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Spin and chirality autocorrelation functions of a Heisenberg spin-glass model
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We study the spin and the chirality autocorrelation functionsCS(t) andCx(t) of the 6J Heisenberg model
in three dimensions to examine the chirality mechanism of the spin-glass~SG! phase transition proposed by
Kawamura, which says that it is not the spins but the chiralities of the spins that are ordered in Heisenberg SG
systems. Using a dynamical simulation method that removes the drift of the system, we show that an apparent
difference in the dynamics between the spin and chirality comes from the drift and suggest that the spins and
the chiralities are ordered simultaneously.
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It has been believed that the spin-glass~SG! phase is re-
alized in three dimensions~3D! for the Ising model1,2 but not
for the XY and Heisenberg models.3–6 Thus, the SG phase
observed in experiments were suggested to be realized d
magnetic anisotropies.7,8 However, it remains puzzling tha
no sign of Heisenberg-Ising crossover has been dete
experimentally,5,9,10 which is expected if the observed finit
temperature phase transition is due to a weak magnetic
isotropy. Recently, Hukushima and Kawamura have p
posed a chirality mechanism to solve the puzzle.11–14 They
considered the chirality described by neighboring th
spins. It has either positive or negative value, just like
Ising spin. Kawamura11–13 claimed that, in the 3DXY and
Heisenberg SG models, a chiral-glass~CG! phase transition
occurs at a finite temperatureTCGÞ0, but the SG phase i
absent. He argued that, in real SG magnets, the spin an
chirality are mixed due to a weak magnetic anisotropy, a
the CG transition is revealed as anomalies in experiment
accessible quantities. According to this interpretation, the
phase transition never occurs in Heisenberg-like syste
and what was observed in experiments is nothing but the
phase transition. This mechanism is quite interesting,
cause it calls for reconsideration of the SG phase transi
from both theoretical and experimental points of view.

However, there are some basic problems in the basi
the chirality mechanism. One is theT50 stiffness exponen
of the chiralitiesuC and that of the spinsuS. Kawamura11

estimateduC.0 anduS,0 in the 3DXY and Heisenberg
SG models, having used a conventional defect ene
method.3,15,16 However, recent studies threw some doubt
that method itself.17–20Another problem is the dynamics o
the system. Kawamura13 and Hukushima and Kawamura14

calculated the chirality autocorrelation functionCx(t) and
the spin autocorrelation functionCS(t) of 3D Heisenberg SG
models with and without a weak anisotropyD. They found
that, even forD50, Cx(t) exhibits a pronounced aging e
fect reminiscent of the one observed in the mean-fi
model,21 while CS(t) exhibits a similar aging effect only
whenDÞ0. However, when one considers dynamical pro
erties of the Heisenberg model withD50, one should pay
special attention to the thermal drift of the system, i.e.,
global rotation of the system.22 Although this drift does not
affect the static spin correlations and becomes negligible
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large systems, some of the dynamical simulation data in
tably suffer from this effect. The spin autocorrelation fun
tion CS(t) diminishes by this drift, whereas the chirality au
tocorrelation Cx(t) does not, because the chiralities a
invariant under global rotation of the system. Thus, the d
ference in the behavior betweenCS(t) and Cx(t) might
come from this drift.

In this paper, we show that, in the6J Heisenberg model,
the apparent difference betweenCS(t) and Cx(t) comes
from the drift of the system. We propose a dynamical sim
lation method that removes the drift of the system. Using
method, we first show thatCS(t) exhibits properties quite
similar to those ofCx(t). Then, applying the same off
equilibrium Monte Carlo simulation method that was us
by Kawamura,13 we estimate values of the Edward-Anders
order parameters of the spin and the chirality and find t
both have finite values at low temperatures and vanish
almost the same temperature ofT;0.18J. Thus, we sugges
that the spins and the chiralities are ordered simultaneou

We start with the6J Heisenberg model on a simple cub
lattice of L3L3(L11) ([N) with skew boundary condi-
tions along twoL directions and a periodic boundary cond
tion along the (L11) direction. The Hamiltonian is de
scribed by

H52(̂
i j &

Ji j Si•Sj , ~1!

whereSi is the Heisenberg spin ofuSi u51 and^ i j & runs over
all nearest-neighbor pairs. The exchange interaction~bond!
Ji j takes either1J or 2J with the same probability of 1/2

We consider the dynamical properties of the system c
culating the spin autocorrelation function. In order to co
sider these properties of an infinitely large system, we
move the effect of the drift applying the uniform rotation
the system so that

S5(
i

uR~ t !Si~ t1tw!2Si~ tw!u2 ~2!

becomes minimum, whereR(t) is the rotation matrix, and
$Si(tw)% and$Si(t1tw)% are the spin configurations at time
tw and t1tw , respectively. We can successively determ
©2001 The American Physical Society12-1
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R(t), becauseR(t)5E at t50 and it changes step by step
t goes by, whereE is the unit matrix.23 Hereafter, we call the
system described by$Si(t)% the drifting system and that b

$S̃i(t1tw)[R(t)Si(t1tw)% the fixed system. The spin auto
correlation functionCS(tw ,t1tw) of the fixed system is de
fined as

CS~ tw ,t1tw!5
1

N (
i

@^S̃i~ t1tw!S̃i~ tw!&#, ~3!

