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Electron spin resonance of a magnetic impurity in the resonant level model
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We applied the renormalization group technique to calculate the spin relaxation rate of a well-defined
magnetic moment in the neighborhood of a fluctuating valence ion. We have shown that for the resonance
model the relaxation rate decreases in relation to the relaxation rate of a pure metal.
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[. INTRODUCTION CfTﬂ(Cm) creates(annihilateg an electron with energy;
and spinu in the ICF orbital andV is the hybridization
The electron spin resonan€ESR of a magnetic probe interaction between this orbital and the conduction band.
embedded in an interconfiguration fluctuatid@F) host has The magnetic probe ion is sited Bf and interacts with
been used to investigate the effect of the valence fluctuatiophe conduction electrons via the Hamiltonian
in the ESR linewidth. In order to explain the reduction of the
linewidth of the ESR of a magnetic probe (9 in host 2 -
CePd, Gambke, Elschner, and Hitsproposed a model Hy=—A[V{(R)W¥ (R)I_+H.cl], )
where the dominant source of the relaxation is the coupling
between the magnetic probe and the conduction band, givemhere A is the coupling constant,_ is the lowering spin
by —23,,S,- S, whereJ, , is the coupling constan§, is the ~ OPerator of the magnetic probe ion, and the field operator

magnetic probe spin ang is the conduction electron spin ¥ .(R)=2¢e""®Cg , annihilates a conduction electron

density. They represented the ICF host by the resonant lev&lith momentumk and sping in the Wannier state around

model and obtained the ESR linewidth of the magnetic probéhat ion.

in the zero temperature limit. Here we apply the renormal-

ization group technique of Wilsério that model to calculate

the ESR linewidth for finite temperatures. For temperatures

on the order of the resonant level energy we obtained that the \we begin introducing another basis formed by two sets of

relaxation rate divided by temperature as a function of theswave operators, that are sited around the magnetic probe

temperature presents a minimum due to the resonant codnd at the ICF ion. Let

pling between the ICF orbital and the conduction band. In

the limit of zero temperature the relaxation rate is propor-

tional to the temperature and is lower than for a normal C =

metal. €
The ESR of a magnetic impurity embedded in a heavy

fermion compounds results in an enhancement in the Kofpe an gperator that annihilatessavave electron around the

ringa rate’ However, the results for the intermediate valenceICF ion sited af. . with enerave = e and spinw. obevin

compounds are controverté@sambkeet al! associated the f gye =&k PinL, 0beyIng

Ill. THE FORMALISM

> ek Rig(e—2)Cp &)

. . . t
reduction in the relaxation rate of Gd in CeRd the inter- the’ usual - anticommutation relat'O'{Cw’Cs’u’}: o(e
mediate valence state. On the other hand, Heirinch and & )9uu’» and
Meyer observed the opposite phenomena in GgBad, as
well Barberis et al* in Celr,:Nd and Rettorietal® in 1 o
YbinCu,:Gd. dyu=— 2 e“Fs(s—2)Ci, (4)
Vo
Il. THE MODEL

an operator that annihilates an electron is\@ave state at
The ICF host is represented by the Hamiltonian of thethe magnetic probe ion, with energy= e and spinu, with
resonance model, which consists of a conduction band whogbe anticommutation relatiofd, , ,d;r,ﬂ,}= Ne—e')0,u .
electrons are hybridized with a resonance level: where p is the one-electron density of states per spin. In
terms of the operatad,, , the field operator for the conduc-
tion electrons around the magnetic probe ion‘lf;:t(lii)
=[de \/Ed‘,w and, similarly, the field operator for the con-
(1) duction electrons around the ICF ion isP,(Ry)
t . i =[de \fpcw. The basis formed by the operatdfs,, and
whereC, (Cy,) creategannihilateg an electron in the con- d,,, is not an orthogonal one. Then, using the Gram-Schmidt
duction band with energy;, spin x and momentunk, orthogonality process, we can obtain another operator

