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Phase diagram of fragmented SU„2…-invariant spin ladders
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A two-parameter family of quantum spin ladders with local bilinear and biquadratic interactions, solvable by
mapping onto fragments of integrable spin 1 chains, is studied. Phase diagram, consisting of four phases,
ground state properties, and some excitations are discussed. Modulated structures of different periodicity, in
particular a trimerized phase, are shown to appear. Some results are extended to the ladder associated to the
most general spin 1 chain.
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I. INTRODUCTION

Integrable models have provided extremely valuable
sight into the physics of one-dimensional quantum s
chains. There is a substantial lack of exact results for an
gous two-dimensional systems and the solution of quan
spin ladders might provide a first step in that direction. B
sides, spin ladders are currently experimentally access
interesting in their own and possibly related to high-Tc
superconductivity.1

It has been established that the basicn-leg Heisenberg
ladders, with bilinear exchange interactions along rungs
legs, are gapful~spin-liquid state! for n even and gapless fo
n odd.1 These ladders do not seem to be integrable. On
other hand, examples of integrable ladders, containing a
tional biquadratic interactions, have been found and sol
by some form of Bethe ansatz~BA!.2,3 Luckily, biquadratic
interactions do arise in physically realizable systems, an
large class of these generalized, but still SU~2!-invariant lad-
ders, have been proven to have a matrix-product~MP!
ground state.4 Still, the MP approach determines the grou
state but, with the exception of few lucky cases, the wh
set of excitations remains unknown.

In this paper, the following two-parameter family o
SU~2!-invariant ladder HamiltoniansH5(k51

N Hk,k11 will
be studied

Hk,k11~m̃1 ,m̃2!5 1
2 ~sk•sk111tk•tk111sk•tk111sk11•tk!

22„~sk•sk11!~ tk•tk11!1~sk•tk11!

3~sk11•tk!…1m̃1~sk•tk1sk11•tk11!

1m̃2~sk•tk!~sk11•tk11! ~1!

and the eigenvalue problem solved for anym̃1 , m̃2. Heresk
andtk are spin-1/2 matrices sitting on the first and the sec
leg, respectively. Hamiltonian~1! is actually a special poin
in a wider three-parameter class for which the relat
strength of the first two terms is left arbitrary@see Eq.~11!#.
All points in this manifold have the property of being redu
ible, through the introduction of the composite rung spin

Sk5sk1tk ~2!

to the general spin-1 chain
0163-1829/2001/64~9!/094416~11!/$20.00 64 0944
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H0~u!5 (
k51

N

„cosuSk•Sk111 sinu~Sk•Sk11!2
…. ~3!

In particular Eq.~1! corresponds to the BA solvable pure
biquadratic spin-1 chain,u52p/2. Selecting u50, the
Heisenberg spin-1 chain, would remove the second brac
in Eq. ~1!.5 This seems physically more appealing but p
vents the detailed analysis allowed by BA, since such a ch
is not integrable. Choosingu5p/2 would yield the case con
sidered by Wang.6 Details about definitions and exact diag
nalization are the subject of Secs. II and III.

The system defined by Eq.~1! has four phases, denote
^0&, ^1&, ^2&, and ^`& in the following, connected by firs
order transition lines, namely discontinuities in some fi
order derivative of the ground state energy per site. Pha
^1& and ^2& are examples of modulated structures, cal
‘‘mixed state’’ ~MS! in Ref. 6, that is phases where triple
and singlets of Eq.~2! alternate with some kind of periodic
ity. In ^2& ~three-rung periodicity!, the ground state is a
threefold degenerate global singlet where two rung triple
locked into a singlet, alternate with isolated rung single
Such phase could be called trimerized. A trimerized grou
state has been shown to occur in a generalized spin-1 ch7

not of the form~3!, but, as will be discussed in Sec. VII, th
two states are not quite the same. Phase^1& has two-rung
periodicity and a huge (;3N/2) ground state degenerac
These results are proven in Sec. IV.

In Sec. V, exact elementary excitations are examined
the phase whose ground state is, effectively, that of the
quadratic chain, also a global singlet but made up of ru
triplets. The simplest ones are created by introducing
rung singlet and leaving the remainingN21 triplets locked
into the ground state of the biquadratic chain with free en
If N21 is odd, such a ground state is presumably an SU~2!
triplet containing one dynamical kink and one finds a band
singlet-triplet excitations, depending on two degrees of fr
dom, whose energy is degenerate in the singlet posit
Such excitations had been found in a related ladder,5 but
their dependence on two degrees of freedom had not b
discussed. On the other hand, similar ladders including
quadratic interactions are known to have two-parame
singlet-triplet excitations,8,4 but their nature is different, be
ing a pair of kink-antikink over a dimerized ground stat
which is not what happens here.
©2001 The American Physical Society16-1
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GIUSEPPE ALBERTINI PHYSICAL REVIEW B64 094416
In Sec. VI it is shown that phases^0&, ^1&, and^`& are
ubiquitous, i.e., they appear for each member of the wi
three parameter family of spin ladders associated to the
eral spin-1 chain~3!. Section VII presents a discussion an
comparison with related works.

For the sake of completeness, the Appendix contain
review of known results on the biquadratic chain.

II. DEFINITION OF BASIC INVARIANTS

Each elementary plaquette involves four spins, s
(s1 ,t1 ,s2 ,t2). If only SU(2) invariance is required, the mo
general Hermitian plaquette HamiltonianH1,2 is a linear
combination with real coefficients of 14 Hermitian invar
ants. If, beside SU~2! invariance, one requires symmetry u
der the exchange of the two legs and symmetry under
exchange of the two rungs, symmetries implemented by
eratorsC andP

CsiC5t i , ~ i 51,2!, C251,

Ps1P5s2 , Pt1P5t2 , P251,

thenH1,2 is a linear combination with real coefficients of
Hermitian invariants.

The proof goes as follows. The local plaquette Hilb
space isH1,2 .V1

(s)
^ V1

(t)
^ V2

(s)
^ V2

(t).C16. It breaks into
the orthogonal sum of SU~2! multiplets: one quintuplet~dim
55!, three triplets ~dim59! and two singlets~dim52!.
Within each multiplet, all states are obtained by applicat
of the lowering operatorS1,2

2 to the highest weight vecto
~h.w.v.! v (s), where

S1,25s11s21t11t2 , S1,2
6 5S1,2

x 6 iS1,2
y ,

S1,2
1 v (s)50, S1,2

2 v (s)5s~s11!v (s), v (s)PH1,2.

