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Quenched spin tunneling and diabolical points in magnetic molecules.
I. Symmetric configurations

Anupam Garg*
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

~Received 7 February 2000; revised manuscript received 21 September 2000; published 8 August 2001!

The perfect quenching of spin tunneling that has previously been discussed in terms of interfering instantons,
and has recently been observed in the magnetic molecule Fe8, is treated using a discrete phase integral~or
Wentzel-Kramers-Brillouin! method. The simplest model Hamiltonian for the phenomenon leads to a Schro¨-
dinger equation that is a five-term recursion relation. This recursion relation is reflection symmetric when the
magnetic field applied to the molecule is along the hard magnetic axis. A completely general Herring formula
for the tunnel splittings for all reflection-symmetric five-term recursion relations is obtained. Using connection
formulas for a nonclassical turning point that may be described as lying ‘‘under the barrier,’’ and which
underlies the oscillations in the splitting as a function of magnetic field, this Herring formula is transformed
into two other formulas that express the splittings in terms of a small number of action and actionlike integrals.
These latter formulas appear to be generally valid, even for problems where the recursion contains more than
five terms. The results for the model Hamiltonian are compared with experiment, numerics, previous instanton
based approaches, and the limiting case of no magnetic field.

DOI: 10.1103/PhysRevB.64.094413 PACS number~s!: 75.10.Dg, 03.65.Sq, 75.50.Xx, 75.45.1j
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I. INTRODUCTION

A. Motivation

The purpose of this paper is to discuss the tunneling o
spin degree of freedom described by the Hamiltonian

H52k2Jz
21~k12k2!Jx

22gmBJ•H, ~1.1!

whereJ is dimensionless spin operator with componentsJx ,
Jy , and Jz , H is an external magnetic field, andk1.k2
.0. Although our immediate goal is to perform a care
mathematical analysis of the tunneling spectrum, it is par
our larger and longer term goal of understanding the lo
temperature magnetization dynamics of molecular mag
and small magnetic particles. Thus our motivation for stu
ing the Hamiltonian~1.1! specifically is that it provides a
good approximate description of the low-temperature beh
ior of the spin of the molecule@(tacn)6Fe8O2(OH)12#

81 ~or
just Fe8 for short!.1–7 This molecule has a ground manifo
of Zeeman states withJ510, arising from competing in-
tramolecular antiferromagnetic exchange interactions
tween the eight Fe31 ions in each molecule. The molecule
are very well separated in the solid, and there is no evide
for an exchange coupling between different molecules. T
dipolar intermolecular couplings are weak and may be
0163-1829/2001/64~9!/094413~15!/$20.00 64 0944
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nored in a first approximation. The parameters relevan
Fe8 arek1'0.33 K andk2'0.22 K.8 The g factor is close
to 2.

It has been found by Wernsdorfer and Sessoli7 that the
tunnel splittings between low-lying pairs of energy levels
Fe8 oscillate as a function of applied static magnetic fie
These oscillations are now understood9 as manifestations o
conical intersections10 or diabolical points11 in the space of
magnetic fields. Such points are rare in physical systems
addition, the tunneling of a spin is different from that of
massive particle in some ways, and as we shall discuss a
end, naive arguments based on experience with the la
could easily cause one to miss the oscillations. Third, tunn
ing is clearly an important component of the low
temperature dynamics of the magnetization of other mole
lar magnets.1 For example, there are still many ope
questions about the paramagnetic relaxation of a related m
ecule, Mn12,12–16 and it is clear that better understanding
Fe8will help in that case too. For all these reasons, care
theoretical study of the tunneling properties of model Ham
tonians such as Eq.~1.1! seems worthwhile.

The spectrum of the Hamiltonian~1.1! is very rich. To
help appreciate this richness, and understand the phenom
that we shall discuss, we show in Fig. 1 the results o
numerical calculation of the energies as a function ofHx , for
at
to
FIG. 1. Spectrum of the Hamiltonian~1.1! for
J53, as a function of Hx /Hc . Hz /Hc

50, 0.07454, and 0.1491 in~a!, ~b!, and~c!, re-
spectively. The small ovals indicate points th
are narrowly avoided anticrossings, but appear
be crossings on low resolution.
©2001 The American Physical Society13-1
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ANUPAM GARG PHYSICAL REVIEW B 64 094413
J53, for three different values ofHz . In all three cases
Hy50. In Fig. 1~a!, Hz50, and viewing Eq.~1.1! as a clas-
sical energy function for a classical angular momentum v
tor J of fixed lengthJ, we have two degenerate minima fo
Hx,Hc52k1J/gmB . ~This quantity, along with other im-
portant parameter combinations, is listed in Table I.! Corre-
spondingly the lowest two quantum-mechanical energy l
els will be split by tunneling. This is evident in the figur
The key features are that~i! the lowest two energy-leve
curves cross six times~including negative values ofHx), ~ii !
the crossing points are perfectly periodically spaced, and~iii !
a number of higher energy level pairs also cross at som
the field values where the lowest two levels do.

In Fig. 1~b!, Hz has a specific nonzero value. The proble
is no longer symmetric, and one of the classical minima
lower than the other. Correspondingly, we see that the low
quantum-mechanical state is always non degenerate. N
however, ifHz is correctly chosen, the first excited state
the deeper well can be brought into resonance with the l
est state in the shallower well, and these two states can
mix by tunneling. And indeed, we see from the figure that
second and third energy levels are quite close. The key
tures are that~i! they also cross a number of times,~ii ! these
crossings are shifted by half a period from those in Fig. 1~a!,
and~iii ! crossings between yet higher levels~e.g., the fourth
and fifth! occur at some of the same fields where the low
levels cross.

This pattern continues asHz is increased still further@Fig.
1~c!#. Now the lowest two levels in the deeper well are no
degenerate, and the lowest crossings are between lev
and 4. Compared to Fig. 1~b!, these crossings are shifted b
yet another half period. Again, there is a simultaneous cro
ing between higher pairs of levels~numbers 5 and 6! at
Hx /Hc.0.15.

At the points where the energy levels in Fig. 1 cross,
tunnel splitting goes to zero, and a plot of the splittings a
function of Hx /Hc would show oscillations. It is just thes
oscillations that Wernsdorfer and Sessoli have seen.
curves markedn50, 1, and 2 in Fig. 2~b! of Ref. 7 corre-
spond precisely to the lowest crossing in Figs. 1~a!–~c!, re-
spectively. The higher crossings have also been inferred
directly by Wernsdorferet al.17

Some readers may wonder why an analytic study of
problem is necessary, and why a numerical calculation of
energy levels of the 21321 Hamiltonian for Fe8, which
could be done just as for theJ53 case above, is not the la
word on the subject, especially since one can easily incl

TABLE I. Summary of important parameter combinations

Quantity Formula

Hc 2k1J/gmB

l k2 /k1

J̄ J1
1
2

hx JHx / J̄Hc

hx0 Hx /Hc

v0 2J@k1k2(12hx0
2 )#1/2
09441
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higher-order anisotropy terms8 in the numerics. The answe
is twofold. First, numerics cannot be done easily for largeJ,
since the number of significant digits required to discern
splitting grows roughly exponentially withJ. Thus the calcu-
lation has general value. Second, analytic work provides
sight beyond numerics in showing how the splitting depen
systematically on parameters inH, how it grows as we con-
sider higher pairs of levels and so on. Even if one if su
ceeeded in fitting the numerical data to explicit function
forms by trial and error, such fits would have only an e
pirical status. Most importantly, the analytic approach p
vides a language in which to discuss and understand
‘‘physics’’ of the problem, and gain insight which may b
applied to other problems. Thus we shall see that the van
ing of the splitting is linked to an oscillatory exponenti
behavior of the wave function arising from a nonclassi
turning point in a semiclasssical, WKB-like approach. It
extremely unlikely that one could develop such mental p
tures based on numerical work alone. These constructs
extremely useful in understanding more complicat
problems.18

