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Electron spin resonance of a magnetic impurity in the resonant level model
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We applied the renormalization group technique to calculate the spin relaxation rate of a well-defined
magnetic moment in the neighborhood of a fluctuating valence ion. We have shown that for the resonance
model the relaxation rate decreases in relation to the relaxation rate of a pure metal.
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I. INTRODUCTION

The electron spin resonance~ESR! of a magnetic probe
embedded in an interconfiguration fluctuation~ICF! host has
been used to investigate the effect of the valence fluctua
in the ESR linewidth. In order to explain the reduction of t
linewidth of the ESR of a magnetic probe (Gd31) in host
CePd3, Gambke, Elschner, and Hirst1 proposed a mode
where the dominant source of the relaxation is the coup
between the magnetic probe and the conduction band, g
by 22JkmSW m•sW, whereJkm is the coupling constant,SW m is the
magnetic probe spin andsW is the conduction electron spi
density. They represented the ICF host by the resonant l
model and obtained the ESR linewidth of the magnetic pr
in the zero temperature limit. Here we apply the renorm
ization group technique of Wilson2 to that model to calculate
the ESR linewidth for finite temperatures. For temperatu
on the order of the resonant level energy we obtained tha
relaxation rate divided by temperature as a function of
temperature presents a minimum due to the resonant
pling between the ICF orbital and the conduction band.
the limit of zero temperature the relaxation rate is prop
tional to the temperature and is lower than for a norm
metal.

The ESR of a magnetic impurity embedded in a hea
fermion compounds results in an enhancement in the K
ringa rate.3 However, the results for the intermediate valen
compounds are controverted.4 Gambkeet al.1 associated the
reduction in the relaxation rate of Gd in CePd3 to the inter-
mediate valence state. On the other hand, Heirinch
Meyer5 observed the opposite phenomena in CeBe13:Gd, as
well Barberis et al.4 in CeIr2 :Nd and Rettori et al.6 in
YbInCu4 :Gd.

II. THE MODEL

The ICF host is represented by the Hamiltonian of
resonance model, which consists of a conduction band wh
electrons are hybridized with a resonance level:

H5(
kW ,m

«kWCkWm
†

CkWm1« fCf m
† Cf m1V(

kW
~CkWm

†
Cf m1H.c.!,

~1!

whereCkWm
† (CkWm) creates~annihilates! an electron in the con

duction band with energy«kW , spin m and momentumkW ,
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Cf m
† (Cf m) creates~annihilates! an electron with energy« f

and spinm in the ICF orbital andV is the hybridization
interaction between this orbital and the conduction band.

The magnetic probe ion is sited atRW i and interacts with
the conduction electrons via the Hamiltonian

Hx52A@C↑
†~RW i !C↓~RW i !I 21H.c.#, ~2!

where A is the coupling constant,I 2 is the lowering spin
operator of the magnetic probe ion, and the field opera
Cm(RW i)5(kWe

ikW•RW iCkW ,m annihilates a conduction electro
with momentumkW and spinm in the Wannier state aroun
that ion.

III. THE FORMALISM

We begin introducing another basis formed by two sets
s-wave operators, that are sited around the magnetic pr
and at the ICF ion. Let

C«m5
1

Ar
(

kW
eikW•RW fd~«2«kW !CkWm ~3!

be an operator that annihilates as-wave electron around the
ICF ion sited atRW f , with energy«5«kW and spinm, obeying
the usual anticommutation relation$C«m ,C«8m8

† %5d(«
2«8)dmm8 , and

d«m5
1

Ar
(

kW
eikW•RW id~«2«kW !CkWm ~4!

an operator that annihilates an electron in as-wave state at
the magnetic probe ion, with energy«5«kW and spinm, with
the anticommutation relation$d«m ,d«8m8

† %5d(«2«8)dmm8 ,
where r is the one-electron density of states per spin.
terms of the operatord«m , the field operator for the conduc
tion electrons around the magnetic probe ion isCm(RW i)
5*d«Ard«m and, similarly, the field operator for the con
duction electrons around the ICF ion isCm(RW f)
5*d«ArC«m . The basis formed by the operatorsC«m and
d«m is not an orthogonal one. Then, using the Gram-Schm
orthogonality process, we can obtain another operator
©2001 The American Physical Society04-1
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C̄«m5
1

A12
sin2~kFR!

kF
2R2

Fd«m2
sin~kFR!

kFR
C«mG , ~5!

which obeys the anticommutation relations$C̄«m ,C̄«8m8
† %

5d(«2«8)dmm8 and $C̄«m ,C«8m8
† %50, with R5uRW f2RW i u

being the distance between the magnetic probe and the
ions. In this basis the HamiltoniansH andHx can be written
as

H5H01Hv f , ~6!