H1,2 is SU~2!-invariant, i.e.,@H1,2,S1,2#50, therefore it maps
h.w.v. into h.w.v. of the same spin. So, spin-2 h.w.v. must
mapped into itself, each spin-1 h.w.v. will in general
mapped into a linear combination of all three spin-1 h.w
and the same happens for the two spin-0 h.w.v.. Altoget
imposing hermiticity, 6 real parameters plus 4 comp
~hence 8 real! ones. The total spinS1,2 commutes withC and
P, so h.w.v. can be labeled byC andP eigenvalues. Define
with self-explanatory notation,

e05u↑↑&s , f 05u↑↑& t , ē05u↓↓&s , f̄ 05u↓↓& t ,

e15u↓↑&s , f 15u↓↑& t , e25u↑↓&s , f 25u↑↓& t .

The 6 h.w.v.v (s) will be chosen to be
09441
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v (2)5e0f 0 ~2,1,1!,

v1
(1)5e0f 12e0f 21e1f 02e2f 0 ~1,1,21!,

v2
(1)5e0f 11e0f 22e1f 02e2f 0 ~1,21,1!,

v3
(1)5e0f 12e0f 22e1f 01e2f 0 ~1,21,21!,

v1
(0)5e1f 11e2f 22e1f 22e2f 1 ~0,1,1!,

v2
(0)5e1f 11e1f 21e2f 11e2f 222e0 f̄ 022ē0f 0 ~0,1,1!.

The three numbers in the right column are eigenvalues
S1,2, C, P. If C and P symmetries are imposed,H1,2 maps
v (2) into itself and eachv i

(1) ( i 51,2,3) into itself, while its
action on the span of$v i

(0) ; i 51,2% is determined by 4 rea
numbers

H1,2v
(2)5m(2)v (2), H1,2v i

(1)5mi
(1)v i

(1) , i 51,2,3,

H1,2v i
(0)5(

j 51

2

mji
(0)v j

(0) , i 51,2.

This proves that the generalH1,2 is a linear combination with
real coefficients of 8 linearly independent invariants~notice
incidentally that h.w.v.v i

(0) are orthogonal but unnormalized
iv2

(0)i253iv1
(0)i2, so m12

(0)53m21
(0)* ). One can choose 7 o

them to be three bilinear~Heisenberg! terms

I 1,2
(1)5s1•s21t1•t2 , ~4!

I 1,2
(2)5s1•t11s2•t2 , ~5!

I 1,2
(3)5s1•t21s2•t1 , ~6!

three biquadratic~plaquette! terms

I 1,2
(4)5~s1•s2!~ t1•t2!, ~7!

I 1,2
(5)5~s1•t1!~s2•t2!, ~8!

I 1,2
(6)5~s1•t2!~s2•t1!, ~9!

and the identityI. An eighth one is necessary to have
complete set, but it involves more complicated combinatio
of the basic spins and it will not be needed in the followin
To show that the six in Eqs.~4!–~9! plus the identity are
indeed linearly independent, write

H1,25c0I1 (
k51

6

ckI 1,2
(k) .

It is a matter of easy algebra to find the action of the ba
invariants~4!–~9! on the h.w.v., resulting in

m(2)5c01
c11c21c3

2
1

c41c51c6

16
,

m1
(1)5c01

2c11c22c3

2
1

23c41c523c6

16
,

m2
(1)5c01

c12c22c3

2
1

c423c523c6

16
,

6-2
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m3
(1)5c01

2c12c21c3

2
1

23c423c51c6

16
, ~10!

m11
(0)5c01

23c1

2
1

9c413c513c6

16
,

m22
(0)5c01

c122c222c3

2
1

c417c517c6

16

m21
(0)5

c22c3

2
1

2c51c6

8
,

and m12
(0)53m21

(0) . The vanishing of all$mi
(s)% implies the

vanishing of all$ci%, proving linear independence of the in
variants chosen.

Scalar products of the rung spin will now be expressed
terms of these invariants. Clearly

S1•S25I 1,2
(1)1I 1,2

(3) ,

while the biquadratic term (S1•S2)2 seems to involve more
complicated invariants. But since it is invariant underC and
P, it must be a linear combination of the 8 basic ones. Ac
ally, the six~4!–~9! and the identity are sufficient: from Eq
~10!

~S1•S2!25
3I
4

2
I 1,2

(1)

2
1I 1,2

(2)2
I 1,2

(3)

2
12I 1,2

(4)12I 1,2
(6) .

Consider now the one-parameter spin ladder Hamiltonian~3!
where each spinS is the composite object defined in Eq.~2!.
Two parameters can be added after noticing that the cha

Q15 (
k51

N

Sk
2 , Q25 (

k51

N

Sk
2Sk11

2

commute withH0(u) for any u. This can easily be checke
by a direct calculation. Finally, the Hamiltonian to be studi
is

H~u,m1 ,m2!5H0~u!1m1Q11m2Q2

5 (
k51

N F S cosu2
sinu

2 D ~ I k,k11
(1) 1I k,k11

(3) !

12 sinu~ I k,k11
(4) 1I k,k11

(6) !

1~sinu1m113m2!I k,k11
(2) 14m2I k,k11

(5) G
1NS 3 sinu

4
1

3m1

2
1

9m2

4 D . ~11!

Equation~1! is Eq. ~11!, up to a constant shift, if one take
u52p/2 and

m̃15211m113m2 , m̃254m2 . ~12!

In the following, parameters (m1 ,m2) will be adopted to de-
scribe the model. It is always possible, through Eq.~12!, to
revert to the original ones (m̃1 ,m̃2).
09441
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One further remark. Since each rung spaceVk
(s)

^ Vk
(t) car-

ries a spin1% 0 representation, not just spin 1, (Sk•Sk11)3 is
linearly independent fromSk•Sk11 and (Sk•Sk11)2. But,
from Eq. ~10!, it can be seen that (Sk•Sk11)3 is a linear
combination of the first two powers,I, I k,k11

(2) and I k,k11
(5) ,

that is why adding a cubic term toH0(u) does not generalize
Eq. ~11!.