B. Methodology and relation to previous work

The Hamiltonian~1.1! has been the subject of sever
previous papers by this author.19 The quenching of ground
state tunnel splittings forHi x̂, i.e., those between the lowe
pair of levels in Fig. 1~a!, were found in the first paper o
Ref. 19, on the basis of a path integral or instanton argum
involving interference of tunneling Feynman trajectories.20,21

This work was done before the experiments of Wernsdo
and Sessoli, and without knowing of the relevance of
Hamiltonian to Fe8. These quenchings, or those that occ
whenHi ẑ, can be understood in light of the von Neuman
Wigner theorem. WhenHi x̂, or Hi ẑ, H is invariant under a
180° rotation aboutx̂ or ẑ, so energies of levels that are od
and even under this operation can intersect.19 When H has
both x̂ andẑ components, however,H has no symmetry, and
the level crossings@Figs. 1~b! and~c!#, corresponding to the
210↔9 and210↔8 oscillations seen in Ref. 7, were no
foreseen. The present study is motivated largely by the n
to understand these new oscillations, and also the tunne
between the higher pairs of levels forHi x̂.22

The approach used here is a discrete phase integral~DPI!
or Wentzel-Kramers-Brillouin~WKB! method. This ap-

FIG. 2. A symmetric double-well potentialV(x).
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proach has been used in many other areas of physics
mathematical physics,23–25but the first explicit application to
spin tunneling of which we are aware is in Ref. 26. The ba
idea is that in theJz basis, Schro¨dinger’s equation for Eq.
~1.1! has the form of a recursion relation or difference eq
tion, as opposed to a differential equation for a massive
ticle in a one dimensional potentialV(x). This difference
equation can be solved in analogy with the continuum W
approximation. We will see that compared to previous D
studies, new types of turning points arise in the study of
~1.1!, because the recursion relation has five terms.27,28These
turning points are central to the oscillations in the splittin
they cannot arise in a three-term problem, and they have
continuum analog. Our present discussion will rely on phy
cal arguments based on viewing the recursion relation a
tight-binding model for an electron in a one-dimensional l
tice, and correspondence with the continuum case. A m
formal treatment is given in Ref. 27.

Like the instanton method, the DPI method is asympto
cally correct in the semiclassical limit, i.e., asJ→`. While
this method does not have the visual and geometrical ap
of interfering instantons, it has the advantage of involvi
only elementary methods of analysis, and also of yield
wave functions which may be of use in finding matrix e
ments of perturbations. For the Fe8 problem, it is especially
well suited to studying tunneling when bothHx andHz are
nonzero, and between more than one pair of levels at
same time. In hindsight, these problems can also be
dressed using path integrals, but the labor required is
greater, and it is particularly difficult to find the correctJ
→` asymptotic form of the preexponential factor multipl
ing the exponentially small Gamow factor in the splittin
Since the DPI method gives this factor naturally, there is
reason not to find it.

C. What is new

In this paper we consider the tunneling problem for E
~1.1! for the caseHi x̂. The problem is then analogous to
massive particle moving in a symmetric double-well pote
tial. The case whereHz is also nonzero corresponds to a
asymmetric potential, is more complicated, and will be co
sidered in a second paper.

In the course of our study, we shall develop the DPI f
malism for tunneling problems as generally as possible.
payoff is two formulas for the tunnel splitting@Eqs. ~4.27!
and~4.28!# that can be applied to any problem describable
a five-term recursion relation, and quite possibly, to ev
higher term recursions.

Brief reports of our work have been given earlier,19,29 in-
cluding, in particular, formulas for the locations of the di
bolical points.30 Specifically, we find that thel 8th level in the
negativeJz well ~wherel 850 denotes the lowest level! and
the l 9th level in the positiveJz well are degenerate when

Hz~ l 8,l 9!

Hc
5

Al~ l 92 l 8!

2J
, ~1.2!
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Hx~ l 8,l 9!

Hc
5

A12l

J
@J2n2 1

2 ~ l 81 l 911!#, ~1.3!

with n50,1, . . . ,2J2( l 81 l 911). Here, l5k2 /k1, and
Hc52k1J/gmB . The result of the first paper of Ref. 19 co
responds to the special casel 85 l 950. An approximate ver-
sion of the DPI method, leading to the same diabolical po
locations, has been developed and applied to Fe8 indepen-
dently by Villain and Fort.9 It should be noted that both
Villain and Fort’s and our calculations entail various appro
mations, and Eqs.~1.2! and~1.3! are only derived to leading
order in 1/J. However, as has recently been shown by
Keçecioğlu and the author,31 these equations are in factexact
as written. This suggests that the Hamiltonian~1.1! has extra
symmetries which are not yet understood.

In order to describe the part of the paper that pertains
the general DPI formalism, it is useful to recapitulate so
results for tunneling of a massive particle in a on
dimensional double well.32 Given a Hamiltonian

Hpart52
\2

2m
¹21V~x!, ~1.4!

whereV(x)5V(2x), with minima atx56a ~see Fig. 2!,
the symmetric and antisymmetric combinations of the t
states localized in the separate wells with a mean energE,
will be split by an amount given by

DEpart5
2\2

m
cR~0!cR8 ~0!, ~1.5!

wherecR(x) is the wavefunction of the state localized in th
right well, normalized to unit total probability.

The formula~1.5! is generally named for Herring33,34 ~but
sometimes for Bardeen or Landau!. Note thatE does not
have to be the energy of the lowest level in the sepa
wells. For thenth level, Eq.~1.5! reduces in the WKB ap-
proximation to

DEpart,n5gn

\v

p
expF2E

2an8

an8 upu
\

dxG , ~1.6!

where 6an8 are the inner turning points whereV(x)
5E, upu is the imaginary momentum in the tunneling regio
2an8,x,an8 , v is the small oscillation frequency aroun
x56a, and

gn5
A2p

n!
~n1 1

2 !n11/2e2(n11/2) ~1.7!

is a small correction@g05(p/e)1/2'1.075,g1'1.028,g2
'1.017, . . . # accounting for the curvature ofV(x) near the
turning point.35

For low-lying states, i.e., forn of order 1, the action inte-
gral in Eq. ~1.6! contains a singular part varying as ln@E
2V(a)#, making it difficult to use directly. When this singu
larity is peeled off, one obtains36,37

DEpart,n5
1

n!
Fpart

n11/2S 2

p D 1/2

\ve2S0, ~1.8!
3-3
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ANUPAM GARG PHYSICAL REVIEW B 64 094413
with

S05E
2a

a

@2mV~x!#1/2dx, ~1.9!

and

Fpart5
2mva2

\
expH E

0

aF mv

A2mV~x!
2

1

a2xGdxJ .

~1.10!

We will derive discrete analogs of Herring’s formu
~1.4!, and the quasiclassical formulas in terms of action
tegrals~1.6! and ~1.8!. These formulas are general, and n
limited to the Fe8Hamiltonian. Of course, we do apply the
to the Fe8 problem too.

D. Plan of paper

In Sec. II, we briefly review the DPI method in order
introduce the basic language of classically allowed and
bidden regions, turning points, and so on, in the discr
case. We will focus particularly on the features associa
with the new turning point, and show that there are th
critical energy curvesthat collectively play the same role a
V(x) in determining the turning points. A longer account
this work, along with connection formulas at the new turni
points has been given in Ref. 27.

The discrete analog of Herring’s formula for five ter
recursion relations is given in Sec. III. The algebraic deta
are given in Appendix A. The result is Eq.~3.2!.

