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No-sticking effect and quantum reflection in ultracold collisions
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We provide a general and nonperturbative theoretical basis for quantum reflection of an ultracold atom
incident on a cold or warm surface. Sticking is identified with the formation of a long-lived resonance, from
which it emerges that the physical reason for not sticking is that the many internal degrees of freedom of the
target serve to decohere the incident one body wave function, thereby upsetting the delicate interference
process necessary to form a resonance. We then explore the transition to the post-threshold behavior, when
sticking prevails at higher incident energies. Studying the WKB wave functions of the atom provides a quick
understanding of our results even in the ultracold regime where WKB is not applicable. Explicit examples are
examined in detail and we predict the temperatures required to reach the various regimes.
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[. INTRODUCTION cavity, where using nearly 100% reflective, parallel mirrors

gives near 100% reflection except at very specific wave-
The problem of low-energy sticking to surfaces has atlengths. At these specific energies a resonace buildup occurs

tracted much attention over the yedrs.The controversial N the interior of the cavity, permitting near 100% transmis-
question has been the ultralow energy limit of the incomingSion. Such resonances are rare in a one-dimensional world,
species, for either warm or cold surfaces. A battle has ensue?'t the huge number of degrees of freedom in a macroscopic

between two countervailing effects, which we will call clas- solid particle makes resonances ubiquitous. Indeed, the act of

sical sticking and quantum reflection. The concept of quan?Olliding with the surface, creating a phonon, and dropping

tum reflection is intimately connected with threshold laws into a local bound state of the attractive potential describes a

. . & "Feshbach resonance. Thus the resonances are just the stick-
a_md was r_ecognlzed in the 1930s by Lennard-Jé en- ing we are investigating, and we must not treat them lightly!
tially, flux is reflected from a purely attractive potential with

. . ) Perhaps it is not obvious after all whether sticking occurs.
a probability which goes as-a e, ase—0, wherea is a After the considerable burst of activity surrounding the

constant anc is the translatipnal energy of the _particle in',sticking issue on the surface of liquid helidft>23and after
cident on the surface. Classically the transmission probabily very well executed theoretical study by Clougherty and
ity is unity. Reflection at long range prevents inelastic pro-kohn? the controversy has settled down, and the common
cesses from occurring, but if the incoming particle shouldwisdom has grown that sticking does not occur at sufficiently
penetrate into the strongly attractive region, the ensuing adow energy. While we agree with this conclusion, we believe
celeration and hard collision with the repulsive short-rangehe theoretical foundation for it is not complete, nor stated in
part of the potential leads to a high probability of inelastica wide enough domain of physical situations. For example,
processes and sticking. Ref. 4 treats only a harmonic slab with one or two phonon
If the WKB approximation were correct everywhere, excitation. It is not clear whether the results apply to a warm
sticking would be the rule, since WKB is based on the classurface. On the experimental side, even though quantum re-
sical motion which leads to sticking at low incident energies flection was observed from a liquid-helium surface, that sur-
The blame for the quantum reflection can thus be laid at théace has a very low density of available statessentially
feet of the WKB approximation, which breaks down in the ©nly the ripplong which could be a special case with respect
long-range attractive part of the potential at low energy. Veryt® sticking. Thus the need for more rigorous and clear proof

far out, the WKB is good even for low energy, because the?! nonsticking in general circumstances is evident. This pa-
potential is so nearly flat. Close in, the kinetic energy is highP€r 9ives such an analysis.
The strategy we use puts a very general and exact scatter-

because of the attractive potential, even if the asymptoticl:n formalism to work. providing a template into which to
energy is very low, and again WKB is accurate. But in be-. 9 ' P g P

. . . insert the properties of our target and scatterer. Then very

tween there is a breakdown, which has been recognized arbﬁs L
. ! . neral results emer h the nonsticking theorem at
exploited by several groups?°We show that this break- era’ Testllls emerge, such as e nonstcng eorem a

d . : W~e i . | zero energy. The usual procedure of defining model poten-
own occurs in a region aroun¥|~e; i.e., approximately 5|5 and considering one phonon processes, etc., is not nec-

where the kinetic and potential energies are equal. essary. All such model potentials and Hamiltonians wind up
_ It would seem that quantum reflection would settle theas parameters in thB-matrix formalism. The details of a
issues of sticking, since if the particle does not make it inparticular potential are of course important for quantitative
close to the surface there is no sticki(fdg. 1). There is one results, but the range of possible results can be much more
caveat, however, which must be considered: quantum reflegasily examined by inserting various parameters into the
tion can be defeated by the existence of a resonance in tifRematrix formalism. All the possible choices Bfmatrix pa-
internal region, i.e., a threshold resonarEey. 2). rameters give the correct threshold laws. Certain trends are
The situation is very analogous to a highFabry-Perot  built into the R-matrix formalism which are essentially inde-
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E29 These are normalized dig; (du|Q¢(u)|>=1. xis the
distance of the scatteréatom from the face of the slab
which is approximatelybecause the wall is rougllong the
line x=0. The internal constituents of the slab lie to the left
of x=0 and the scatterer is incident from the right with
kinetic energye:h2k§/2m. The total energ\e of the sys-
tem is

E=e+EZ", @

FIG. 1. The stationary state one body wave function of the in-wherec=e is the index of the “entrance channel” i.e., the
cident atom moving in the mean potential felt by it. The amplitudeinitial internal state of the slab before the collisior(lg(u).
inside the interaction region is supressedky- \e. This is tanta-  Notice that we say nothing about the valueEgi'itself. In
mount to the reflection of the atom. particular the slab need not be colq. is the magnitude of

. _ . .the wave vectol%C of the particle when it leaves the target in
pendent of the detguls of the potenuals. Indeec_i, it was thi he state().(u) after the collision. Our interest focusses on
fact that allowed Wigner to derive some scattering thresholg 5 | isthe magnitude of the wave vector of the incom-

. . e e
laws, usingR-matrix theory. ing particle. For the open channeals-1, . . .n (this defines

Having established the ineffectiveness of the resonance . target |, _ \/—_tar—geﬁ .
and the essential correctness of the simplistic one body phy@ for which E>E™, ke=v2m(E-E"5)/h _ (c=<n);

ics of quantum reflection(Sec. Il from the surface, we Whereas fg[ :Pe closzed'channets>(n), E<Etcarga' gnd Ke
move on in the second half of the paper to predict the quan=! V2m(ES-E) /=i, (C>”); xc=>0. We will use
titative sticking probabilities for different surface-atom pairs. (Kex,Kcy) as thex,y components ok.. Let Ul (x,y,u)
From an experimental perspective, atom-surface sticking=(2m/%2)V("(x,y,u), whereV("(x,y,u) describes quite
could impact the area of guiding and trapping atoms in magenerally the interaction potential between the incident atom
terial wires and containers. In those applications it is necesand all the internal degrees of freedom of the slab. For sim-
sary to predict the velocities needed for quantum reflectionplicity we assume for the moment that there is no interaction
sticking, and the transition regime between them. The readdyetween slab and atom far>a.

interested mainly in practical results may safely start reading

from Sec. IX onwards, after glancing only at Sec. Ill in IIl. PRELIMINARIES: PERTURBATION

which we briefly consider the problem perturbatively in or-

der to better elucidate the role played by quantum reflection. As stated above, we excercise the perturbative treatment

We emphasize that none of the perturbation section is actfor insight only; our final conclusions are based on nonper-
ally necessary for our final conclusions. turbative arguments. We treat the interactidfi™(x,y,u)
between slab and atom by separating out a “mean” potential
felt by the atom that is independent gfand u; call it
U©(x), and treat the remainder UM (x,y,u)

