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Monte Carlo study of the critical behavior of the two-dimensional biquadratic
planar rotator model
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We present an analysis of the critical properties of the two-dimensional rigid rotor model with a biquadratic
interactionH=—J=; ;S-S+D3; ;(S-S))2 We use a self-consistent harmonic approximation and a Monte
Carlo calculation to study the Hamiltonian. The results for the specific heat, susceptibility, fourth order Bind-
er’'s cumulant and helicity modulus obtained by Monte Carlo suggest that the model has a critical BKT line
—0o<D/J<D./J, whereD./J=0.969).
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I. INTRODUCTION Il. SELF-CONSISTENT HARMONIC APPROXIMATION

. . : . . Writing the Hamiltonian(1) in terms of the polar repre-

Magnetic systems with reduced dimensionality have pro- ; ) S i )
vided a basis for a great number of insights into the varyingb€ntation for the spin at sije S=(cos¢,sin¢) we find
roles thermal fluctuations play in driving phase transitibns.
The planar rotato(PR) model represents a particularly im- _ N o
portant example of such a system, impacting problems in H= .E, [cosdi— )~ 00 (4= )], @
disciplines ranging from particle field theory to material sci-
ences. Some of the notable properties of the PR model amhere §=J/D. The ground state is obtained by putting
the absence of long-range order, the presence of topologicé|.§j= cos¢ in the Hamiltonian(1) and minimizing the en-
defects called vortices and the Berezinkii-Kosterlitz- ergy with respect tap. We find
Thouless(BKT) transition. The low temperature phase has
only bound vortex-antivortex pairs and the BKT transition is E=—Jcos¢+D cos ¢. 3
associated with the unbiding of the vortex-antivortex pais.
Alot of research, both analytically and numerically, has beerThe conditiondE/d¢=0, leads to
done on the BKT transition. For instance, just to mention
some Monte CarldMC) simulations performed in the PR- sing(—J+ 2D cos¢)=0. (4
like systems: The phase diagrams and critical behavior of the
anisotropic model have been extensively studied by Landawe have two solutiongl) ¢=0 which is the lowest energy
and Binde? using Monte Carlo simulations and the coupling solution for §<0.5. We remark that fod=0 we have a
between planes has been considered by Cetsth® disordered ground state but any finite value sfabilizes the

Here we are going to study the planar rotator model withferromagnetic ground staté2) cos¢=J/2D with D/J>0.5.
a biquadratic interactiofPR4 described by the Hamiltonian We show the ground state f@/J=1.0 in Fig. 1. In region

(1) ¢i—¢; is small and the long wavelength limit of the
Hamiltonian(2) can be written as
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For J=0 we have a disordered ground state and no BKT
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transition. The biquadratic teri is ordinarily small in sys- 30 [ H/Qz"'ﬁ% ﬁ&\ﬁp{fﬁ/ H;ﬁ
tems where the orbital motion is quenched, but can be large
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pseudospin formalism is used to describe the energy lévels.og B #.\Wg&% \\1 ﬁ/&?ffz‘i
The Hamiltonian(1) with J=0 may be used to describe the %é\ N (5% E“"\z*‘f?\ ‘f?ﬁs 1

interaction between atoms in liquid crystals. LRSS (B S XISy LA
In this work we present a Monte Carlo simulation for the NS P%\ AR

P RNT N LN
PR4 model for several values of the param@eand com- ' _%*&%Et\ &%&&féﬁ%&i
pare the results with a self-consistent harmonic approxima- s -@\m s g A
tion (SCHA).* Our results strongly suggest that the model gg‘{&mﬁ\i\ H/k..\*{&\q . Iﬁ‘ﬁi\‘é‘%&:@
has a BKT transition over the regiorc<D/J<D./J, 0 : e e LN
whereD./J0.9§9), in this case the ground state is ferro-
magnetic. FoD >D. the system loses the ground state fer- FIG. 1. Ground state of the Hamiltonian obtained by simulated
romagnetic order. annealing for d& =40 lattice andD=0.70.
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2
H= J Hdx dy, (5)
r oL=10 . g
where o L=20 a
©L=30 b4 2 o
15 AL=40 g © 4
JD2V21JD4V4 +1=60 + oo
H=|5-D|a%(V¢)"~3{g—D|a(Ve)", c 2, £
3
. . . 4
herea is the lattice spacing. In the standard treatment of the g ° 3
planar rotator model the second term in the right-hand side Tr §° 1
of Eq. (5) is much smaller than the first term and can be .8 b 8
neglected. Here, however, this is not the case. For instance I B a
for D=J/2 we have
0.5 : ‘
J 0.6 0.8 1 1.2 1.4
H=g(V)" (6) T
) ) FIG. 2. Specific heat for lattice sizés=10,20,30,40,60 and
Then a spin-wave treatment can be used onlp #J/2. In =0.25. The peak height does not dependLosuggesting a BKT

this case we can use the SCKRef. 5 and write the Hamil-  {ransition.
tonian(2) as
J tion of motion in the continuum limifobtained by calculat-
Ho=7 D [pi(br— brra)>—28pa( by —drra)?], (7))  ing dHII(V$)=0] has always a vortex solution tén
r.a =y/x, indicating the possibility of a BKT transition.

wherep; are the effective spin stiffnesses given by

p1=(COS b= br1a)),  P2=(COS(h— b 1a)). (8) Ml SIMULATION

The precise determination of the temperature for a BKT
transition is a difficult task due to absence of sharp peaks in
the thermodynamic quantities. One way to extrBgts was
suggested by Weber and Minnhafday calculating the he-