In Sec. IV we will use the quasiclassical DPI form of th
wave function in Herring’s formula to obtain analogs of Eq
~1.6! and ~1.8!. The final results are Eqs.~4.27! and ~4.28!,
and the details of the analysis are given in appendixes B
C. By and large, this analysis is an extension of continu
WKB techniques, such as using connection formulas to
late quasiclassical wave functions in different regions, a
we are certain that many readers will immediately find
transparent. At the same time, it is quite lengthy, many f
mulas can not be obtained by simply transcribing continu
case formulas~especially those relating to the new turnin
point and the oscillatory factor in the splitting!, and there is
no reason to have readers duplicate all this for themsel
Equation~4.27! is close enough to Eq.~1.6! that one might
have guessed it, but the route from Eq.~1.8! to Eq. ~4.28! is
not at all obviousa priori.

The formula~4.28! is applied to Fe8 in Sec. V, with the
actual evaluation of the action integrals deferred to Appen
D. We also discuss the quenching points and other aspec
these results, including comparison with numerics, and w
by other authors.38,39

We conclude the paper in Sec. VI with some general
marks pertaining to diabolical points in other systems, a
some special features of the degeneracies of the Hamilto
~1.1! that are known exactly.

Readers who are only interested in the spin tunne
problem for its relevance to Fe8 should skip directly to Sec
V. Readers who wish to get a sense of the DPI methodol
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and its relation to continuum WKB should also read Se
II–IV, and skip the appendixes unless they wish to see al
the analysis.

II. DPI METHOD FOR FIVE-TERM RECURSION
RELATIONS

The starting point is to write Schro¨dinger’s equation in the
Jz basis. Supposeuc& is an eigenstate ofH with energyE.
Then with Jzum&5mum&, ^muc&5Cm , ^muHum&5wm ,
and ^muHum8&5tm,m8 (mÞm8), we have

( 8
n5m22

m12

tm,nCn1wmCm5ECm , ~2.1!

where the prime on the sum indicates that the termn5m is
to be omitted. The diagonal terms (wm) arise from theJz

2

part of H, the tm,m61 terms from theJxHx part, and the
tm,m62 terms from theJx

2 part.
We can think of Eq.~2.1! as a tight binding model for an

electron in a one-dimensional lattice with sites labeled bym,
and slowly varying on-site energies (wm), nearest-neighbor
(tm,m61), and next-nearest-neighbor (tm,m62) hopping
terms. Since we can think of dynamics in this model in ter
of wave packets, it is clear that there is a generalization
the usual continuum quasiclassical or phase integral me
to the lattice case. This is the DPI method.

The general formalism of this method23–26and the exten-
sion to five terms is discussed at length elsewhere,27,28 so
here we will only give a brief summary. The fundamen
requirement for a quasiclassical approach to work is thatwm
andtm,m6a(a51,2) vary slowly enough withm that we can
find smooth continuum approximantsw(m) andta(m), such
that wheneverm is an eigenvalue ofJz , we have

w~m!5wm , ~2.2!

ta~m!5~ tm,m1a1tm,m2a!/2, a51,2. ~2.3!

We further demand that

dw

dm
5OS w~m!

J D ,
dta
dm

5OS ta~m!

J D , ~2.4!

with m/J being treated as quantity of order 1. We will se
that for Eq.~1.1! these conditions will hold in the semiclas
sical limit J@1.

Given these conditions, the basic approximation, wh
readers will recognize from the continuum case, is to wr
the wave function as a linear combination of the quasicl
sical forms

Cm;
1

Av~m!
expS i Em

q~m8!dm8 D , ~2.5!

whereq(m) andv(m) obey the equations

E5w~m!12t1~m!cosq12t2~m!cos~2q!

[Hsc~q,m!, ~2.6!
3-4
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v~m!5]Hsc/]q522 sinq~m!@ t1~m!

14t2~m!cosq~m!#. ~2.7!

Equations~2.6! and ~2.7! are the lattice analogs of the eiko
nal ~or Hamilton-Jacobi! and transport equations. Equatio
~2.5! represents the first two terms in an expansion of lnCm
in powers of 1/J.

We note in passing that the approximation applies toany
recursion relation~subject of course to the slow variatio
conditions!, and not just one that originates in a sp
problem.25 This is clear from the tight-binding analogy. I
particular, from the viewpoint of understanding the classi
limit, there is no need for attaching a specific meaning to
canonically conjugate variablesm and q as Jz and the azi-
muthal anglef in spherical polar coordinates. Indeed, the
are some advantages toavoiding this description, since the
topology of the unit sphereS2 makes it impossible to con
struct a classical Hamiltonian formalism in terms of aglo-
bally nonsingular coordinate and momentum.40

As in the continuum case, the approximate DPI wa
function is invalid at turning points. These points arise whe
ever the velocityv(m) vanishes for given energyE, for then
the approximation~2.5! diverges. We see from Eq.~2.7! that
v(m) can vanish either because sinq50, i.e., q50 or q
5p, or becauseq5q* [cos21(2t1/4t2). Substituting these
values ofq in the eikonal equation, we see that a turni
point is obtained whenever

E5U0~m!,Up~m!, or U* ~m!, ~2.8!

where

U0~m!5Hsc~0,m!5w~m!12t1~m!12t2~m!, ~2.9!

Up~m!5Hsc~p,m!5w~m!22t1~m!12t2~m!, ~2.10!

U* ~m!5Hsc~q* ,m!5w~m!22t2~m!2
t1
2~m!

4t2~m!
. ~2.11!

Note that at a turning point, bothm andq are determined. If
we denote the values of these quantities generically bymc
andqc , mc may be regarded as being fixed by Eq.~2.8!, and
qc by the corresponding conditionqc50, qc5p, or qc
5q* (mc).

To understand the nature of these turning points, let
assume thatt1,0, andt2.0. @This is the case for the Hamil
tonian~1.1!. We can always arrange fort1 to be negative by
means of the gauge transformationCm→(21)mCm . Thus
there is only one other case to be considered, namelyt1
,0, t2,0. This is discussed in Ref. 27.# It then follows that
Up.U0, and that

U0~m!2U* ~m!5
1

4t2~m!
@ t1~m!14t2~m!#2>0. ~2.12!

Second, let us think ofH(q,m) for fixed m as an energy-
band curve. ThenUp is always the upper band edge, whi
the lower band edge is eitherU0 or U* according as whethe
2t1/4t2 is greater than or lesser than 1. To deal with t
09441
l
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e
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possibility, it pays to introduce a dual labelling scheme
all three curvesU0 , Up , and U* . We write Up(m)
[U1(m), and

U0~m!5Ui~m!, U* ~m!5U2~m!, if q* P~0,p!,

~2.13!

U0~m!5U2~m!, U* ~m!5U f~m!, if q* ¹~0,p!.

~2.14!
The subscripts1 and2 denote upper and lower band edge
while the subscriptsi and f denoteinternal and forbidden,
respectively, since in the first case above,U0 lies inside the
energy band, while in the second case,U* lies outside. As
examples of these curves for a symmetric recursion relat
we show those for Fe8 in Fig. 3. A magnified view of the
lower left-hand portion of this diagram is given in Fig. 4.

Turning points whereE5U1 , or E5U2 when U2

5U0, are analogous to those encountered in the continu
quasiclassical method, since the energy lies at a limit of
classically allowed range for the value ofm in question.
Points whereE5U2 when U25U* are physically analo-
gous, but mathematically different since the value ofqc is
neither 0 norp. Points whereE5Ui ~e.g., see the energyE1
in Fig. 3! are unusual in that the energy isinside the classi-
cally allowed range formc , but the mathematical form of the
connection formulas is identical to the caseE5U25U0
sinceqc50. Most interesting are the turning points withE
5U f ~the pointm52m1 in Fig. 4, for instance!, since now
the energy is outside the allowed range form5mc , and the
value ofqc is therefore necessarily complex. These points
‘‘under the barrier’’ and turn out to be the ones of impo
tance for understanding oscillatory tunnel splittings. As

FIG. 3. Critical energy curves for the Hamiltonian~1.1!, show-
ing the dual labelling scheme.