The composite rung spin has, of course, been introdu
in several previous works. It lies behind the physical id
that even-legged and odd-legged Heisenberg ladders sh
be in different phases.1 More closely to this work, it has bee
used4 to map two-leg ladders into the AKLT chain10 @Eq. ~3!
at tanu51/3]. Earlier, Xian and then Kitakani and Oguch5

had studied Eq.~11! at u50, but without the rung-rung in-
teractionI k,k11

(5) which is actually responsible for the rise o
two new phases. More recently, the full spin ladder~11! has
been related to Eq.~3! and studied foru5p/4.6

III. FRAGMENTATION AND BETHE ANSATZ

ChargesQ1 and Q2 have a simple physical meaning. I
each four dimensional rung spaceVk5Vk

(s)
^ Vk

(t).C4 one
introduces the singlet-triplet basis$us&k ;ut&k ,t521,0,1%
consisting of the singlet and the triplet of the rung spin~2!,
i.e.,

Sk
2us&k50, Sk

2ut&k52ut&k , Sk
zut&k5tut&k .

ThenQ1/2 counts the number of triplets andQ2/4 counts the
number of pairs of neighboring triplets.

Now consider the 3N dimensional subspace~of the total
4N- dimensional Hilbert space of the ladder! spanned by
ut1 ,t2 , . . . tN&, (tk521,0,1). In this sectorQ1 and Q2 are
constant, at 2N and 4N respectively, andH0 acts effectively
as a spin-1 chain with periodic boundary conditions~p.b.c.!.
Such chain is Bethe ansatz solvable in three cases:22 ~a! u
5p/4, ~b! u52p/4 and ~c! u52p/2 In case~a! it is the
SU~3!-invariant Sutherland-Uimin chain,11 in case ~b! the
Babujian-Takthajian chain12 and in case~c! the purely biqua-
dratic chain.13

Next, consider states containing one singlet andN21
triplets. Eigenvalues of the two conserved charges are fi
at

Q152~N21!, Q254~N22!

regardless of triplet’s position. If the singlet is, say, on t
Nth rung ~due to p.b.c. the singlet’s position is actually im
material!, H0 acts on these vectors like

H0. (
k51

N22

@cosuSk•Sk111 sinu~Sk•Sk11!2# ~13!

that is exactly like a spin-1 chain of lengthN21 and free
boundary conditions~f.b.c.!. The singlet can be positione
anywhere, it just opens a fracture in a ring of spins; con
quently each eigenvalue of Eq.~13! appears with anN-fold
degeneracy in the ladder spectrum. More importantly,
spectrum of Eq.~13! can be found exactly by Bethe ansat
at least in cases~a!, ~b!, and ~c! which have been more o
6-3
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less extensively studied for f.b.c.9,14,15The opposite situation
arises when all rungs are singlets. There is only one s
state and its eigenvalue is trivially zero.

Between these extreme cases, and orthogonal to th
there is all possible intermediate situations, characteri
of
d
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t

s
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by alternating fragments of triplets and singlets. Sectors
labeled by a sequence of positive integers, the leng
of fragments, $N1

(0) ,N1
(1) ,N2

(0) ,N2
(1) , . . . ,Nn

(0) ,Nn
(1)%, with

( j 51
n Nj

(0)5N(0), ( j 51
n Nj

(1)5N(1) and N(0)1N(1)5N. Each
sector is spanned by the 3N(1)

vectors
q.

ote

of
On all these basis vectors

H0uf&5(
j 51

n

H0
( j )uf&,

H0
( j )uf&5us,s, . . . ,s&N

1
(0)^ ut1

(1) ,t2
(1) , . . . ,tN

1
(1)

(1)
&N

1
(1)^ . . .

^ H0
( j )ut1

( j ) , . . . ,tN
j
(1)

( j )
&N

j
(1)

^ us,s, . . . ,s&N
j 11
(0) ^ . . . ,

whereH0
( j ) acts on the string of triplets like a spin-1 chain

lengthNj
(1) and f.b.c. Calluc&N

j
(1) any of its eigenvectors an

Ej (Nj
(1)) the relevant eigenvalue. Then

uc&5us,s, . . . ,s&N
1
(0)^ uc1&N

1
(1)^ us,s, . . . ,s&N

2
(0)^ . . .

^ ucn&N
n
(1) ~14!

is an eigenvector ofH0 with eigenvalue

E5(
j 51

n

Ej~Nj
(1)!. ~15!

Vectors in Eq.~14! provide a complete set for the who
ladder to the extent the vectorsuc j&Nj

provide a complete se

of eigenvectors for the spin-1 chain of lengthNj , so diago-
nalization of the spin-1 chain with p.b.c. and f.b.c. provide
complete solution to the diagonalization problem of the s
ladder ~11!. In general this is only a partial simplification
Instead, in cases~a!, ~b!, and~c! eigenvalues can in principle
be found, for all fragments, by the suitable Bethe ansatz,
Ref. 6 for case~a!. What happens here is very similar, act
ally almost identical, to what happens in the mixed Heis
berg chains studied by Niggemannet al.16 There, composite
rung spins alternate with single spins and, very much lik
happens here, fragmentation takes place when one rung
is in a singlet state. In the following I will partly adopt no
tation and methods introduced in their work.
a
n

ee

-

it
pin

IV. THE GROUND STATE PROBLEM

To identify the ladder ground state one must minimize E
~15!. An easy first step is to choose, in Eq.~15!, the lowest
eigenvalue for each fragment. To fix the notation, den
with E0

(p)(N;1) the lowest eigenvalue of theN-site spin-1
chain with p.b.c. and withE0

( f )(N8;1) the lowest one for the
N8-site chain with f.b.c. Then, in a sector$Nj

(0) ,Nj
(1)% j 51

n the
lowest eigenvalue is

E55 (
j 51

n

„E0
( f )~Nj

(1) ;1!1~2m114m2!Nj
(1)24m2…,

N(1)Þ0,N,

E0
(p)1~2m114m2!N, N(1)5N,

0, N(1)50.
~16!

Following Ref. 16, a spin 0 rung is joined to, say, the right
each triplets fragment, bringing its length toj 11. Setnj to
be the number of triplet fragments of lengthj 11 ~i.e., j
triplets plus one singlet at the edge!. Consider, for the time
being, only fragmented configurations, i.e.,N(0).0, speci-
fied by $n0 ,n1 ,n2 , . . . % which must satisfy

(
j 50

N21

~ j 11!nj5N.

Their energy is 0 forn05N, otherwise

E~n0 ,n1 , . . . ,nN!

