipolar and orbital hyperfine fields of thep electrons for
the various components of some selected alloys. In line w
the fact that these field contributions are of pure relativis
origin, they are rather small compared to the total hyperfi
field. Nevertheless, one notes that the Fermi-contact
~first column in Table I! is quite appreciable and in the sam
order of magnitude as the total field of thep electrons~last
column in Table I!. In addition, one can see that the ratio
the magnitudes of the Fermi contact and total fields increa
rapidly with atomic number: 0.29, 0.30, and 1.53, resp
tively, for the elements Ni, Pd, and Pt listed in Table I. T
reason for the occurrence of a Fermi-contact contribution
the p electrons, that cannot be understood within a nonre
tivistic or scalar relativistic approach, is twofold. On the o
hand, as discussed above for thed electrons, the wave func
tions of thep electrons penetrate the finite-size nucleus.
the other hand, the relativistic wave function for electro
with p1/2 (k511) character is finite at the nuclear site ev
for a point nucleus. As a consequence, the total hyper
field for p1/2 electrons is larger than forp3/2 electrons, with
the difference rapidly increasing with atomic number.14 From
this, one may conclude that the nonvanishing amplitude
the p1/2 wave function at the nuclear site (r 50) is the main
reason for the appreciable Fermi-contact contribution to
hyperfine field of thep-valence electrons.

Finally, in Figs. 15–17 the decomposition of the hyperfi
fields of thes-like valence band electrons is given for th
three investigated alloy systems. In all cases one find
nearly linear dependence on the concentration for the in
vidual contributions. On the basis of a non- or scalar rela
istic treatment of the hyperfine interaction, one would exp
that the Fermi contact part completely dominates the field
the s-electrons. In contrast to this expectation one finds t
the dipolar and orbital part contribute in a substantial way
the total field. This is quite astonishing, because sca
relativistic calculations, that for cubic systems give a fin
hyperfine field only via the Fermi contact Hamiltonian10 lead
in general to results that are very close to the total hyper
field of thes-electrons calculated in a fully relativistic way.13

To understand this paradox situation, it is helpful to co
sider the various angular matrix elements given in Eqs.~35!,
~37!, and ~39! for the quantum numbersk521 and m5
61/2. From these one finds that the Fermi-contact fi
stems only from the termsgLgL8 and f L f L8 @see Eq.~34!#
with the same quantum numbersL5L8, while those with

TABLE I. Decomposition of the hyperfine field of thep elec-
trons according to the Fermi contact (F), dipolar ~Dip!, and orbital
~Orb! hyperfine interaction Hamiltonian. All fields are given in kG

Bp
val F Dip Orb Total

Fe in Fe0.6Ni0.4 20.187 20.112 0.819 0.520
Ni in Fe0.6Ni0.4 20.307 20.232 1.577 1.038
Fe in Fe0.6Pd0.4 20.144 0.142 0.169 0.167
Pd in Fe0.6Pd0.4 21.254 22.460 7.881 4.167
Co in Co0.6Pt0.4 20.149 20.127 0.782 0.506
Pt in Co0.6Pt0.4 243.484 4.911 67.074 28.501
7-12
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LÞL8 do not contribute becauseALL850. Comparing the
contribution of the terms involving the large componentsgL

with that connected with the minor componentsf L one
finds—as to be expected—that the later ones are about
orders of magnitude smaller than the first ones. The dip
as well as the orbital hyperfine field, on the other hand, s
for s states exclusively from terms involving the minor com
ponents, because of the selection rules imposed by the a
lar matrix elements@see Eqs.~37! and ~39!#. In addition, it
turns out that these are identical, i.e., one hasALL8

dip
5ALL8

orb

for k521. As a consequence, the resulting dipolar and
bital hyperfine field differ only because the later one includ
also contributions from the nuclear region@see Eq.~38!#
while the dipolar field is by definition restricted to sourc
outside the nucleus@see Eq.~36!#. For these reasons th
fieldsBdip,s

val andBorb,s
val in Figs. 15–17 are nearly identical fo

the 3d elements and also for Pd. Only for Pt in CoxPt12x
remarkable differences are found~lower part of Fig. 17!.
Finally, one has to note that from the Eqs.~34!, ~35!, ~38!,
and ~39! one deduces the simple relationshipBorb,s

( in)