The incident atom is treated as a point particle at positior= U (x,y,u) —U®)(x) as a perturbation.
(x,y). To keep the notation simple we leave out theoor- Now the incident beam is scattered by the entire length
dinate and confine our discussion to two spatial dimensiongsay fromy=—L to L=2L) of wall which it illuminates.
Thus a cross section will have dimensions of length, etc. Iff all measurements are made close to the wall so that its
will be quite obvious how and whememay be inserted in all length 2 is the largest scale in the problem, then it is ap-
that follows. Letu represent all the bound degrees of free-propriate to speak of a cross section per unit length of
dom of the scattering target, which we take to be a slab ofvall, a dimensionless probability. More specifically, we
crystalline or amorphous material. L& (u), c=1,2,..., wil assume that the matrix elementsu(clc),(x,y)
be the many-body target wave functions in the absence of 1, duQ* (u)UM(x,y,u)Q. (u) of the perturbation

interactions with the incident particle, and having energyU(l)(Xy u) are given by the simple formu(l)(x y)
L] ] CC, L]

1. GEOMETRY AND NOTATION

=U(x)f(y) for ye[—L,L] and O elsewheret(y) is a
@®\ Before: Q\G \ After: ! : 7
O§0) O random persister{tioes not die to 0 g4 | — ) function that
OQOOw _~e OQ®O@ LT L models the random roughness of the slab and is characterized
%C% | ’ %©® \_l._,{,ound state by its so-called spectral density functiof a smooth
OQ Sl N positive-valued nonrandom function, such that
target absorbs L ) 2
e ‘ f dye“f(y)| =2L S(k) (2
—-L
FIG. 2. A schematic view of a Feshbach resonance wherein the
incident atom forms a long-lived quasibound state with the target@SL—.
The many-body wave function in this situatiénot shown has a Now, applying either time-independent perturbation
large amplitude in the “interior” region near the slab. (equivalently the Born approximation for this geometoy
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time-dependent perturbation theory via the Golden Rule, we ©
find that the cross section per unit length of wall for inelastic p(X,y,u)= >,
c=1

f dkye(x,ky) e | Qc(u),  (6)
scattering to a final channelis -

and including only the components

) 2 a 2 o _ _ _
P'C”Hew):k—w(f dX’ (X' (ke U (X' ) (X' ke be()=e(xky=ke,) €=1,2-- )
AT while solving the resulting coupled set of equations, with the
X S(Key—Key), (3  potential matrix elementsU ™ (x,kq,— ke, ,u) which

couple this subset of modes.
wherep(x:k,) is the solution of the one-dimensional differ-  With this understanding we may agree to simply drop all
ential equation. reference to thg coordinate and deal simply with the purely
one-dimensional problerfin the scattering degree of free-
dom) that presents itself, with"(x,u) being some general
B(x:k)=0 4) interaction potential. Continuing to assume for the moment
T for simplicity that it is zero forx>a, the scattering wave
function of this simplified system corresponding to the scat-
which is regular or goes to zero as- —o inside the slab tering particle coming in on one entrance channel, say

d2
(W‘ UO(x)+ k2

and is normalized as =e, with energyezﬁzkgl(Zm) is
() ~sin(k,x + ) © O P
d(X;Ky)~sin(kx+ 6) as x—. 5 X,U) = - §c— —S..|Q.(u) x>a.
X X ( ) (:Zl \/k—e ce \/k—c ce | c(U)
Accepting for the momentAppendix A) that ask,—0 the (8)

amplitude of ¢(x:ke,) in the internal reg|0m<_a goes to We exploit the following exact parametrization for the
zero ak,~ Ve, then the square of the overlap integral in Ed. entire S matrix:

(3) behaves akg. Together with the X, prefactor we get an
overall behavior ofk, for the inelastic probability as
claimed.

o (x;k,) is the solution of a one-dimensional Sctimger
equation for the incoming particle in the one-dimensiona
long-range potential created by the slab. The suppression of ®  reYact
its amplitude by\/e near the slab is due to the reflection it R.cr(E)= 2 AT ,
suffers where the interaction turns on. Within the perturba- =1 Ev-E
tive setup the nonsticking conclusion is then alreadywhere
foregonet 72

The problgm is yvhether we can really accept this \_/erdict Yre=\ lz_f duy,(a,u)Q.(u), (11)
of the one-dimensional unperturbed solution, when in fact mJ alu
we know that the turning on of the perturbatiomany-body 54 wherey, (x,u) (defined forx<a) are the exact bound

interaction$ causes a multitude of resonances to be createdyiates of the scatterer and slab system confined<ta by
internal resonances being exactly the situation in which thyeymann boundary conditions &t a, with energie<E, .
proposition(Appendix A above is known to badly fail. It

appears that the perturbation is in no sense a small physical V. S MATRIX NEAR A RESONANCE
effect. Therefore a nonpeturbative approach is needed. Here
we useR-matrix theory in its general form to accomplish the
task.

S=e ka 1+iVkRyk)e k2 (9)

1
1—i\/ER\/E(

|(Appendix B. HereR the R matrix is a sum of poles

(10

As discussed in the Introduction, the resonances are a key
to the sticking issue. Sticking is essentially a long-lived Fes-
hbach resonance in which energy has been supplied to sur-
face and bulk degrees of freedom, temporarily dropping the
IV. REDUCTION TO ONE DIMENSION AND S MATRIX scattering particle into a bound state of the attractive poten-
) ) . _tial. Thus we must study resonances in various circumstances
One point that the preceding section has made clear is th@ the low incident translational energy regime. We derive
it is the motion and energy in thedirection which is most  the approximation folS(E) nearE=E,, a resonant energy
relevant. To better see this, imagine constrainingytineo-  of the compound systenit, is the total energy of the com-
tion in each open channel to be that representing speculgound (resonant system. Within theR-matrix approach, the
reflection(alternatively any other fixed traveling wave mode compound bound stateg, (x,u) with Neumann boundary
in the y direction. The reason we may do this without af- conditions atx=a are properly coupled to the continuum.
fecting our final conclusions is that inclusion of the coupling Some of the eigenstates are weakly coupled to the con-
to other modes simply gives additional inelastic scatteringinuum, as evidenced by small values of thg.'s; these are
channels, which we will find are already expressed with genthe measure of the strength of the continuum couplings.

erality in the formulation below. While every one of thé&k-matrix bound states will result in a
The above argument is equivalent to expanding the fulpole E, in the R matrix expansion, only the weakly coupled
scattering wave function as ones are the true long-lived Feshbach resonances of physical

085418-3



MODY, HAGGERTY, DOYLE, AND HELLER PHYSICAL REVIEW B64 085418

interest. It is also helpful to know that the values of these 1 1

“truly” resonant poles aE, are the most stable to changes in = E.—E_I([/211AE,) V= E_E_ VA4 (20

the positionx=a of the box. This in fact provides one un-

ambiguous way to identify them. In Sec. V A below we first which was used in the last step. Also definE, {/2)?

derive the resonant approximation to tSematrix in the =, k. c=1,2--,n, which defines the sign of the square

vicinity of one of these Feshbach resonances when it is isopot on the left-hand side. Thus we arrive at

lated. Then in Sec. V B we will derive the resonant approxi-

mation when the resonances are overlapping, this being by i M2 y2

far the more physically relevant case. Seor =€ %Al 5.+ &
ENW—E-il', /2

efikcra, (21)

A. Isolated resonance where Eg\r)EEA‘I‘AE)\, for the nXn open-open unitary

As mentioned, the point of view we will take is to identify block of Sin the neighborhood of a single isolated resonance
a resonant energy with a particular pdg in the R matrix  after neglecting the contribution of the background maltix
expansion of Eq.B9). ThoseE, corresponding to reso- For us the essential point is that
nances are a subsequence of Byeappearing in the expan-

sion in Eqg.(10). For E near a well isolated resonanceBt FACZZKC(E)')’)Z\ca (22)
we separate the sum-over-poles expansion ofRimeatrix
into a single matrix term having elementg .y, /(E,  i.e., the partial widthd", . depend on the enerdy, through

