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Phase diagram of fragmented S\(§2)-invariant spin ladders
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A two-parameter family of quantum spin ladders with local bilinear and biquadratic interactions, solvable by
mapping onto fragments of integrable spin 1 chains, is studied. Phase diagram, consisting of four phases,
ground state properties, and some excitations are discussed. Modulated structures of different periodicity, in
particular a trimerized phase, are shown to appear. Some results are extended to the ladder associated to the
most general spin 1 chain.
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I. INTRODUCTION N
Ho(6)= 2 (c0S6S,-Sci1+ SINB(S: Sv1)D. (3)
Integrable models have provided extremely valuable in- k=1
sight into the physics of one-dimensional quantum spin
chains. There is a substantial lack of exact results for analdn particular Eq.(1) corresponds to the BA solvable purely
gous two-dimensional systems and the solution of quanturbiquadratic spin-1 chaing=— /2. Selecting §=0, the
spin ladders might provide a first step in that direction. Be-Heisenberg spin-1 chain, would remove the second brackets
sides, spin ladders are currently experimentally accessiblén Eq. (1).> This seems physically more appealing but pre-
interesting in their own and possibly related to hiph- vents the detailed analysis allowed by BA, since such a chain
superconductivity. is not integrable. Choosing= /2 would yield the case con-

It has been established that the basiteg Heisenberg sidered by Wan§.Details about definitions and exact diago-
ladders, with bilinear exchange interactions along rungs andalization are the subject of Secs. Il and III.
legs, are gapfulspin-liquid stat¢ for n even and gapless for The system defined by Eql) has four phases, denoted
n odd! These ladders do not seem to be integrable. On thé0), (1), (2), and() in the following, connected by first
other hand, examples of integrable ladders, containing addarder transition lines, namely discontinuities in some first
tional biquadratic interactions, have been found and solvedrder derivative of the ground state energy per site. Phases
by some form of Bethe ansatBA).?* Luckily, biquadratic (1) and (2) are examples of modulated structures, called
interactions do arise in physically realizable systems, and &mixed state” (MS) in Ref. 6, that is phases where triplets
large class of these generalized, but still(@kinvariant lad-  and singlets of Eq(2) alternate with some kind of periodic-
ders, have been proven to have a matrix-prodMP) ity. In (2) (three-rung periodicity the ground state is a
ground staté. Still, the MP approach determines the groundthreefold degenerate global singlet where two rung triplets,
state but, with the exception of few lucky cases, the wholdocked into a singlet, alternate with isolated rung singlets.

set of excitations remains unknown. Such phase could be called trimerized. A trimerized ground
In this paper, the following two-parameter family of state has been shown to occur in a generalized spin-1 €hain,
SU(2)-invariant ladder Hamiltonian$d ZEE‘:1Hk,k+1 will not of the form(3), but, as will be discussed in Sec. VII, the
be studied two states are not quite the same. Phgbe has two-rung
periodicity and a huge 3"V?) ground state degeneracy.
Hicr (1, 2) = 3(Se-Scr 1+ e ter 1+ St 1 Ser - 1) These results are proven in Sec. IV.
In Sec. V, exact elementary excitations are examined in
= 2((sc" S 1) (et 1) (S tern) the phase whose ground state is, effectively, that of the bi-
~ quadratic chain, also a global singlet but made up of rung
X(Ser1t))+ pa(Setet Serntier) triplets. The simplest ones are created by introducing one

~ . ) rung singlet and leaving the remainifg—1 triplets locked
T 12(Sc ) (Ser 1 Ter 1) D into the ground state of the biquadratic chain with free ends.

and the eigenvalue problem solved for amy, ,. Heres, If N—1 is odd, such a ground state is presumably af25U

andt, are spin-1/2 matrices sitting on the first and the secondfP/€t containing one dynamical kink and one finds a band of
leg, respectively. Hamiltoniaft) is actually a special point singlet-triplet excitations, depending on two degrees of free-

in a wider three-parameter class for which the relatived®M. whose energy is degenerate in the singlet position.

strength of the first two terms is left arbitrafyee Eq(11)]. Sut_:h excitations had been found in a related laddauf
All points in this manifold have the property of being reduc- t€ir dependence on two degrees of freedom had not been

ible, through the introduction of the composite rung spin discussed. On the other hand, similar ladders including bi-
quadratic interactions are known to have two-parameter

Se=5 -t (2)  singlet-triplet excitation&* but their nature is different, be-
ing a pair of kink-antikink over a dimerized ground state,
to the general spin-1 chain which is not what happens here.
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In Sec. VI it is shown that phasg®), (1), and(») are = (P =eyf, (2,1,1),
ubiquitous, i.e., they appear for each member of the wider 4
three parameter family of spin ladders associated to the get‘(—(’L '=eof1—eof +esfo—esfo (11-1),
eral spin-1 chain(3). Section VII presents a discussion and v§"=eyf;+eof,—e,fo—e,f, (1,-1,1,
comparison with related works.

For the sake of completeness, the Appendix contains
review of known results on the biquadratic chain. vO=¢e fi+e,f,—e f,—ef; (0,1,1),

g§1)=eof1—e0f2—e1f0+ezfo (1,-1,-1),

U(ZO):elfl+e1f2+erl+62f2_2eof_o_2€0fo (0,1,1)
Il. DEFINITION OF BASIC INVARIANTS The three numbers in the right column are eigenvalues of
Each elementary plaquette involves four spins, says(liz)’_c’ P.If CandP sy(ml)mgtrles are imposed{; , maps
general Hermitian plaquette Hamiltonia, , is a linear ~ action on the span dfv;~;i=1,2} is determined by 4 real
combination with real coefficients of 14 Hermitian invari- humbers
ants. If, beside S(2) invariance, one requires symmetry un-
! ' (2) = m(2),,(2) (1) = m(1),,(1) -
der the exchange of the two legs and symmetry under the Hi2™ = =M=, Hypi=mi~vi™,  1=1,23,
exchange of the two rungs, symmetries implemented by op- N
eratorsC andP Hl,ZUi(O): D m,(io)vfo) =12,
=1

CsC=t;, (i=12, C2?=1, This proves that the generdl, , is a linear combination with
real coefficients of 8 linearly independent invariatistice
incidentally that h.W.VUi(O) are orthogonal but unnormalized,