FIG. 4. Magnified view of the lower left-hand region of Fig.
showing the point of tangencym* betweenU0 andU* , and turn-
ing points atm52mt and2m1 for an energyE.
3-5
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ANUPAM GARG PHYSICAL REVIEW B 64 094413
ready stated, these nonclassical turning points do not aris
problems described by three-term recursion relations, an
the oscillatory effect can not arise in such problems.

The above discussion shows that the curvesU0 , Up , and
U* collectively play the same role as the potential energy
the continuum quasiclassical method. We refer to them
critical curves. We have already noted thatUp.U0>U* .
Let us suppose that the case of equality in Eq.~2.12! occurs
at m5m* . Clearly t1(m* )/4t2(m* )521, which is pre-
cisely the condition found above for the lower band edge
change fromq50 to q5q* . Second, expandingt1 and t2
aboutm* , we see thatU0 andU* have a common tangen
when they meet.

III. HERRING’S FORMULA FOR FIVE-TERM
RECURSION RELATIONS

As discussed in Sec. I, Herring’s formula greatly simp
fies the calculation of tunnel splittings in a symmetric dou
well.33,34 An analogous formula can be derived in the d
crete case41,26 following the simplified treatment of Landa
and Lifshitz.32

We have already noted the importance of the criti
curves. For low-lying energy levels, in particular, the cur
U2 is very much like the potential energy in the continuu
case, and it is clear that we will have an entire series
approximate energy eigenstates with wave functions lo
ized in any one of the two wells, in the vicinity of6m0, the
minima ofU2(m) ~see Fig. 3!. Let Cm be thenth such wave
function localized in the right-hand well, normalized to un
total probability, and let it satisfy the Schro¨dinger equation
~2.1! with an energyE0 for all values ofm well to the right
he

te

-
c

rg
in
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of the left well, including in particular the region aroundm
50. More precisely, we takeCm to decay away from the
right well in both directions. Such a function could be ob
tained, e.g., as the energy eigenfunction of a modified pr
lem in which the on-site energy is increased by a large p
tive amount for allm,ma , where2m0!ma!0, it being
understood thatma is far away from all turning points for the
energy concerned. However, this problem need not be so
explicitly, as the exact behavior ofCm near m52m0 is
never needed, and therefore need not be examined
closely.

Given such a function, Herring shows that the true sy
metric and antisymmetric eigenfunctions,sj and aj , with
energiesE1 and E2, respectively, are given very accurate
by

am5
1

A2
~Cm2C2m!,

sm5
1

A2
~Cm1C2m!. ~3.1!

The productCmC2m is exponentially small everywhere, s
these functions are normalized to unit total probability
exponentially high accuracy.

The remaining steps are very similar to manipulations
volving the use of Green’s identity in the theory of se
adjoint operators. One writes the Schro¨dinger equations for
Cm andam , constructs inner products over half the regio
2J<m<J, and subtracts corresponding terms. The final
sult for the splittingD5E22E1 is derived in Appendix A.
Up to an irrelevant over all sign, we get
D5H 2@ t0,1C0~C12C21!1t0,2C0~C22C22!1t21,1~C1
22C21

2 !#, integerJ,

2 t21/2,1/2~C1/2
2 2C21/2

2 !14 t23/2,1/2~C1/2C3/22C21/2C23/2!, half integerJ.
~3.2!
i-
g

We remind readers that this result is not limited to t
ground-state splitting. Further, we can takeCm to be the
wave function of either the left- or the right-localized sta
as that only changes the sign ofD.

IV. QUASICLASSICAL FORMULAS FOR TUNNEL
SPLITTING

A. Singularity-unextracted quasiclassical formula

We now apply our Herring formula within the DPI ap
proximation. For this, we need the left-localized wave fun
tion Cm in the central region nearm50.

From the discussion in Sec. II we know that for an ene
E as depicted in Fig. 4, the classically allowed region is
the vicinity of 2m0, the minimum of U2(m). Turning
points exist atm52mt and2m1, the latter being under the
barrier.~There is also a turning point to the left of2m0, but
that is not of interest at the moment.! The local wave vector
,

-

y

q(m) is purely imaginary in the region2mt,m,2m1, and
complex in the region2m1,m,m1. To see this, we solve
the eikonal equation~2.6! for cosq:

cosq~m!5
2t1~m!6@ t1

2~m!24t2~m! f ~m!#1/2

4t2~m!
, ~4.1!

where f (m)5w(m)22t2(m)2E. Since cosq52t1/4t2 at
m52m1, the discriminant in Eq.~4.1! must vanish, and we
conclude that as we cross2m1 , cosq changes from real to
complex, andq changes from imaginary to complex. Inc
dentally, it may be verified that the condition for vanishin
discriminant, i.e.,

t1
2~m!54t2~m!@w~m!22t2~m!2E#, ~4.2!

is identical toE5U* (m).
We now note that if we choose the phase ofCm so thatCm

is real in the forbidden region to the left of2m0, then
3-6
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because the recursion relation is real,Cm must be real for all
m. Becauseq(m) is complex in the central region, we ca
meet this demand only by taking a linear combination of t
DPI forms with complex conjugateq’s. We write these as

q1,2~m!5 ik~m!6x~m!, ~4.3!

with k andx both real. SinceCm is left-localized by hypoth-
esis, it must decay with increasingm, and so we must choos
k.0. Further, we chooseq1 to be the solution with a posi
tive real part, i.e., we also takex.0. Then, the DPI form
which proves convenient form.2m1 is given by

Cm5Re
A

As1~m!
expS i E

2m1

m

q1~m8!dm8D , ~4.4!

wheres1(m)52 iv@q1(m)#.
The next step is to substitute Eq.~4.4! into Eq. ~3.2!.

Before doing this, we note that

coshk cosx52t1/4t2 , ~4.5!

sinhk sinx5~4t2f 2t1
2!1/2/4t2 , ~4.6!

so that

s158t2~m!sinhk~m!sinx~m!sinq1~m!. ~4.7!

We now substitute Eqs.~4.4!–~4.7! into Eq. ~3.2!. In doing
this, we may neglect the variation of quantitiesta(m), q(m),
andv(m) among the sites near the center of the lattice, si
the number of sites involved is of order 1, and so the va
tion leads to higher-order corrections in powers of 1/J. To
save writing, we denote quantities evaluated atm50 by a
bar: q1(0)[q̄1 , k(0)[k̄, etc. We thus get

Cm5ReA2

ei (V1mq̄1)

Asinq̄1

, ~4.8!

where

V5E
2m1

0

q1~m8!dm8, ~4.9!

A25~8 t̄ 2 sinhk̄ sinx̄ !21/2A. ~4.10!

The cases of integer and half integerJ are best tackled
separately. We do the integer case first. The requisite alg
is lengthy, and we provide the following intermediate form
las for reference:

C12C215 iA2@eiVAsinq̄12c.c.#, ~4.11!

C11C215A2FeiVAcos2q̄1

sinq̄1

1c.c.G , ~4.12!

C0~C12C21!5 i
A2

2

2 F S e2iV2e22 Im VAsinq̄1*

sinq̄1
D 2c.c.G ,

~4.13!
09441
e
-

ra
-

C22C2252iA2@eiV cosq̄1Asinq̄12c.c.#, ~4.14!

C0~C22C22!5 iA2
2F S e2iV cosq̄1

2e22 Im Vcosq̄1*Asinq̄1*

sinq̄1
D 2c.c.G ,

~4.15!

C1
22C21

2 5 iA2
2F cosq̄1S e2iV cosq̄1

2e22 Im VAsinq̄1*

sinq̄1
D 2c.c.G . ~4.16!