5 (
j 51

N21

„E0
( f )~ j ;1!1 j ~2m114m2!24m2…nj ,

where E0
( f )(1;1)50 by definition. In the limitN→` the

densitieswj5nj /N must be chosen to minimize

lim
N→`

E

N
5e~w0 ,w1 ,w2 , . . . !

5(
j 50

1`

„E0
( f )~ j ;1!1 j ~2m114m2!24m2…wj ,

~17!
6-4
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(
j 50

1`

~ j 11!wj51. ~18!

As observed in Ref. 16, the problem~17!, ~18! has arisen in
classical statistical mechanics of systems with compe
interactions.17 Owing to the linearity of Eq.~17! in the pa-
rameters$wj%, the extremum occurs when onewjÞ0 and all
others are zero. Then

wj5
1

j 11
, wk50 ~kÞ j !

and the ground state energy per site is

e5e~ j !5
E0

( f )~ j ;1!1 j ~2m114m2!24m2

j 11
. ~19!

The relevant phase is denoted^ j &. One is left with the task of
determining the minimum in the sequence of real quanti
~19!, j >0 where it is understood thate(0)50. The mini-
mum might be reached atj→`, or e(`)5e012m114m2
wheree0 is the ground state energy per site of the spin cha
independent from boundary conditions. The thermodyna
cal analysis outlined above does not allow to distinguish
tween the periodically closed sectorN(1)5N and the open
sector where, for instance, one singlet is introduced. In A
pendix B it is shown in detail that, when infj >0e( j )
5 lim j→`e( j ), then the ground state indeed belongs to
sectorN(1)5N.

All said so far is true for any value ofu in Eq. ~11!. Yet,
a comparison ofe( j ) requires the knowledge ofE( f )( j ;1), in
principle for any j. The BA solvable cases~a!, ~b!, ~c! are
perhaps not the most physically relevant, but they allow
efficient computation ofE( f )( j ;1). In the following I will
mostly concentrate on case~c!, the purely biquadratic spin 1
chain. The information available for this chain is summ
rized in Appendix A. The relevant results on finite si
ground state energies are gathered in Table I. Some con
erations on models with arbitraryu are postponed to Sec. V

It can be shown that the (m1 ,m2) plane is divided into
four regions, corresponding to four different ground st
energies per site, hence four different phases. Sincem1 and
m2 often appear in the combination 2m114m2 define

m352m114m2 .

First, seek the (m2 ,m3) values for whiche(0) is lowest, that
is 0,e( j ), j >1. It is convenient to rewrite this conditio
adding and subtracting a term containinge0 @whose numeri-
cal value is reported in Eq.~A1!#

4m2,s0~ j !1 j ~e01m3!, j >1, s0~ j ! 5
de f

E0
( f )~ j ;1!2 je0 .

The sequences0( j ) is bounded, so a first necessary conditi
is e01m3.0. Furthermore, from Table II,s0( j ) is increas-
ing in the range 2< j <51, with a minimum

s0~2!5E0
( f )~2;1!22e052422e0.1.5937. ~20!
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TABLE I. Ground state energies of the biquadratic chain.

N E0
( f )(N;1)

1 0
2 24
3 26
4 29.561 552 81
5 211.763 723 82
6 215.143 256 69
7 217.454 021 00
8 220.731 010 75
9 223.110 963 57
10 226.321 314 67
11 228.749 674 12
12 231.912 900 40
13 234.377 230 72
14 237.505 205 73
15 239.997 421 80
16 243.097 947 02
17 245.612 471 78
18 248.690 967 68
19 251.223 778 87
20 254.284 175 20
21 256.832 269 12
22 259.877 512 03
23 262.438 582 09
24 265.470 940 86
25 268.043 174 37
26 271.064 436 65
27 273.646 381 47
28 276.657 982 12
29 279.248 455 76
30 282.251 565 07
31 284.849 590 92
32 287.845 176 69
33 290.449 938 29
34 293.438 810 50
35 296.049 617 90
36 299.032 461 69
37 2101.648 726 25
38 2104.626 126 62
39 2107.247 341 91
40 2110.219 802 50
41 2112.845 529 74
42 2115.813 487 17
43 2118.443 342 59
44 2121.407 178 95
45 2124.040 826 24
46 2127.000 876 53
47 2129.638 018 37
48 2132.594 578 84
49 2135.234 951 29
50 2138.188 285 05
51 2140.831 652 64
6-5
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TABLE II. Sequencess0(n), s1(n), ands2(n) up to n551.

n s0(n) s1(n) s2(n)

1 n.d n.d. n.d.
2 1.593 726 86 8 n.d.
3 2.390 590 29 6 2
4 1.625 900 91 6.374 368 54 4.342 329 22
5 2.220 593 33 5.881 861 91 3.763 723 82
6 1.637 923 89 6.057 302 68 4.357 442 52
7 2.124 023 01 5.818 007 00 4.072 412 60
8 1.643 896 69 5.923 145 93 4.365 505 38
9 2.060 807 30 5.777 740 89 4.190 412 96