Ps,P=s,, PtP=t,, P?=1, o 8)12=3[v{?|12, so m{9=3m{*). One can choose 7 of
them to be three bilineaiHeisenberyterms
thenH, , is a linear combination with real coefficients of 8

M=g . .
Hermitian invariants. I12=81- S+, 4
The proof goes as follows. The local plaquette Hilbert Dttt 5
space isHy, =VPeV{eVPeVP=C¥. It breaks into C=sty+5,-15,

the orthogonal sum of S@) multiplets: one quintupletdim 18)=g .totst )
=5), three triplets (dim=9) and two singlets(dim=2). 1275 TS,

Within each multiplet, all states are obtained by applicationthree biquadrati¢plaquette terms

of the lowering operatofS, , to the highest weight vector

(haw.v) 0, where 1= (st ) (t1- 1), (7)
. . 1= (s1-t1)(5- 1), ®
Sl=s1 TSttt S=Si,*iS,, )
1175=(S1 1) (S 1), 9
Stp®=0 szv(s)zs(SwL )0, v®eH,,. and the identityZ. An eighth one is necessary to have a

complete set, but it involves more complicated combinations
of the basic spins and it will not be needed in the following.
H; ,is SU2)-invariant, i.e.[H; »,S; ,]=0, therefore it maps To show that the six in Eqg4)—(9) plus the identity are
h.w.v. into h.w.v. of the same spin. So, spin-2 h.w.v. must bendeed linearly independent, write
mapped into itself, each spin-1 h.w.v. will in general be
mapped into a linear combination of all three spin-1 h.w.v. ®
and the same happens for the two spin-0 h.w.v.. Altogether, Hyo=CoZ+ k§=:1 Cliz-
imposing hermiticity, 6 real parameters plus 4 complex
(hence 8 realones. The total spi; , commutes withC and It is & matter of easy algebra to find the action of the basic
P, so h.w.v. can be labeled iy and P eigenvalues. Define, invariants(4)—(9) on the h.w.v., resulting in
with self-explanatory notation,

6

Ci+Cyr+ces N C4+Cs+Cg
2 16 '

m®=c,+

eo=|T1s, fo=1T1, e=|l1)s, fo=Il1),

—Ci;t+Cy—C3 —3Cyt+C5—3Cq
m{Y=c,+ 5 + 6 ,
er=[1T)s, T1=[lTe. e=[11)s, f2=[T1):.
c;—Cy,—C3 C,—3Ccs—3C
m(21)=c0+ 172753 4 5 6

The 6 h.w.v.0® will be chosen to be 2 16 ’
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W —C;—Cy+C3  —3C,—3Cs+Cq One further remark. Since each rung spegee V(" car-
m;~'=Co+ 5 + 16 . (10 ries a spinL@ 0 representation, not just spin Bt S 1) is
linearly independent fronS,.-S..; and S S:1)?. But,
© —3c; 9c¢,4+3cs+3cq from Eq. (10), it can be seen thatS(- S, ;)% is a linear
mip=Cot —5—+ 16 : combination of the first two powerd,, 1{3),; and (3.,
that is why adding a cubic term té,( 8) does not generalize
©_ . , C1=2C—2C5 CytTCs+7C Eq. (12). _ _ _
myy’=Co+ 5 + 16 The composite rung spin has, of course, been introduced
in several previous works. It lies behind the physical idea
ComCa  —CetC that even-legged and odd-legged Heisenberg ladders should
mQ=2_S, 5 be in different phasesMore closely to this work, it has been

2 8 used to map two-leg ladders into the AKLT chafi{Eq. (3)
and m{%=3m{. The vanishing of alfm®} implies the ~at tary=1/3]. Earlier, Xian and then Kitakani and Oguthi

vanishing of all{c;}, proving linear independence of the in- had studied Eq(11) at 6=0, but without the rung-rung in-

variants chosen. teractionl (ksﬁ +1 Which is actually responsible for the rise of
Scalar products of the rung spin will now be expressed ifwo new phases. More recently, the full spin laddEp has
terms of these invariants. Clearly been related to Eq3) and studied fo= /45
(1 3
S S=114+1¢), Ill. FRAGMENTATION AND BETHE ANSATZ

while the biquadratic termg; - S,)? seems to involve more ChargesQ, andQ, have a simple physical meaning. In
complicated invariants. But since it is invariant un@and each four dimensional rung Spawzv(s)®v(t)zc4 one
P, it must be a linear combination of the 8 basic ones. Actu-Introduces the singlet-triplet basiﬁs)kk'h)k ';z ~-1,0,1
f(:llly), the six(4)—(9) and the identity are sufficient: from Eq. consisting of the singlet and the triplet of the rung S(ﬂh
10 ;

ie.,

37 1Y 1) _ R _
(81-82)2=I—%+I(f2)—%+2I‘1"‘2)+2|(1?2). SIsh=0, SIth=2[t), Sth=tt).

. . ] ThenQ,/2 counts the number of triplets a@h/4 counts the
Consider now the one-parameter spin ladder Hamiltof8an  number of pairs of neighboring triplets.

where each spis is the composite object defined in E@). Now consider the B dimensional subspad@f the total
Two parameters can be added after noticing that the charge®. dimensional Hilbert space of the laddlespanned by
N N [ti,to, .. .ty), (tx=—1,0,1). In this sectoR, and Q, are
_ _ constant, at Rl and 4N respectively, andH, acts effectively
Q I(Zl $ Q2 kzl Sﬁsﬁ” as a spin-1 chain with periodic boundary conditigp.c).
Such chain is Bethe ansatz solvable in three c&sém: 6
=17/4, (b) 6=—m/4 and(c) 6= —m/2 In case(a) it is the
SU(3)-invariant Sutherland-Uimin chaift, in case(b) the
Babuijian-Takthajian chatAand in caséc) the purely biqua-
dratic chain®®
Next, consider states containing one singlet &he 1

commute withHy(6) for any 6. This can easily be checked
by a direct calculation. Finally, the Hamiltonian to be studied
is

H(O,p1,2) =Ho(0) + 11Q1+ 12Q;

N sin® i @) triplets. Eigenvalues of the two conserved charges are fixed
=2 || coso— 5 (lKk+1 k1) at

k=1

+25sin0(1A,  +18) ) Q1=2(N-1), Q;=4(N-2)

regardless of triplet's position. If the singlet is, say, on the
+(sinf+ wq+ 3#2)|(ké|3+1+4ﬂz|(k,5|2+4 Nth rung (due to p.b.c. the singlet’s position is actually im-
materia), Hy acts on these vectors like