Substituting these and the formulat̄ 1524 t̄ 2 coshk̄ cosx̄
into Eq. ~3.2!, we get

D528A2
2 t̄ 2 ImS e2iVQ2e22 Im VAsinq̄1*

sinq̄1

ReQ D ;

~4.17!

Q5cosq̄12coshk̄ cosx̄. ~4.18!

But, it follows from Eq.~4.3! that

cosq̄15coshk̄ cosx̄2 i sinhk̄ sinx̄, ~4.19!

so ReQ50, the second term in Eq.~4.17! vanishes alto-
gether, and

D54A2
2 t̄ 2 sinhk̄ sinx̄~e2iV1e22iV* !. ~4.20!

For half integerJ, we get

C61/2
2 5

A2
2

4 F S e2iV

sinq̄1

e6 i q̄11
e22 Im V

usinq̄1u
D 1c.c.G , ~4.21!

C61/2C63/25
A2

2

4 F S e2iV

sinq̄1

e62i q̄11
e22 Im V

usinq̄1u
e7 i q̄1D 1c.c.G .

~4.22!
Thus

C1/2
2 2C21/2

2 5
i

2
A2

2~e2iV2c.c.!, ~4.23!

C1/2C3/22C21/2C23/25 iA2
2~cosq̄1e2iV2c.c.!,

~4.24!

and

D5 iA2
2@~ t̄ 114 t̄ 2!e2iV2c.c.#

54A2
2 t̄ 2 sinhk̄ sinx̄~e2iV1e22iV* !, ~4.25!

which is identical to Eq.~4.20!.
3-7
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Using Eq.~4.10!, we thus obtain, for both integer and ha
integerJ,

D5 1
2 A2~e2iV1e22iV* !. ~4.26!

The quantityiV is an action integral from2m1 to 0 @see Eq.
~4.9!#. From experience with continuum WKB, we expe
the amplitudeA to be related to the amplitude inside the w
by a barrier penetration factor, exp@2*

2mt

2m1uq(m)udm#. When

we use this result in Eq.~4.26!, we will obtain a total action
integral that runs between the classical turning points,2mt
and mt . The precise prefactor is determined by systema
use of connection formulas, and with the final answer~B12!
for A, we get

D5
v0gn

p FexpS i E
2mt

mt
q~m8!dm8D 1c.c.G . ~4.27!

Here q(m8) is chosen to have a positive real partx in the
first term. We reiterate that this result applies to higher pa
of excited states, and not just the ground pair. The esse
dependence onn, the excitation number, enters through then
dependence ofmt , the turning point.

The similarity of Eq.~4.27! to Eq. ~1.6! is striking, and
one can ask whether one should not have anticipated it r
away. For the ground-state pair, the instanton approa19

makes it very easy to understand the presence of two c
plex conjugate tunneling actions, and the fact that th
should be superposed, but does not give the prefactor.
action integrals in the instanton approach, however, run
from turning point to turning point but from one minimum o
the energy to the other. Further, properly justifiying the pr
actor using instantons has proven very difficult.42,43Purely as
a recipe for calculations, however, a hybrid approach,
which one adds the tunneling actions from all equival
instantons, and uses the DPI approach to determine the
of the prefactor, would appear to be valid for all problem
Thus we strongly suspect that Eq.~4.27! is correct even
when the recursion relation has seven or more terms.

B. Singularity-extracted quasiclassical formula

While the formula~4.27! is very general, it has the disad
vantage that the action integral runs between turning poi
The integrand is therefore close to a singularity, and for lo
lying states, this gives rise to terms in the action that dep
on lnJ. Hence the formula does not reveal the asympto
behavior as a function ofJ in a transparent way.

We can obtain a formula without this drawback, ana
gous to Eq.~1.8!, by systematically subtracting away th
singular terms in the action integral. This is done in Appe
dix C, and the final result is

Dn5
1

n!
A8

p
v0Fn11/2e2G0 cosLn , ~4.28!

where

G052E
2m0

0

k0~m!dm, ~4.29!
09441
ic

s
ial

ht

-
y
he
ot

-

n
t
rm
.

s.
-
d

c

-

-

Ln52E
2m1

0

@x01~n1 1
2 !v0x08#dm, ~4.30!

F52Mv0~m2m1!2 expF22S Q11v0E
2m1

0

k08dmD G ,
~4.31!

Q15E
2m0

2m1S v0B08

AB0
221

1
1

m1m0
D dm. ~4.32!

In Eqs.~4.29!–~4.32!, the irregular turning points6m1 may
be evaluated by settingE5U2(6m0), and it should be re-
called that6m0 are the minima ofU2(m). Further,

k05k~m,e50!; k085
]k~m,e!

]e U
e50

, ~4.33!

x05x~m,e50!; x085
]x~m,e!

]e U
e50

, ~4.34!

B05cosq~m,e50!; B085
] cosq~m,e!

]e U
e50

, ~4.35!

with

e[E2U2~2m0!. ~4.36!

The problem of finding the low level splittings is thu
reduced to the evaluation of a handful of integrals. The p
liferation of notation masks the actual simplicty of these fo
mulas.

V. TUNNEL SPLITTINGS FOR Fe 8

We now apply our general result, Eq.~4.28! to the spe-
cific problem of Fe8, with the model Hamiltonian~1.1!. The
action integrals are evaluated in Appendix D, and we fi
that the splitting of thenth pair of levels is given by

Dn5
1

n!
A8

p
v0Fn11/2e2G0 cosLn , ~5.1!

where

v052J@k1k2~12hx0
2 !#1/2, ~5.2!

F58J
l1/2~12hx

2!3/2

12l2hx
2

, ~5.3!

G05 J̄F lnS A12hx
21Al

A12hx
22Al

D 2
hx

A12l

3 lnS A~12hx
2!~12l!1hxAl

A~12hx
2!~12l!2hxAl

D G , ~5.4!
3-8
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Ln5maxH 0,pJS 12
Hx

A12lHc
D 2npJ . ~5.5!

In these equations,J̄5J1 1
2 , hx5JHx / J̄Hc , and hx0

5Hx /Hc . Recall thatHc52k1J/gmB and l5k2 /k1 ~see
Table I!, and note that unlike Eq.~5.4!, what appears in Eq
~5.5! is the ratioHx /Hc , i.e., hx0, not hx . This fact is im-
portant for the location of the diabolical points.

These results possess several points of interest. The
concerns the fields where thenth tunnel splitting vanishes
Taking account of the fact thatLn is necessarily positive a
indicated by Eq.~5.5!, we see that this happens whenever29,19

Hx

Hc
5

A12l

J FJ2 l 2
1

2G , ~5.6!

with l 5n, n11, . . . , 2J2n21, yielding 2(J2n) quench-
ing points in all forDn . When n50, these are the result
quoted in Sec. I.

In Fig. 5 we compare Eq.~5.1! with the numerically
evaluated splittings for the first three pairs of levels. With
our numerical precision, we always find the zeros ofDn to
agree with Eq.~5.6!. Note, however, that for other values o
Hx , the discrepancy between the numerics and Eq.~5.1! is
well outside our numerical error, so that Eq.~5.1! is not
exact, even though as an asymtotic estimate of the splittin
is rather good. This means that in general the leading se
classical approximation is not exact for the Hamiltoni
~1.1!, and only the quenching points appear to be so rep
duced. The second point to note is that forn51 ~the pair of
first excited states in each well!, the highest field quenching
point is lost, forn52, the highest two points are lost, and
on, exactly as indicated by Eq.~5.6!.