H05DE
21

11

C̄«m
† C̄«md«, ~7!

Hv f5DF E
21

11

«C«m
† C«md«1

« f

D
Cf m

† Cf m

1A2G

pD
~ f 0m

† Cf m1H.c.!G , ~8!

and

Hx5@Q1g0↑
† g0↓1Q2~g0↑

† f 0↓1 f 0↑
† g0↓!1Q3f 0↑

† f 0↓#I 2

1H.c., ~9!

where

f 0m5
1

A2
E

21

11

d«C«m , ~10!

g0m5
1

A2
E

21

11

d«C̄«m , ~11!

Q1522AF12
sin2~kFR!

kF
2R2 G , ~12!

Q2522A
sin~kFR!

kFR F12
sin2~kFR!

kF
2R2 G 1/2

, ~13!

Q3522A
sin2~kFR!

kF
2R2

, ~14!

G5prV2, kF is the moment at the Fermi level and the e
ergy « is measured in relation to the Fermi level in units
the half-widthD of the conduction band.

According to Refs. 8–10, in the Wilson numerical reno
malization group method the conduction bands that appea
Eqs. ~7! and ~8! are divided into logarithmic intervals
6DL2 j 2z ( j 51,2, . . . ),wherez is a continuous paramete
andL.1, and are written in a ‘‘hopping’’ form, suitable t
be numerically diagonalized, in terms of an orthonormal
of fermion operators$ f nm% and$gnm% around the ICF and the
magnetic probe site, respectively,
09240
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H0
N5L (N21)/2H (

n50

N21

«n~gnm
† g(n11)m1g(n11)m

† gnm!J ,

~15!

Hv f
N 5L (N21)/2H (

n50

N21

«n~ f nm
† f (n11)m1 f (n11)m

† f nm!

1 «̃ fCf m
† Cf m1G̃1/2~ f 0m

† Cf m1H.c.!J , ~16!

where

G̃5S 2

11L21D 2 2G

pD
, ~17!

«̃ f5S 2

11L21D « f

D
, ~18!

«n is function ofL andz and is obtained numerically,N is an
integer, and the scale factorL (N21)/2 was introduced in order
to make the lowest energy scale inHv f

N andH0
N of order 1.

For z51 can be written as8

«n5L2n/2~12L2n21!~12L22n21!21/2~12L22n23!21/2.

The diagonalization of the Hamiltonians given by Eq
~15! and ~16! is performed iteratively in subspaces of th
same charge and spin (Q,S,Sz), using the renormalization
group transformations

Hv f
N115L1/2Hv f

N 1«N~ f Nm
† f (N11)m1 f (N11)m

† f Nm! ~19!

and

H0
N115L1/2H0

N1«N~gNm
† g(N11)m1g(N11)m

† gNm!, ~20!

respectively.
In this new basis, according to Eq.~9!, the magnetic probe

ion interacts with the conduction electrons only via the fi
orbitalsg0m ( f 0m) of the chain Hamiltonians@Eqs.~15! and
~16!#.

IV. THE RELAXATION RATE

The relaxation rate, which is the central point of th
present work, is calculated using the Fermi golden rule7

1

T1
5

4p

h (
I ,F

PI u^I uHxuF&u2d~EI2EF!, ~21!

whereT1 is the relaxation time,PI is the statistical Boltz-
mann weight @PI5exp(2E/kBT)/(iexp(2Ei /kBT)#, EI and
EF are the energies of the initial (uI &) and the final (uF&)
many-particle states, respectively,T is the temperature and
kB is Boltzmann’s constant. According to Eq.~9! for Hx , the
term ^FuHxuI & is written as

u^FuHxuI &u25Q1
2u^Fug0↑

† g0↓uI &u21Q2
2u^Fug0↑

† f 0↓uI &u2

1Q2
2u^Fu f 0↑

† g0↓uI &u21Q3
2u^Fu f 0↑

† f 0↓uI &u2

~22!
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BRIEF REPORTS PHYSICAL REVIEW B 64 092404
and the eigenstatesuI & and uF& are direct products of the
eigenstates of the HamiltoniansH0

N andHv f
N .