3sind 3u; u, N2
( T 1) Ho= 3, [c0SOS Sciat Sin(SeSe)?] (19

Equation(1) is Eqg. (11), up to a constant shift, if one takes ) _ ) _
0= —=/2 and that is exactly like a spin-1 chain of length—1 and free

boundary conditiongf.b.c). The singlet can be positioned
W= —1+ w143y, o=4u,. (12)  anywhere, it just opens a fracture in a ring of spins; conse-
'le HaT ok 'U“Z. H2 qguently each eigenvalue of E(L3) appears with amN-fold
In the following, parametersu(y ,x,) will be adopted to de-  degeneracy in the ladder spectrum. More importantly, the
scribe the model. It is always possible, through Bp), o spectrum of Eq(13) can be found exactly by Bethe ansatz,
revert to the original onesu(; , u»). at least in case&), (b), and(c) which have been more or
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less extensively studied for f.b’¢**°The opposite situation by alternating fragments of triplets and singlets. Sectors are
arises when all rungs are singlets. There is only one suclabeled by a sequence of positive inte%;ers, the lengths
state and its ei lue is trivi of fragments, {N{? ,N{& N NV NO N with
genvalue is trivially zero. go N1 BN NG NG L N N
Between these extreme cases, and orthogonal to therd]_;N{”=N©, =7_,N( )=!\|(1) andN(©+NM=N. Each
there is all possible intermediate situations, characterizedector is spanned by th'3 vectors

1 L (1) (2) () @y,
@) =ls,5, ... ,s; 80,057, D885 S 75057 sy )
~— — [ — ~————
N(10) N(ll) N;O) N;l)
T
On all these basis vectors IV. THE GROUND STATE PROBLEM

" To identify the ladder ground state one must minimize Eq.
_ Z 0 (15). An easy first step is to choose, in H45), the lowest
H0|¢>_j=1 Ho'l#), eigenvalue for each fragment. To fix the notation, denote
with ESP(N;1) the lowest eigenvalue of thi-site spin-1
chain with p.b.c. and witfE{"(N”;1) the lowest one for the

() = (1) +(1) (1)
HY'[g)=ls.s, ... o |ti”, 157, ... *tN<11>>N(11)® e N’-site chain with f.b.c. Then, in a sectfi(® N}, the
lowest eigenvalue is
®H(()j)|t(lj), C 1tE\:()1)>NJ(1) r n
J 2 EP(ND; 1) + (241 +4u)NM—4p,),
®ls,s, ... 'S>Nf3)1® Cee =1
_ E={ NM#0N,
whereH acts on the string of triplets like a spin-1 chain of EP + (24, +4u)N, NO=N
1) . . 0 M1 M2 ’ ’
lengthN;™’ and f.b.c. Call z/;)Njgl) any of its eigenvectors and 0 NW—o
E;(N{M) the relevant eigenvalue. Then N ' (16)
B Following Ref. 16, a spin O rung is joined to, say, the right of
[ =[ss, ... SINOR[YINDB]S;S, ... SHNO® . .. each triplets fragment, bringing its length jte- 1. Setn; to
be the number of triplet fragments of lengih-1 (i.e.,
®|¢H>N$.1) (14) triplets plus one singlet at the edg€onsider, for the time
. . o being, only fragmented configurations, i.8(®>0, speci-
is an eigenvector ofly with eigenvalue fied by{ng,ny,n,, ...} which must satisfy
N—1
; > (j+1)n;=N
E=JZl E;j(N). (15) =\ i=N.

Their energy is 0 fony=N, otherwise
Vectors in Eq.(14) provide a complete set for the whole

ladder to the extent the vectdns;)y, provide a complete set E(no,ny, .- \N)

of eigenvectors for the spin-1 chain of lendth, so diago- N-1

nalization of the spin-1 chain with p.b.c. and f.b.c. provides a = EPGD+i(2p+4u,)—4u)n;,
=1

complete solution to the diagonalization problem of the spin

ladder (11). In general this is only a partial simplification. where ng>(1;1)=0 by definition. In the limitN—co the
Instead, in case®), (b), and(c) eigenvalues can in principle densitiesw;=n;/N must be chosen to minimize

be found, for all fragments, by the suitable Bethe ansatz, see
Ref. 6 for casda). What happens here is very similar, actu-
ally almost identical, to what happens in the mixed Heisen-
berg chains studied by Niggemaenal® There, composite
rung spins alternate with single spins and, very much like it
happens here, fragmentation takes place when one rung spin = EPGD+i2pa+4p) —duw;,

is in a singlet state. In the following | will partly adopt no- 1=0

tation and methods introduced in their work. (17)

E
||m _:E(Wo,Wl,Wz, . )
N*}OON

+ oo
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+o TABLE |. Ground state energies of the biquadratic chain.
> (j+Dw;=1. (18
= N EQV(N;1)
As observed in Ref. 16, the problefh?7), (18) has arisen in 1 0
classical statistical mechanics of systems with competing 2 —4
interactions” Owing to the linearity of Eq(17) in the pa- 3 6
rametergw; }, the extremum occurs when ong+ 0 and all 4 956155281
others are zero. Then 5 11.76372382
1 6 —15.143 256 69
W= w,=0 (k#]j) 7 —17.454 021 00
8 —20.73101075
and the ground state energy per site is 9 —23.110 96357
10 —26.321314 67
o ENGiD+2uatAus) —4u, 11 —28.74967412
e=e(j)= 1 - (19 12 —31.912900 40
13 —34.37723072
The relevant phase is denotgd. One is left with the task of 14 —37.505 205 73
determining the minimum in the sequence of real quantities 15 —39.997 421 80
(19), j=0 where it is understood thaf(0)=0. The mini- 16 —43.097 947 02
mum might be reached gt—, or e(©)=ey+2u1+4u, 17 4561247178
whereeg is the ground state energy per site of the spin chain, 18 _48.690 967 68
independent from boundary conditions. The thermodynami- 19 _51'223 27887
cal analysis outlined above does not allow to distinguish be- '
tween the periodically closed sectt)=N and the open 20 —54.28417520
sector where, for instance, one singlet is introduced. In Ap- 21 —56.83226912
pendix B it is shown in detail that, when jafe(j) B —59.87751203
=lim;_..€(j), then the ground state indeed belongs to the 23 —62.438 582 09
sectorNP)=N. 24 —65.470 940 86