Next, let us compare our answers with previous work.
us consider the tunneling actionG0 in the Gamow factor
exp(2G0) first. Except for the replacement ofJ by J̄ andhx0
by hx , this is precisely Eq.~3.10! of the third paper of Ref.
19. This agreement is unsurprising, because if we writeDn in
the form of a prefactorc1 times a Gamow factor exp(2Jc2)
wherec25O(1), then theJ→ J̄, andhx0→hx corrections in
Eq. ~5.4! represent terms that should be included in the p

FIG. 5. Comparison between numerical~solid lines! and ana-
lytic @Eqs. ~5.1!–~5.5!, dashed lines# results for the splitting be-
tween the first three pairs of levels forHz50. The parameters ar
k150.321 K, k250.229 K, close to those for Fe8.
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actorc1, which we did not seek in the third paper of Ref. 1
The detailed form of the prefactor is perhaps more intere
ing. Up to multiplicative terms of orderJ0, our answer for
Dn agrees precisely with that in Refs. 38 and 39. We do
understand, however, how these papers have succeed
sidestepping the difficulties in the path integral treatment t
were noted by Enz and Schilling,42 and by Belinicher, Provi-
dencia, and da Providencia.43 In Ref. 38, for instance, the
problem is treated by writing the spin coherent-state exp
tation value of the Hamiltonian~1.1! in spherical polar coor-
dinates, and integrating out cosu ~the Jz projection! exactly,
and then addressing the resulting effective Lagrangian
the f coordinate exactly as for a massive particle in o
dimension. In performing the integration overu, however, it
is not clear to us whyS2 is replaced byS(S11) in the scalar
potential V(f) @see Eq.~12! there#, but not in the vector
potentialQ(f).

A related point, which is relatively minor, but has sco
for creating confusion, is that if the Gamow factor is writte
as exp(2Jc2) with c25O(1), then it is safest to write theJ
dependence of the prefactor asv0Jn11/2, sincev0 depends
on parameters such ask1 andk2, whose scaling withJ is a
matter of choice, at least as far as model Hamiltonians
concerned. We may note that Villain and Fort’s treatme9

does not readily yield the complete prefactor.
One further check is obtained by considering the limiti

caseHx50, answers for which are known@see, e.g., Eq.~16!
of Ref. 42, Eq.~48! of Ref. 43, or Ref. 44.# Transcribing Eqs.
~4.30! and~4.31! from Ref. 44 in terms of the present param
eters, we get

Dn5
1

n!
F0

nD0 ; ~5.7!

F058J
Al

12l
, ~5.8!

D058v00S J

p D 1/2 l1/4

11Al
S 12Al

11Al
D J

, ~5.9!

with v0052J(k1k2)1/2. It follows from Eqs.~5.2!–~5.5! that
as Hx→0, v0→v00, F→F0 @see Eq.~5.3!#, cosLn→61,
and

G0→~J1 1
2 !ln

11Al

12Al
. ~5.10!

It is then easy to see that our present answers forDn go over
precisely into Eqs.~5.7!–~5.9!.

VI. DISCUSSION

As stated in Sec. I, diabolical points require special co
ditions, and are rare for that reason. We contrast here
way in they come about in our problem and those involvi
a massive particle withp21V(x) type Hamiltonian, where
the dimensionality ofx is arbitrary. Take the path integra
view first. Wilkinson45 notes the possibility of interfering
tunneling trajectories when the tunneling action is compl
3-9
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and also notes that this can only happen in two or m
dimensions, i.e., for phase space of dimension 4 or m
The spin system shows interference20,21 even though its
phase space is two dimensional~the unit sphereS2). The
same conclusion is reached from the operator point of vi
General results from Sturm-Liouville theory forbid the o
currence ofany degeneracy in the discrete part of the sp
trum for ap21V(x) Hamiltonian if the boundary condition
at the end points are independent, whereas our differe
equation is one dimensional yet has degeneracy. An en
taining example of a continuum one-dimensional probl
with diabolical points has been invented by Berry a
Mondragon,46 but the Hamiltonian is nowp4, quartic in the
momentum, and the boundary conditions compatible w
hermiticity form a four parameter system, which is lar
enough to admit diabolicity.

We conclude by mentioning some remarkable exact pr
erties of the special Hamiltonian~1.1!.31 First @see Eqs.~1.2!
and ~1.3!#, the diabolical points form part of a perfect ce
tered rectangular lattice in theHx–Hz plane. Second, in gen
eral, we have asimultaneousdegeneracy of more than on
pair of levels—if we arrange the points on a set of concen
rhombi, one pair is degenerate on the outermost rhom
two on the next, three on the one next to that, and so
Both these facts are captured by the leading order DPI an
sis. The exact results suggest the existence of a higher
namical symmetry, but that is not yet established. Furth
when higher-order anisotropy terms are included in
Hamiltonian to obtain quantitative agreement with expe
mentally observed period,7 the simultaneous degeneracy
several pairs of levels and the perfect lattice of diaboli
points are no longer exact properties, but they continue
hold to fair approximation.17
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APPENDIX A: DERIVATION OF HERRING’S FORMULA

The Schro¨dinger equations obeyed byCm andam defined
in Sec. III are

~wm2E0!Cm1 (
n5m22

m12

8 tm,nCn50, ~A1!

~wm2E1!am1 (
n5m22

m12

8 tm,nan50. ~A2!

We definemr to be 1 if J is integral, and 1/2 whenJ is half
integral. Multiplying Eq.~A1! by am , Eq.~A2! by Cm , sum-
ming over m from mr to J, and subtracting correspondin
terms, we get
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~E12E0! (
m5mr

J

Cmam1S12S250, ~A3!

where

S15 (
m5mr

J

(
n5m22

m12

8 amtm,nCn , ~A4!

S25 (
m5mr

J

(
n5m22

m12

Cmtm,nan . ~A5!

To simplify Eq. ~A3!, we first note that by Eq.~3.1!

(
m5mr

J

Cmam'
1

A2
(

m5mr

J

Cm
2 '

1

A2
, ~A6!

since the productCmC2m is everywhere exponentially smal
and sinceCm

2 is concentrated almost completely in the rig
well. Second, most of the terms in the sumsS1 andS2 can
be seen to be identical by shifting the summation indices
various terms suitably, and making use of the symme
tm,n5tn,m . For example, the difference between the terms
S1 with n5m12, and those inS2 with n5m22 equals

(
m5mr

J

~amtm,m12Cm122Cmtm,m22am22!

5 (
m5mr

J

amtm,m12Cm122 (
m5mr22

J22

Cm12tm12,mam

52amr21tmr21,mr11Cmr112amr22tmr22,mr
Cmr

,

~A7!

where we have made use of the obvious facts thattJ,J12 and
tJ21,J11 are identically zero. The differences between t
other terms inS1 and S2 can be similarly evaluated, an
reduce to a small number of terms involving the product
ana with a C, which can then be written entirely in terms o
C’s using Eq.~3.1!. Finally, we can see thatE12E0 5 E0
2E2 5 6D/2, whereD is as quoted in the main text@Eq.
~3.2!#.

Herring gives a more careful justification of his formu
by employing the Temple-Kato error bound on ener
eigenvalues.47,48His argument can be adapted word for wo
to the present problem, and shows that the error in the s
ting as calculated via Eq.~3.2! is exponentially smaller than
the splitting itself, by a factor such ase2cJ wherec.0. As
J→`, therefore, Eq.~3.2! is asymptotically correct.

Mathematically oriented writings sometimes frame the
gument in terms of an abstract eigenoperatorI op for all left
and right localized states with eigenvalues21 and 11
respectively,49,41 or a projection operatorQop for the right
localized states.50 The splitting then appears as the matr
element of the commutator@ I op,H# or @Qop,H# between the
left and right localized states. Evaluation of this matrix e
ment is completely equivalent to finding the differenceS1
2S2, however, so the physical idea is exactly the same.
3-10
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APPENDIX B: CALCULATION OF THE DPI WAVE
FUNCTION AMPLITUDE

Our objective in this appendix is to calculate the amp
tudeA in the central region DPI wave function~4.4!, given
that the stateCm is normalized. This is accomplished b
relating the wave function across the turning points2mt and
2m1 by connection formulas. In fact, as we shall see,
connection formula near2mt can be sidestepped, and on
that near2m1 is actually applied.