—E), plus a sum over all the remaining terms, calNitIf  the kinematic factok.(E). Mostly this energy dependence
the energy interval betweeB, and all the other poles is is small and irrelevant except where thes and hencd’) ;'s
large compared to the open-open residug,athen we may are varying near 0. These are the partial widths of the open
expect that thex n open-open block oN will have all its ~ channels near threshold. Henf®.¢/? (c#e€), an inelastic

elements be small. Then rewriting the inverse in B&. probability, behaves liké,~ e when the entrance channel
is at threshold. Including the background termM £ 0) does
1 1 not change this. To see this we may perform the inverse in
. = , (120 Eq.(9) to first order inM and then get an additional contri-
1-iVkRyk 1—i| M+ v bution of the terms
E)\_ E
whereM = \/EN\/E andvcc’E(\/k_c'Y)\c)( VKer vaer), and set- e ka 2I. M+ 1.
ting M=0 allows us to simplify the central term in E€P) 1- v Vv
exactly (we will return to the cas& #0), E,—E E,—E
1 . + ! iM ! 2ivV |eka (23
! E\—E E\—E
gy VY (with M=0) (14 o theSmatrix. Now, bothM andV have a factor ofik,
iV E,—E multiplying their cth columns(and rows from their defini-
" E,—E tions and so a matrix elemeht., of the matrix in parenthe-
ses in Eq.(23) will have a Jk. and vk, dependence. An
1 inelastic element 08, (c#c’) would therfore take a form
=1+ E —E—i(I,/2+1AE )2in, (15 similar to that of Eq.(21), with the identity matrix element
A A A S.c there being replaced Hy,.. . Since our interest is in the
where we used case when the entrance channel is at threshold this depen-

dence is stillyk,, making the inelastic probabilitys,|? still
V2:[(7§1k1+ ¥ yfnkn)+(7i(n+1)kn+l+ )V (16 continue to behave dg,~ Je, even with background.

=|:(E+ +M B. Overlapping resonances

; 2
+i Kne1i T )|V
2 2 (Y 1nes ) Here we require the form of tH@matrix near an energly

(170 where many of the quasibound states may be simultaneously
excited, i.e., the resonances overlap. Again, neglecting back-

(I ground for the moment, th® matrix is simply taken to be a
- 7+IAE*)V (18 Sum over the various resonances,
to get the identity iA
S=1-2 —5— (24)
[E,—E—iV]V=[E,—E—i(I'\/2+iAE,)]V (19 v E-EY+ITL /2
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whereA, is anXn rank 1 matrix with thecc’th component S, is a sum ofn complex numbers each of typical size
as 1“)1\/021“)1\/5 There is no entirely direct justification of this D/I'=1/n, but random in sign. This makes for a sum of
form, but one can see that there is much which it gets correcbrder 14/n. Clearly this is the right order of magnitude re-
TheA, are symmetric, hencgis symmetric. Obviously it quired to make th@éx n matrix S unitary.
has the poles in the right places, allowing the existence of Unlike the case of the isolated resonance, Samatrix
decaying states with a purely outgoing wave at the resonamlements here are smoothly varyinginReplacing the iden-
energies. A crucial additional assumption that also makes tity matrix element of Eq(24) with a background matri8
approximately unitary is that the signs of th&? are random  just shifts this smooth variation by a constantBlf., is also
and uncorrelated both in the indaxas well asc, regardless  thought of as arising from a sum over the individual back-
of how close the energy intervals involved may be. Onegrounds then for the same reasons as discussed at the end of
simple consequence is that we approximately have that  the preceding sectiofB.|?~k.~ \/e for an entrance chan-
nel near the threshold. For simplicity we will continue to
ANAN =S DAy (25 takeB.y = 8. . One may verify that the background does

in the sense that the lhs is negligible fo=\" in compari- not affect our conclusions below.

son to the value fok=\". With Eq. (25) it is easy to verify
the approximate unitarity db. Ultimately, the assumed ran- VI. Q MATRIX AND STICKING
domness is traced back to the irregularity of the wave func-
tions x,(x,u) in the defining Eq.(11). Even if the target

itself is a highly regular one must remember that thes
x (x,u) are the solutions in the full presence of the incident

From the viewpoint of scattering theory, the sticking of
the incident particle to the target is just a long-lived reso-
ance. It is natural then to investigate the time delay for the

_ _ _ - O collision. Smith* introduced the collision lifetime oQ
particle at a distance where the interaction is felt very

matrix,
strongly.
The random sign assumption has become quite firmly es- oSt
tablished since its inception in the early days of nuclear inﬁsf, (28)

physics, due in part to its great success in the prediction of

such quantities such as average cross sectibhstably, it which encapsulates such information. The right-hand side

was used some time later in predicting the so-called Ericson . y .
fluctuations® This was the sFI)owly va?ying energy depen- (the) of Eq. (28) involves the “open-open” upper left block

dence of cross sections in the strongly overlapping regime(,)]c S so thatQ is also annxn energy-dependent matrix,

such as we wish to consider in this section below. having dimensions of time. If is a vector whose entries are

We investigate first the onset of the overlapping regime a$h€ coefficients of the incoming wave in each channel then
E increasesD(E), the level spacing of the resond®{’, is  v''Q(E)v is the average delay time experienced by such an
a rapidly decreasing function of its argument. On the otheincoming wave. Because physically the particle is incident
hand,I',=T",;+T,,+---+I'y,, and since more channels on only one channel; consists of all 0's except fa 1 in the
are open at higher enerdy, is increasing with the energy of eth slot so that the relevant quantity is just the matrix ele-
the resonance. The widths must therefore eventually overlapnentQ.(E). Smith shows that this delay time is the surplus
andFA>D(E({)) for the larger members of the sequence ofprobability of being in a neighborhood of the tardetea-
E{"'s. In this regard there is a useful estimate due to Bohisured relative to the probability if no target were present

and Wheelet! that forn large, divided by the flux arriving in channed. This matches our
intuition that when the delay time is long, there is a higher
T, probability that the particle will be found near the target.
DED) =n, (26 Now as a Hermitian matrixQ(E), can be resolved into
A

its eigenstates - --v(™ with eigenvaluesy;- - -q,. The
wheren is the number of open channels. Appendix C derivescomponents of (V) are the incoming coefficients of a quasi-
this using a phase space argument. Here we point out thébund state with lifetime); and so on. Then

this is entirely consistent with the assumption of the random

signs, indeed it requires it to be true. Take for example a . oo o
typical inelastic amplitude v '"Q(E)v= 21 qjlv®-v]2. (29
=
1/2p1/2 ] ] .
Act \c! As can be seen from this expression, the average time delay

Scc’:_iE

— c#c'). 2
x E{"—E-il,/2 ( ) @0

results, in general, from the excitation of multiple quasistuck
states each with its lifetimg; and probability of formation
SinceI'=nD and 'y =T+ T+ ---T'y,, it follows that |5(). 5|2 However, we will find that using our resonant ap-
the typical size of a parti;/il width'yc is D. Therefore the  proximation to theS matrix near a resonant energy” the
typical magnitude of }ZT'\7, is D, but the sign fluctuates time delay will consist of only one term from the sum on the
randomly over the index, because of the assumed random-rhs of Eq.(29), all the other eigenvalues being identically 0.

ness of thefi’f. Thus for energies in the overlapping domain  Using Eq.(28),
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_iA)\/
E)=ifh
QE) AE [E-E")—iT,./2]
AA,/
_2 AN/ (r) . (r) . 2
[E-EY’+il\/2][E-E,/—il}//2]
(30)
which using Eq.{(25) simplifies to
h
=> Ay, (31)

X (E—E()2+(T',/2)?

a remarkably simple answer. We ne@d.(E), whereeis the
entrance channel,

Al o
E)= 32
Qed B)=2 EE0+ (27 (32
- AT, Ty
_; (E—Eg\'))2+(l“>\/2)2xrx ’
(33

where the second equation has the interpretation each

term) as the lifetime of the mode, multiplied by the probabil-

ity of its formation. Note how for each resonang§’ there

is only one term corresponding to the decomposition of Eq.

(29). The actual measured lifetime is the averag®gf(E)
averaged over the energy spectrimE)|? of the collision
process.