522BF,s
( f ) , where the superscript(in) indicates that only the

regionr<r n is considered for the integration in Eq.~38! and
( f ) indicates the contribution of the minor components to
Fermi-contact field.17

If one considers the limit of a vanishing nuclear radius
the matrix elements of the total hyperfine operator@Eq. ~7!#

FIG. 15. Fermi contact, dipolar and orbital hyperfine fields
the s electrons of Fe~top! and Ni ~bottom! in the disordered alloy
system FexNi12x . In addition, the sum of these fields~tot! is given.
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one is led to a finite result because the product of a large
a minor component is involved@Eq. ~34!#. The expression
for the matrix elements of the Fermi-contact Hamiltonian,
the other hand, diverges for a vanishing nuclear radius in
case ofs1/2 and p1/2 states.17 Because the sum of the ind
vidual Fermi contact, dipolar and orbital contributions co
verges, one has to conclude that the later two terms
diverge as it can be seen directly from the explicit expr
sions given in Eqs.~36! and ~38!. This implies that in the
limit of a point nucleus the individual contributions wi
loose their original meaning. Furthermore, one notes that
s1/2 and also forp1/2 electrons the magnitude of the ind
vidual terms depend very sensitively on the size of
nucleus. For that reason a direct comparison of sca
relativistic hyperfine fields is only meaningful if these a
compared with the total relativistic hyperfine field. Here
should be noted that the conventional nonrelativistic desc
tion of the hyperfine interaction is recovered from the re
tivistic operators given in Eqs.~28!, ~29!, and ~31! by first
considering the limitc→` for the speed of lightc.17 This
leads to the nonrelativistic wave functions and hyperfine
teraction operator. Finally, the limitr n→0 has to be taken.

E. Interpretation of the hyperfine field contributions and their
dependence on the nuclear radiusr n

To investigate the relationship of the total hyperfine fie
and the chosen nuclear model we consider in the follow
the case of an Au-impurity dissolved substitutionally in b

FIG. 16. As for Fig. 15 but for Fe and Pd in FexPd12x .
7-13
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M. BATTOCLETTI AND H. EBERT PHYSICAL REVIEW B64 094417
Fe. The corresponding calculations have been performe
just the same way as for, e.g., the alloy system CoxPt12x in
the limit x→1. In particular the potential distortion of th
host in the vicinity of the impurity as well as the relaxatio
of the lattice has been ignored.

The Fermi contact, dipolar, orbital, and total hyperfi
fields of Au obtained this way are given in Table II in a
angular momentum resolved way. For these calculations
nuclear radius has been set tor n51.239631024 a.u. accord-
ing to the mass numberA5197. As one can see from Tab

FIG. 17. As for Fig. 15 but for Co and Pt in CoxPt12x .

TABLE II. Angular resolved contributions of the core and v
lence hyperfine fields~in kG! for Au in Fe. These values have bee
obtained using a finite size nucleus withr n51.239631024 a.u.

Core F Dip Orb Tot

s 2713.2 238.1 256.0 2219.2
p 216.3 3.4 29.7 16.8
d 0.0 20.0 20.4 20.4
f 0.0 20.0 20.1 20.1

Tot 2729.5 241.4 285.2 2202.9

Valence
s 22330.3 777.2 835.7 2717.3
p 2113.4 12.6 172.3 71.5
d 0.0 3.2 67.6 70.8

Tot 22443.7 793.0 1075.6 2575.1
09441
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II, the major contributions to the hyperfine field ste
from thes electrons. According to the analysis given abov
these stem primarily from the region outside the nucle
Bs

(out)5Bdip,s1Borb,s
(out) 52Bdip,s52031.8 kG. With this the

total contact field, i.e., Fermi contact plus orbital part,
given as: Bcontact,s5BF,s1Borb,s

( in) 5BF,s1Borb,s2Bdip,s

522967.2 kG, where the orbital partBorb,s
( in) contributes

only 76.4 kG. Forp states a corresponding decomposition
less straightforward because the spin-orbit coupling sp
these into states withp1/2 and p3/2 character, respectively
However, an analysis of the numerical results for the corp
states reveals that the Fermi-contact field is primarily due
p1/2 states. In addition, one can ascribe this contribution
clusively to the corresponding minor component that has
spin-orbit characterk521. This once more points out that
is of pure relativistic origin.

