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Quenched spin tunneling and diabolical points in magnetic molecules.
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The perfect quenching of spin tunneling that has previously been discussed in terms of interfering instantons,
and has recently been observed in the magnetic molecyleis-&eated using a discrete phase intedaal
Wentzel-Kramers-Brillouiih method. The simplest model Hamiltonian for the phenomenon leads to a-Schro
dinger equation that is a five-term recursion relation. This recursion relation is reflection symmetric when the
magnetic field applied to the molecule is along the hard magnetic axis. A completely general Herring formula
for the tunnel splittings for all reflection-symmetric five-term recursion relations is obtained. Using connection
formulas for a nonclassical turning point that may be described as lying “under the barrier,” and which
underlies the oscillations in the splitting as a function of magnetic field, this Herring formula is transformed
into two other formulas that express the splittings in terms of a small number of action and actionlike integrals.
These latter formulas appear to be generally valid, even for problems where the recursion contains more than
five terms. The results for the model Hamiltonian are compared with experiment, numerics, previous instanton
based approaches, and the limiting case of no magnetic field.
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I. INTRODUCTION nored in a first approximation. The parameters relevant to
A. Motivation Fe arek;~0.33 K andk,~0.22 K& The g factor is close

to 2.
.The purpose of this paper i§ to discuss the _tunn.eling ofa |t has been found by Wernsdorfer and Sedstlat the
spin degree of freedom described by the Hamiltonian tunnel splittings between low-lying pairs of energy levels of
Fe; oscillate as a function of applied static magnetic field.
H=—kyJ2+ (ky—k;)I2—gugd-H, (1.1)  These oscillations are now understdas manifestations of
conical intersectiort§ or diabolical points' in the space of

whereJ is dimensionless spin operator with componelts mag_r_1etic fields. Sugh points are r_are_in physical systems. In
J,, andJ,, H is an external magnetic field, arki>k, addm_on, the.tunnellng of a spin is different from_ that of a
>0. Although our immediate goal is to perform a careful Massive particle in some ways, and as we shall Q|scuss at the
mathematical analysis of the tunneling spectrum, it is part ofnd, naive arguments based on experience with the latter
our larger and longer term goal of understanding the low-could easily cause one to miss the oscillations. Third, tunnel-
temperature magnetization dynamics of molecular magnet§g is clearly an important component of the low-
and small magnetic particles. Thus our motivation for studytemperature dynamics of the magnetization of other molecu-
ing the Hamiltonian(1.1) specifically is that it provides a lar magnets. For example, there are still many open
good approximate description of the low-temperature behavguestions about the paramagnetic relaxation of a related mol-
ior of the spin of the moleculg(tacn);Fe;0,(OH)1,]®" (or  ecule, Mn,,*"*%and it is clear that better understanding of
just Fe for shord.>~’ This molecule has a ground manifold Feywill help in that case too. For all these reasons, careful
of Zeeman states witd= 10, arising from competing in- theoretical study of the tunneling properties of model Hamil-
tramolecular antiferromagnetic exchange interactions betonians such as Eql.1) seems worthwhile.

tween the eight F€ ions in each molecule. The molecules  The spectrum of the Hamiltoniafl.1) is very rich. To

are very well separated in the solid, and there is no evidenckelp appreciate this richness, and understand the phenomena
for an exchange coupling between different molecules. Th¢hat we shall discuss, we show in Fig. 1 the results of a
dipolar intermolecular couplings are weak and may be igumerical calculation of the energies as a functiokl of for

(@) (b) ©

FIG. 1. Spectrum of the Hamiltonigd.1) for
J=3, as a function of H,/H.. H,/H.
=0, 0.07454, and 0.1491 @), (b), and(c), re-

spectively. The small ovals indicate points that
\ are narrowly avoided anticrossings, but appear to
) ) ) ) ) ) ) ) ) ) ) ) be crossings on low resolution.
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TABLE I. Summary of important parameter combinations V(x)

Quantity Formula
Hc 2k1J/gps
N ko Tk,
J J+3
hy JHHe  \ A
hyo Hy,/H. ,
wo 23 kika(1~ o) 1M -a "4 ay q

FIG. 2. A symmetric double-well potentisi(x).

J=3, for three different values dfi,. In all three cases,
H,=0. In Fig. Xa), H,=0, and viewing Eq(1.1) as a clas- higher-order anisotropy terfhin the numerics. The answer
sical energy function for a classical angular momentum vecis twofold. First, numerics cannot be done easily for lager
tor J of fixed lengthJ, we have two degenerate minima for since the number of significant digits required to discern a
H,<H.=2k,J/gug. (This quantity, along with other im- Splitting grows roughly exponentially with Thus the calcu-
portant parameter combinations, is listed in TabjeCorre-  lation has general value. Second, analytic work provides in-
spondingly the lowest two quantum-mechanical energy levsight beyond numerics in showing how the splitting depends
els will be split by tunneling. This is evident in the figure. systematically on parameters’, how it grows as we con-
The key features are thdt) the lowest two energy-level sider higher pairs of levels and so on. Even if one if suc-
curves cross six timeéncluding negative values df,), (i) ceeeded in fitting the numerical data to explicit functional
the Crossing points are perfecﬂy periodica”y Spaced’(ﬁﬁd forms by trial and error, such fits would have only an em-
a number of higher energy level pairs also cross at some dfifical status. Most importantly, the analytic approach pro-
the field values where the lowest two levels do. vides a language in which to discuss and understand the
In Fig. 1(b), H, has a specific nonzero value. The problem*“physics” of the problem, and gain insight which may be
is no longer symmetric, and one of the classical minima iaPplied to other problems. Thus we shall see that the vanish-
lower than the other. Correspondingly, we see that the lowedfd of the splitting is linked to an oscillatory exponential
quantum-mechanical state is always non degenerate. NoWRehavior of the wave function arising from a nonclassical
however, ifH, is correctly chosen, the first excited state in turning point in a semiclasssical, WKB-like approach. It is
the deeper well can be brought into resonance with the loweXtremely unlikely that one could develop such mental pic-
est state in the shallower well, and these two states can aédres based on numerical work alone. These constructs are
mix by tunneling. And indeed, we see from the figure that theextremely useful in understanding more complicated
second and third energy levels are quite close. The key fedaroblems:®
tures are thati) they also cross a number of timeg) these
crossings are shifted by half a period from those in Fig),1
and (iii ) crossings between yet higher levéésg., the fourth
and fifth) occur at some of the same fields where the lower The Hamiltonian(1.1) has been the subject of several
levels cross. previous papers by this authrThe quenching of ground-
This pattern continues a$, is increased still furthelfFig.  state tunnel splittings de||§<, i.e., those between the lowest
1(c)]. Now the lowest two levels in the deeper well are non-pair of levels in Fig. 18), were found in the first paper of
degenerate, and the lowest crossings are between levelsR&f. 19, on the basis of a path integral or instanton argument
and 4. Compared to Fig(l), these crossings are shifted by involving interference of tunneling Feynman trajectori®$!
yet another half period. Again, there is a simultaneous crossFhis work was done before the experiments of Wernsdorfer
ing between higher pairs of levelsumbers 5 and 6at and Sessoli, and without knowing of the relevance of the
H,/H.=0.15. Hamiltonian to Fg. These quenchings, or those that occur