10 1.647 319 63 5.849 181 04 4.370 493 00
11 2.015 823 61 5.749 934 82 4.249 891 37
12 1.649 460 76 5.802 345 53 4.373 870 12
13 1.981 993 87 5.729 538 45 4.284 699 29
14 1.650 882 29 5.770 031 65 4.376 301 43
15 1.955 529 65 5.713 917 40 4.307 097 34
16 1.651 867 86 5.746 392 94 4.378 131 50
17 1.934 206 53 5.701 558 97 4.322 494 36
18 1.652 574 06 5.728 349 14 4.379 556 44
19 1.916 626 30 5.691 530 99 4.333 608 04
20 1.653 093 40 5.714 123 71 4.380 695 87
21 1.901 862 91 5.683 226 91 4.341 937 23
22 1.653 483 43 5.702 620 19 4.381 626 80
23 1.889 276 80 5.676 234 74 4.348 368 87
24 1.653 781 46 5.693 125 29 4.382 401 03
25 1.878 411 38 5.670 264 53 4.353 457 53
26 1.654 012 53 5.685 154 93 4.383 054 58
27 1.868 931 14 5.665 106 27 4.357 565 78
28 1.654 193 92 5.678 369 05 4.383 613 32
29 1.860 583 71 5.660 603 98 4.360 939 53
30 1.654 337 83 5.672 521 73 4.384 096 26
31 1.853 175 41 5.656 639 39 4.363 750 78
32 1.654 453 07 5.667 430 75 4.384 517 67
33 1.846 554 90 5.653 121 14 4.366 123 06
34 1.654 546 12 5.662 958 21 4.384 888 48
35 1.840 602 15 5.649 977 52 4.368 147 08
36 1.654 621 79 5.658 997 81 4.385 217 21
37 1.835 220 66 5.647 151 46 4.369 890 82
38 1.654 683 72 5.655 466 30 4.385 510 55
39 1.830 331 86 5.644 596 94 4.371 406 10
40 1.654 734 70 5.652 297 56 4.385 773 88
41 1.825 870 89 5.642 276 49 4.372 733 06
42 1.654 776 89 5.649 438 40 4.386 011 54
43 1.821 784 90 5.640 159 17 4.373 903 12
44 1.654 811 97 5.646 845 53 4.386 227 07
45 1.818 028 11 5.638 219 37 4.374 941 37
46 1.654 841 25 5.644 483 40 4.386 423 40
47 1.814 562 84 5.636 435 58 4.375 867 89
48 1.654 865 80 5.642 322 50 4.386 602 97
49 1.811 356 78 5.634 789 64 4.376 699 02
50 1.654 886 45 5.640 338 17 4.386 767 82
51 1.808 382 29 5.633 266 11 4.377 448 12
09441
What can be said forj .51? From Appendix A,s0( j ) has
different limits atj→` for j even (e(s,1)) andj odd (e(s,2))
but they are both larger than2422e0. It seems, from Table
II, that s0( j ) at j .51 is already rather close to th
asymptotic regime, so one can safely, although not co
pletely rigorously, conclude thats0( j ), j >2, is minimal at
j 52 and that, sincee01m3.0

inf
j >2

„s0~ j !1 j ~e01m3!…5s0~2!12~e01m3!52412m3 .

Hence, the three necessaryand sufficient conditions for be-
ing in phasê 0& are

e01m3.0

2m324m2.4 ~phase ^0&! ~21!

m324m2.0.

The third condition comes frome(0),e(1), considered
separately.

Phasê 1&. The conditions for its existence,e(1),e(0)
ande(1),e( j ), j >2 are rewritten, from Eq.~19!

m324m2,0, m314m2.s1~ j !,

s1~ j ! 5
de f

22E( f )~ j ;1!/~ j 21! ~ j >2!,

wheres1( j ) is listed in Table II, up toj 551. It is decreasing
in this range and it certainly is at largej. In fact, from the
known numerical values~A1!, ~A8!, and ~A9!, 2e0
12e(s,6),0; moreover

s1~ j !5
22e0 j 22e(s,6)

j 21
1o~1/j !

522e02
2e012e(s,6)

j
1o~1/j ! ~ j→`!.

Hence one can conclude that supj >2s1( j )5s1(2)58 and
phasê 1& appears when

m324m2,0, m314m2.8 ~phase ^1&!. ~22!

Phasê 2&. The conditions for its existence aree(2),e(0),
e(2),e(1) and e(2),e( j ), j >3, or, remembering tha
E0

( f )(2;1)524

m322m2,2, m314m2,8, m314m2.s2~ j ! ~ j >3!,

s2~ j ! 5
de f

„3E0
( f )~ j ;1!14~ j 11!…/~2 j 12! ~ j >3!.

The sequences2( j ) is listed in Table II and it is increasing u
to j 551. It certainly is for largej where

s2~ j !5
3e0 j 13e(s,6)14~ j 11!

2 j 12
1o~1/j !

523e0241
26e023e(s,6)212

j
1o~1/j !
6-6
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because26e023e(s,6)212,0. This time, it is not so
straightforward to guess the upper limit ofs2( j ). If s2( j )
keeps increasing forj .51 up to the asymptotic regim
where one can rely on the previous equation, th
supj >3s2( j )5 lim j→1`s2( j )523e024.4.3906 and phase
^2& appears for

m322m2,2, 23e024,m314m2,8 ~phase ^2&!.
~23!

On the other hand, one cannot rule out the possibility t
supj >3s2( j ) lie slightly above and this would leave a tin
window for an additional phase. However, the existence
phasê 2& is unquestionable.

Finally, phasê `&, whose ground state is that of the p
riodic spin 1 chain, shows up when, for eachj, e( j ),e(`)

5
de f

lim j→`e( j ). Sincee(`)5e01m3, this means

e01m3,0, e01m3,~m324m2!/2,

e01m3,s0~ j !24m2 ~ j >2!.

We already know thats0( j ) is minimal at j 52, so the third
condition amounts to e01m314m2,s0(2)52422e0
which, by itself, implies the second inequality. Hence

e01m3,0, m314m2,2423e0 ~phase ^`&!
~24!

are the necessary and sufficient conditions that guarante
appearance of phase^`&. Appendix B completes the proof
the ground state is that of the periodic spin 1 chain beca
under conditions~24!, local variations around the secto
N(1)5N only lead to an increase in energy.

Under the foregoing assumption on the upper limit of
quences2( j ) there is no room for other phases because
equalities ~21!–~24!, with their separating lines, fill the
whole (m2 ,m3) plane. The ground state energy per site
e(0)50 ~phase ^0&), e(1)5(m324m2)/2 ~phase ^1&),
e(2)5(2412m324m2)/3 ~phase^2&) and e(`)5e01m3
~phase^`&). It shows first derivative discontinuities at th
boundaries.

Here are some general features of the four phases. De
the total spin

Stot5 (
k51

N

Sk , Stot
2 5Stot~Stot11!.

In phasê `& the ground state is simply that of the period
biquadratic spin-1 chain. SupposingN even, it is a global
singlet and, it was conjectured in Ref. 13, its degener
should be 2. Phasê0& has certainly a unique ground sta
and of courseStot50. As to phasê 2&, the ground state
is, again, a tensor product of local singlets, hence a glo
singlet, Stot50. In fact, it is represented by th
sequenceu . . . ,s,t,t,s,t,t,s,t,t,s, . . . & where neighboring
triplets utk ,tk11& are locked into the singlet ground state
2(Sk•Sk11)2. SupposingN50 ~mod 3! to avoid problems
with AFM seams, the ground state is threefold degener
rung singlets sit on rungs labeledk ~mod 3!, with the free-
09441
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dom of choicek50,1,2. It clearly spontaneously break
translational invariance. Finally, phase^1&, described by the
sequenceu . . . ,t,s,t,s,t,s, . . . & is rather different becaus
nothing fixes the state of each isolated triplet resulting in
huge degeneracy, 2•3N/2. Not only is translational invariance
spontaneously broken, but one is dealing withN/2 effec-
tively noninteracting triplets that can combine in a ‘‘ferr
magnetic’’ stateStot5N/2, or combine in local pairs yielding
Stot50 ~these are only two of the many possibilities!. In
other words, the ground state is not necessarily an eigen
of Stot .