All said so far is true for any value df in Eq. (11). Yet, 25 —68.043174 37
a comparison o&(j) requires the knowledge & (j;1), in 26 —71.064 436 65
principle for anyj. The BA solvable case&), (b), (c) are 27 —73.646 381 47
perhaps not the most physically relevant, but they allow an 28 —76.657 982 12
efficient computation oE((j;1). In the following | will 29 —70.248 455 76
mostly concentrate on case), the purely biquadratic spin 1 30 —82.251 56507
chain. The information available for this chain is summa- 31 —84.849590 92
rized in Appendix A. The relevant results on finite size 32 —87.845 176 69
ground state energies are gathered in Table I. Some consid- 33 _90'449 938 29
erations on models with arbitrayare postponed to Sec. VI. '

It can be shown that theu(;,«,) plane is divided into 34 —93.43881050
four regions, corresponding to four different ground state 35 —96.049617 90
energies per site, hence four different phases. Sincand 36 —99.032461 69
w, Often appear in the combinationu2+4u, define 37 —101.648726 25

38 —104.626 126 62

M3=2u1t 4y, 39 —107.247 34191

_ _ _ 40 ~110.219 802 50
First, seek the g, 3) values for whiche(0) is lowest, that 41 —112.845529 74
is 0<e(j), j=1. It is convenient to rewrite this condition 42 11581348717
adding and subtracting a term containigg[whose numeri- 43 _118'443 34259
cal value is reported in EqA1)] 42 _121'407 178 95
def 45 —124.040 826 24

Ap,<so(j)+i(eotma), =1, so(j)=EJ(j;1)—jeo. 46 —127.000876 53
47 —129.638018 37

The sequencsy(j) is bounded, so a first necessary condition 48 —132.594578 84
is eg+ u3>0. Furthermore, from Table Iky(j) is increas- 49 —135.234 951 29
ing in the range Zj<51, with a minimum 50 —138.188 285 05
51 —140.831 652 64

so(2)=E{(2;1)— 2e=—4—2e,=1.5937. (20
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TABLE Il. Sequencesy(n), s;(n), ands,(n) up ton=>51.

n So(n) s1(n) Sz(N)

1 n.d n.d. n.d.

2 1.593 726 86 8 n.d.

3 2.390590 29 6 2

4 1.62590091 6.374 368 54 4.34232922

5 2.220593 33 5.88186191 3.76372382

6 1.637 92389 6.057 302 68 4.357 44252

7 2.124 02301 5.818 007 00 4.072412 60

8 1.643 896 69 5.923 14593 4.365505 38

9 2.060807 30 5.777 74089 4.190412 96
10 1.647 31963 5.849181 04 4.370493 00
11 2.01582361 5.749934 82 4,249 891 37
12 1.649 46076 5.802 34553 437387012
13 1.981 99387 5.729538 45 4,284 699 29
14 1.650 882 29 5.770031 65 4.376 30143
15 1.955529 65 5.713917 40 4.307 097 34
16 1.651 867 86 5.746 392 94 437813150
17 1.934 206 53 5.701558 97 4.322 494 36
18 1.652574 06 5.728349 14 4.379556 44
19 1.916 626 30 5.691 53099 4.333608 04
20 1.65309340 5.71412371 4.380695 87
21 1.901 86291 5.68322691 4.341937 23
22 1.65348343 5.70262019 4.381626 80
23 1.889 276 80 5.67623474 4.348 368 87
24 1.65378146 5.693 12529 4.38240103
25 1.878411 38 5.670264 53 4.353457 53
26 1.65401253 5.685 15493 4.38305458
27 1.868931 14 5.665 106 27 4.357 56578
28 1.654 19392 5.678 369 05 438361332
29 1.86058371 5.660 603 98 4.36093953
30 1.654 337 83 5.67252173 4.384 096 26
31 1.85317541 5.656 639 39 436375078
32 1.654 45307 5.667 43075 4.384517 67
33 1.846 554 90 5.65312114 4.366 123 06
34 1.654 546 12 5.662 958 21 4.384 888 48
35 1.840602 15 5.649 977 52 4.368 147 08
36 1.65462179 5.658 997 81 4.38521721
37 1.83522066 5.647 151 46 4.369 89082
38 1.65468372 5.655 466 30 4.38551055
39 1.83033186 5.644 596 94 437140610
40 1.65473470 5.652 297 56 4.38577388
41 1.825870 89 5.642276 49 437273306
42 1.654776 89 5.649 438 40 4.38601154
43 1.821784 90 5.640159 17 4.37390312
44 1.654 81197 5.646 84553 4,386 227 07
45 1.818028 11 5.638219 37 4.374941 37
46 1.65484125 5.644 483 40 4.386 423 40
47 1.814 562 84 5.636 43558 4.375 867 89
48 1.654 865 80 5.642 32250 4.386 602 97
49 1.811 35678 5.634 789 64 4.376 699 02
50 1.654 886 45 5.64033817 4,386 767 82
51 1.808 38229 5.633266 11 437744812
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What can be said foj>51? From Appendix Asy(j) has
different limits atj—c for j even €(* ™)) andj odd (> )

but they are both larger than4 —2e,. It seems, from Table

II, that so(j) at j=51 is already rather close to the
asymptotic regime, so one can safely, although not com-
pletely rigorously, conclude that(j), j=2, is minimal at
j=2 and that, sincey+ u3>0

inf(So(J) +j(€o+ p3))=5Sp(2) +2(€p+ p3) = —4+2pu3.
j=2
Hence, the three necessayd sufficient conditions for be-
ing in phase(0) are

eo+ ILL3>O

2u3—4p;>4  (phase(0)) (21)

p3—4pp>0.

The third condition comes frome(0)<e(1), considered
separately.

Phase(1). The conditions for its existence(1)<e(0)
ande(1)<e(j), j=2 are rewritten, from Eq(19)

m3—4u<0, uz+4u,>s(j),

def
si(j)=—2EN(j;1)/(j-1)

wheres;(j) is listed in Table Il, up tg =51. It is decreasing
in this range and it certainly is at largeln fact, from the
known numerical values(Al), (A8), and (A9), 2e
+2e(3*)<0; moreover

(1=2),

. —2epj—2e) ,
Sl(J)=j_—1+0(1/l)
2ep+2e(5) o
=—2e0——j +o(1fj)  (j—o).