At the points where the energy levels in Fig. 1 cross, thayhenH|z, can be understood in light of the von Neumann-
tunnel splitting goes to zero, and a plot of the splittings as QNigner theorem. Wheh1||§<, or HHE,  is invariant under a

function of H,/H. would show oscillations. It is just these 80° rotati bouk . f levels th dd
oscillations that Wernsdorfer and Sessoli have seen. Th% rotation abouk or z, SO €nergies o evels that are o
and even under this operation can interséahenH has

curves markedh=0, 1, and 2 in Fig. tb) of Ref. 7 corre- - -
spond precisely to the lowest crossing in Fig)%(c), re-  bothx andz components, howevet{ has no symmetry, and
spectively. The higher crossings have also been inferred irthe level crossinggFigs. 1(b) and(c)], corresponding to the
directly by Wernsdorfeet all’ —10~9 and — 10— 8 oscillations seen in Ref. 7, were not
Some readers may wonder why an analytic study of thdoreseen. The present study is motivated largely by the need
prob|em is necessary, and Why a numerical calculation of thg) understand these new oscillations, and also the tunneling
energy levels of the 22421 Hamiltonian for Fg which  between the higher pairs of levels fdrﬂi.zz
could be done just as for thie=3 case above, is not the last  The approach used here is a discrete phase int€grd)
word on the subject, especially since one can easily includer Wentzel-Kramers-Brillouin(WKB) method. This ap-

B. Methodology and relation to previous work
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proach has been used in many other areas of physics and H, (17,17 1—\

mathematical physics2°but the first explicit application to TR

spin tunneling of which we are aware is in Ref. 26. The basic ¢

idea is that in thel, basis, Schidinger’s equation for Eq. with n=0,1,...,2J—(I"+1"+1). Here, A\=k,/k;, and

(1.1) has the form of a recursion relation or difference equa-H.=2k;J/gug. The result of the first paper of Ref. 19 cor-

tion, as opposed to a differential equation for a massive patesponds to the special case=1"=0. An approximate ver-

ticle in a one dimensional potentid(x). This difference sion of the DPI method, leading to the same diabolical point

equation can be solved in analogy with the continuum WKBIocations, has been developed and applied tg irdepen-

approximation. We will see that compared to previous DPIdently by Villain and Forf It should be noted that both

studies, new types of turning points arise in the study of EqVillain and Fort's and our calculations entail various approxi-

(1.1), because the recursion relation has five tetht8These ~ mations, and Eqg1.2) and(1.3) are only derived to leading

turning points are central to the oscillations in the splitting,order in 10. However, as has recently been shown by E.

they cannot arise in a three-term problem, and they have n§egeciogu and the authof; these equations are in faetact

continuum analog. Our present discussion will rely on physi-as written. This suggests that the Hamilton{ari) has extra

cal arguments based on viewing the recursion relation as 3ymmetries which are not yet understood.

tight-binding model for an electron in a one-dimensional lat- In order to describe the part of the paper that pertains to

tice, and correspondence with the continuum case. A morthe general DPI formalism, it is useful to recapitulate some

formal treatment is given in Ref. 27. results for tunneling of a massive particle in a one-

Like the instanton method, the DPI method is asymptoti-dimensional double weff: Given a Hamiltonian
cally correct in the semiclassical limit, i.e., ds>. While )
this method does not have the visual and geometrical appeal Ho o= h—V2+V(x) (1.4)
. . . . . . part f .

of interfering instantons, it has the advantage of involving 2m

only eleme_ntary m_ethods of analy5|s,_ and also of Y'eldm%hereV(x)=V(—x), with minima atx=+a (see Fig. 2

wave functions which may be of use in finding matrix ele- . . ) C

ments of perturbations. For the Jproblem, it is especially the symmetric a_nd antisymmetric comt_)matlons of the two
states localized in the separate wells with a mean engrgy

well suited to studying tunneling when boﬂg( andH, are will be split by an amount given by
nonzero, and between more than one pair of levels at the

same time. In hindsight, these problems can also be ad- 242

dressed using path integrals, but the labor required is far AEpa,tzﬁwR(O)zp&(O), (1.5

greater, and it is particularly difficult to find the corrett

—co asymptotic form of the preexponential factor multiply- whereyg(x) is the wavefunction of the state localized in the

ing the exponentially small Gamow factor in the splitting. right well, normalized to unit total probability.

Since the DPI method gives this factor naturally, there is no  The formula(1.5) is generally named for Herrifig* (but

reason not to find it. sometimes for Bardeen or LandaWNote thatE does not
have to be the energy of the lowest level in the separate
wells. For thenth level, Eq.(1.5 reduces in the WKB ap-

[J-n—3(1"+1"+1)], (1.3

C. What is new proximation to
In this paper we consider the tunneling problem for Eq. o ' Ip|
(1.1) for the caseH|x. The problem is then analogous to a AEpanlnzgn—ex;{ - fanlidx , (1.6
massive particle moving in a symmetric double-well poten- m el

tial. The case wherél, is also nonzero corresponds to an
asymmetric potential, is more complicated, and will be con
sidered in a second paper.

In the course of our study, we shall develop the DPI for-
malism for tunneling problems as generally as possible. Th

where *a/ are the inner turning points wher®/(x)
"=E, |p| is the imaginary momentum in the tunneling region
—a,<x<a,, w is the small oscillation frequency around
X=*a, and

payoff is two formulas for the tunnel splittind=gs. (4.27) 27

and(4.28] that can be applied to any problem describable by On=——(n+1)nt12e=(n+172) (1.7)

a five-term recursion relation, and quite possibly, to even n!

higher term recursions. _ . is a small correction[gy=(m/e)¥?~1.075¢,~1.028g,
Brief reports of our work have been given earfief’in- ~ _1 917 .] accounting for the curvature &f(x) near the

cluding, in particular, formulas for the locations of the dia- turning points®

bolical points®® Specifically, we find that the th level in the For low-lying states, i.e., fon of order 1, the action inte-

negativel, wgll (wherel_"=0 denotes the lowest leyeand gral in Eq.(1.6) contains a singular part varying as[{#

thel”th level in the positivel, well are degenerate when —V(a)], making it difficult to use directly. When this singu-

larity is peeled off, one obtaifs*’

Ho(1".1") _ h(7=1")
Ho 23

1 2 1/2
1.2 AEpa,t,nszgg,}”( ;) fiwe™ o, (1.8
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with and its relation to continuum WKB should also read Secs.
II-1V, and skip the appendixes unless they wish to see all of
a the analysis.
sozf [2mV(x)]¥2dx, (1.9 4
—a
II. DPI METHOD FOR FIVE-TERM RECURSION
and RELATIONS
2Mwa2 ad  me 1 The_ starting point i; to WriFe Schdinger’s e_quation in the
Fpart:TeX f i« dx J, baS|s.'Suppos{ap> is an eigenstate off with energyE.
0| V2ZmV(x) Then with JJmy=m|m), (m|4)=C,, (m/H|m)=w,y,,

(110 and(m|H|m') =ty (M#m’), we have

We will derive discrete analogs of Herring’s formula m+2
(1.4), and the quasiclassical formulas in terms of action in- E’ tmnCntWinCm=ECp, (2.1
tegrals(1.6) and (1.8). These formulas are general, and not n=m-2

limited to the FgHamiltonian. Of course, we do apply them

where the prime on the sum indicates that the tamm is
to the Fg problem too.

to be omitted. The diagonal termsv() arise from theJ§
part of H, the t,, ., terms from theJ,H, part, and the
D. Plan of paper tmm=2 terms from the)2 part.