1. DPI form near potential-well minimum

Let us first findCm in the classically allowed region nea
2m0, the minimum ofU2(m) ~see Fig. 4!. We assume, as
will be seen to be true for Eq.~1.1!, that in this regionU2

5U0. For energies close toU2(2m0), and m close to
2m0, the eikonal equation can only be satisfied ifq is close
to zero. We can therefore expandHsc in powers ofm1m0
andq:

Hsc~q,m!'U2~2m0!1
1

2M
q21

1

2
Mv0

2~m1m0!21 . . . ,

~B1!

where

M52@2t1~2m0!18t2~2m0!#21.0, ~B2!

v0
2522~ t114t2!

]2U2

]m2 U
m52m0

. ~B3!

Note that by virtue of Eq.~2.4!, and its natural extension t
second derivatives,v0 is of order 1/J relative tot1 and t2.

Since the eikonal equation is also the Hamilton-Jac
equation withq5]F/]m, whereF is the action, the prob-
lem is identical to that of a harmonic oscillator in the a
proximation~B1!. ~Alternatively, we could arrive at the sam
result by approximating the original recurrence relation b
differential equation in the vicinity of2m0.! For the nth
state therefore

E05U2~2m0!1~n1 1
2 !v0 , ~B4!

and

Cm5@22n~n! !2pj2#21/4e2x2/2j2
Hn~x/j!, ~B5!

where x5m1m0 , Hn is the nth Hermite polynomial, and
j5(Mv0)21/2. The wave function is already normalize
and the additional tails from the forbidden region on
modify the normalization by an exponentially small amou

It is apparent that the expansion~B1! is invalid unless the
point 2m0 is sufficiently far from the edgem52J. Since
the width of the wave function~B5! is Anj, a necessary
condition for the validity of our procedure is

J2m0@Anj. ~B6!

If this condition does not hold, then the recursion relati
must be solved near the edge by a different method, whic
09441
-

e

i

a

.

is

tantamount to using the Holstein-Primakoff or Bogoliub
transformation. An example of the latter approach is given
Sec. IV of Ref. 44.

From the viewpoint of the DPI method, we have two tur
ing points very close to2m0, one to the left, and one to th
right, since the conditionE5U2(m) is then satisfied. The
one to the left has been discussed above. Let us now con
the one to the right, atm52mt . We have

2mt1m05F2n11

Mv0
G1/2

;~nJ!1/2. ~B7!

The neglected terms in Eq.~B1!, on the other hand, are o
relative ordersq4, (m1m0)3/J3, and (m1m0)q2/J, and
thus smaller thannv0 for x!(nJ2)1/3. Thus providedn!J,
the solution~B5! holds well past2mt , and can be matched
directly onto the DPI solution under the barrier, without a
need of connection formulas atm52mt .51 This argument is
given at greater length in Sec. V of Ref. 44.

2. DPI form in ordinary forbidden region

In the region2mt,m,2m1, the DPI solution that de-
cays with increasingm can be taken as

Cm5
B

Auv~m!u
expS 2E

2mt

m

k~m8!dm8D , ~B8!

wherek(m)5Im q(m).0. This solution must be matche
on to Eq. ~B5! to determine B. For J1/3!(m1mt)
!(nJ2)1/3, we can continue to use the harmonic approxim
tion ~B1!, and a simple calculation,36 traceable to Furry,35

leads to

B5S v0gn

2p D 1/2

, ~B9!

wheregn is defined in Eq.~1.7!.

3. DPI form in central region

Step 3 is to find the wave function in the central regi
nearm50. This is already done if there are no turning poin
between2mt andm50. For the Hamiltonian~1.1!, it turns
out that we encounter another turning point whereE
5U f(m) ~the only possibility! at an intermediate pointm
52m1 ~see Fig. 4!, The wavefunction in the central regio
then has the form~4.4!, and the coefficientA in this form
must be related toB in Eq. ~B8! via a connection formula a
2m1. This formula was found in Ref. 27. If we rewrite Eq
~B8! as

Cm5
Ã

2Auv~m!u
expS 2E

2m1

m

k~m8!dm8D , ~B10!

Ã52B expS 2E
2mt

2m1
k~m8!dm8D , ~B11!

we have
3-11
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A5Ã5S 2v0gn

p D 1/2

expS 2E
2mt

2m1
k~m8!dm8D , ~B12!

where we have used Eqs.~B9! and ~B11! in the last step52.

APPENDIX C: EXTRACTION OF SINGULAR PARTS
OF TUNNELING ACTION INTEGRALS

The purpose of this appendix is to derive the singula
extracted formulas for the tunnel splitting in Sec. IV B. T
procedure is similar to that used for the continuum case
Ref. 36. We begin by defining

F~e!52 i E
2mt(e)

0

q~m,e!dm, ~C1!

where the energy dependence is made explicit. The split
for the nth pair of states is then given by

Dn5
v0gn

p
~e22F(en)1c.c.!, ~C2!

with en5(n1 1
2 )v0. Writing x5m1m0 as in Eq.~B5!, the

integrand inF behaves as (x22xt
2)1/2 near the lower limit,

with xt52mt1m0;e1/2. Thus there is a singular part inF
of the forme ln e, which it is our goal to extract. To this end
we differentiate Eq.~C1! to get

F8~e!5
dF

de
52 i E

2mt(e)

0 ]q

]e
dm. ~C3!

Note that the term arising from differentiating the lower lim
vanishes, nor is there any explicit contribution from the s
gular behaviorq;(m1mc)

1/2 for m near2mc .
Next, let us divideF8(e) into two integrals,F18 , in

which the limits of integration are2mt and2m1, andF28 ,
which runs from2m1 to 0. Defining

Be~m!5cos„q~m,e!…, ~C4!

we have

F18~e!5E
2mt(e)

0 Be8

ABe
2~m!21

dm, ~C5!

whereBe85]Be /]e. It follows from Eq. ~B1! that nearm5
2mt ,

Be'11~ 1
2 Mv2x22e!M1 . . . , ~C6!

so the integrand in Eq.~C5! behaves as21/v0(x22xt
2)1/2. If

we add and subtract the integral of this expression, we ob

F18~e!52
1

v0
E

xt

x1 dx

Ax22xt
2

1E
xt

x1F Be8

ABe
2~m!21

1
1

v0Ax22xt
2Gdx, ~C7!

wherex15m02m1. The first integral can be evaluated e
actly. In the second integral we can pute50 both in the
09441
y

in

g

-

in

limits and in the integrand, since we are not interested
terms ofO(e). Ignoring terms of this order throughout, an
making use of the relation

xt
252e/Mv0

2 , ~C8!

we obtain

F18~e!5
1

2v0
F ln

e

2Mv0~m02m1!2 12Q1G , ~C9!

whereQ1 is given by Eq.~4.32!. Also, we can evaluatem1 at
e50.

The remaining contribution toF8(e), F28(e), can be
evaluated simply by puttinge50, since the neglected part i
O(e). Recalling the definitions~4.33! and ~4.34!, we have

F28~e!'E
2m1

0

~k082 ix08!dm. ~C10!

We now integrate the expression forF8(e) and obtainF. It
is useful to separate the real and imaginary parts of the
swer at this stage. For the real part, we get

G52 ReF

5G01
e

v0
F2Q1211 ln

e

2Mv0~m02m1!2

12v0E
2m1

0

k08 dmG , ~C11!

with G0 given by Eq.~4.29!, while for the imaginary part,
Ln[22 ImF, we get Eq.~4.30!.