A. Energy averaging over spectrum

With the target in stat€).(u) wherec=e is the entrance

channel, the energy of the target is fixed, and the time-

dependent solution will look like

e —ik¢(E)x
¢<x,u,t)=de 9<E)§1( <5 Sce
eike(E)x
— QO .
kC(E)s<E>ce o(u) (34)

Recall,E is the total energy of the system. We are intereste
in the threshold situation where the incident kinetic energy of A

the incoming particlee— 0. This can be arranged ¢f(E) is
peaked atE, with a spreadAE such that(i) E, is barely
aboveE2"*'and(ii) AE = Se is some small fraction of, the

PHYSICAL REVIEW B64 085418

() denotes the average over th& interval. NowQg(E) is
just a sum of Lorentzians centered at s with width
I'y and Eq.(36) is just a measure of their mean value over
the AE interval.

So long as the\E interval around which we are averag-
ing is broad enough to straddle many of these Lorentzians,
the mean height is just

h’ﬂ'r)\e
r, -
where the third factor is the area under thati” Lorentzian.

This is true regardless of whether or not they are overlap-
ping. It will be convenient to writd"), as

1
EXp(E)AEX

(37

[, =nx2k,vary,), (38)

where varfy,) is the variance of the set of,.'s over then
open channels ari, is a mean or effective wave number
over the open channels, which for a particular realizakon
we take to be defined by E@38) itself. Let () denote the
average over the occurrences of the quantity inAlkein-

terval. [=(T,), k=(k,). Then Eq.(37) simplifies to

1 ke<7§e>
E))=fi = =Tl 39
(QedE)) D nkvari 7)) (39
ke
T (40)

which tends to 0 ak.~ Je. The form of Eq.(40) and all the
steps leading up to it remain valid whether the Lorentzians
are overlapping or not, as long as tdE=Ae interval
which we are averaging over includes many of them.

B. On an isolated resonance

If the target is cold enough that the resonances are iso-
lated, then as the incident particle’s eneegy 0, adhering to
the conditionA e<e will eventually result inAe becoming
narrower than the resonance widths. It becomes possible then
for Ae to be centered right around a single isolated reso-
nance atE{"”. In this case(Q.{(E)) is found simply by
putting E=E(", because the spectrufg(E)|? is well ap-
£roximated bys(E—E{"). So

(Qed B))= (41)

Ae M T ae
> =
F}\

Even in this case there is th& behavior as—0 and there

mean energy of the incoming particle. The second condition 4 sticking.
ensures that we may speak unambiguously of the incoming |, he extreme case that there are no other open channels

particle’s mean energy. So,

<Qee(E)>EJ dE[g(E)|*Qee(E) (39

~ l .
_EJ dEQee(E)y (36)

at all (n=1), (QeE))=4T,/T2=#IT,, becauseTl,
=I'\e. In fact, e=1, and(Q(E)) diverges, implying in

this case that it is possible to have the particle stick. This is
an exception to all the cases above but is experimentally not
so relevant because we may always expect to find some exo-
thermic channels open for a target with many degrees of
freedom.
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VII. INELASTIC CROSS SECTIONS AND STICKING case, if the energf coincides with a resonant energy"
we will have the exceptional case of sticking, as discussed at

Another physically motivated measure of the sticking ) : : ;
probability may be obtained by studying the total inelasticf[he end of the previous section. But as pointed out there, this

cross section of the collision. The idea is that any Iong-liveo‘s primarily of theoretical interest only.

“sticking” is overwhelmingly likely to result in an inelastic

collision process; i.e., that the scattering particle will leave in VIII. CHANNEL DECOHERENCE

a different channel than it entered with. Using the original ) ) ) )

Wigner approach it is possible to show that for our case 1he only case for which the particle sticks is seen to be
where we have only one scattering degree of freedom, thie case when we are sitting right on top of a resonance with
inelastic probability for an exothermic and endothermic col-the incoming energy so well resolved that we are completely
lision vanishes likék, . The only possible exception to this is Within the resonance widthand there are no exothermic

a measure zero chance of a resonance exactly at the thresh§fg@nnels open. Having no such channels open amounts to an
energy E?9t In the event that there is a resonarh‘s%) |nf|nt_e5|mally Io_vy energy for a Iarge target. Otherwise, the
close to but above this threshold energy, it is only necessar§ticking probability tends to 0 age in every case.

thatE is belowE{" (by an energy of at leastE, the spread

in energy in order to observe the usual Wigner threshold A. Time-dependent picture

behavior: From the time-independent point of view, the physical

Pireasic— 0 like Ko e, (42  reason for the absence of low-energy sticking is contained in
) ) . . the factorl',./I"y of Eg. (33). This is the formation prob-
for the inelastic probability. However, our problem is un- apility for the compound state. We will explain physically
usual in the sense that because of the large number of d@y it is small forn>1. The resonance state is a many-body
grees of freedom of the target, we will always find reso-entangled state. If we imagine the decay of this compound
nances betweerEZ" and E no matter how smallE  state(already prepared by some other means) sagh open
—Eg"= € is. Thus the Wigner regime is not accessible.channel carries away some fraction of the outgoing flux, with
Still the surprise is that a simple computation reveals that the@o preference for any one particular channel. Running this

same behavior holds for large whole process in reverse it becomes evident that the opti-
mum way toform the compound state is to have each chan-
= (E)= P. JE 43 nel carry an incoming flux with exactly the right amphtu_dg_
nelastd E) ;e o—e(E) “3 and phase. This, however, corresponds to an entangled initial

state. With all the incoming flux instead constrained to be in
only one channel it becomes clear that we are not exciting

:ge |Sce(E)I? (44) the resonance in the optimal way and the buildup of ampli-
tude inside is not so large; i.e., the compound state has a
[.dep 12 o uep | 12 small probability of forming.
=> Ae " he Ne " A'e The time-dependent view is even more revealing. Imagine
iFe X v E-E(V-iT\ 2 E-E{+iT,/2 a wave-packet incident on the system. For a single open-

(45 channel Feshbach resonance, the buildup of amplitude in the
interior region can be decomposed as follows. As the leading
r, edge of the wave packet approaches the region of attraction,
2Pinela3ti&E):§)\: (E—EM)24+(T /z)zrxev most is turned away due to the quantum reflection phenom-
A A ena.(It is a useful model to think of the quantum reflection
(46) . .
as due to a barrier located some distance away from the
where we used the random sign property ofﬁlﬁé’s and the interaction region.The wave function in the interaction re-
understanding that ... .I'\c==a\c=I"). Since the sum gion constructively interferes with new amplitude entering
S.+e is over then>1 open channels, omission of a single the region. At the same time, the amplitude leaving the re-
term can hardly matter. Apart from the factofT", , the rhs  gion is out of phase with the reflected wave, canceling it and
of the above equation is identical to the expression fomssisting more amplitude to enter. The result is a large
Q.«E) in Eq. (33). AveragingPineasid E) over many reso- buildup of probability in spite of the effective barrier; i.e., a
nancei)\’) (overlapping or ngtwe may use the same alge- resonance.

braic simplifications as before to show Now suppose many channels are open. All the flux enter-
ing the interior must of course return, but it does so frag-

Ke mented into all the other open channels. Only the fraction

(Pinetastic = f (47) that makes it back into the entrance channel has the oppor-

tunity to interfere(constructively with the rest of the enter-
As k. tends to 0, this gives thg¢e Wigner behavior showing ing wave packet. The constructive interference is no longer
that there is no sticking. efficient and is in fact almost negligible for>1, thereby
The above argument fails when there is only one openmuining the delicate process that was responsible for the
channel. There are no inelastic channels to speak of. In thiguildup of the wave function inside. The orthogonality of the

085418-7



MODY, HAGGERTY, DOYLE, AND HELLER PHYSICAL REVIEW B64 085418

other channels prevents interference in the scattering dimer WKB error

sion. If we trace over the target coordinates, leaving only the 025K
scattering coordinate, most of the coherence and the cor
structive interference is lost, and no resonant buildup occurs 5
Therefore one way to understand the nonsticking is to sa
that decoherence is to blame.