Phaseŝ1& and^2& are examples of what has been call
mixed state~MS! in Ref. 6.

V. EXCITATIONS

The four phases display a rich variety of excitations. Mo
of them, especially in the fragmented phases^0&, ^1& and
^2& can easily be determined resorting to Eq.~16!, therefore
only phasê `& will be extensively treated in the following
Appendix B gives a complete discussion of how, in pha
^`&, ‘‘local’’ perturbations of the biquadratic ground sta
can only lead to an increase of energy.

A first kind of excitations, within the sectorN(1)5N, are
those of the biquadratic chain itself. SupposingN even, they
exist in even number and have a gap~see Appendix A for a
more exhaustive discussion!

DEgap.0.173179.

A second kind of excitation, called TSST~triplet-to-singlet
spin flip! in Ref. 5, is obtained by introducing one single
sectorN(1)5N21. There isN ways to do so and the eigen
value isN-fold degenerate. This implies that linear superp
sitions of such states produce eigenstates of the shift op
tor, all with the same energy. As a matter of fac
dispersionless excitations have already been found in a
ladders.4 The energy difference is@see Eq.~16!#

DE~N!5E0
( f )~N21;1!2E0

(p)~N;1!2m324m2 ,

DE5 lim
N→`

DE~N!5e(s,2)2e02m324m2 .

From conditions~24! it follows that DE.2e0141e(s,2)

.0.1479 confirming that the energy can only be increa
by fragmentation. At the same time, that numerical va
shows that, at least near the boundary lines, the energy s
is comparable, actually slightly smaller, thanDEgap. There-
fore fragmentation may be relevant to the low energy phys
of the ladder. Despite what might seem, such excitations
pend on two degrees of freedom. In fact, as discussed
Appendix A, the ground state of the fragment of triplets, i.
the ground state of the open biquadratic chain withN21
~odd! sites, is only the lowest in a continuous band. Th
adds a second degree of freedom to the singlet’s posit
Therefore, ifn is the singlet position

DE~a,n!5e~a!2e~p!1e(s,2)2e02m324m2 ,

aP~0,p!.
6-7
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Here e(a)2e(p), always positive, measures the excitati
energy of the single kink in the open spin chain and vanis
at a→p, see Eq.~A6!. The n-dependence is, of course
trivial. Nonetheless, it is at least plausible that under a sm
variation of coupling constants in Eq.~1!, for instance a dif-
ferent relative weight betweenI (1) and I (3), or I (4) and I (6)

interactions,DE might acquire a genuine two-paramet
form. Since the triplets fragment is presumably locked int
spin-1 state~see Appendix A!, Stot51 for such states
Triplet-singlet excitations have been found in similar ladde
but they arise through a different mechanism.8,4

When two rung singlets are introduced (N(1)5N22),
their energy becomes position dependent. If they sit on ru
n1 ,n2 andd5n22n1>1, then from Eq.~16!

DE~N;n1 ,n2!5E0
( f )~d21;1!1E0

( f )~N2d21;1!

2E0
(p)~N;1!22m328m214m2dd,1 .

If N→`, keepingn1 , n2 fixed @p(d) is the parity ofd]

DE~d!

5H s0~d21!22e01e[s,p(d21)]22m328m2 ~d.2!,

23e01e(s,2)22m328m2 ~d52!,

22e01e(s,1)22m324m2 ~d51!.

~25!

Notice that all these excitation energies are exact. It is e
to see thatDE(d).0 always. It represents a sort of ‘‘stat
interaction energy’’ between singlets, whose distance dep
dence is governed bys0(d). The open chain surface energ
is different for even and odd lengths, sos0(d) has a uniform
d-dependence only if the parity ofd is fixed. Whend is even,
DE(d) uniformly decreases~see Table II! from a maximum
DE(2) to a minimum limd→`DE(d)522e012e(s,2)

22m328m2. Whend is odd, the behavior is certainly un
form for d>3, becauseDE(d) increases fromDE(3) to a
maximum limd→`DE(d)52e(s,1)22e022m328m2. Still,
DE(1) is not necessarily lower or higher thanDE(3), since

DE~3!2DE~1!52422e024m2

whose sign is left undetermined from conditions~24!. The
short range behavior can be either repulsive or attractive

A third possible kind of excitation, namedn-TSSF in Ref.
5, is produced by the insertion of a block ofm singlets,
represented byu . . . ,t,t,t,s,s,s,s,t,t,t,t, . . . &. Now, from
~16!, supposingN even as always

DE~N;m!5E0
( f )~N2m;1!2mm324m22E0

(p)~N;1!,

DE~m!5 lim
N→`

DE~N;m!

52~m21!~e01m3!1e[s,p(m)]2e02m324m2 ,

which is positive under conditions~24!. At e01m350 these
perturbations determine the instability versus phase^0&.
09441
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VI. OTHER VALUES OF u

It is easy to see that phases^0&, ^1& and ^`& will be
present no matter what valueu takes in Eq.~11!. In this
general situation, Eq.~16! will formally be the same but now
with E0

( f )(Nj
(1) ;1;u) and E0

(p)(N;1;u), the energies of the
spin-1 chain~3! with arbitraryu. The proof of Sec. IV goes
through unchanged. One has to find the minimum of

e~ j ;u!5
E0

( f )~ j ;1;u!1 j m324m2

j 11
, e~0;u!50.

The conditions for phasê0& amount to

4m2,s0~ j !1 j „e0~u!1m3… ~ j >1!,

s0~ j ! 5
de f

E0
( f )~ j ;1;u!2e0~u! j . ~26!

Notice thats0( j ) is bounded. Set

s0~ j 1!5 inf
j >1

s0~ j !.

Of coursej 1 might be1`. In this case, since limj→`s0( j )
5e(s,6), the two possible surface energies, one hass0( j 1)
5min$e(s,1),e(s,2)%. At any rate,s0( j 1) is finite. A neces-
sary condition required by Eq.~26! is e0(u)1m3.0, but
since one does not know the exact valuej 1 one can only give
sufficient conditions for the existence of^0&, namely

e0~u!1m3.0 ~phase ^0&!,

4m2, inf
j >1

s0~ j !1 inf
j >1

j „e0~u!1m3…

5s0~ j 1!1e0~u!1m3 ,

which can always be simultaneously satisfied by suitable
ues of (m2 ,m3).