where ^•••& and @•••# mean the thermal average and t
bond distribution average, respectively. The chirality au
correlation function is also defined as

Cx~ tw ,t1tw!5
1

3N (
im

@^x im~ t1tw!x im~ tw!&#, ~4!

wherex im is the chirality at thei th site and in themth direc-
tion defined byx im5Si 1êm

•(Si3Si 2êm
) with êm(m5x,y,z)

being a unit lattice vector along them axis. Note again tha
the chirality x im is invariant under the global spin rotation
and then the chirality autocorrelation functions of both t
drifting and fixed systems are completely the same and
scribed by Eq.~4!. Before applying this method to th
present model, we test it in the 3D ferromagnetic Heisenb
model. The results are shown in Fig. 1. It is found that
spin autocorrelation function of the fixed system with a lar
tw approaches the equilibrium value of the square of
order parameter,̂(M/N)2&, with M being the total magneti
zation, whereas that of the drifting system rapidly deca
with increasingt. This result indicates that the effect of th
drift can be removed properly by the present method.

We perform the same simulation that was done
Kawamura13 using the standard single-spin-flip heat-ba
Monte Carlo~MC! method. That is, starting with a rando
initial spin configuration, the system is quenched to a wo
ing temperature, and after waitingtw MC steps per spin

FIG. 1. The spin autocorrelation functions of the ferromagne
Heisenberg model in 3D plotted vst for a waiting time tw52
3104 at temperatures around the Curie temperature ofTC /J
;1.45. The solid and open symbols are data from the fixed and
drifting systems, respectively. The arrows indicate the equilibri
values of the square of the magnetization^(M/N)2&.
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~MCS! the autocorrelation functions are measured up
about 23105 MCS. A sample average is taken over about
independent bond distributions. The results ofCS(tw ,t
1tw) andCx(tw ,t1tw) for different tw are presented in Fig
2 as functions oft. It is seen thatCS(tw ,t1tw) exhibits an
aging effect quite similar to that ofCx(tw ,t1tw), implying
that the spin and the chirality possess similar dynam
properties. To examine this point in more detail, we plot
Fig. 3 the ratioT(tw ,t1tw)[Cx /CS for a fixed tw5105 at
different temperatures. At all the temperatures,T(tw ,t1tw)
slowly decreases ast goes by, revealing thatCS decays more
slowly thanCx . This result suggests that, if the ordering
the chiralities is realized, the same is true for the spins.

Next, we estimate values of the Edward-Anderson or
parameters of the spin and the chirality,qSG andqCG, apply-
ing the method proposed by Parisiet al.24 and used by
Kawamura.13 That is, these values are extracted by fitting t
data ofCS andCx for tw533105 to the power-law form of

CS~ tw ,t1tw!;qSG1
AS

tlS
, ~5!

c

he

FIG. 2. The autocorrelation functions of~a! the spinCS and~b!
the chirality Cx of the 6J Heisenberg model plotted vst for dif-
ferent waiting timetw . The data are averaged over 32 samples
the lattice sizeL515.
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Cx~ tw ,t1tw!;qCG1
Ax

tlx
, ~6!

in the two time ranges of 30<t<3000 and 50<t<5000,
whereAS , Ax , lS , andlx are constants. The obtainedqSG
and qCG are plotted as functions of temperature in Fig.
Both quantities have positive, nonvanishing values at l
temperatures and seem to vanish at almost the same tem
ture of T;0.18J.25 This result also suggests that the pha
transitions of the spin and the chirality exist atTÞ0 and they
occur at the same temperature.

In summary, we have revealed that the apparent differe
in the dynamical property between the spin and the chira
comes from the drift of the system. The off-equilibriu
Monte Carlo simulation suggests the occurrence of the

FIG. 3. The ratio of the chirality to the spin autocorrelatio
functionsT(tw ,t1tw)[Cx /CS of the 6J Heisenberg model plot-
ted vs t. The data are averaged over 32 samples of the lat
sizeL515.
.
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phase transition atTSG;0.18J. This view is compatible with
our recent studies of the stiffness of the system, which s
gest that, contrary to previous studies,3,4,11 the stiffness ex-
ponentuS of the spin has the positive value ofuS;0.8 at
T50 ~Ref. 20! and changes its sign atT;0.19J.26 Thus we
think that the SG phase will be realized at finite temperatu
even when the anisotropy is absent. However, further stu
are necessary to establish the finite-temperature
transition.27

The authors would like to thank Professor K. Sasaki,
T. Nakamura, Professor S. Miyake, and Professor
Takayama for their valuable discussions.

e
FIG. 4. Temperature dependences of the Edwards-Anderson

der parameters of the spin and the chirality,qSG andqCG, of the6J
Heisenberg model. Open and solid symbols indicate those extra
in the time ranges of 30<t<3000 and 50<t<5000, respectively.
The data are averaged over 32–200 samples. Lines are guides
eye.
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that the SG susceptibilityxSG exhibits a divergent singularity a
T;0.18J. However, it was reported that the spin Binder para
etergSG ~and also the chirality Binder parametergCG) exhibits
strange temperature dependences~Ref. 14!. Further studies are
necessary to make clear the relationship between the phase
sition and the behaviors of these Binder parameters.
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