In Sec. II, we briefly review the DPI method in order to ~ We can think of Eq(2.1) as a tight binding model for an
introduce the basic language of classically allowed and for€lectron in a one-dimensional lattice with sites labeledrby
bidden regions, turning points, and so on, in the discret@nd slowly varying on-site energiesv), nearest-neighbor
case. We will focus particularly on the features associatedtmm=1), and next-nearest-neighbort(y.») hopping
with the new turning point, and show that there are threderms. Since we can think of dynamics in this model in terms
critical energy curveshat collectively play the same role as of wave packets, it is clear that there is a generalization of
V(x) in determining the turning points. A longer account of the usual continuum quasiclassical or phase integral method
this work, along with connection formulas at the new turningto the lattice case. This is the DPI method.
points has been given in Ref. 27. The general formalism of this methtd?®and the exten-

The discrete analog of Herring’s formula for five term sion to five terms is discussed at length elsewfiéf& so
recursion relations is given in Sec. Ill. The algebraic detaildere we will only give a brief summary. The fundamental
are given in Appendix A. The result is E¢(3.2). requirement for a quasiclassical approach to work ishat

In Sec. IV we will use the quasiclassical DPI form of the andty, n+.(a=1,2) vary slowly enough witm that we can
wave function in Herring’s formula to obtain analogs of Egs.find smooth continuum approximantgm) andt,(m), such
(1.6) and (1.8). The final results are Eq$4.27) and (4.29, that whenevemis an eigenvalue od,, we have
and the details of the analysis are given in appendixes B and

C. By and large, this analysis is an extension of continuum w(m)=wp, 2.2
WKB techniques, such as using connection formulas to re-
late quasiclassical wave functions in different regions, and t(M=nmrattmm-o)/2, a=12. 2.3

we are certain that many read_er_s W|I_I immediately find 'tWe further demand that
transparent. At the same time, it is quite lengthy, many for-

mulas can not be obtained by simply transcribing continuum dw w(m) dt t,(m)
case formulagespecially those relating to the new turning am=°l—5 d_r:;zo( aJ ) (2.9

point and the oscillatory factor in the splittipgand there is

no reason to have readers duplicate all this for themselvegyith m/J being treated as quantity of order 1. We will see
Equation(4.27) is close enough to Ed1.6) that one might  that for Eq.(1.1) these conditions will hold in the semiclas-
have guessed it, but the route from Ef.8) to Eq.(4.28 is  gjcal limit J>1.

not at all obviousa priori. _ _ Given these conditions, the basic approximation, which
The formula(4.28 is applied to Fgin Sec. V, with the  readers will recognize from the continuum case, is to write

actual evaluation of the action integrals deferred to Appendihe wave function as a linear combination of the quasiclas-
D. We also discuss the quenching points and other aspects gf-5| forms

these results, including comparison with numerics, and work

by other authord®=3° 1 m
We conclude the paper in Sec. VI with some general re- Cin—~ ex;{if q(m’)dm’>, (2.5
marks pertaining to diabolical points in other systems, and Vo(m)

some special features of the degeneracies of the Hamiltoni

a .
(1.1) that are known exactly. \ﬂhereq(m) andv(m) obey the equations

Readers who are only interested in the spin tunneling E=w(m)+ 2t,(m)cosqg+ 2t,(m)cog2q)
problem for its relevance to geshould skip directly to Sec. ! 2
V. Readers who wish to get a sense of the DPI methodology =Hsdq,m), (2.6

094413-4



QUENCHED SPIN TUNNELINGAND ... . I ... PHYSICAL REVIEW B54 094413

v(m)=dHgs/dg=—2 sing(m)[t,(m)
+4t,(m)cosq(m)]. (2.7

Equations(2.6) and(2.7) are the lattice analogs of the eiko-
nal (or Hamilton-Jacobi and transport equations. Equation
(2.5) represents the first two terms in an expansion @ jn
in powers of 1.

We note in passing that the approximation appliearig
recursion relation(subject of course to the slow variation
conditiong, and not just one that originates in a spin
problem?® This is clear from the tight-binding analogy. In
particular, from the viewpoint of understanding the ClaSSicabossibility, it pays to introduce a dual labelling scheme for

limit, there is no need for attaching a specific meaning to they| hree curvesU,, U., and U, . We write U_(m)
canonically conjugate variables and q as J, and the azi- =U.(m), and o * i

muthal angles in spherical polar coordinates. Indeed, there
are some advantages &voiding this description, since the Uo(m)=U;(m), U,(m=U_(m), if q,e(0,m),

FIG. 3. Critical energy curves for the Hamiltoni@h.1), show-
ing the dual labelling scheme.

topology of the unit spher&? makes it impossible to con- 2.13

struct a classical Hamiltonian formalism in terms ofjle- '

bally nonsingular coordinate and momenttin. Ug(my=U_(m), U,(m)=U¢m), if q, & (0,m).
As in the continuum case, the approximate DPIl wave (2.14

function is mvghd at turnlng points. These points arise when-_l_he subscripts- and— denote upper and lower band edges,
ever the velocity (m) vanishes for given enerdy, for then

L . while the subscript$ and f denoteinternal and forbidden
g};‘;‘pé);?]xgiti?hmzé?hg'rviregce:usvge i:g fir(;m EEZ(.)?)Otrhat respectively, since in the first case abol, lies inside the
— 7, or becausa =g, =cos {(—t /4?) ’Su.b;ti?uting theqse energy band, while in the second caseﬂ'lies outs_;ide. As.
' . Iy 1) - _examples of these curves for a symmetric recursion relation,
values ofq in the eikonal equation, we see that a turning S o }
oint is obtained whenever we show those for Rein Fig. 3. A magnified view of the
P lower left-hand portion of this diagram is given in Fig. 4.

E=Uy(m),U_(m), or U, (m), (2.9 Turning points whereE=U,, or E=U,. when U,.
=U,, are analogous to those encountered in the continuum
where quasiclassical method, since the energy lies at a limit of the
classically allowed range for the value af in question.
Uo(m) =Hs{ 0,.m) =w(m)+ 2t;(m) + 2t,(m), (2.9  Points whereE=U_ whenU_=U, are physically analo-

gous, but mathematically different since the valueggfis
U (M) =Hg{ 7,m)=w(m)—2t;(m)+2t,(m), (2.10 neither 0 norr. Points wher&e= U, (e.g., see the enerdy;
in Fig. 3 are unusual in that the energyirsidethe classi-
ti(m) cally allowed range fom;, but the mathematical form of the
U, (m)="Hs{q, ,m)=w(m)—2t2(m)—4t—(m). (2.1)  connection formulas is identical to the caBe=U_=U,
2 sinceq.=0. Most interesting are the turning points with
Note that at a turning point, botin andq are determined. If =U; (the pointm=—m; in Fig. 4, for instancg since now
we denote the values of these quantities genericallynpy the energy is outside the allowed range fio=m,, and the
andg., m, may be regarded as being fixed by E218), and  value ofq. is therefore necessarily complex. These points lie
g. by the corresponding conditioq,=0, q.=m, or q.  “under the barrier” and turn out to be the ones of impor-
=0, (M). tance for understanding oscillatory tunnel splittings. As al-
To understand the nature of these turning points, let us
assume that; <0, andt,>0.[This is the case for the Hamil-
tonian(1.1). We can always arrange foy to be negative by
means of the gauge transformati@,— (—1)"C,,. Thus U.=U
. . 0=
there is only one other case to be considered, nantely,
<0, t,<0. This is discussed in Ref. J1t then follows that
U_.>U,, and that