While the core hyperfine field of thed- and f-electron
shells are completely negligible, there is a rather la
field due to thed-like valence electrons. This in turn i
dominated by its orbital part, that is connected with the sp
orbit-induced orbital polarization of thed electrons ~see
above!.

For elements that have several isotopes with a finite m
netic moment, a determination of the hyperfine fields, e
via NMR leads in general to different fields for the vario
isotopes. This so-called hyperfine anomaly has been use
the past to derive noncontact hyperfine fields fro
experiment.49–51 For this, one assumes that the fields of t
various isotopes differ only with respect to the contributio
stemming from the nuclear region, while the remaining co
tributions are independent of the isotope or nuclear prop
ties, respectively.52 Usually the noncontact fields deduce
from investigations based on the hyperfine anomaly
called orbital fields. For Au in Fe Kawakamiet al.,51 ob-
tained the value 161626 kG. Unfortunately, a direct com
parison of this field with the orbital fields given above
however not meaningful because these are based on diffe
considerations.

To allow for a direct comparison it is sensible to inves
gate the dependence of the hyperfine field on the nuc
radiusr n to find out which of its parts is independent of th
nuclear size. For this purpose additional calculations h
been done with the nuclear radius decreased and incre
by 10%. The resulting relative changes with respect to
first set of calculations~see Table II! are summarized in
Table III. As it was to be expected, the various contributio
of the s electrons changed quite strongly with the nucle
radius, although the corresponding total field shows onl
relatively small increase withr n . This behavior has its origin
in the dependency of the various radial integrals on
nuclear radius, as it was discussed above. The contact
increases in magnitude roughly to the same extent as the
of the orbital and dipolar fields. Because of their differe
sign these changes nearly compensate each other. The
behavior is found for the various contributions to the co
and valence hyperfine field. It is remarkable that the m
pronounced changes are found for the dipolar contributi
7-14
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of thep electrons. Obviously, these depend quite strongly
the electronic properties in the vicinity of the nuclear radi
For the hyperfine fields of thed and f electrons on the othe
hand, the changes with the nuclear radius can be neglec

From these findings one has first of all to point out th
the use of the termorbital hyperfine field for the theoretica
field is consistent because of the occurrence of the orb
angular momentum operator in Eq.~38!. However, a direct
comparison with the noncontact hyperfine fields dedu
from experiment via the hyperfine anomaly is not allowe
To look for a relationship with the experimental nonconta
hyperfine fields it would be sensible to consider only t
orbital p as well as thed and f fields given in Table III,
because of their very weak dependence on the nuclear ra
This way one gets for Au in Fe the value 272 kG, that l
about 100 kG above its experimental counterpart. An al
native to this procedure is to sum all field contributions
the non-s electrons.16 This leads to a noncontact field of 15
kG that is in very good agreement with the experimen
value. However, the same procedure leads for Ir in Fe t
theoretical noncontact field of226.6 kG. Experimenta
values, based on a number of auxiliary assumptions,
3006200 kG@Ref. 53# and 155690 kG.54 These values are
reasonably well reproduced if one takes within the theor
cal considerations for thep electrons only the orbital part
leading to 173.5 kG. In conclusion, one has to say th
the calculations presented here were not able to exp
the available experimental data for the noncontact fields
consistent and satisfying way. One reason for this co
be that some of the assumptions, on which the analysi
the experimental data relies, are not fully justified. Anoth
possible source for the discrepancy is the chosen nuc
model, that is quite unrealistic concerning its assumpt
on the distribution of the nuclear magnetization. For the
reasons, to deal with the hyperfine anomaly in a more pro
way, it seems to be desirable to adopt a more realistic nuc
model. In particular it should include the Bohr-Weissko

TABLE III. Changes in % of the various hyperfine field contr
butions for Au in Fe for calculations using the nuclear radiir 1

51.139631024 a.u. andr 251.359631024 a.u. with respect to the
values given in Table II obtained forr n51.239631024 (r 1 /r n

50.919; r 2 /r n51.096).