B. Fabry-Perot and measurement analogy 1060 2120 3180 1240 X (nm)
50
Suppose we have a resonant qguantum-mechanical Fabr 106 255 K 5
; ; ; il -2. nm
Perot cavity, where the particle has a high probability of V() = U

being found in between the two reflecting barriers. Now, dur- 150

ing the time it takes for the probability to build up in the

interior, suppose we continually measure the position of théEnergy (nK)

particle inside. In doing so we decohere the wave function

and in fact never find it there at all. Alternatively, imagine  FIG. 3. The WKB error of Eq(48) for three different values of

simply tilting one barriefmirror) to make it nonparallel to the incoming energy 200, 2, and 0.02 nK, vs the distanee from

the first and redirecting the flux into an orthogonal direction,the slab(SiN). The long-range form of the potentiai c;/x* (cs

again spoiling the resonance. Measurement entangles othgR20 meV A is also shown for which the negativey ‘axis” is

(orthogonal degrees of freedom with the one of interest, calibrated in the different units _of energy. The sticking probabilities

resulting in flux being effectively redirected into orthogonal " the three cases are approximately 1, 0.6, 0.1.

states. Thus the states of the targepotentially excitable

are in effect continually monitoringmeasuringto see if the  For a low incoming energye=#2k?/2m, a left-moving

incoming particle has made it in inside, ironically then pre-WKB solution begun well inside the interaction region will

venting it from ever doing so. The buildup process of con-fail to match onto a purely left-going WKB solution as we

structive interference in the interaction region, described inntegrate out to large distances because the WKB criterion

the preceding paragraph, is slower than lineat ifherefore

the constant measurement of the particle’s preséaice re-

sultant prevention of stickingis an example of the Zeno p

“paradox” in measurement theory. IN)|=|—
All this does not tell us much about how sticking turns on P

as the incident translational energy is raised. Moreover, pre-

dicting the sticking probabilities quantitatively requires oy the ocal accuracy of the wave function will in general
knowledge of the long-range form of the potential. This istsj| to pe valid in some intermediate region. For bounded
the subject qf the following sections of our paper, yvhere &otentials that turn on abruptly, for examplesata, it is
WKB_ analysis proves very useful. Quantum reflectlon IS ashvious that WKB will fail nearx~a. For long-range po-
physical phenomenon linked directly to the failure of theiantials such as a power lai(x) = — ¢, /x" it is not imme-
WKB approximation. diately obvious where this region of WKB failure lies, if it
exists at all. It turns out that even in this case it is possible to
identify (for small enoughe) a distancgdependent or) at
which the potential “turns on” and where WKB will fail. We
Let us consider the typical case of an attractive potentialvill show below that WKB is at its worst|\’(x)| is maxi-
arising out of the cumulative effect of van der Waals attrac-mized] at a distancex where the kinetic and potential ener-
tions between target and incident atoms. A classical atongies are approximately equal, i.e., whévégx)|~ €. The dis-
would proceed straight into the interaction region showingtance away from the slab at which the particle is turned
no sign of reflection, but the quantum-mechanical probabilityaround—or quantum reflected—is precisely this distance.
of being found inside is suppressed by a factokdfas k Furthermore, one may heuristically expect that the greater
—0) as compared to the classical probabilisge Secs. Il the failure of WKB, the greater the reflection.
and XIlII), wherek is the wave vector of the incoming atom. Figure 3 shows a plot of the error term in E¢8) for
(Since we are dealing with one body wave functions, fromthree different values of the incoming energy of neon on a
here on we will suppress the subscript”™on the wave semi-infinite slab of SiN. The essential points to notice are:
numberk.) This is tantamount to saying that quantum me- (i) There is a greater error incurred in attempting to apply
chanically the amplitude is reflected back without penetratthe WKB (classical mechani¢spproximation to colder at-
ing the interaction region, analogous to the elementary casems than to warmer ones. Consequently, we expect that the
of reflection from the edge of a step-down potential in oneslower the atom, the more nonclassical its behavior. In par-
dimension while attempting to go over the edge. A usefulticular, slow enough atoms will be “quantum reflected” and
way to view this is to attribute the reflection to the failure of will not stick.
the WKB approximation. (i) As the incoming velocity is decreased the atom is
To be specific, we keep the geometry of Sec. Il in mind.reflected at distances progressively further and further away

!

<1 (48)

IX. QUANTUM REFLECTION AND WKB
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from the slab. This is because the intervakiaround which
the WKB error is large, may be identified as the region from Psticking
which the atom is reflected. 1
A useful qualitative rule of thumb obtained in Sec. X
below is that the region of WKB error reaches all the way 4
out to those regions where the potential energy is still
roughly the same order of magnitude as the incoming energy
[Eqg. (52)]. This means that as—0 the error is still large
where the potential energy graph looks essentially flat. In
fact ase—0 it is easily shown that a plot of the WKB error 0-4
will show a nonuniform convergence to a polynomial pro-
portional to 0.2

0.6

x"2=1 forall n>0 (49

. . A ——ka,
. 0.2 0.4 0.6 0.8 1 1.2 1.4
Figure 3 shows the case far=3.

FIG. 4. Sticking probabilities for an atom incident on surface
X. WKB FAILURE providing a long-range interaction of the for¥f(x)=—c,/x" for
the cases =3, 4, 5. Note that the length scadg used to compute
Differentiating p/2m+V(x) =€ with respect tox, we  the dimensionleska, coordinate on the X axis” vs which we plot

have the sticking probabilities is different for each
, —mV 50 range forces and lose energy to the internal degrees of free-
P = p (50 dom. For such a case then with<2 we believe one wilhot

. o observe quantum reflection.
which when used repeatedly to eliminapé shows that

A2 H imi
|p’/p?| in Eq. (48) is maximized when XI. STICKING PROBABILITY

pz2 Vv'? Having established that the reflection is caused by a well-
am_ AV (53D defined localized region, we solve the one-dimensional
Schrodinger equation around this region to accurately com-
For V(x)= —c,/x", this is exactly when pute the reflection probability. For an attractive power-law
potential V(x)=—c,/x", the relevant one-dimensional
2(n+1) equation is
V| =e| ——5— (52
2 n—-2
We discover that fon>2 only, we have a point where WKB P + nn + k2 de(X)=0. (54)
X

is at its worst at a distancewhere|V(x)|~ ¢, and moreover,
that this maximum behaves like

p/
ma E

which for n>2 diverges ak—0. Note how aweakerpo-
tential (smallerc,) is better at reflecting a particle at the
same energy, but allows the atom to approach closer. HeuriSMallk, behaves as
tically a sketch ofV(x)=—c,/x" reveals why: the weaker P Nk (56)
potential is seen to turn on more abruptly at a point closer to sticking™ Nn@n »
x=0, promoting an greater breakdown of WKB there. Alter-whereN,, is a pure numeric constafroughly of order 10 for
natively a simple scaling argument with Schrodinger’s equan=3, and of order 1 fon=4,5), see Ref. 20P gjicking May
tion reveals the same trend. be computed numerically for arky and Fig. 4 Show®icking
The above conclusions are valid only for-2. Forn  yska, for n=3,4, and 5. Second, the distance at which the

<2 the error term of Eq(48) looks qualitatively different particle is turned around is estimated by solving
from that in Fig. 3. It is small at all distances except near

=0 where it diverges to infinity, as is evident from E49). al " 5

If the physical parameters are such that this region where (7) = (kay) (57)
WAKB fails very close to the slab is never actually manifest in

the long-range part of the potential then the “no-reflection” for x, which is just the requirement thAf(x)| = €. Equation
classical behavior will be valid all the way up to distances(56) together with Eq(55) makes plain that a smaller, is
near the slab where the atom will begin to feel the shortmore conducive to making quantum reflection happen, while

¢e(x) is the entrance channel wave function. The length

scale
1 1

C%/nellzf 1/n Crl]/nkl—zln

(53 a,=(2mc,/#?)Y0-2) (55)

contains all the qualitative information about the reflection.
Its relevance is twofold. First, the sticking probability for
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Piicking e © While the parameters in our example are fairly typical, it
semi-infinite slab . . .
e is clear that the cubic dependence on mass and quadratic

dependence on the; coefficient in Eq.(58) will make this
temperature range over quite a few orders of magnitude. The
cg's in Ref. 18, listed in units of meV Afor a variety of
surface atom pairs, range in values from 100 to 3000.

thin slab (10 nm)

(C

thin slab" {10 nm)

. A. Semi-infinite slab (without Casimir)
thin slab (1 nm)

Even thoughc; coefficients are known both theoretically
and experimentally for many surface-atom pairs, for com-
pleteness we take a moment to look at a quick way of esti-

mating them. This is provided by the London formula

.01
001 0.1 1 10. 100.  1000.