U0=Ui

_IIlt
1
Uo(m)—U, (M)= ——t;(m)+4t,(m)]>=0. (2.12 ~— E

4t2( m) -m g -m m*

Second, let us think of{(q,m) for fixed m as an energy-

band curve. ThetJ is a!ways the upper b@nd edge, while  FiG. 4. Magnified view of the lower left-hand region of Fig. 3
the lower band edge is eithel or U, according as whether showing the point of tangenay* betweenU, andU, , and turn-
—1,/4t, is greater than or lesser than 1. To deal with thising points atm=—m, and —m, for an energyE.
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ready stated, these nonclassical turning points do not arise of the left well, including in particular the region arouna
problems described by three-term recursion relations, and se 0. More precisely, we tak€,, to decay away from the
the oscillatory effect can not arise in such problems. right well in both directions. Such a function could be ob-
The above discussion shows that the cutvgs U, and  tained, e.g., as the energy eigenfunction of a modified prob-
U, collectively play the same role as the potential energy ifem in which the on-site energy is increased by a large posi-
the continuum quasiclassical method. We refer to them ative amount for allm<m,, where —my<m,<0, it being
critical curves We have already noted that,>U,=U, . understood that, is far away fr(_)m all turning points for the
Let us suppose that the case of equality in €412 occurs ~ €nergy concerned. However, th|s problem need not be'solved
at m=m*. Clearly t,(m*)/4t,(m*)=—1, which is pre- explicitly, as the exact behavior df,, nearm=—my is
cisely the condition found above for the lower band edge td'€Ver needed, and therefore need not be examined too

change fromg=0 to q=q, . Second, expandint andt C'OS?'V- . .
abou?m* chsee tth q;nd U. have apcomm?)ln tangzent Given such a function, Herring shows that the true sym-
when the’y meet 0 * metric and antisymmetric eigenfunctions;, and a;, with

energieskE; and E,, respectively, are given very accurately

Ill. HERRING’S FORMULA FOR FIVE-TERM by
RECURSION RELATIONS

1
As discussed in Sec. I, Herring’s formula greatly simpli- am_ﬁ(cm_c’m)’

fies the calculation of tunnel splittings in a symmetric double
well.*334 An analogous formula can be derived in the dis- 1
crete cas&?® following the simplified treatment of Landau Sm==(CntCm). (3.9
and Lifshitz3? V2

We have already noted the importance of the criticalThe productC,,C_,, is exponentially small everywhere, so
curves. For low-lying energy levels, in particular, the curvethese functions are normalized to unit total probability to
U_ is very much like the potential energy in the continuumexponentially high accuracy.
case, and it is clear that we will have an entire series of The remaining steps are very similar to manipulations in-
approximate energy eigenstates with wave functions localvolving the use of Green’s identity in the theory of self-
ized in any one of the two wells, in the vicinity af mg, the  adjoint operators. One writes the Sctlimger equations for
minima ofU _(m) (see Fig. 3. LetC,, be thenth suchwave C, anda,,, constructs inner products over half the region
function localized in the right-hand well, normalized to unit —J<m=<J, and subtracts corresponding terms. The final re-
total probability, and let it satisfy the Schtimger equation sult for the splittingA =E,—E; is derived in Appendix A.
(2.1) with an energyE, for all values ofm well to the right  Up to an irrelevant over all sign, we get

_ [2[taCo(C1=C1) +10Co(Co—C—p) +t-14(CT-C2 )], integer,

- . (3.2
211114 CE— C? 1) +41t_351dC1oCap—C_1C_3p),  halfintegerd.

We remind readers that this result is not limited to theq(m) is purely imaginary in the regior m;<m< —m;,, and
ground-state splitting. Further, we can take, to be the complex in the region-m;<m<m;,. To see this, we solve
wave function of either the left- or the right-localized state,the eikonal equatio2.6) for cosq:
as that only changes the sign &f

—ty(m) = [t§(m) — 4t(m) f(m) ]

cosq(m)= 7 , (4.
IV. QUASICLASSICAL FORMULAS FOR TUNNEL ta(m)
SPLITTING where f(m)=w(m)—2t,(m)—E. Since cog=-t,/4t, at
A. Singularity-unextracted quasiclassical formula m= —m;, the discriminant in Eq(4.1) must vanish, and we

conclude that as we crossm;, cosq changes from real to
complex, andg changes from imaginary to complex. Inci-

proximation. For this, we'need the left-localized wave funC'dentally, it may be verified that the condition for vanishing
tion C,, in the central region nean=0. discriminant. i.e.

From the discussion in Sec. Il we know that for an energy
E as (.jgp'lcted in Fig. 4, the plgssmally allowed region is in ti(m)=4t2(m)[w(m)—2t2(m)—E], 4.2
the vicinity of —mg, the minimum of U_(m). Turning
points exist am= —m, and —m;, the latter being under the is identical toE=U, (m).
barrier.(There is also a turning point to the left efm,, but We now note that if we choose the phase&gf so thatC,
that is not of interest at the momenthe local wave vector is real in the forbidden region to the left of my, then

We now apply our Herring formula within the DPI ap-
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because the recursion relation is r&al, must be real for all

m. Becauseq(m) is complex in the central region, we can
meet this demand only by taking a linear combination of two

DPI forms with complex conjugatg’'s. We write these as

4.3
is left-localized by hypoth-

Az Am)=ix(m)=x(m),
with « andy both real. Sinc&,,

esis, it must decay with increasing and so we must choose

x>0. Further, we choosg, to be the solution with a posi-
tive real part, i.e., we also take>0. Then, the DPI form
which proves convenient fan>—m; is given by

Cnm Re—exp( f . gi(m’ )dm) (4.4

wheres;(m)=—iv[q.(m)].
The next step is to substitute E¢.4) into Eq. (3.2.
Before doing this, we note that

coshk cosy= —t4/4t,, (4.5
sinhk siny = (4t,f —t2)Y%/4t,, (4.6)

so that
$;=_8t,(m)sinhx(m)sin y(m)sing;(m). (4.7

We now substitute Eqg4.4)—(4.7) into Eq. (3.2). In doing
this, we may neglect the variation of quantitte¢ém), q(m),

PHYSICAL REVIEW B54 094413

C,—C_,=2iA,[€?cosq;Vsing;—c.c], (4.14

Co(C,—C_,)=iA2| | e?®cosq,
sinqy
—e 2Mlcosqk : q_l) —c.c.,
sing,
(4.15
CZ-C2,=iA3 cosal( e? cosq,

[sing¥
—e 2Imo _—q_l)—c.c.]. (4.16
sinq;

Substituting these and the formulg=
into Eq. (3.2, we get

—4t, coshk cosy

andv(m) among the sites near the center of the lattice, since

the number of sites involved is of order 1, and so the varia-

tion leads to higher-order corrections in powers of. o
save wrltlng, we denote quantities evaluatedrat 0 by a

bar:q.(0)=q;, «(0)=«, etc. We thus get

el (2+may)
Cn=ReA;————, (4.9
vVsing;
where
0
Q:f g.(m’)dm (4.9
“my
A,=(8t,sinhk siny)  2A. (4.10