T t
H=2 &iCy,Ciut#:Cl,Cru VY (Cp CrutH.C),
K, k
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. N—1
_ 1 sin(kgR) B
C.,= d,,— c..l, HY=AMN"D20 S e (97,9 1)ut Iins 100 |
® - M keR I n=0
sirt(kgR) F
1—— - (15
k2R?
F N-1
which obeys the anticommutation relatioégw,g;r,ﬂ,} HE‘f=A(N_1)’2[ 20 enlflf et sy, fog)
_ N Y n=
=8(e—¢')8,, and{C,,.C, ,}=0, with R=|R;—R|
being the distance between the magnetic probe and the ICF ~ 4 ~1/2 1
ions. In this basis the HamiltoniaéandH, can be written +2¢Cy,Cr,+ TY4(f5,Cru+He) (16)
as
where
H=Ho+H,s, (6) 2 2 op 1
a Sl o 7
Ho=D C..C..de, (7)
-1
~ 2 Ef 18
+1 T es + &= 1+A*l 57 ( )
H,=D c! C,de+—=C{ C . . . . . .
of f_l ErenenlET B iu-n &, Is function of A andz and is obtained numericalli{ is an
- integer, and the scale factatN~Y"2was introduced in order
2 ; N
[t to make the lowest energy scalekt]; andHg' of order 1.
V7 fouCrutHell, ®  Forz=1 can be written ds
and snzAntZ(l_Afnfl)(l_A72n71)7l/2(1_A72n73)71/2_
HX=[®1g$Tgm+®2(g$TfOl+fSTgmH—3f$Tf01]|, The diagonalization of the Hamiltonians given by Egs.
(15 and (16) is performed iteratively in subspaces of the
+H.c., 9 same charge and spirQ(S,S,), using the renormalization
where group transformations

1 (+1 Hl’;lf-'—l:Al/ZHl’;If-i-SN(fLuf(N+1)M+fErN+1)MfN/.L) (19

HY ™= AYRHE+ 2n(90,9(n+ 1t Iln+1)uOnu)s (20

1 +1
Jou="7= J deC,,, (11)  respectively.
V2) -1 In this new basis, according to E@), the magnetic probe
ion interacts with the conduction electrons only via the first

sir?(keR) orbitalsgg, (fo,) of the chain HamiltoniangEgs. (15) and
@1: —ZA{].— oo | (12) (16)]. Op 17 0u
sin(keR) sinz(kFR) 1/2 IV. THE RELAXATION RATE
0,=-2A keR KCR? ' 13 The relaxation rate, which is the central point of the
F present work, is calculated using the Fermi golden’rule
sirt(kgR) 1 4x

O;=—-2A——FF—7—, 14 — = 2 —

3 R (14 7= & PIIHIPIPE B, @D

I'=7pV?, ke is the moment at the Fermi level and the en-where T, is the relaxation timeP, is the statistical Boltz-

ergy € is measured in relation to the Fermi level in units of mann weight[ P,=exp(—E/kgT)/Ziexp(—E; /kgT)], E, and

the half-widthD of the conduction band. Er are the energies of the initiall§) and the final [F))
According to Refs. 8—10, in the Wilson numerical renor- many-particle states, respectively,is the temperature and

malization group method the conduction bands that appear ikg is Boltzmann’s constant. According to E®) for H,, the

Egs. (7) and (8) are divided into logarithmic intervals term(F|[H,|I) is written as

=DA% (j=1,2,...),wherezis a continuous parameter s t s 2 + )

andA>1, and are written in a “hopping” form, suitable o [(FIHxI)|*=©1[(F|gg;9o, [1)|*+ O2|(F|go; fo, 1)l

be numerically diagonalized, in terms of an orthonormal set 2 t 2. 2 + 2

of fermion operator¢f,, ,} and{g,,} around the ICF and the  O31(F[fo,80, 1"+ O3[(Flfo o [1)]