Hence one can conclude that sugs;(j)=s,(2)=8 and
phase(1) appears when

u3—4u,<0, (phase(1)). (22

Phase(2). The conditions for its existence a&€2)<e(0),
€(2)<e(l) and e(2)<e(j), j=3, or, remembering that
EN(2;1)=-4

p3t4p>8

m3=2m2<2, u3t4uy<8, u3ztdu>s,(j) (j=3),

def
S2(1) = GEP (s 1) +4G+1)/(—j+2)  (j=3).
The sequencs,(j) is listed in Table Il and it is increasing up
to j=>51. It certainly is for largg where
3egj +3e5 ) +4(j+1)
—-j+2

S2())= +o(1/))

—6ey—3el5+)—12

=—3€0—4+ +O(1/J)
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because— 6e,—3e(>*)—12<0. This time, it is not so dom of choicek=0,1,2. It clearly spontaneously breaks
straightforward to guess the upper limit 8§(j). If s,(j) translational invariance. Finally, phaég), described by the
keeps increasing fof>51 up to the asymptotic regime sequencd ... t,s,t,st,s, ...) is rather different because
where one can rely on the previous equation, themothing fixes the state of each isolated triplet resulting in a
sup=3Sy(j)=lim;_ ;..S5(j) = —3e,—4=4.3906 and phase huge degeneracy,-3"V"2. Not only is translational invariance

(2) appears for spontaneously broken, but one is dealing w2 effec-
tively noninteracting triplets that can combine in a “ferri-
M3—2m<2, —3€—4<pzt+4u,<8 (phase(2)). magnetic” stateS,,,= N/2, or combine in local pairs yielding

(23 Sii=0 (these are only two of the many possibililiesn
On the other hand, one cannot rule out the possibility thaPther words, the ground state is not necessarily an eigenstate

sup=3Sy(j) lie slightly above and this would leave a tiny of St
window for an additional phase. However, the existence of Phaseg1) and(2) are examples of what has been called

phase(2) is unquestionable. mixed state(MS) in Ref. 6.
Finally, phasg(«), whose ground state is that of the pe-
riodic spin 1 chain, shows up when, for egcte(j) < e(x) V. EXCITATIONS

def

—lim, .€(j). Sincee(=)=eo+ s, this means The four phases display a rich variety of excitations. Most

of them, especially in the fragmented phagés, (1) and

eo+ 13<0, €p+ ma<(ma—4uy)2, (2) can easily be determined resorting to Ebg), therefore
only phase«) will be extensively treated in the following.
€t u3<So(j) —4uz (j=2). Appendix B gives a complete discussion of how, in phase

(), “local” perturbations of the biquadratic ground state
We already know thasy(j) is minimal atj =2, so the third  can only lead to an increase of energy.
condition amounts to ey+ uz+4u,<Sp(2)=—4-2¢€y A first kind of excitations, within the sectd®=N, are
which, by itself, implies the second inequality. Hence those of the biquadratic chain itself. Supposhgven, they
exist in even number and have a gage Appendix A for a
€t uz<0, mzt+4u,<—4-3e, (phase(x)) 28 more exhaustive discussipn

are the necessary and sufficient conditions that guarantee the AEgqe=0.173179.

appearance of phage). Appendix B completes the proof: A second kind of excitation, called TSSiplet-to-singlet

the ground state is that of the periodic spin 1 chain becaus%,pin flip) in Ref. 5, is obtained by introducing one singlet,

under conditions(24), local variations around the sector gectorNY=N-1. There isN ways to do so and the eigen-

N®=N only lead to an increase in energy. o value isN-fold degenerate. This implies that linear superpo-
Under the foregoing assumption on the upper limit of sestions of such states produce eigenstates of the shift opera-

quences,(j) there is no room for other phases because intor, all with the same energy. As a matter of fact,

equalities (21)—(24), with their separating lines, fill the gjispersionless excitations have already been found in akin

whole (u,u3) plane. The ground state energy per site isjadders? The energy difference isee Eq(16)]

€(0)=0 (phase (0)), €(1)=(uz—4uz)/2 (phase(l)),

€(2)=(—4+2ps—4u,)/3 (phase(2)) and e(=) =ey+ us AE(N)=E{)(N=1;1) ~EP(N; 1)~ ugz—4u,,

(phase(=)). It shows first derivative discontinuities at the

boundaries. AE= lim AE(N)=e® ) —ey— us—4pu,.
Here are some general features of the four phases. Define N—e0

the total spin From conditions(24) it follows that AE>2ey+4+e(s™)

N =0.1479 confirming that the energy can only be increased
Sot= 2 S, sfot: S Siort 1) by fragmentation. At the same time, that numerical value
k=1 shows that, at least near the boundary lines, the energy scale
is comparable, actually slightly smaller, thArfty,,. There-
fore fragmentation may be relevant to the low energy physics
f the ladder. Despite what might seem, such excitations de-
end on two degrees of freedom. In fact, as discussed in
Appendix A, the ground state of the fragment of triplets, i.e.,
e ground state of the open biquadratic chain with 1
odd sites, is only the lowest in a continuous band. This
adds a second degree of freedom to the singlet’s position.

In phase(>) the ground state is simply that of the periodic
biguadratic spin-1 chain. Supposimg even, it is a global

singlet and, it was conjectured in Ref. 13, its degenerac
should be 2. Phasg0) has certainly a unique ground state
and of courseS,;=0. As to phase(2), the ground state

is, again, a tensor product of local singlets, hence a glob
singlet, S=0. In fact, it is represented by the

sequence] ... st,t,s,t,t,s,t,t,s, ...) where neighboring o . »

triplets |t,,t, 1) are locked into the singlet ground state of Therefore, ifn is the singlet position