The cases of integer and half integkare best tackled

: sing*
A=—8A%t,Im| 2@ - 2M \/—q_l ReO |;
sing;
(4.1
© = cosq; — coshk cosy. (4.18
But, it follows from Eq.(4.3) that
cosq, = coshk cosy —i sinhx siny, (4.19

so Re® =0, the second term in Ed4.17) vanishes alto-
gether, and

separately. We do the integer case first. The requisite algebra

is lengthy, and we provide the following intermediate formu-

las for reference:

C,—C_1=iA,[e*sing;—c.c], (4.11
[cogq;

C,+C_1=A,| e _—ﬂl+c.c. , (4.12
sinq,

_ [sing?
g2 _g=2ImQ — | —c.c/,
singy

(4.13

A
Co(cl_c—l):|7

A=4AZ%t, sinhk sin y(e?®+e~207), (4.20
For half integerd, we get
A§ Q20 g-2mo
C2,= —— e 914 +c.c|, (4.2)
4 sing; |sinq|
A2 2i0 . e2mo
Co1Crsn=" | —e Ay —— ei'ql)+c.c..
sing; |sing,|
(4.22
Thus
C2,— 021,2——A (e?—c.c), (4.23
C12C32— C_1C 3= iA%(CosaleZ‘“ —c.c),
(4.29
and
A=iAZ[(t,;+4t,)e??—c.c]
=4A%t, sinhk siny(e?®+e 20" (4.25

which is identical to Eq(4.20.
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Using Eq.(4.10, we thus obtain, for both integer and half 0 . /

integerJ, AnZZJ . [xot (N+32)woxoldm, (4.30
— 1
A=3A2(e?0+e 207, (4.26 .
The quantityi ) is an action integral from-m; to 0 [see Eq. F=2Mawo(m—m,)? exr{ —2| Q1+ w fﬁ Kod m) }
(4.9)]. From experience with continuum WKB, we expect M
the amplitudeA to be related to the amplitude inside the well (4.3
by a barrier penetration factor, e[xpf:?]lllq(mﬂdm]. When ol B 1
i1

we use this result in Eq4.26), we will obtain a total action Q1=J 02 ° 4+ o m )dm. (4.32
integral that runs between the classical turning pointey, -mo | VB5—1 0

andm,. The precise prefactor is determined by systemati

use of connection formulas, and with the final ansy&t2) in Eqs.(4.29~(4.32, the irtegular turning points-m, may

be evaluated by setting=U _(*=m), and it should be re-

for A, we get called that=mg are the minima otJ _(m). Further,
woJn M
A= exp(| gim’)dm’ | +c.c|. (4.2 dk(m,e)
-my ko= k(M,e=0); K('):T , (433
Hereq(m') is chosen to have a positive real partin the <0
first term. We reiterate that this result applies to higher pairs
. . . . dx(m,e)
of excited states, and not just the ground pair. The essential Xo=x(m,e=0); xo=—7— , (4.39
dependence on, the excitation number, enters through the de |-
dependence af,, the turning point.
The similarity of Eq.(4.27) to Eq. (1.6) is striking, and _ , dcosg(m,e)
one can ask whether one should not have anticipated it right Bo=cosa(m,e=0); Bo=———— ,  (4.39
away. For the ground-state pair, the instanton apprdach =0

makes it very easy to understand the presence of two comyith

plex conjugate tunneling actions, and the fact that they

should be superposed, but does not give the prefactor. The e=E—U_(—mp). (4.3
action integrals in the instanton approach, however, run not

from turning point to turning point but from one minimum of  The problem of finding the low level splittings is thus
the energy to the other. Further, properly justifiying the pref-reduced to the evaluation of a handful of integrals. The pro-

actor using instantons has proven very diffi¢it’Purely as jiferation of notation masks the actual simplicty of these for-
a recipe for calculations, however, a hybrid approach, inmulas.

which one adds the tunneling actions from all equivalent
instantons, and uses the DPI approach to determine the form

. V. TUNNEL SPLITTINGS FOR F
of the prefactor, would appear to be valid for all problems. s

Thus we strongly suspect that EG.27) is correct even We now apply our general result, EGL.28 to the spe-
when the recursion relation has seven or more terms. cific problem of Fg, with the model Hamiltoniari1.1). The
action integrals are evaluated in Appendix D, and we find
B. Singularity-extracted quasiclassical formula that the splitting of thenth pair of levels is given by
While the formula(4.27) is very general, it has the disad-
vantage that the action integral runs between turning points. A :i Ew FN+126-To cosA (5.1)
The integrand is therefore close to a singularity, and for low- "t N0 " '
lying states, this gives rise to terms in the action that depend
on InJ. Hence the formula does not reveal the asymptoticWhere
behavior as a function of in a transparent way.
We can obtain a formula withoft this drazvback, analo- wo=2J[kikp(1=hio) ] (5.2

gous to Eq.(1.8), by systematically subtracting away the
singular terms in the action integral. This is done in Appen- AY2(1—h2)32

. . . _ , 5.3
dix C, and the final result is 112 (5.3
A _i\/§ Fn+1/2e71“0 A (4 28) 2
Ve cosn. (4 VITRR) o,
FOZJ In > -

where Vi-hi—=\\) Vi)

0 | V(1=h2)(1=N\)+ho/x 5.4
r :2f Ko(m)dm, (4.29 Xin ; .
) J(1=h3)(1-N)—ha\
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actorc4, which we did not seek in the third paper of Ref. 19.
1000 | _/n=1] The detailed form of the prefactor is perhaps more interest-
LN ’ ing. Up to multiplicative terms of orded®, our answer for
o ORNY Y n=07 A, agrees precisely with that in Refs. 38 and 39. We do not
%_ ‘ ‘ f understand, however, how these papers have succeeded in
;é 0.1p 1 sidestepping the difficulties in the path integral treatment that
were noted by Enz and Schillif§and by Belinicher, Provi-
0.001 1 dencia, and da Providendta.In Ref. 38, for instance, the
s problem is treated by writing the spin coherent-state expec-
1075 ol 02 03 04 05 tation value of the Hamiltoniafil.1) in spherical polar coor-
H,/H, dinates, and integrating out csthe J, projection exactly,

and then addressing the resulting effective Lagrangian for

FIG. 5. Comparison between numeridablid lineg and ana- the ¢ coordinate exactly as for a massive particle in one
Iytic [Egs. (5.1)—(5.5), dashed linesresults for the splitting be- dimension. In performing the integration overhowever, it
tween the first three pairs of levels fet,=0. The parameters are is not clear to us whys? is replaced by5(S+ 1) in the scalar

k;=0.321 K, k,=0.229 K, close to those for ge potential V(¢) [see Eqg.(12) therd, but not in the vector
potential® ().
[ ( H, ] A related point, which is relatively minor, but has scope
Ap=max 0,7)| 1— ———|—nmy. (6.5  for creating confusion, is that if the Gamow factor is written
V1=AH, as exp(-Jc,) with c,=0(1), then it is safest to write thé

dependence of the prefactor agd"* ', sincew, depends

on parameters such &s andk,, whose scaling withl is a
matter of choice, at least as far as model Hamiltonians are
concerned. We may note that Villain and Fort's treatent
does not readily yield the complete prefactor.