Core F Dip Orb Tot

r 1 r 2 r 1 r 2 r 1 r 2 r 1 r 2

s 3.36 23.62 4.65 24.94 4.56 24.85 0.64 20.74

p 3.19 23.39 7.33 27.75 1.03 21.11 0.20 20.22

d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Valence

s 3.35 23.57 4.62 24.90 4.53 24.81 0.61 20.70

p 3.16 23.36 13.35 214.13 1.23 20.98 0.31 20.36

d 0.00 0.00 0.03 0.00 0.0020.01 0.00 0.00
09441
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correction,55 that accounts for the spatial distribution o
the magnetic dipole moment within the nuclear regime a
its influence on the hyperfine interaction. Setting up t
model specific for a given isotope, one can compare the
sulting hyperfine field directly with experiment and it do
not have to rely on an additional analysis of the experimen
data.

IV. SUMMARY

A scheme developed by Pyper within the framework
Hartree-Fock theory has been modified to allow a rigoro
decomposition of the hyperfine fields calculated in a fu
relativistic way on the basis of spin-density-function
theory. This decomposition into a Fermi contact, dipolar, a
orbital part requires the adoption of a finite nuclear mod
Compared to a nonrelativistic or scalar relativistic approa
one arrives at the striking consequence that one may ha
Fermi-contact contribution also from non-s electrons and di-
polar as well as orbital contributions stemming froms elec-
trons. Corresponding calculations have been performed
the disordered substitutional ferromagnetic alloy systems
FexNi12x , fcc FexPd12x , and fcc CoxPt12x making use of
the spin-polarized relativistic version of the KKR-CP
method of band-structure calculation. These calculations
vealed pronounced influences of relativistic effects on
hyperfine fields. In particular, appreciable contributions fro
non-s electrons were obtained that cannot be underst
within a nonrelativistic or scalar relativistic theory. An es
mate of the orbital hyperfine field on the basis of an expr
sion suggested by Abragam and Pryce has shown that t
non-s fields are primarily of orbital origin. This could be
confirmed by making use of the rigorous decomposition
the total fields into their Fermi contact, dipolar and orbi
parts. Ford electrons it turned out that, as expected earl
the orbital part strongly dominates. Forp electrons, on the
other hand, one finds indeed appreciable dipolar contri
tions to the total field. Finally, for thes electrons there are
rather pronounced dipolar and orbital fields. These are ex
sively connected with the minor component of the fou
component wave function and increase rapidly with atom
number. A calculation of the various field contributions f
different nuclear radii revealed in the case of Au in Fe
rather sensitive dependency. However, a satisfying inter
tation of the results of experimental hyperfine anomaly
vestigations seems to be somewhat problematic. Becaus
this, it is suggested to use a more realistic nuclear mode
this purpose, that allows a more rigorous investigation of
isotope effects.
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24G. Hörmandinger and P. Weinberger, J. Phys.: Condens. Matte4,
2185 ~1992!.

25E. Tamura, Phys. Rev. B45, 3271~1992!.
26T. Huhne, C. Zecha, H. Ebert, P. H. Dederichs, and R. Ze

Phys. Rev. B58, 10 236~1998!.
27L. Nordström and D. J. Singh, Phys. Rev. Lett.76, 4420~1996!.
28H. Ebert, M. Battocletti, and E. K. U. Gross, Europhys. Lett.40,

545 ~1997!.
29H. Ebert and M. Battocletti, Solid State Commun.98, 785~1996!.
30M. S. S. Brooks, Physica B & C130, 6 ~1985!.
31H. Ebert, R. Zeller, B. Drittler, and P. H. Dederichs, J. Appl. Ph

67, 4576~1990!.
09441
.

r,

.

32A. B. Shick and V. A. Gubanov, Phys. Rev. B49, 12 860~1994!.
33T. Mayer-Kuckuk,Kernphysik~Teubner, Stuttgart, 1984!.
34M. Battocletti, H. Ebert, and H. Akai, Phys. Rev. B53, 9776

~1996!.
35L. Severin, M. Richter, and L. Steinbeck, Phys. Rev. B55, 9211

~1997!.
36H. Akai and T. Kotani, Hyperfine Interact.120–121, 3 ~1999!.
37C. E. Johnson, M. S. Ridout, T. E. Cranshaw, and P. E. Mad

Phys. Rev. Lett.6, 450 ~1961!.
38U. Erich, Z. Phys.227, 25 ~1969!.
39N. J. Stone, inLow-temperature nuclear orientation, edited by N.

L. Stone and H. Postma~North-Holland, Amsterdam, 1986!, p.
351.
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