magnetic probe site, respectively, (22
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1.4 ICF ion and the conduction band. For low temperature an
- analytical expression for T/ is obtained, which is useful to
1.2 - verify the accuracy of the numerical renormalization group
" > calculation.
10g In order to calculate the relaxation rate in the zero tem-
e 0 perature limit we diagonalize the HamiltoniaHg andH'
§ 0.8 - and write the many-particle eigenstates in terms of many
- i g =-0.005D single particle states. For large otldthe diagonalization of
061 T = 0.0005D andHNf into a set of single-particle levels gives
04| kR = 0.5 j=(N+1)/2
L T IRRENTN NN Y N A B | TN NNRININ AN Y N A I S | | i -
104 2 345 103 2 345 192 2 Hgl:j=7(§N:+1)/2 ”ingMaiw (23)
kT
j=(N+1)/2
FIG. 1. The relaxation rate as a function of temperaturesfor HN=" mal a,, (24)
=—0.00D, '=0.000D, andkeR=0.5. ForksT~s,, the rate oy PR
1/(T,T) presents a minimum aroungt due to the resonant cou- _ _
pling between the ICF orbital and the conduction band. For lowwhere 7, 7 =AI"1 (j>1), n_;=—n; (7,=0),
temperaturekgT<e;, I' the system shows a typical Korringa re-
laxation rate. ;]J-=Aj_1+7, (25
and the eigenstatd$) and |F) are direct products of the S
. . . N 77—] - 77] ] (26)
eigenstates of the Hamiltoniah) andH"
The sum in Eq(21) was perfomed according to Ref. 10.
Figure 1 shows the numerical result for T{T) as a func- 77 AN 1)/2””\ -~
cot(my)= = ———=—[n;— e, AN V7], (27)

tion of the temperature, where we take the coupling constant |77]| Waor

A= \h/(4wkgp?). For kgT<e;,I' the system presents a R
typical Korringa relaxation rate. FokgT~¢;, the rate a;, are written in terms of the operataag, and the elements

1/(T,T) decreases due to the resonant coupling between thef an orthogonal matriyJ;;

élﬂ:EI Uijam, (28)
Ujj= A D2 - for i#0, (29)
7= i
- 1/2
|7;l(In A)?
Ugi=| — A=A T, (30
|7,,-|(|nA)2+T TAN=D 1+ cof(my)]
|
The operatorgyy, andf, that appears in the Hamiltonian 1 2
H, given by Eq.(9), can be written in terms o, anda, , 7. = lim lim kgTp? _1) ANTDY W(l,m),
as 1 A—1IN—x +A I,m
j=(N+1)/2 | 2
T B (31 W1, m) = (Fiy|HylDI*6(E ~ En) 8(En—Eo). (33
# =Ny IRP
i1 NI where p=1/D is the density of stateg]) is taken as the
(N—1)/4 (N+1) N+ - many-particle ground statéF:n) is the final many-patrticle
fou=A" J—f(N+l)/2|—7(%+l)/2 agUjjaj,, (32 excited states associated to a hole and an electron in the
single-particle energy levels,, andE, , respectively, and,
with ag;=((1-A~1)/2)"2A07 D2 and agy=0 is the Fermi energy levek, multiplied by the factor
For low temperature, Eq21) can be written &3 2ANTDZ(1+ A1), Using g, and fq,, given by Egs.
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12 Figure 2 presents the numerical renormalization group re-
- sults for 1/(T;T) as a function okgR for low temperature,
I normalmetal obtained from Eq(21) (circles, which are in good concor-

dance with the analytical results given by E84) (full line).
The accuracy of the numerical renormalization group method
encourage us to study the model that takes into account the
Coulomb interactiory C{,Cy,C{ Cy, between the electrons
in the ICF orbital, which is presently in progress.
&=-0.10D We have shown that the renormalization group method is
04 I'= 005D useful to calculate the relaxation time of a magnetic probe
‘ ' ‘ : : : ion embedded in an ICF host, which is represented by the
resonance model. The method is appropriate to investigate
the effect of the screening and the Coulomb interaction in the
FIG. 2. The low temperature behavior of the relaxation rate as dluctuating valence orbital, a complex many-body problem.
function of keR. The numerical renormalization group results, As the ICF orbital is coupled to the chain Hamiltonian of the
which are represented by circles, are in good agreement with theonduction band only via thk,,, orbital, the numerical error
analytical resultgfull line) given by Eq.(34). is minimized in the iterative process which takes place in the
renormalization group calculation.

0.8
resonant level model

1/(T,T)

0.6+

0 1 2 3

(31) and(32), and the Sommerfeld-Watstrtransformation
to evaluate the sums ovaerand! in Eq. (33), we obtain the
relaxation time
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