In these equationsJ=J+3, h,=JH,/JH., and hy,
=H,/H.. Recall thatH.=2k;J/gug and A=Kk, /k; (see
Table |), and note that unlike Ed5.4), what appears in Eq.
(5.5 is the ratioH,/H, i.e., hyg, noth,. This fact is im-

portant for the location of the diabolic;al points. . One further check is obtained by considering the limiting
These results possess several points of interest. The f'régseH —0, answers for which are knovjsee, e.g., Eq16)
concerns the fields where thh tunnel splitting vanishes. of Refx42 ’Eq (48) of Ref. 43, or Ref. 44 Traﬁsc.ri.t;ing Egs

Taking account of the fact that,, is necessarily positive as ; )
indicated by Eq(5.5), we see that this happens whenévét f:tfe?;g z\al\:]edge.?]) from Ref. 44 in terms of the present param

He V1A 1 5 6 1

H= 3| (5.6 An=r7Folo (5.7)
with I=n, n+1, ..., 21—n—1, yielding 20 —n) quench- NN
ing points in all forA,,. Whenn=0, these are the results Fo=8J—1), (5.9
guoted in Sec. I. 1-A

In Fig. 5 we compare Eq(5.1) with the numerically Vo s 3

evaluated splittings for the first three pairs of levels. Within A—8 J A BN 5.9
our numerical precision, we always find the zerosAgfto 0~ 9®o0, - 1+ W\ 1+ U\ '

agree with Eq(5.6). Note, however, that for other values of
H,, the discrepancy between the numerics and (Bd) is ~ With @eo=2J(k1kz)". It follows from Egs.(5.2—(5.9) that
well outside our numerical error, so that EG.1) is not asHx—0, wg—weo, F—F, [see Eq.(5.3)], cosA,—=*1,
exact, even though as an asymtotic estimate of the splitting and
is rather good. This means that in general the leading semi-
classical approximation is not exact for the Hamiltonian r ﬁ(J+l)|n1+\/X
(1.1), and only the quenching points appear to be so repro- 0 2= NS
duced. The second point to note is thatifier 1 (the pair of i
first excited states in each welthe highest field quenching 't 1S then easy to see that our present answerdfogo over
point is lost, forn=2, the highest two points are lost, and so Precisely into Eqs(5.7)—(5.9).
on, exactly as indicated by E¢5.6).

Next, let us compare our answers with previous work. Let VI. DISCUSSION

us consider the tunneling actidfl, in the Gamow factor As stated in Sec. I, diabolical points require special con-

exp(—I') first. Except for the replacement dby J andh,o  ditions, and are rare for that reason. We contrast here the
by h,, this is precisely Eq(3.10 of the third paper of Ref. \ay in they come about in our problem and those involving
19. This agreement is unsurprising, because if we wkifén 3 massive particle witp?+V(x) type Hamiltonian, where
the form of a prefactoc; times a Gamow factor exp{Jc,)  the dimensionality of is arbitrary. Take the path integral
wherec,=0(1), then theJ—J, andh,,— h, corrections in  view first. Wilkinsorf® notes the possibility of interfering
Eq. (5.4 represent terms that should be included in the preftunneling trajectories when the tunneling action is complex,

(5.10
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and also notes that this can only happen in two or more J
dimensions, i.e., for phase space of dimension 4 or more. (E;—Eg) 2, Cram+31—3,=0, (A3)
The spin system shows interfereAt#& even though its m=mm;

phase space is two dimensionhe unit sphereS?). The where
same conclusion is reached from the operator point of view.

General results from Sturm-Liouville theory forbid the oc- J om+2

currence ofany degeneracy in the discrete part of the spec- 3= > amtmnCh, (A4)
trum for ap?+ V(x) Hamiltonian if the boundary conditions m=m; n=m-2

at the end points are independent, whereas our difference .

equation is one dimensional yet has degeneracy. An enter- B E
taining example of a continuum one-dimensional problem 2p= Crntm,n@n- (AS)
with diabolical points has been invented by Berry and

Mondragor*® but the Hamiltonian is nowp?*, quartic in the To simplify Eq. (A3), we first note that by Eq3.1)
momentum, and the boundary conditions compatible with

hermiticity form a four parameter system, which is large J 1 2 1
g .. 2
enough to admit diabolicity. Y Cham~—= X Ci~—, (AB)
We conclude by mentioning some remarkable exact prop- M=y 2 m=m, V2

erties of the special Hamiltonian.1).>! First[see Eqs(1.2)
and (1.3)], the diabolical points form part of a perfect cen-
tered rectangular lattice in thé,—H, plane. Second, in gen-

eral, we have simultaneousiegeneracy of more than one be seen to be identical by shifting the summation indices in

e e e Lo ferms suiaby. and making use of the Symmety
' P g mn="tnhm. For example, the difference between the terms in

two on the next, three on the one next to that, and so o . - . . -

Both these facts are captured by the leading order DPI ana'r;z-l with n=m-2, and those ik, with n=m~-2 equals
sis. The exact results suggest the existence of a higher dy- 3

namical symmetry, but that is not yet established. Further, 2 (@t ms2Crms 2— Cortmme 28m-2)
when higher-order anisotropy terms are included in the m=m, ‘ ’

since the produdt,,C_, is everywhere exponentially small,
and sincecﬁ1 is concentrated almost completely in the right
well. Second, most of the terms in the suligand, can

Hamiltonian to obtain quantitative agreement with experi- 3 J—2
mentally observed periofithe simultaneous degeneracy of =S at Coie S Cost a
several pairs of levels and the perfect lattice of diabolical miem, | mEEEmEZ L A o MEZmE2mEm
points are no longer exact properties, but they continue to
hold to fair approximatior! =~ am—1tm-1m+1Cm+178m —2lm —2m Cm,.
(A7)
ACKNOWLEDGMENTS where we have made use of the obvious factstthat, and
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Jacques Villain for useful discussions and correspondend&duce to & small number of terms involving the product of
about Fe. anawith a C, which can then be written entirely in terms of

C’s using Eq.(3.1. Finally, we can see thd,—E, = E,
—E, = =A/2, whereA is as quoted in the main tekEq.
APPENDIX A: DERIVATION OF HERRING'S FORMULA (3.2].
Herring gives a more careful justification of his formula

The Schrdinger equations obeyed Iy}, anda,, defined by employing the Temple-Kato error bound on energy

in Sec. Il are eigenvalue$’*®His argument can be adapted word for word
to the present problem, and shows that the error in the split-
m+2 ting as calculated via Eq3.2) is exponentially smaller than
(Wy—Eg)Ct 2 tmnCn=0, (A1) the splitting itself, by a factor such &s ¢’ wherec>0. As
n=m-2 J—o, therefore, Eq(3.2) is asymptotically correct.
Mathematically oriented writings sometimes frame the ar-
m+2 gument in terms of an abstract eigenoperat8rfor all left
(Wn—Epant > tmnan=0. (A2) and right localized states with eigenvaluesl and +1
n=m-—2

respectively®*! or a projection operato®° for the right

localized stateg® The splitting then appears as the matrix
We definem, to be 1 ifJis integral, and 1/2 whed is half  element of the commutatt°?,H] or [ ®°°,H] between the
integral. Multiplying Eqg.(Al) by a,,,, Eq.(A2) by C,,, sum- left and right localized states. Evaluation of this matrix ele-
ming overm from m, to J, and subtracting corresponding ment is completely equivalent to finding the differerte
terms, we get —3,, however, so the physical idea is exactly the same.
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APPENDIX B: CALCULATION OF THE DPI WAVE
FUNCTION AMPLITUDE

tantamount to using the Holstein-Primakoff or Bogoliubov
transformation. An example of the latter approach is given in
Sec. IV of Ref. 44.