— (S-S 1)?. SupposingN=0 (mod 3 to avoid problems AE(a.n)= _ +e8) e — p.—a
with AFM seams, the ground state is threefold degenerate: (@.n)=e(a)~e(m) 0T Ham 2
rung singlets sit on rungs labeléd(mod 3, with the free- ae(0,m).
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Here e(a) — e( ), always positive, measures the excitation VI. OTHER VALUES OF @
energy of the single kink in the open spin chain and vanishes |, . .
at a—, see EQ.(A6). The n-dependence is, of course, It is easy to see that phase8), (1) and () will be

trivial. Nonetheless, it is at least plausible that under a smaI'Present no matter what \_/alu@ takes in Eq.(1D). In this
variation of coupling constants in Efl), for instance a dif- general situation, E16) will formally be the same but now

ferent relative weight betweert?) and1®), or 19 and®  With Eg)(l\'I}l);l;.a) and E{’(N;1;6), the energies of the
interactions, AE might acquire a genuine two—parameterSﬁ'n'lﬁhamﬁ’) W'tz acr)bltrahrye. T?_edprﬁof Of Sec. v ?oes
form. Since the triplets fragment is presumably locked into a'roUgh unchanged. One has to find the minimum o

spin-1 state(see Appendix A S,=1 for such states. (F)fieq- Co
Triplet-singlet excitations have been found in similar ladders, e(j;0)= Eo (1’1’6_’”]“3 4'“2, €(0;60)=0.
but they arise through a different mechanf. j+1
When two rung singlets are introducetl''=N—2),  The conditions for phasg) amount to
their energy becomes position dependent. If they sit on rungs
n;,n, andd=n,—n,;=1, then from Eq(16) Apur<so(j)+ij(eg(O)+uz) (j=1),
AE(N;ny,n,)=E{(d—1;1)+EP(N—-d—1;1 def
e : so(}) = EQ(j:1:0) — eq(6)]. (26)

—EP(N;1)— 25— 8up+ 42841
0 (Ni1)=2p3= 8ot 4uzdys Notice thatsy(j) is bounded. Set
If N—oo, keepingny, n, fixed [p(d) is the parity ofd] i i i
So(j1) = infse(j).

ol1 i 0

AE(d)
Of coursej; might be+. In this case, since lim,..sy(j)
p(d-1)] _ _ - . . .
So(d—1)—2eg+elP ™V -243-8u, (d>2),  —e65) the two possible surface energies, one &#$,)
={ —3ey+e>)—2u3—8u, (d=2), =min{e) e At any rate,sq(j,) is finite. A neces-
_ (s,+)_ B _ sary condition required by Eq26) is ey(6)+ u3>0, but
2epte 213~ 4utz (d=1).  Since one does not know the exact vajy®ne can only give
(25 sufficient conditions for the existence (§), namely
Notice that all these excitation energies are exact. It is easy eo(0)+uz>0 (phase(0)),
to see thahE(d)>0 always. It represents a sort of “static
interaction energy” between singlets, whose distance depen- Au,<infsy(j)+infj(eg(6)+ us3)
dence is governed bsy(d). The open chain surface energy j=1 j=1

is different for even and odd lengths, sg{d) has a uniform .
d-dependence only if the parity dfis fixed. Whend is even, =SolJ1) +€o(6) + 1,

AE(d) uniformly decreaseésee Table )l from a maximum  which can always be simultaneously satisfied by suitable val-
AE(2) to a minimum limy ., AE(d)=—2e,+2e(>") ues of (wo,m3).

—2u3—8u,. Whend is odd, the behavior is certainly uni- Likewise, for phase(>), the condition e(j)>e(6)
form for d=3, becausé\E(d) increases from\E(3) to a  + ug, (j=0), translates int@y(6) + ;<0 andey(6) + us
maximum limy_,AE(d)=2e®")—2ey—2u3—8u,. Still,  +4u,<s0(j), (j=1), which can both be fulfilled taking

AE(1) is not necessarily lower or higher thark(3), since _
€o(0)+u3<0, eo(0)+us+dur<so(ji) (phase(=)).

AE(3)—AE(1)=—4—2e—4pu, These conditions are necessary and sufficient, and are com-

patible.

whose sign is left undetermined from conditiof®}). The Finally, the inequalities fo1) are rewitten

short range behavior can be either repulsive or attractive.

A third possible kind of excitation, namedTSSF in Ref.
5, is produced by the insertion of a block of singlets,
represented by ... tt,t,s,s,s,s,t,t,t,t, ...). Now, from
(16), supposingN even as always

m3—4u,<0,

ZEg)(j :1;6) def . .
patdpo> = 5 =8, =2

AE(N;m)=EG(N=m; 1)~ mug—4u,— EP (N 1), Sequences, (j) is also bounded. Set;(j,)=sup=25:(j)-
The ensuing necessary and sufficient conditions are
AE(m)= lim AE(N;m)
N—oe 3= 4uo<0, usztdu;>si(j) (phase(l)).
=—(Mm—1)(ey+uz) +el>PM—e;— p—A4u,, On the contrary, it is in general impossible to draw conclu-

sions on the existence of other phases. For example, phase

which is positive under condition@4). At e+ ;=0 these (2) would be present if it were possible to fulfill simulta-

perturbations determine the instability versus phdye neously
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Ay —2pus>EP(2:1:0),  ua+au,<—2E8(2:1;0), translationally invariant or dimerized
N
M3t A4us>S5(]), 27 |¢8”V)(u)>=TrH gn(U),
n=1
def ;
s2() = (I +1EQ(2;1:6) N2

(dim) _
C3EPGL:0)(-2) (j=3). [ (Ug,Up)) Trnl;[lg2n—1(ul)92n(u2)r

Notice that s,(j) is also bounded. If we seb,(js3) u|s),+]0), _\/§|1>

=sup=3S,(j), the second and the third inequality in Eq. gn(u)= "

(27) are compatible if and only if V2|-1),  uls),—|0),
52(j2)<—2Eg)(2;1;0). 28) For models with translationally invariant MP ground states,

u=0 andu=< are the only points which have a significant
At least for #=0, ey(#) has been determined to a great overlapping with the ladders p_resented hgreuﬁeto the MP
accuracy and one can attempt to estimate whethe(Z8y. state is made up of rung triplets and is, effectively, the

holds. It is known thaf ground state of the AKLT spin-1 chain. That is what one gets
for Eq. (11) by setting ta#=1/3 and keepingt;, u, small
€o(0=0)=—1.401484. enough. Now|0)., is also made up of triplets, but it is that of

On the other hand, not many data seem to have been pque biguadratic spin 1 chain, hence a different kind. Further-