Substituting Eqs.~C11!, ~4.30!, and the definition~1.7! of
gn in the formula~C2! for Dn , and recalling Eq.~4.31! and
that en5(n1 1

2 )v0, we finally obtain the answer quoted i
Eq. ~4.28!.

APPENDIX D: EVALUATION OF ACTION INTEGRALS
FOR Fe8

In this appendix, we evaluate the action integrals for
specific problem described by the Hamiltonian~1.1!. The
first step is to find the various matrix elements of this Ham
tonian. We have

wm5
1

2
~k11k2!@J~J11!2m2#, ~D1!

tm,m1152
1

2
gmBHx@J~J11!2m~m11!#1/2, ~D2!

tm,m125
1

4
~k12k2!$@J~J11!2m~m11!#

3@J~J11!2~m11!~m12!#%1/2. ~D3!

We must now replace these by continuous functionsw(m),
t1(m), andt2(m). Since our formalism requires knowing th
first two terms in the action in an expansion in powers of 1J,
3-12
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it follows that we need only determine the functionsw(m),
etc., to the same order. Furthermore, this determination n
not be made in the form of a power series, and any functio
representation that gives the first two terms correctly will
adequate. The most convenient way to do this is to rep
the combinationJ(J11) in the above expressions byJ̄2,
with J̄5J1 1

2 .
It is convenient to measure energies~including v0) in

units of k1J̄2, and introduce the scaled variablem5m/ J̄. In
terms of these variables,

w~m!5~11l!~12m2!/2, ~D4!

t1~m!52hx~12m2!1/2, ~D5!

t2~m!5~12l!~12m2!/4. ~D6!

The turning pointsm05m0 / J̄, and m15m1 / J̄ ~for e
50) are given by

m05~12hx
2!1/2, ~D7!

m15@~12l2hx
2!/~12l!#1/2. ~D8!

It is simplest to express everything in terms ofm0 andm1, so
we give inverse formulas as well:

hx5~12m0
2!1/2, ~D9!

l5~m0
22m1

2!/~12m1
2!. ~D10!

The mass and the small oscillation frequency are given

M5
1

2lhx
25

1

2

12m1
2

~12m0
2!~m0

22m1
2!

, ~D11!

v05
2

J̄
@l~12hx

2!#1/25
2m0

J̄
S m0

22m1
2

12m1
2 D 1/2

. ~D12!

To evaluate the integrals, we need expressions fork0 ,
x0 , k08 , etc., in the rangesm1,m,m0, and 0,m,m1. The
requisite calculations are straightforward so we give the m
results only. First, in the rangem1,m,m0, we get

B05coshk05
12m1

22@~m0
22m1

2!~m22m1
2!#1/2

@~12m0
2!~12m2!#1/2

,

~D13!

AB0
2215sinhk05

~Am0
22m1

22Am22m1
2!A12m1

2

@~12m0
2!~12m2!#1/2

,

~D14!

B0852
1

2

12m1
2

@~12m0
2!~12m2!~m0

22m1
2!~m22m1

2!#1/2
,

~D15!
09441
ed
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v0B08

AB0
221

52
m0

J̄

1

Am22m1
2~Am0

22m1
22Am22m1

2!
.

~D16!

Next, in the range 0,m,m1, we first solve Eqs.~4.5! and
~4.6! with e50, to obtain

coshk05@~12m1
2!/~12m0

2!#1/2, ~D17!

cosx05@~12m1
2!/~12m2!#1/2, ~D18!

sinx05@~m1
22m2!/~12m2!#1/2. ~D19!

To find k08 andx08 , we differentiate Eqs.~4.5! and~4.6!, and
set e50. Solving the resulting equations along with Eq
~D17!–~D19!, we obtain

S k08

x08
D 52

~12m1
2!1/2

2~m0
22m2!

S ~m0
22m1

2!21/2

~m1
22m2!21/2D . ~D20!

The first integral that we wish to evaluate isG0. Let us break
the integration range into two atm1. From the right-hand
part, an integration by parts gives

G0152J̄E
m1

m0
k0dm

52 J̄Fk0~m!mum1

m02E
m1

m0 m

sinhk0

dB0~m!

dm
dmG ,

~D21!

while from the left-hand part we get

G0252J̄E
0

m1
k0dm52 J̄k0~m1!m1 , ~D22!

ask0 is a constant in this range. Sincek0(m0)50,G02 can-
cels the first term in Eq.~D21!, leaving us only with the
second forG0. Using Eqs.~D13! and ~D14!, we find

G052 J̄~12m1
2!1/2E

m1

m0 dm

~12m2!~m22m1
2!1/2

. ~D23!

The integration is now elementary, and the result, expres
back in terms ofl andhx is Eq. ~5.4!.

The second integral to be evaluated isLn @Eq. ~4.30!#. For
the first term, we integrate by parts, and use Eqs.~D18! and
~D19!:

2 J̄E
0

m1
x0~m!dm52 J̄E

0

m1 m

sinx0

d

dm
cosx0dm

52 J̄E
0

m1 m2

~12m2!~m1
22m2!1/2

dm

5p J̄@12~12m1
2!1/2#. ~D24!

For the second term in Eq.~4.30!, we have, withe5(n
1 1

2 )v0, and Eqs.~D12! and ~D20!,
3-13
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2e J̄E
0

m1
x08dm52~2n11!m0~m0

22m1
2!1/2

3E
0

m1 dm

~m0
22m2!~m1

22m2!1/2

52~n1 1
2 !p. ~D25!

Adding together the parts, and rewriting the result in terms
Hx andl, we get Eq.~5.5!. The restriction thatLn be posi-
tive follows from the fact that we choseq(m) to have a
positive real part in Eq.~4.27!. ThusL is necessarily positive
as defined in Eq.~4.30!. If Hx is so large as to yield a nega
tive value for the function ofHx that results after doing the
integral, that means that in fact there are no irregular turn
points in the problem. Both terms in Eq.~4.27! are then
equal, and the formula reduces to the expected one w
there are only regular turning points.

The third integral we need is that ofk08 from 0 to m1.
Using Eqs.~D12! and ~D20!, we get

2v0J̄E
0

m1
k08dm522m0E

0

m1 dm

m0
22m2

5 ln
m02m1

m01m1
.

~D26!

The fourth and last integral needed isQ1. Substituting Eq.
~D16! in Eq. ~4.32!, we obtain

Q152E
m0

m1F m0

Am22m1
2~Am0

22m1
22Am22m1

2!

2
1

m02mGdm. ~D27!
09441
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The integrand is now nonsingular atm5m0. We can make
this manifest by rationalizing the difference of square ro
in the first term. Some simple algebra yields

Q152E
m0

m1 1

Am22m1
2

m0
21m22m1

2

m0Am0
22m1

21mAm22m1
2

dm.

~D28!

We now make the substitutionm5m1coshz, and define

coshz05m0 /m1 . ~D29!

This yields

Q152E
0

z0 cosh 2z01cosh 2z

sinh 2z01sinh 2z
dz

52E
0

z0 cosh~z1z0!

sinh~z1z0!
dz52 ln~2 coshz0!

52 ln
2m0

m1
. ~D30!

We now have all the ingredients needed to calculate
quantityF. Substituting Eqs.~D11!, ~D12!, ~D26!, and~D30!
in Eq. ~4.31!, and writing the result in terms ofl andhx , we
obtain Eq.~5.3!. Note that in writing down the final answe
we have replacedJ̄ by J andhx by hx0 in this formula. This
is becauseF is part of the pre-exponential factor inDn ,
which is determined only to leading order in 1/J. Keeping
higher-order corrections by distinguishing betweenJ̄ and J
or hx andhx0 is not justified.

The final answer~5.1! for Dn is obtained by substituting
Eqs.~5.4!, ~5.5!, and~5.3! in Eq. ~4.28!.
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