From the viewpoint of the DPI method, we have two turn-
ing points very close te- mg, one to the left, and one to the
right, since the conditioie=U _(m) is then satisfied. The
one to the left has been discussed above. Let us now consider
She one to the right, an=—m;. We have

Our objective in this appendix is to calculate the ampli-
tude A in the central region DPI wave functidd.4), given
that the stateC,, is normalized. This is accomplished by
relating the wave function across the turning points, and
—m;y by connection formulas. In fact, as we shall see, th
connection formula near m, can be sidestepped, and only
that near—m; is actually applied. 12

2n+1
~(nJ)1/2.

—Mmy+my= (B7)

1. DPI form near potential-well minimum

Let us first findCy, in the classically allowed region near "€ neglected terms in E(ﬁ%l),g on the other hand, are of
—m, the minimum ofU_(m) (see Fig. 4 We assume, as 'elative ordersq™, (m-+mg)/J ; f}snd (m+mo)q°/J, and
will be seen to be true for Eq1.1), that in this regiory_  thus smaller thama, for x<(nJ%)™= Thus providech<J,
—U,. For energies close t&)_(—my), andm close to  the solution(BS) holds well past-m,, and can be matched
—my, the eikonal equation can only be satisfied it close directly onto the DPI solution under the barrier, without any

to zero. We can therefore expaffl, in powers ofm+m, nged of connection formulas at= —m,.>! This argument is
andq; given at greater length in Sec. V of Ref. 44.

Mo ~U_( " 1 2, 1 M 2( N )2+ 2. DPI form in ordinary forbidden region
qm)=U_(—m —— gtz Mws(m+m, e, ) )
S o 2M 2770 ° In the region—m,<m< —m;, the DPI solution that de-

(B1)  cays with increasingn can be taken as
where
B m
M=—[2t,(~mg)+8to(~m)] >0,  (B2) o= ot ex“( - fmt"(m ydm ) (B8)
s 9°U _ where x(m)=Imq(m)>0. This solution must be matched
wp=~2(t1+4t)— (B3)  on to Eq. (B5) to determine B. For JY3<(m+ m)

m="Mo <(nJ»)3 we can continue to use the harmonic approxima-

Note that by virtue of Eq(2.4), and its natural extension to
second derivativesy is of order 1J relative tot; andt,.

Since the eikonal equation is also the Hamilton-Jacobi

equation withq=d®/Jm, whered is the action, the prob-

lem is identical to that of a harmonic oscillator in the ap-

proximation(B1). (Alternatively, we could arrive at the same

result by approximating the original recurrence relation by a

differential equation in the vicinity of-mg.) For the nth
state therefore

Eo=U_(—mp)+(n+3)wo, (B4)

and

Cn=[22"(n1)27£2] Vi X2 (x/£),  (BS)

wherex=m+mg, H, is the nth Hermite polynomial, and
é=(Mwy) Y2 The wave function is already normalized,
and the additional tails from the forbidden region only

modify the normalization by an exponentially small amount.

It is apparent that the expansi@Bl) is invalid unless the
point —my is sufficiently far from the edgen=—J. Since
the width of the wave functior{B5) is Vné&, a necessary
condition for the validity of our procedure is

J—my>né. (B6)

If this condition does not hold, then the recursion relation

tion (B1), and a simple calculatioif, traceable to Furry>

leads to
1/2
o[ 5]

whereg,, is defined in Eq(1.7).
3. DPI form in central region

®oJn
2

(B9)

Step 3 is to find the wave function in the central region
nearm=0. This is already done if there are no turning points
between—m; andm=0. For the Hamiltonia1.1), it turns
out that we encounter another turning point whete
=U;(m) (the only possibility at an intermediate pointn
—m; (see Fig. 4, The wavefunction in the central region
then has the forn{4.4), and the coefficienA in this form
must be related t® in Eq. (B8) via a connection formula at
—m;. This formula was found in Ref. 27. If we rewrite Eq.
(B8) as

K(m’)dm’>, (B10)

C —Lex;{—fm
™ 2\[v(m)] —my

ﬂ=28exy{—f_mlk(m')dm’), (B11)

must be solved near the edge by a different method, which i&e have
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(B12)  terms ofO(e). Ignoring terms of this order throughout, and

~ (2wog,|Y? -my limits and in the integrand, since we are not interested in
A=A= expg — xk(m’)ydm’ |,
M making use of the relation

where we have used Eqd39) and(B11) in the last stef?.

x2=2elM o}, (C8)
APPENDIX C: EXTRACTION OF SINGULAR PARTS we obtain
OF TUNNELING ACTION INTEGRALS
The purpose of this appendix is to derive the singularity Di(e)= o In € 5+2Q,[, (C9
extracted formulas for the tunnel splitting in Sec. IV B. The 209 2Mawo(mo—my)
procedure is similar to that used for the continuum case "\‘Nherte is given by Eq(4.32. Also, we can evaluate, at
Ref. 36. We begin by defining e=0.
0 The remaining contribution teb’(e), ®,(e), can be
D(e)=—1i f g(m,e)dm, (C) evaluated simply by putting=0, since the neglected part is
~my(e) O(e). Recalling the definition$4.33 and(4.34), we have
where the energy dependence is made explicit. The splitting 0
for the nth pair of states is then given by ‘Dé(f)%f (kh—ixs)dm. (C10
—m,
woJn —2d(e;) . . .
Ap=——(e M+c.c), (C2)  We now integrate the expression fdr (e) and obtain®. It

is useful to separate the real and imaginary parts of the an-
with e,=(n+3)wo. Writing x=m+mj, as in Eq.(B5), the  swer at this stage. For the real part, we get
integrand in® behaves asx?—x?)Y? near the lower limit,

with x,= —m,+ my~ 2. Thus there is a singular part ih ['=2 Reb
of the forme In ¢, which it is our goal to extract. To this end, E
we differentiate Eq(C1) to get = — -
qChtog o+ o0 2Q;—1+In M wo(My— My )2
do (o aq
q)’(f):—:—|f _dm (C3) 0 ,
de ~my(e) € + 2w, xodm|, (C1)
—my

Note that the term arising from differentiating the lower limit _ _ o
vanishes, nor is there any explicit contribution from the sin-With I'q given by Eq.(4.29, while for the imaginary part,

gular behaviog~ (m+m.)*2 for m near—m;. n=—2Im®, we get Eq.(4.30. o
Next, let us divided'(e) into two integrals,®, in _Substltutlng Eqgs(C1Y), (4.30, and the_deflnltloril.7) of
which the limits of integration are-m, and—m,, and®j,  9n in the fornl1ula(C2) for A, and recalling Eq(4.31) and
which runs from—m, to 0. Defining that e,=(n+ 3) wy, We finally obtain the answer quoted in
Eq. (4.28.
B.(m)=codgq(m,e)), (C4
we have APPENDIX D: EVALUAT;gE gl; ACTION INTEGRALS
P/ (e)= 0 B. d cs In this appendix, we evaluate the action integrals for the
(€)= _ 2, am (CH specific problem described by the Hamiltonighl). The
m(e) VBg(m)—1 ; e . . : :
first step is to find the various matrix elements of this Hamil-
whereB.=dB,_/Je. It follows from Eq.(B1) that neam=  tonian. We have
J— mt’
1 2
B~1+(iMwiP—e)M+ ..., (C6) Win=75 (ki +kp)[I(I+1) =m7], (D1)

so the integrand in E4C5) behaves as- 1/wq(x?—x?) 2. If 1
we add and subtract the integral of this expression, we obtain o mi1= — EgMBHX[J(J+ 1)-m(m+1)]¥2 (D2

1 (x dx
D)= —| 1
B R i tmm 2= (k= koH{[I3+1) ~m(m+1)]

!