: . . . more, |0).qy, |0 and|0),, all contain rung singlets and
lished forE{")(j;1;0) even at smalj. Diagonalization of Eq. are ce|r_tz>a<i(r)1>ly |r731<11</>/(i”")((|)7>><2>Conversely aftegrj suitgable or-
(3), with free boundaries, can easily be carried out numeri-_~.”" . 1o ()7 Ny ' .

cally up to 7 sitedas a test, | diagonalized the periodic chain mallzatlon, the limit| 5™ (<)) is made up entirely of rung

as well and compared the results with those published in Reﬁlnglets. There is only one such state so it must coincide with

19). It is sufficient to examine the sect&,,=0 because, D)) - Of course excitations may differ according tfo the

: . . . . detailed form of the Hamiltonian. At any ratﬁ))m and
owing to SU(2) invariance, all possible eigenvalues are : . . =
GYE P . |0)2y break translational invariance so they can never be of
bound to appear there. Now;’(2;1;0)=—2, while the (inv)

M7 is found to have th imate val the form|y™ (u)) for any u. For the same reasofQ) ),
qulugegggsf%%}{)jﬁ%g%nl 90 ;Veth © approximate Vaiues , nich is invariant under a three-rung translation, can never
{11 - e 1.9§0Furthermore be of the form| "™ (u,,u,)) either, since the latter is in-

lim s,(j )= — 2— 3e,=2.204 46. variant under a two-rung translation. But, within the Iayge

oo lowest energy eigenspace of phd4¢, at least one vector is

) ] ] ] ] in MP form. To show it, notice that at finite, nonvanishing
Itis of course impossible to draw a rigorous conclusion from,,5|,es ofuy, Uy, |z/;(‘)d'm)(u1,u2)) is a linear combination

these results, but it looks extremely likely that inequality hecessarily containing kets with all triplets and the ket with
(28) is true and therefore phag®) is present also fo® all singlets. The only way to reprodu¢§><1> is to setu,
=0. =0 and to takeu,— after proper normalization of
02n(Uy). The outcome is a linear combination of kets which
VII. DISCUSSION have singlets on even rungs and triplets on odd rungs, ex-
IJsetctly like |Q><1>. It should be observed though the MP ap-
roach only in a few cases allows us to find the whole spec-
rum, as it is instead possible from BA for Hamiltoniél).
Finally, a trimerized ground state similar but not identical
to |Q><2> has been found in Ref. 7 for a generalized spin-1
hain. It should be noted though that their chain contains
interactions beyond nearest neighbors, so that the global sin-
glet is obtained as a direct product of intertwined local sin-
glets constructed out of three spin-1, a different configuration
from what appears here.

It is useful to compare the ladders considered here witl
those studied in previous papers. To shorten notation, | wil
denote by|0),, the ground state of phase), or one of
them if it is degenerate. In the work of Niggemainal. simi-
lar methods were employed but for different systems, namel
the mixed Heisenberg chains. Perhaps the most closely r
lated ladders are that of Xiahwhich is Eq.(11) for =0
and u,=0 (perturbations of this ladder were considered in
Refs. 20,21 and that of Wan§.Xian finds only two phases,
(0) and («) in the present notation, but, singe=0, his
ground statd9><w> is that of the spin 1 Heisenberg chain.
The absence of phasés) and(2) can be understood when ACKNOWLEDGMENTS
one notices that even for the case considered in this paper, | gm grateful to M. Raciti and F. Riva for useful discus-
6= —m/2, phaseg1) and(2) would be missing without the gjons.
rung-rung interactiori (%), ,, as can be seen by setting
=0 in Egs.(22) and(23). Wang instead, considering the full
ladder(11), points out the existence of MS phases.

The ground state of a wide class of @Jinvariant lad- The purely biquadratic spin-1 chain is integrable for
ders has the matrix-produ@¥P) form.* Such states can be periodic® and freé®>?® boundary conditions. The definition

APPENDIX A: THE BIQUADRATIC SPIN-1 CHAIN
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n

of the relevant elliptic parameters differs in the two cases, as 1 y
treated in the literature. For the sake of readability, a Landen —@)( a; ;5) TN E (O(aj—ay;y)
transformatiof* has been applied to the results of Ref. 13, in m T k=1k=]
order to make notations compatible. |
Define an elliptic modulus from the relation +O(aj+ag;y)= NJ i=1...n,
K'(k) 1 3-\5
——=—In(1lq), q=—5—, i
K(k) = (L), a 2 def sinf<x+—a
. [}
whereK (k) andK'(k) are the elliptic integrals of first and O(a;x)=—iln T ial =2arcta76 tanzcothx),
second kind. The ground state energy, which is the same in sin?-(x— 7)
the two cases, is then
(A5)
Bl o d "
=—1-—|1+4 =—-27 1 .
€o 2 nzl 1+g2" 968@ E= E(N—1)coshy—2 smhy_z ®’< aj %)
(A1) =
For the periodic case, energy and momentum of the excitalhe function® («;x) is defined to be continuous for real
state belongs to the sectar=N/2 (N even or n=(N
2v 2v —1)/2 (N odd. In both cases, in Eq(AS5), Ij=j, j
AE=, €(p), AP=2 pi, =1,2...n. Data in Table | have been obtained by numeri-
=1 =1

cally solving Eq.(A5) with this choice of integers.
Excitations are, in general, gapf(rio dispersion relation
\/— can be written here because linear momentum is not con-

- 5
E(p):7|<(k)\/k’2+kzsin, k?+k?=1. (A2)  served:

There is a gap in the spectrum 2v
AEIE e(aj),
AE 4o=2€(0) =t
5 K(k K(k
=2£K(k)k’ e(a)=2 sinhyﬁdn( ( )a;k), ae(0.m),
a aa o
+ o 2
1-q" +o0 2
=45 =0.1731B... . A3 1-q"
"1;[1 (1+q”) ") AEgay=2¢(m)=5]] ) *
n=1\1+q"

The free boundary case has been solved by noticing that the . )

spectrum is the same, up to degeneracies, as that ofxtZe ~ as in Eq.(A3). WhenN is odd, though, the ground state is at

spin-1/2 chain with a boundary fiefd the bottom of a one-parameter, continuous, gaplgsshe
N—oo limit) band of eigenvalue®. Within this band

N—1
HXXZ:_Egl (0k0k+1F Okok, 1 — COShyooy, 1) AE(a)=€(a)—e(m), aec(0m). (A6)
sinhy This may be interpreted by saying that the ground stat¢ at