Likewise, for phase^`&, the condition e( j ).e0(u)
1m3 , ( j >0), translates intoe0(u)1m3,0 ande0(u)1m3
14m2,s0( j ), ( j >1), which can both be fulfilled taking

e0~u!1m3,0, e0~u!1m314m2,s0~ j 1! ~phase ^`&!.

These conditions are necessary and sufficient, and are c
patible.

Finally, the inequalities for̂1& are rewitten

m324m2,0,

m314m2.2
2E0

( f )~ j ;1;u!

j 21
5
de f

s1~ j !, j >2.

Sequences1( j ) is also bounded. Sets1( j 2)5supj >2s1( j ).
The ensuing necessary and sufficient conditions are

m324m2,0, m314m2.s1~ j 2! ~phase ^1&!.

On the contrary, it is in general impossible to draw conc
sions on the existence of other phases. For example, p
^2& would be present if it were possible to fulfill simulta
neously
6-8
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4m222m3.E0
( f )~2;1;u!, m314m2,22E0

( f )~2;1;u!,

m314m2.s2~ j !, ~27!

s2~ j ! 5
de f

„~ j 11!E0
( f )~2;1;u!

23E0
( f )~ j ;1;u!…/~ j 22! ~ j >3!.

Notice that s2( j ) is also bounded. If we sets2( j 3)
5supj >3s2( j ), the second and the third inequality in E
~27! are compatible if and only if

s2~ j 2!,22E0
( f )~2;1;u!. ~28!

At least for u50, e0(u) has been determined to a gre
accuracy and one can attempt to estimate whether Eq.~28!
holds. It is known that18

e0~u50!.21.401 484.

On the other hand, not many data seem to have been
lished forE0

( f )( j ;1;0) even at smallj. Diagonalization of Eq.
~3!, with free boundaries, can easily be carried out num
cally up to 7 sites~as a test, I diagonalized the periodic cha
as well and compared the results with those published in R
19!. It is sufficient to examine the sectorStot

z 50 because,
owing to SU(2) invariance, all possible eigenvalues a
bound to appear there. Now,E0

( f )(2;1;0)522, while the
sequence$s2( j )% j 53

7 is found to have the approximate valu
$1,1.9606,1.8302,2.0277,1.9807%. Furthermore

lim
j→`

s2~ j !52223e0.2.204 46.

It is of course impossible to draw a rigorous conclusion fro
these results, but it looks extremely likely that inequal
~28! is true and therefore phase^2& is present also foru
50.

VII. DISCUSSION

It is useful to compare the ladders considered here w
those studied in previous papers. To shorten notation, I
denote byu0&^x& the ground state of phasêx&, or one of
them if it is degenerate. In the work of Niggemanet al.simi-
lar methods were employed but for different systems, nam
the mixed Heisenberg chains. Perhaps the most closely
lated ladders are that of Xian,5 which is Eq.~11! for u50
and m250 ~perturbations of this ladder were considered
Refs. 20,21! and that of Wang.6 Xian finds only two phases
^0& and ^`& in the present notation, but, sinceu50, his
ground stateu0&^`& is that of the spin 1 Heisenberg chai
The absence of phases^1& and^2& can be understood whe
one notices that even for the case considered in this pa
u52p/2, phaseŝ1& and^2& would be missing without the
rung-rung interactionI k,k11

(5) , as can be seen by settingm2

50 in Eqs.~22! and~23!. Wang instead, considering the fu
ladder~11!, points out the existence of MS phases.

The ground state of a wide class of SU~2!-invariant lad-
ders has the matrix-product~MP! form.4 Such states can b
09441
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translationally invariant or dimerized

uc0
(inv)~u!&5Tr)

n51

N

gn~u!,

uc0
(dim)~u1 ,u2!&5Tr)

n51

N/2

g2n21~u1!g2n~u2!,

gn~u!5Fuus&n1u0&n 2A2u1&n

A2u21&n uus&n2u0&n
G .

For models with translationally invariant MP ground state
u50 andu5` are the only points which have a significa
overlapping with the ladders presented here. Atu50 the MP
state is made up of rung triplets and is, effectively, t
ground state of the AKLT spin-1 chain. That is what one g
for Eq. ~11! by setting tanu51/3 and keepingm1 , m2 small
enough. Now,u0&` is also made up of triplets, but it is that o
the biquadratic spin 1 chain, hence a different kind. Furth
more, u0&^0& , u0&^1& and u0&^2& all contain rung singlets and
are certainly notuc0

(inv)(0)&. Conversely, after suitable nor
malization, the limituc0

(inv)(`)& is made up entirely of rung
singlets. There is only one such state so it must coincide w
u0&^0& . Of course excitations may differ according to th
detailed form of the Hamiltonian. At any rate,u0&^1& and
u0&^2& break translational invariance so they can never be
the form uc0

(inv)(u)& for any u. For the same reason,u0&^2& ,
which is invariant under a three-rung translation, can ne
be of the formuc0

(dim)(u1 ,u2)& either, since the latter is in
variant under a two-rung translation. But, within the lar
lowest energy eigenspace of phase^1&, at least one vector is
in MP form. To show it, notice that at finite, nonvanishin
values ofu1 , u2 , uc0

(dim)(u1 ,u2)& is a linear combination
necessarily containing kets with all triplets and the ket w
all singlets. The only way to reproduceu0&^1& is to setu1
50 and to takeu2→` after proper normalization o
g2n(u2). The outcome is a linear combination of kets whi
have singlets on even rungs and triplets on odd rungs,
actly like u0&^1& . It should be observed though the MP a
proach only in a few cases allows us to find the whole sp
trum, as it is instead possible from BA for Hamiltonian~1!.

Finally, a trimerized ground state similar but not identic
to u0&^2& has been found in Ref. 7 for a generalized spin
chain. It should be noted though that their chain conta
interactions beyond nearest neighbors, so that the global
glet is obtained as a direct product of intertwined local s
glets constructed out of three spin-1, a different configurat
from what appears here.
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APPENDIX A: THE BIQUADRATIC SPIN-1 CHAIN

The purely biquadratic spin-1 chain is integrable f
periodic13 and free15,23 boundary conditions. The definition
6-9
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of the relevant elliptic parameters differs in the two cases
treated in the literature. For the sake of readability, a Lan
transformation24 has been applied to the results of Ref. 13,
order to make notations compatible.