Temperature (nK)

FIG. 5. Sticking probabilities vs temperature of incident Ne at-
oms on SiN. The broken line indicates the inclusion of the very
long-range Casimir forcetsee text The large dot demarcates the
regions of threshold and postthreshold, using the criterion suggested
at the end of Sec. XII.

_3 IAIB apapg _C6
Vatom—atongr):7|A+|B 3 =6 (59

r

which estimates the van der Waals interaction between any
afwo atomsl is the ionization potential and the polarizabil-
kity of each atom. Then summing over all the atoms in the
semi-infinite slab(thick) we get

Eq. (57) indicates that the turnaround point is then necess
ily closer to the surface. With these effects in mind, we loo
at some specific cases.
— TCePaoms_ 1 —Cs
33

XIl. EXAMPLES Vgiab-ator X) = 5 X 5= 7 (60)

We examine the case of incidence on a slab which may be ) )
treated as semi-infinite, and also the case when it is a thilfN€€Pams= the density of slab atoms. These estimates are

film. It is useful to first look at these cases pretending there i§10t VEry accurate, but correctly indicate the physical quanti-
no Casimir interaction, and assuming that the short-rangl€S on which the answer depends. As mentioned, Ref. 18
form of the potential is everywhere valid. Afterwards we put Provides a useful compegdlum of these coefficients. We have
in the Casimir interaction. For clarity we will pick a specific US€dcs=220+4 meV A® for neon atoms incident on sili-
example of target and incident atoms for most of our discus€0n Nitride from work of Ref. 19. This choice ef makes
sions, by specifying the numeric values for the short-range
potential between the atom and semi-infinite slab, since these 8g=212 nm. (61)

are most comprehensively tabulated in Ref. 18. Thus the “semi-infinite slab” curve of Fig. 5 is the=3

Figure 5 shows the sticking probability vs the temperatureyryve of Fig. 4 scaled to temperature units using G&).
of an incoming Ne atom in units of I8 K. The slab is

silicon-nitride (SiN). The various curves are for the different
cases depending on whether we are considering a thick or
thin slab, and whether the Casimir effect is included or not. From far enough away any slab will appear thin. The
We will discuss these cases below, pointing out the relevargturface-atom interaction will behave like

length and energy scales involved in deciding to label the

slab as semi-infinite or thin. The mapping from the math- —C3  —C3 —3dg 62
ematically naturaka, (with n=3 andc;=220 meV A) x3 (x+d)® x4

scale of Fig. 4 to the more physical temperature scale of Fi
5 is made using

B. Thin slab (without Casimir)

gfor x>d, whered is the thickness of the slab. The resulting
¢, coefficient equal to 8c; gives ana, coefficient that can

my |3/ mev A3\? be written as
T=[69.08 K] ( W) (kag)?, (59
Mato Cs [2m 3d](¥2)
where we usede)=(3/2)kgT to compute the temperature a,= "\ 7z3dCs=as| - (63
by setting(e) equal to the incoming energgn,= mass of 3
hydrogen atom and for our exampig,=20.03 m,, . For macroscopic values af(>as) then, it is only for van-

All the graphs in Fig. 5 have an initial slope of 0.5 indi- ishingly small incident energies that the finiteness of the slab
cating the/e behavior of the sticking probabilities once the becomes apparent. For any macroscapiiis will be physi-
energies are low enough to be in the quantum reflection recally irrelevant. For microscopid(<as), however, this
gime. A particular temperature at which there is a transitiorwindow in energy over which the thinness of the slab makes
to the post-threshold sticking regime, we arbitrafibut in-  an appreciable difference can be larger and even prevail for
tuitively) define as the temperature where the slope becomeal energies. To continue our illustrative example we pick the
0.4. For the thin-film case of 10 nm in our example thismicroscopic value of d=10 nm. This makes a4
temperature is 10 nK. =800 nm. The “thin slab” curve of Fig. 5 shows that the
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sticking probabilities are substantially reduced and the onset D. Thin slab (Casimir regime)

of quantum reflection occurs at a much higher energy. Even for a thin slab we expect that the distance at which
As a benchmark case, we also include what will likely beye casimir interaction is valid remains the same as for a

the physically limiting case for a continuous film d=1 " gemjjnfinite slab made of the same material. At these dis-
nm. This further reduces the sticking probabilities for a fixed;ces ifx>d is also valid. then one may expect the surface
temperature by a factor af10, because the important quan- atom interaction to behave like

tity a, is reduced by this muchEg. (63)]. The transition

temperature appears to have increased by three orders of PO (O R P (o)
magnitude versus the semi-infinite case. A L 4 (66)
x* (x+d)* x>
C. Semi-infinite slab (Casimir regime) The length scale
As the incoming energy tends to 0, we have seen that s
the turnaround region from which the atom “quantum re- ©_ () 4d
flects” moves progressively further away from the slab. At ag - =ay 2© (67)
4

large distances, however, it is well known that the interaction
potential itself takes on a different form due to Casimir ef-
fects. In particular, a semi-infinite dielectric slahelectric
constante;) has an interaction potential with an atom of
polarizability « given by

associated with thiscg=4dc{®) coefficient makesal®
=717 nm. Figure 5 shows a slight decrease in the sticking
probabilities, the effect being evidently less here than in the
case of the thick slab.

—3hca €1

Vs|abamm(X) = g ? T?/Zg X—s 00 (64) E. Hydrogen on “thick” helium
S

Rather atypical, but extremely favorable parameters (
=18 meV A% are found in the case of hydrogen atoms
—235eV-A)a  e—1 incident on bulk liquid helium. Evidence for quantum reflec-
= 7 <3 37/23 X— 0 fuon was experlmentally seen in this systé?ﬁf.he following
X s is a comparison with the parameters used in our example of
(65) Ne on SiN:

Even for suffici.entl)_/ large, thg form above is not exact but' Mye/ My =20.03 andc(aNe'S‘N)/ch'He)z220/18. (68)
a good approximation found in Ref. 21. Our purpose here is
only to estimate the various numbers to see their relevance. {§sing these along with Eq58), we see that the sticking
will suffice to putaye=0.39A% and the last factor involving  probabilities for this case are in fact the same curves as in
€s is replaced by 1 since most solids and liquids have Fig. 5 except shifted to the right in temperature by about 6.1
substantially greater than 1. This gives$’ coefficient of  orders of magnitude. This puts it exactly in the milli-Kelvin
9% 10" meVA* and hence a resulting{”)=93 nm. The regime where sticking probabilities of about 0.01—0.03 were
superscript C” reminds us it is due to the Casimir interac- observed as temperatures ranged from about 0.3 to 5°mK.
tion which is valid only for large enough However, the sticking probabilities predicted by the “semi-