X1 BE 1
+ f + dx, (C7)
VBZ(m)—1 VX2—x¢ . :
h (m) WoNXTT Xy We must now replace these by continuous functimis),

wherex;=my—m;,. The first integral can be evaluated ex- t;(m), andt,(m). Since our formalism requires knowing the
actly. In the second integral we can pgt0 both in the first two terms in the action in an expansion in powers df 1/

X[J(J+1)—(m+1)(m+2)]}¥2  (D3)
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it follows that we need only determine the functioném),

etc., to the same order. Furthermore, this determination need
not be made in the form of a power series, and any functional
representation that gives the first two terms correctly will be

PHYSICAL REVIEW B54 094413

woBy _ Mo 1

Bo-1 J \/MZ—Mi(\/Mﬁ—Mi—\/MZ—Mi)(' |
D16

adequate. The most convenient way to do this is to_replacgext, in the range & u< w4, we first solve Eqs(4.5 and

the combinationJ(J+1) in the above expressions ki,
with J=J+ 3.
It is convenient to measure energi@acluding wg) in

units ofk;J2, and introduce the scaled variake=m/J. In
terms of these variables,

w(m)=(1+N\)(1—u?)/2, (D4)
ty(m)=—h,(1—u?¥? (D5)
ta(M)=(1—\)(1-u?)/4. (D6)

The turning points,u0=m0/7, and ,u1=m1/J_ (for €
=0) are given by

po=(1—h3)*2 (D7)

p1=[(1=A=hD/(1-N)]" (D8)

It is simplest to express everything in termswqf and w4, SO
we give inverse formulas as well:
h=(1-ud)* (D9)

N=(ug—uDI(1=pl). (D10)

The mass and the small oscillation frequency are given by

1 1 1—pd
=== , (D11)
2NNy 2 (1= pd) (g~ pd)
1/2
2 2uo [ mo—ud
wo==[\(1-h?)=— > (D12
J J \ 1-pu3

To evaluate the integrals, we need expressionsfar
Xo» Ko, €tc., in the rangeg;<u<pug, and 0<u<pu,. The

requisite calculations are straightforward so we give the maifhe integration is now elementary, and the result, expressed

results only. First, in the range;<u<uq, we get

1-pi=[(uo— D) (W= ud ]
[(1-puh)(1-p®)]™?

Bo=coshky=

(D13

. (Vpg—pi—Jp? = pV1-pg
VB§—1=sinhxko=
P T 1k (1 )

(D14)
B,__E 1wl
O 201 ud)(1- p?) (ud— pd) (P ud)]M2
(D15)

(4.6) with =0, to obtain

coshko=[(1-ud)/(1-ud)1"2 (D17)
cosyo=[(1—u{/(1-u?]"? (D18)
sinxo=[ (i~ u?)/(1-p*]" (D19)

To find kg and x(, we differentiate Eqs4.5 and(4.6), and
set e=0. Solving the resulting equations along with Egs.

(D17)—(D19), we obtain

K6 (1-ud)V2 [ (u—uh) 12
e N 2 2y-12]" (D20)
Xo 2(po—p?) \ (m1—p)

The first integral that we wish to evaluatelig. Let us break
the integration range into two ah,;. From the right-hand
part, an integration by parts gives

— (1o
o= ZJJ KoOu

u1
:ZE{KO(M)M:Z)— f;°sinﬁkodi°—f,f‘)du ,
(D21)
while from the left-hand part we get
Foo= ZJ_foﬂlKodMZZJ_Ko(Ml)Mly (D22

as kg is a constant in this range. Sineg(uq) =0,I'g, can-
cels the first term in Eq(D21), leaving us only with the
second forl". Using Eqgs.(D13) and(D14), we find

Ko du

To=23(1-u))*? f 5 (02

M1 (1_M2)(M2_M1

back in terms of\ andh, is Eq. (5.4).

The second integral to be evaluatedis[Eq.(4.30]. For
the first term, we integrate by parts, and use EQ4.8) and
(D19):

2?[“1 (1)d 27]”1 p_d d
= . —CO0S
0 Xolp)dp o Sinxo du Xodu

2
—(m1 M
=2J
fo (1= 1) (ui—p?)
=m[1-(1-pd ™.

For the second term in Eq4.30, we have, withe=(n
+ 3)wo, and Egs(D12) and (D20),

(D24)
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The integrand is now nonsingular at= . We can make
this manifest by rationalizing the difference of square roots

3 N 2_ 212
2ed o Xodu=—(2n+1) pwo(po— p1)
in the first term. Some simple algebra yields

w1 d
XJ’ ( 2 2)(M2 2)1/2 Q = J'Ml ! M%_l_ﬂz_,ui d,U«
. ~ — - _ }
C U Do = 12 povud— w2

Adding together the parts, and rewriting the result in terms otVe now make the substitution= u,coshz, and define
H, and\, we get Eq.(5.5). The restriction that\ , be posi-

=—(n+3)m.

coshzg= po/pq. D29
tive follows from the fact that we chosg(m) to have a o STPo= HolHa (b29)
positive real part in Eq4.27). ThusA is necessarily positive This yields
as defined in Eq4.30. If H, is so large as to yield a nega-
tive value for the function of, that results after doing the Q=— fzo C(.)Sh &°+C93h Zdz
integral, that means that in fact there are no irregular turning o sinh2z+sinh 2z
points in the problem. Both terms in E@4.27) are then 2 cost{z+2;)
equal, and the formula reduces to the expected one when :_J 0 _—Odzz_m(z coshzy)
there are only regular turning points. o Sinh(z+2z)
The third integral we need is that afy from 0 to w;. 5
Using Egs.(D12) and (D20), we get = # (D30)
1

—[# r1 dup Mo~ M1
2w JJ kodu=—-2 J =In .
07 o OFH Ho 2 pot

0 pi—p
(D26)

The fourth and last integral needed@y. Substituting Eg.

(D16) in Eq. (4.32, we obtain

le_f:ol

1
Mo— M

Mo
VP = pi(pg—pi—Ju?—ud)

du. (D27)

We now have all the ingredients needed to calculate the
quantityF. Substituting Eqs(D11), (D12), (D26), and(D30)
in Eq. (4.31), and writing the result in terms of andh, , we
obtain Eq.(5.3). Note that in writing down the final answer,
we have replaced by J andh, by h,q in this formula. This
is becauser is part of the pre-exponential factor iy,
which is determined only to leading order inJ1Keeping

higher-order corrections by distinguishing betwekand J
or h, andh,q is not justified.

The final answek5.1) for A, is obtained by substituting
Egs.(5.4), (5.5, and(5.3) in Eq. (4.28.
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