Define an elliptic modulus from the relation

K8~k!

K~k!
5

1

p
ln~1/q!, q5

32A5

2
,

whereK(k) andK8(k) are the elliptic integrals of first and
second kind. The ground state energy, which is the sam
the two cases, is then

e05212
A5

2 S 114(
n51

1`
q2n

11q2nD .22.796863 . . . .

~A1!

For the periodic case, energy and momentum of the exc
tions are given, in the limitN→`, by

DE5(
i 51

2n

ẽ~pi !, DP5(
i 51

2n

pi ,

ẽ~p!5
A5

p
K~k!Ak821k2 sinp, k821k251. ~A2!

There is a gap in the spectrum

DEgap52ẽ~0!

52
A5

p
K~k!k8

5A5)
n51

1` S 12qn

11qnD 2

.0.173178 . . . . ~A3!

The free boundary case has been solved by noticing tha
spectrum is the same, up to degeneracies, as that of theXXZ
spin-1/2 chain with a boundary field15

HXXZ52
1

2 (
k51

N21

~sk
xsk11

x 1sk
ysk11

y 2 coshgsk
zsk11

z !

1
sinhg

2
~s1

z2sN
z !, ~A4!

EbQ5EXXZ2
7

4
~N21!, q5e2g.

The mapping, valid for anyN, works because both Hamilto
nians can be written as sums over generators of the s
Temperley-Lieb algebra.15 Consequently, ground state ene
gies of Eq.~A4! are for anyN identical, up to a shift, to
ground state energies of the biquadratic chain with f
boundaries. In turn, Eq.~A4! has been solved by coordina
Bethe ansatz,25 so eigenvalues are found from solutions o
set of coupled trascendental equations
09441
s
n

in

a-

he

e

e

1

p
QS a j ;

g

2D2
1

2pN (
k51,kÞ j

n

„Q~a j2ak ;g!

1Q~a j1ak ;g!…5
I j

N
, j 51 . . .n,

Q~a;x! 5
de f

2 i lnF sinhS x1
ia

2 D
sinhS x2

ia

2 D G52arctanS tan
a

2
cothxD ,

~A5!

E5
1

2
~N21!coshg22 sinhg(

j 51

n

Q8S a j ;
g

2D .

The functionQ(a;x) is defined to be continuous for reala.
The $I j% in Eq. ~A5! are positive integers.25,23 The ground
state belongs to the sectorn5N/2 (N even! or n5(N
21)/2 (N odd!. In both cases, in Eq.~A5!, I j5 j , j
51,2 . . .n. Data in Table I have been obtained by nume
cally solving Eq.~A5! with this choice of integers.

Excitations are, in general, gapful~no dispersion relation
can be written here because linear momentum is not c
served!:

DE5(
i 51

2n

e~a i !,

e~a!52 sinhg
K~k!

p
dnS K~k!a

p
;kD , aP~0,p!,

DEgap52e~p!5A5)
n51

1` S 12qn

11qnD 2

,

as in Eq.~A3!. WhenN is odd, though, the ground state is
the bottom of a one-parameter, continuous, gapless~in the
N→` limit ! band of eigenvalues.26 Within this band

DE~a!5e~a!2e~p!, aP~0,p!. ~A6!

This may be interpreted by saying that the ground state aN
odd is not the ‘‘vacuum,’’ but it contains one particle~kink!
which can take up a whole band of dynamical states.

Surface energies for open antiferromagnetic chains dif
in general, when the limitN→` is taken forN even (e(s,1))
or N odd (e(s,2)). They are defined by

E0~N!5e0N1e(s,6)1o~1! ~N→`! ~A7!

and, for the case at hand, they can be computed exactly f
Eq. ~A5!. For the biquadratic chain, one finds23,26

e(s,1)5112A5(
n51

1`
q2n2q4n

11q4n
.1.655 009 2 ~A8!
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e(s,2)511
A5

2 S 114(
n51

1`
q2n2q4n

11q4n
2 (

n50

1`
4q2n11

11q4n12D
.1.741 598 6. ~A9!

APPENDIX B: GROUND STATE PROOF FOR PHASE Š`‹

It has to be proven that, within the boundaries of reg
~24!, the ladder ground state indeed belongs to the se
N(1)5N, therefore it is just the ground state of Eq.~3! at u
52p/2. Here it will be shown that it is the lowest energ
state within the class which encompasses the sec
$Nj

(1) ,Nj
(0)% j 51

n where $Nj
(0)% j 51

n and $N(1)% j 51
n21 are arbi-

trarily large but kept finite asN→`. In other words, only
one triplet fragment,Nn

(1) , has a diverging size in the the
modynamic limit, as dictated by the analysis of Sec. IV.
will be assumed that infj >2s0( j )5s0(2).

From Eq.~16!

DE~N!5 (
j 51

n21

E0
( f )~Nj

(1) ;1!1E0
( f )~Nn

(1) ;1!1m3N(1)24nm2

2@E0
(p)~N;1!1m3N#.

WhenN→`, settingDE5 limN→`DE(N)

DE5 (
j 51

n21

E0
( f )~Nj

(1) ;1!1e0Nj
(1)1e[s,p(Nn

(1))]2m3N(0)

24nm22e0N.
09441
n
or

rs

t

SinceNn
(1)5N2N(0)2( j 51

n21Nj
(1) ande(s)>e(s,1)

DE> (
j 51

n21

„E0
( f )~Nj

(1) ;1!2e0Nj
(1)
…2~e01m3!N(0)

1e(s,1)24nm2 . ~B1!

The bracketed term iss0(Nj
(1)). Actually s0( j ) has been de-

fined for j >2, whereas in Eq.~B1! Nj
(1) can be 1 for somej.

The definition ofs0( j ), though, makes sense forj 51, too. In
that case s0(1)52e0.s0(2), so it is also true that
inf j >1s0( j )5s0(2). Then

DE>~n21!s0~2!1e(s,1)2~e01m3!N(0)24nm2.ns0~2!

2~e01m3!N(0)24nm2

becausee(s,1).s0(2). Next, notice that

N(0)>n

because to create a new fragment at least one singlet mu
added. So, settingN(0)5n1DN(0),

DE.2~e01m3!DN(0)1n„s0~2!2e02m324m2…,

which is positive due to inequalities~24!.
.
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