To estimate the distance beyond which the Casimir forminfinite slab®” curve of Fig. 5 are about a factor of 2.5 too
itself is valid, we use the statement from Ref. 22: “Within a large, but we feel there is good reason for this. We already
factor of 2, the van der Waals potential is correct at distancementioned the qualitative manner in which the Casimir
less than 0.1%,, while the Casimir potential is correct at forces were included but it seems that a greater error is
distances at longer rangeX,=(1240 nm)/QAE/eV) here caused for another reason. The length seale 17 nm for
is the wavelength associated with the transition between thel-He is so small that the WKB error is close (see Fig. 3
ground and excited state that gives the atom its polarizabilitywhere the interaction potential is not exactly of the form
AE is the transition energy measured in eV. Knowing this~1/x>. Practically speaking this means that the region over
much we may deduce the qualitative features of the stickingvhich we must integrate E¢54) must include points close
probability curve the arguments being similar to the caseso the slab to get some convergence and thus we are violating
above. the assumption that the potential+sl/x® there. This prob-

For this Casimir case and the one below, however, there ikem would not plague the Ne-SiN case too much, because the
a caveat. The exact manner in which the potential changes itsngth scale there is substantially bigger. For H-He we must
near range form to its long-range Casimir form can certainlyinclude some short-range information to get an improve-
affect the sticking probabilities at the intermediate energyment. Still it is the long-range forces that are mostly respon-
where it makes this transition. Some numerical experimentasible. Reference 24 and others have modeled this close range
tion choosing arbitrary forms of the potential having the cor-behavior and obtained better agreement; the improvement
rect short-range and long-range behavior confirms thiscoming from explicit consideration of the bound states sup-
Therefore the curves in Fig. 5 involving Casimir forces areported by the close range potential. These appear in the po-
only quantitatively andot qualitatively correct. tential matrix elements of perturbation theory.
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XlIl. RELATION TO THRESHOLD BEHAVIOR on the elastic-scattering wave functions we use the Golden
We now wish to take a broader view of the quantum re-RlJIe to obtain Eq((?;:’a);p_(E) Is the energy density of states
flection behavior at thresholck(>0), and the sticking that ©f the free atofn(be,ﬁ (r) is the entrance channel wave func-
sets in as the energy is increased—a postthreshold behavidion and¢£})(r) is the final channel wave function. They are
e

In particular we want to make connection to, and extend they, exact elastic-scattering wave functions in the potentials
well-known threshold behaviors of inelastic rates which were

: : - U F/.(F) and U (F), respectively. The factor of B/divides
first stated most generally by Wigner in Ref. 25. For ex- ¢ cc o
ample, Wigner showed that the exothermic excitation rateéheNGOIde”ntEuLe drate bé/ the ﬂ(l)Jd;( to get tzehprobablllty._
for collisions between two bodies with bound internal de- ow all thek dependence olioe_c and NeNCae._.¢ IS

grees of freedom tend to a constant value as their relativgue to(i) th? factor 1K, and(ii) the sensitivek depende_nce.
of the amplitude of the entrance channel wave function in-

translational energy tends to 0, provided there is no reso-. . _ i . .
nance at the O translational energy threshold. Equivalentlf'de the interaction region over which the overlap integral of

the exothermic inelastic cross section diverges as a/fact Eq. (|§9)dtal_<es place. ﬂT his dls S|mplg bicause th_e “l(nc%mmg
known in the still older literature as the ‘d/law.” v is the ~ amPplitude is more reflected away by the potentiakas
relative velocity of the collision. Notice especially the pro- resulting in the interior amplitude being suppressed by a fac-

Vviso in the statement above, that there be no resonance at tﬁg of k as compared to what one would expect classically.

threshold energy; suggesting that the many resonances be- _

tween 0 ande provided by a many-body target could make 1. Incidence on a slab

the law inoperative. But the first part of this paper estab- For this one-dimensional situation we speak of an inelas-

lished quite generally that in this many-resonance regime théic probability instead of a cross section, but otherwise Eq.

1/v law is reinstated. (69) remains entirely valid here also with the obvious modi-
Here we re-examine the Wigner behavior from a differentfications.

point of view using our understanding of quantum reflection. For k—0, when WKB is invalid, we established quite

In addition to furthering an intuitive understanding of the generally that the entrance channel wave functiy(x)

Wigner behavior, viewing things in this way will lead natu- when normalized to have a fixed incoming flux, had its am-

rally to predicting a generic postthreshold behaviag., the  plitude inside the interaction region behaving like
1k law is replaced by a #? law) and an understanding of

when the sticking sets back in ass increased.

We shift our attention to a three-dimensional geometry of
incidence on a localized cluster instead of the one- ]
dimensional case of incidence on a slab. So long as the targhiow the change from quantum reflection at threshold to
dimensions are dwarfed by the incidence wavelength we wilpticking at postthreshol@see Fig. 4 begins to a occur at
find that both problems are effectively one dimensional bethose energies at which the WKB wave functions—which
cause it is only thes wave which can penetrate the interac- Show no quantum reflection—may be increasingly trusted.
tion region. For clarity we will deal with both cases sepa-At these energies where WKB is valid we may simply use

de(Xinsidge ~ K threshold. (70

rately. the well-known WKB amplitude factor k(x), to conclude
that
Threshold and postthreshold inelastic cross sections
The starting point is the template provided by the Golden be(Xinsigd ~ VK postthreshold. (71
Rule,

The probability density of being found inside then behaves
3. (=), > - (4, like k? at thresholdquantum reflectionand likek at post-
L” ;d r¢c,RC(r)Uce(r)¢e,E (r) threshold(no quantum reflection respectively.
(69) The probability density inside the interaction region is
smaller compared to the outside by a factokpéven when
for the differential cross section for inelastic transitions fromthere is no quantum reflection; this is simply a kinematical
internal state4(u) to Q.(u) wherek andk; are the incom- effect. Classically what is unexpected is that for small
ing and outgoing directions of the incident atom. We de-enoughk near threshold, the probabilities inside dwether
scribe briefly how Eq(69) is arrived at. suppressed by a factor & Quantum reflection of the am-
For each internal stat@.(u) (c=1,2, ...n) that we may plitude from the region arounfV(x)|=e€ (Sec. IX), goes
imagine freezing the target iru(incorporates all the target hand in hand with the quantum suppression of the amplitude
degrees of freedomthere is some effective potential felt by within this region. So finally including thik dependence of
the incoming atom. These potentials are just the diagonahe amplitude of¢(x) found in Egs.(70) and(71) we get
elements of the complete interaction potentigl,u) in the
Q.(u) basis, which if present all by th_emsel}(w-diagonal P._.xk threshold,
elements Dcould only cause an elastic-collision to occur. It
is the off-diagonal elements that may be thought of as caus-
ing the inelastic transitions. Treating them as a perturbation Pe_cconst postthreshold. (72

1
doe_c> EP(EC)

085418-12



NO-STICKING EFFECT AND QUANTUM REFLECTION . .. PHYSICAL REVIEW B4 085418

2. Incidence on a cluster quantum reflection, but this is dangerous and nonrigorous, as

Since for large wavelengths only teevave interacts with W€ have tried to show.