The sum in Eq.~21! was perfomed according to Ref. 1
Figure 1 shows the numerical result for 1/(T1T) as a func-
tion of the temperature, where we take the coupling cons
A5Ah/(4pkBr2). For kBT!« f ,G the system presents
typical Korringa relaxation rate. ForkBT'« f , the rate
1/(T1T) decreases due to the resonant coupling between

FIG. 1. The relaxation rate as a function of temperature for« f

520.005D, G50.0005D, and kFR50.5. For kBT'« f , the rate
1/(T1T) presents a minimum around« f due to the resonant cou
pling between the ICF orbital and the conduction band. For l
temperaturekBT!« f , G the system shows a typical Korringa re
laxation rate.
n
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ICF ion and the conduction band. For low temperature
analytical expression for 1/T1 is obtained, which is useful to
verify the accuracy of the numerical renormalization gro
calculation.

In order to calculate the relaxation rate in the zero te
perature limit we diagonalize the HamiltoniansH0

N andHv f
N

and write the many-particle eigenstates in terms of ma
single particle states. For large oddN the diagonalization of
H0

N andHv f
N into a set of single-particle levels gives8

H0
N5 (

j 52(N11)/2

j 5(N11)/2

h̄ j ā j m
† ā j m , ~23!

Hv f
N 5 (

j 52(N11)/2

j 5(N11)/2

ĥ j â j m
† â j m , ~24!

whereh̄ j5L j 21 ( j @1), h̄2 j52h̄ j (h̄0[0),

ĥ j5L j 211g, ~25!

ĥ2 j52ĥ j , ~26!

cot~pg!5
ĥ j

uĥ j u

L (N21)/2ln L

pa0
2G̃

@ĥ j2 «̃ fL
(N21)/2#, ~27!

â j m are written in terms of the operatorsaj m and the elements
of an orthogonal matrixUi j ,
â j m5(
i

Ui j aim , ~28!

Ui j 5L (n21)/4G̃1/2a0i

U0 j

ĥ j2h i

for iÞ0, ~29!

U0 j5S uĥ j u~ ln L!2

uĥ j u~ ln L!21
p2~12L21!

2
G̃L (N21)/2@11cot2~pg!#D 1/2

. ~30!
the
The operatorsg0m and f 0m that appears in the Hamiltonia
Hx given by Eq.~9!, can be written in terms ofā j m and â j m
as

g0m5L2(N21)/4F (
j 52(N11)/2

j 5(N11)/2

a0 j ā j mG , ~31!

f 0m5L2(N21)/4 (
j 52(N11)/2

(N11)/2

(
l 52(N11)/2

(N11)/2

a0lUl j â j m , ~32!

with a0 j5„(12L21)/2…1/2L ( j 21)/2 anda00[0.
For low temperature, Eq.~21! can be written as11
1

T1
5 lim

L→1
lim

N→`

kBTr2S 2

11L21D 2

L (N21)(
l ,m

W~ l ,m!,

W~ l ,m!5u^Fm
l uHxuI &u2d~El2Em!d~Em2E0!, ~33!

where r51/D is the density of states,uI & is taken as the
many-particle ground state,uFm

l & is the final many-particle
excited states associated to a hole and an electron in
single-particle energy levelsEm andEl , respectively, andE0
is the Fermi energy level«o multiplied by the factor
2L (N21)/2/(11L21). Using g0m and f 0m , given by Eqs.
4-3
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BRIEF REPORTS PHYSICAL REVIEW B 64 092404
~31! and ~32!, and the Sommerfeld-Watson12 transformation
to evaluate the sums overm and l in Eq. ~33!, we obtain the
relaxation time

1

T1
5F12

G2

@« f
21G2#

sin2~kFR!

~kFR!2 G 2

T. ~34!

FIG. 2. The low temperature behavior of the relaxation rate a
function of kFR. The numerical renormalization group resul
which are represented by circles, are in good agreement with
analytical results~full line! given by Eq.~34!.
r,

ni

,

09240
Figure 2 presents the numerical renormalization group
sults for 1/(T1T) as a function ofkFR for low temperature,
obtained from Eq.~21! ~circles!, which are in good concor-
dance with the analytical results given by Eq.~34! ~full line!.
The accuracy of the numerical renormalization group meth
encourage us to study the model that takes into accoun
Coulomb interactionUCf↑

† Cf↑Cf↓
† Cf↓ between the electron

in the ICF orbital, which is presently in progress.
We have shown that the renormalization group method

useful to calculate the relaxation time of a magnetic pro
ion embedded in an ICF host, which is represented by
resonance model. The method is appropriate to investig
the effect of the screening and the Coulomb interaction in
fluctuating valence orbital, a complex many-body proble
As the ICF orbital is coupled to the chain Hamiltonian of t
conduction band only via thef 0m orbital, the numerical error
is minimized in the iterative process which takes place in
renormalization group calculation.
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