Now in order to apply the SCHA the averages -) in Eq.
(8) are approximated by- - - ), (all averages are then evalu-
ated in an ensemble defined bip). Following Ref. 4 we

obtain
licity modulus defined as
J
Ho=7pen2s (6= ¢rsa)?, (9) . ;
Y=--(E ——<2> sin(6,— 0,— A )%, (1)
where 2< ) TL2\ & T TR AL
pert=J(p1—23p3), wherex; ;=x;—X; and(E) is the mean energy per spin. The
T finite size scaling for the helicity modulus is given by the
=% = — Weber and Minnhagen'’s relation
pP2=p1, pP1=€EX 47 .
Peff
We have to solve Eq(9) self-consistently. The BKT tem- Y, 7 1
perature can be determined by the crossing between the 2TBKT:1+ 2(nL+1g)’ (12

curvep.(T) and the liney=(m/2)T. For details see Ref. 4.

The SCHA has its limitation and it should be expected to . .
work only arounds=0. However, it gives around this point, wherel is a parameter to be determined. Some care must be

the correct behavior 6T gy as compared to the simulation taken using this relation, since the scaling relation is obeyed

. only for large lattices. Another quantity we can study is the
. i— i+ . .
(ia}]t/z;Dlna:(ejgﬁé( g)btvavien havedi— ¢, +a small, where cos BKT susceptibility which must be of the form

2

J J
— _ __|a2 24— of 3 3 _ -1/2
H—(D D as (Vo) -+ 23|naa (Vo) xer= €T~ Texn) ™, (13)
7 3_2 Db a%(V ) (10 To characterize the BKT transition we can calculate the spe-
48D 3 ' cific heatC

For D>J the first term dominates, and a spin-wave treat-

ment can again be used. Equatids$ and (10) show that, 1

although a spin-wave technique can be applied only in lim- C=—(E’)—(E)? (14)
ited regiongwhere the harmonic term dominatethe equa- T2
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FIG. 4. Helicity as a function of for §=0.25. The lattice sizes
are the same as in Fig. 2.

which should be independent of the lattice dizat the criti-
cal region.

The simulations were carried out using the standard Me-
tropolis algorithm combined with over relaxation updates.
We used lattices of size XL with L=10,20,30,40,60 and
periodic boundary conditions. Each Monte Ca(iC) step
is a combination of 8 Metropolis steps and 1 over relaxation.
We varied the temperature in steps of si’€=0.05 and the
parameter— 1.0< 6§<<0.75 in steps of siz&é=0.25. In order
to reach thermodynamical equilibrium we performed long
runs of size 10& L X L. After this procedure we started to
store the energy and magnetization values separated by 5
MC steps which was enough to break correlations between
successive configurations. Each point in our simulation is the
result of the average overx210° independent configura-
tions. We then use the single histogram technique to study
the interesting regions. In our simulations, when not indi-
cated, the error bars are smaller than the symbols.

FIG. 3. Binder's cumulant as a function @ffor §=0.25. The
lattice sizes are the same as in Fig. 2.

for several lattice sizes. It is well known th@tis indepen-
dent of the lattice size and its maximum is dislocated from
the BKT temperature. Another indication of the BKT transi-
tion character is the Binder’s cumulant defined as
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FIG. 5. BKT as a function of the parametér Open circles are
simulation results. The dotted line is the begt adjust using
Tekr=A(6— 6;)¢ with A~0.93, §.~0.96, anda~0.56 and the
solid line is the SCHA.
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IV. RESULTS V. CONCLUSION

In Figs. 2 to 4 we show typical results obtained in our MC  The two-dimensional planar rotator model with a biqua-
simulations. In Fig. 2 we show the results obtained for thedratic interaction has been investigated by using a self-
specific heat as a function of temperature for several latticgonsistent harmonic approximation and Monte Carlo com-
sizes. It is quite evident that the peak height does not depensliter simulations. We have found a Berezinskii-Kosterlitz-
onL indicating a BKT phase transition. The Binder’'s cumu- Thouless transition for values of the biquadratic exchange
lant results(Fig. 3) also show a typical BKT behavior with nteraction less tha®/J< 8. with 5,=0.969), whered, is
all curves coming parallel to each other with no single pointihe yalue ofD/J where the Berezinskii-Kosterlitz-Thouless
interception. Following Eq12) we plot the helicity modulus ¢ ansition temperature goes to zero. The valuesois not

Y as a function off for several lattice sizes. Figure 4 shows \ye|| determined due to the severe slowing down which ap-
the result for6=0.25. The dotted lines are guides to the eye.nears for very low temperatures.

dotted lines and the solid line give estimates of the BKTanaytically and numerically in this model. For instance, an
temperature. This estimate gets more accurate with increagecyrate estimate af. should be interesting.

ing lattice size. The extrapolated values for the BKT tem-
perature as a function of the paramedes plotted in Fig. 5.

At the same figure we show the SCHA result as a solid line.
The dotted line is the best? adjust usingTgxr=A(S
—6¢)* with A=0.934), 6.=0.96(9) anda=0.566). The This work was partially supported by CNPqg and
rapid decay ofT gkt with 8. prevents us going further in the FAPEMIG (Brazilian agencies Numerical work was done
MC simulation since the computer time for equilibration of in the LINUX parallel cluster at théaborataio de Simu-
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