the cluster it is clear that the problem may be reduced in the Having thus shown that the entrance channel wave func-
usual manner to a one-dimensional problem again. Therefofion is largely unaffected by all the internal degrees of free-
for a units-wave fluxthe inelastic probabilities will behave @M we were able to predict sticking probabilities solely by
as before as in Eq€72), but what is really relevant is a unit consideration of the long-range forces acting on the atom.
plane-waveflux which provides as-wave flux of m/k2. i.e. WKB proved to be a valuable tool in this context, especially
Even though the problem is one-dimensional in the radiaPiNce it nicely contrasts the classical behawior sticking
co-ordinate, the required normalization for the incoming fluxith quantum reflection. The old Wigner threshold law when

is not fixed to be a constant as before, but is now required tyi€wed in this light naturally led to the discovery of certain
grow as~ 1/k2, in order to correctly account for the increas- definite postthreshold laws which are obeyed as soon as the

ing (ask—0) range of impact parameters that all “count as” classical behavior becomes valid at slightly higher tempera-

s wave. Thus we have simply to multiply the one- Ur€s-
dimensional probabilities of Eq$72) by this factor of 1k?,

and conclude that the inelastic cross sections for this cluster ACKNOWLEDGMENTS
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The threshold result of E¢73) is just the Wigner 1/v law we

spoke of in Sec. Xlll. But now we can say more. As the APPENDIX A: QUANTUM SUPPRESSION
incoming wavelength\ increases, we first witness for large
enough\ a quadratic dependence to the exothermic cross Proposition: Ask,—0 the amplitude of(X;Ke,) in the
section g=)\?). Itis only at still larger wavelengths that this internal regionx<a goes to zero ake~ ve.
dependence eventually changes over to a linear ane ( A little thought aided by a sketch of the wave function,
«\). This happens when the sticking yields to the quantunuch as in Fig. 1, will easily convince one of the truth of this
reflection. This energy is mostly determined by the long-statement. Here we will spell out the argument as one might
range form of the potential, and has nothing to do with thenaturally think of it.
bound-state energies or any other details involving the inter- Suppose we temporarily disregard the required normaliza-
action potential. tion of ¢(x;k,) of Eq. (5) and fix its initial conditiongslope
and valug at some point inside the interaction reginfa.a
such that the regularity condition is ensured. Then we inte-
grate out tox=a. Let us denote this unnormalized solution
We have presented a general approach to the low-energyith a prime, as¢’(x;k,). The point is that fok, varying
sticking problem, in the form oR-matrix theory. Several near 0, bothvy (the valug ands (the slope that the solution
supporting arguments for the nonsticking conclusion wereamerges with ak=a, are independent df, and in fact the
given. Perhaps most valuable is the physical decoherendgterior solution thus obtained is itself independentkgf
picture associated with the conclusion that there is no stickThis is because the local wave vectok(x)
ing in the zero translational energy limit. =\2m[e—U(x)]/%? essentially stays the same function of
Reviewing the observations leading up to the nonsticking for all e near 0. Therefore foxk>a ¢’ (x;k,) continues
conclusion, we start with the near 100% sticking in the zerqmnto
translational energy limit classicalligticking probability .
We then invoke the phenomenon of quantum reflectkig. S .
1), which keeps the incident particle far from the surface v co{kx(x—a)]+k—xsw[kx(x—a)], x>a. (Al
(sticking probability 0. Third, we note that quantum reflec-
tion can be overcome by resonan¢Eg. 2), and since reso-
nances are ubiquitous in a many body target, being the Fe ,
hbach states by which a particle could stick to the surface?(X:Kx) ~Kx@"(x7k
perhaps sticking approaches 1 after all. Fourth, we suggest
that decoherenddrom the perspective of the incoming chan-
nel, with elastic scattering defined as coheremtins the Sis found in analogy to the one-dimensional case by in-
resonance effect, reinstating the quantum reflection as th@oducing the matrix version of the inverse logarithmic de-

determining effect. Fina”y,.then, there is no Sthklng, and thqivative atx=a called R(E) the WignerR matrix defined by
short answer as to why is: quantum reflection and many

channel decoherence. The ultrashort explanation is simply v=R(E)s, (B1)

XIV. CONCLUSION

This is a phase-shifted sine wave of amplitudé/k,. We
guust enforce the normalization of Ep) and therefore get
+) Which is the proposition.

APPENDIX B: R MATRIX AND S MATRIX
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where the components of ands are the expansion coeffi-

cients ofyy(x=a,u) anddy(x=a,u)/dx, respectively, in the
Q.(u) basis.

1. The R matrix

Supposingdy(x=a,u)/dx to be known, we will(like in
electrostatice use the Neumann Green’s
Gn(X,u;x",u") to constructy(x,u) everywhere in the inte-
rior x<a. (x,u) satisfies the full Schdinger equation
with energyE. We needy, (x,u)A=1,2, ..., thenormalized

eigenfunctions of the full Schdinger equation in the inte-
rior x<a with energiesE, , satisfying Neumann boundary

conditionsdy(x=a,u)/dx=0. So

—#2
(%V“Vim(x,U)—E #(x,u)=0, (B2)
_ﬁ2
(szwim(x,u)—Ex)mx,u)=o, (B3)
_hZ
(%V2+Vim(x,u)—E)GN(x,u;x’,u’)
=8(x—x")8(u—u"), (B4)
whereV?2= 9%/ 9x*>+ 6%/ Ju? and
dx(x=a,u)
IGn(x=a,u;x",u")/ox=0 and —x
(BS)
” X,U) xy (X', u’
:>GN(x,u;x’,u’)=z X6 Wx( ). (B6)

A=1

E)\_E

Gy is symmetric in the primed and unprimed variables.
Stokes’ theorem,

(o) [ ax [ au(9a9 26, 6,770

=(—#2/2m) AU ($1V Ao~ d2VAb0),

(B7)

x'=a,allu

where Vi(-)=x'(-)-V' with ¢;=¢(x',u’) and ¢,
=Gpn(x,u;x",u’") gives

h? dy(x'=a,u’)
z//(x,u)z—f du'Gy(x,u;x",u") ——————,
2mJan v ax’'

Xx<a. (B8)

Putx=a and it is deduced using Eq&1), (B6), and(B8)
together that

oo

Ree (E)= 2

A=1

YixcVrce!

E)\_E ’ (Bg)

function

PHYSICAL REVIEW B64 085418

lﬁ2
where y, .= ﬁfall udux,(a,u)Qq(u).

2. The S matrix

Now shifting attention to the outsidxfa), we see that
we can compute botN#(a,u) and ¢(a,u) on the surface
x=a using the asymptotic form of Eq8) which automati-
cally gives these expanded in tlfike,(u) basis. Writing the
matrix Eq.(B1) is now simple. It is best to do it all in matrix
notation, and thus be able to treat all possible independent
asymptotic boundary conditions simultaneously.

Lete, Jk, and 14k be diagonal matrices with diagonal
elementse’**, k., and 1Ak.. Then Eq.(B1) reads

—ika ika

efika eika —e
———=S=iRK| —=———=S]. B10
Kk ko B
Each columnc=1, ... n of the matrix equation above is

just Eq.(B1) for the solution corresponding to an incoming
wave only in channet (for c>n the wave functions blow up
as x—»). Remembering that nondiagonal matrices do not
commute, we solve fo§ to get

1
1-iRk

) 1 )
S=ekak (1+iRk)—ke*'ka (B11)

Jk

which with some simple matrix manipulation yields E)
of Sec. IV. It may be shown that the open-open part ofShe
matrix—thenXxn submatrixS;., with c,c’'=1,2,... n—is
unitary.

APPENDIX C: I'=nD

By

With the large number of degrees of freedom involved
and assuming thorough phase space mixing associated with
the resonance we may reasonably describe the compound
state wave function by a classical ensemble of points
(X,py,Uu,py) in the combined phase space of the joint system
given by the normalized distribution

PC(E) 5[E_H(vaxvuvpu)]'

(CY

It is understood in the above that the system is restricted to
be in the regionx<a. This makes all accessible states of
energyE with x<a equally likely. Then the rate of escape
I’/ through the hypersurface=a of the members of this
ensemble is

r 1
pc(E) Jx=a

h
XS E=H(X,py,u,py)]-

p
dpe

dudp,
Py e [0,]

(C2

px/m is just the velocity in phase space of a poinkata in
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the x direction. Atx=a we have supposed no interaction. 1 1 1

Hence the Hamiltonian separates in £§2). Therefore _%902 thPQQQ_zwh nD. (CH
r 1 = [ p2
5= Pc(E)f dUthfo di 5, Thereforel'/D=n. pq (pc) is the quantuniclassical den-

sity of states(phase space volumef the joint system at

2 energyE. Qg (£¢) is the quantuniclassical total number

X 8| E— ;—;1 +H®@%u,p,) ” (C3 of stateg(total phase space volumef only the target below
energy E. We have used the correspondence between the
1 classical and quantum density of statespd is identified
N dudp, (C4) with D, and the number of states of the target having energy
pcJH%tu,p ) <E less tharE is justn, the number of open channels.
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