(o5—0o%), (A4)  odd is not the “vacuum,” but it contains one partidlieink)
2 which can take up a whole band of dynamical states.
Surface energies for open antiferromagnetic chains differ,
7 _ in general, when the limiN— is taken forN even (& ))
= —_—— —_— = 7 !
Epo=Bxxz—z(N—1), g=e"". or N odd €®7)). They are defined by
The mapping, valid for anil, works because both Hamilto- Eo(N)=eoN+e55) +0(1) (N—) (A7)
nians can be written as sums over generators of the same
Temperley-Lieb algebr&. Consequently, ground state ener- and, for the case at hand, they can be computed exactly from

gies of Eq.(A4) are for anyN identical, up to a shift, to  Eq. (A5). For the biquadratic chain, one firfd$®
ground state energies of the biquadratic chain with free

boundaries. In turn, EA4) has been solved by coordinate +% _on__4n
Bethe ansatZ; so eigenvalues are found from solutions of a et =1425> u21_655 0092 (A8)
set of coupled trascendental equations n=1 1+
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+®  2n_ 4n t* 2n+1
e(sv*>:1+E 1+4, a9 4
2 =1 1+q4n =0 1+q4n+2
=1.7415986. (A9)

APPENDIX B: GROUND STATE PROOF FOR PHASE (x)

It has to be proven that, within the boundaries of region
(24), the ladder ground state indeed belongs to the sect

N®=N, therefore it is just the ground state of Hg) at 6

ofhe bracketed term isy(

PHYSICAL REVIEW B 64 094416
SinceN{V=N—-N©@-3"2IN( ande® =gl ")

n—-1
AE>J§1 (EP N 1) —eoNM) — (g + ug)N©

+els—any,. (B1)

N{M). Actually so(j) has been de-
fined forj =2, whereas in EqB1) N{" can be 1 for somg

— /2. Here it will be shown that it is the lowest energy The definition ofsy(j), though, makes sense fpr 1, too. In

state within the class which encompasses the sectoffal casesy(1)=-—e,>s¢(2), so it is also true that

(N N where (N}, and {NO}ZF are arbi-
trarily large but kept finite adN—. In other words, only
one triplet fragmentN{", has a diverging size in the ther-

modynamic limit, as dictated by the analysis of Sec. IV. It

will be assumed that ipf ;Sq(j) =So(2)-
From Eq.(16)

n—1
AE(N)= _Zl EP(ND; 1) +EP(NDY ;1) + usN® —4np,
=

—[EP(N; 1)+ uaN].
WhenN—oe, settingAE=Ilimy_,.AE(N)

n—-1
(1)
AE= le ES(N(Y; 1)+ eoN () + elsPNaI— 1y ;N ©)

_4n/.L2_eoN.

|nfj 2150(] ) = 30(2) . Then

AE=(n—1)sy(2)+e ") —(eg+ uz)N©O—4nu,>nsy(2)

—(eg+ ua)NO—4nu,
because(>*)>s,(2). Next, notice that
NO@=n

because to create a new fragment at least one singlet must be
added. So, settiny®@=n+AN©,

AE> —(eg+ pu3) AN@+n(so(2) —€g— pa—4uy),

which is positive due to inequaliti€?4).

*Email address: Giuseppe.Albertini@mi.infn.it

= Dagotto and T. M. Rice, Scien@Y1, 618(1996.

2y, Wang, Phys. Rev. B0, 9236(1999.

3S. Albeverio, S. M. Fei, and Y. Wang, Europhys. Let#, 364
(1999.

4A. K. Kolezuk and H. J. Mikeska, Phys. Rev. Le80, 2709
(1998; Int. J. Mod. Phys. Bl2, 2325(1998.

5Y. Xian, Phys. Rev. B52, 12 485(1995; H. Kitakani and T.
Oguchi, J. Phys. Soc. Jp65, 1387(1996.

Y. Wang, Int. J. Mod. Phys. B3, 3323(1999.

7J. Sdyom and J. Zittartz, Europhys. Le0, 389 (2000.

8A. A. Nersesyan and A. M. Tsvelick, Phys. Rev. Lét8, 3939
(1997.

9, Wang, J. Dai, Z. Hu, and F. C. Pu, Phys. Rev. L&8, 1901
(1997.

10| Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.
59, 799 (1987; Commun. Math. Physl15 477 (1988.

G, V. Uimin, Pis’'ma zh. Ksp. Teor. Fiz[JETP Lett.12, 225
(1970]; B. Sutherland, Phys. Rev. B2, 3795(1975.

24, M. Babuijian, Phys. Lett90A, 479 (1982; Nucl. Phys. B:
Field Theory Stat. SysR19FS7], 317(1983; L. A. Takhtajian,
Phys. Lett.87A, 479(1982.

13A. Kltimper, Europhys. Lett9, 815 (1989; J. Phys. A23, 809

(1990.

4. Mezincescu, R. I. Nepomechie, and V. Rittenberg, Phys. Lett.
A 147, 70 (1990.

15M. N. Barber and M. T. Batchelor, Phys. Rev4B, 4621(1989.

18H. Niggemann, G. Uimin, and J. Zittartz, J. Phys.: Condens. Mat-
ter 9, 9031(1997; 10, 5217(1998.

M. E. Fisher and W. Selke, Phys. Rev. Ldi#, 1502(1980; V. L.
Pokrovsky and G. V. Uimin, J. Phys. T, 3535(1978.

185, R. White and D. H. Huse, Phys. Rev4B, 3844(1993.

194, W. Blote, Physia B & C 93B, 93 (1978; O. Golinelli, Th.
Jolicceur, and R. Lacaze, Phys. Revo® 3037(1994).

20T, Hakobyan, J. H. Hetherington, and M. Roger, Phys. Re§3B
144433(2001).

2z, Weihong, V. Kotov, and J. Oitmaa, Phys. Rev5B 11 439
(1998.

22T, Kennedy, J. Phys. &5, 2809(1992; M. T. Batchelor and C.
M. Yung, cond-mat/940607@inpublished

23M. T. Batchelor and C. J. Hamer, J. Phys28, 761 (1990.

2R, J. Baxter,Exactly Solved Models in Statistical Mechanics
(Academic, New York, 198R2

25E, C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and G.
R. W. Quispel, J. Phys. R0, 6397(1987).

26G. Albertini, cond-mat/001243@unpublishedl

094416-11



