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No-sticking effect and quantum reflection in ultracold collisions
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We provide a general and nonperturbative theoretical basis for quantum reflection of an ultracold atom
incident on a cold or warm surface. Sticking is identified with the formation of a long-lived resonance, from
which it emerges that the physical reason for not sticking is that the many internal degrees of freedom of the
target serve to decohere the incident one body wave function, thereby upsetting the delicate interference
process necessary to form a resonance. We then explore the transition to the post-threshold behavior, when
sticking prevails at higher incident energies. Studying the WKB wave functions of the atom provides a quick
understanding of our results even in the ultracold regime where WKB is not applicable. Explicit examples are
examined in detail and we predict the temperatures required to reach the various regimes.
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I. INTRODUCTION

The problem of low-energy sticking to surfaces has
tracted much attention over the years.1–5 The controversial
question has been the ultralow energy limit of the incom
species, for either warm or cold surfaces. A battle has ens
between two countervailing effects, which we will call cla
sical sticking and quantum reflection. The concept of qu
tum reflection is intimately connected with threshold law
and was recognized in the 1930s by Lennard-Jones.1 Essen-
tially, flux is reflected from a purely attractive potential wi
a probability which goes as 12aAe, ase→0, wherea is a
constant ande is the translational energy of the particle i
cident on the surface. Classically the transmission proba
ity is unity. Reflection at long range prevents inelastic p
cesses from occurring, but if the incoming particle sho
penetrate into the strongly attractive region, the ensuing
celeration and hard collision with the repulsive short-ran
part of the potential leads to a high probability of inelas
processes and sticking.

If the WKB approximation were correct everywher
sticking would be the rule, since WKB is based on the cl
sical motion which leads to sticking at low incident energi
The blame for the quantum reflection can thus be laid at
feet of the WKB approximation, which breaks down in th
long-range attractive part of the potential at low energy. V
far out, the WKB is good even for low energy, because
potential is so nearly flat. Close in, the kinetic energy is hi
because of the attractive potential, even if the asympt
energy is very low, and again WKB is accurate. But in b
tween there is a breakdown, which has been recognized
exploited by several groups.6–11,20We show that this break
down occurs in a region arounduVu'e; i.e., approximately
where the kinetic and potential energies are equal.

It would seem that quantum reflection would settle t
issues of sticking, since if the particle does not make it
close to the surface there is no sticking~Fig. 1!. There is one
caveat, however, which must be considered: quantum re
tion can be defeated by the existence of a resonance in
internal region, i.e., a threshold resonance~Fig. 2!.

The situation is very analogous to a high-Q Fabry-Perot
0163-1829/2001/64~8!/085418~15!/$20.00 64 0854
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cavity, where using nearly 100% reflective, parallel mirro
gives near 100% reflection except at very specific wa
lengths. At these specific energies a resonace buildup oc
in the interior of the cavity, permitting near 100% transm
sion. Such resonances are rare in a one-dimensional w
but the huge number of degrees of freedom in a macrosc
solid particle makes resonances ubiquitous. Indeed, the a
colliding with the surface, creating a phonon, and dropp
into a local bound state of the attractive potential describe
Feshbach resonance. Thus the resonances are just the
ing we are investigating, and we must not treat them light
Perhaps it is not obvious after all whether sticking occurs

After the considerable burst of activity surrounding t
sticking issue on the surface of liquid helium,12,13,23and after
a very well executed theoretical study by Clougherty a
Kohn,4 the controversy has settled down, and the comm
wisdom has grown that sticking does not occur at sufficien
low energy. While we agree with this conclusion, we belie
the theoretical foundation for it is not complete, nor stated
a wide enough domain of physical situations. For examp
Ref. 4 treats only a harmonic slab with one or two phon
excitation. It is not clear whether the results apply to a wa
surface. On the experimental side, even though quantum
flection was observed from a liquid-helium surface, that s
face has a very low density of available states~essentially
only the ripplons! which could be a special case with respe
to sticking. Thus the need for more rigorous and clear pr
of nonsticking in general circumstances is evident. This
per gives such an analysis.

The strategy we use puts a very general and exact sca
ing formalism to work, providing a template into which t
insert the properties of our target and scatterer. Then v
general results emerge, such as the nonsticking theore
zero energy. The usual procedure of defining model pot
tials and considering one phonon processes, etc., is not
essary. All such model potentials and Hamiltonians wind
as parameters in theR-matrix formalism. The details of a
particular potential are of course important for quantitat
results, but the range of possible results can be much m
easily examined by inserting various parameters into
R-matrix formalism. All the possible choices ofR-matrix pa-
rameters give the correct threshold laws. Certain trends
built into theR-matrix formalism which are essentially inde
©2001 The American Physical Society18-1
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pendent of the details of the potentials. Indeed, it was
fact that allowed Wigner to derive some scattering thresh
laws, usingR-matrix theory.

Having established the ineffectiveness of the resonan
and the essential correctness of the simplistic one body p
ics of quantum reflection~Sec. III! from the surface, we
move on in the second half of the paper to predict the qu
titative sticking probabilities for different surface-atom pai
From an experimental perspective, atom-surface stick
could impact the area of guiding and trapping atoms in m
terial wires and containers. In those applications it is nec
sary to predict the velocities needed for quantum reflect
sticking, and the transition regime between them. The rea
interested mainly in practical results may safely start read
from Sec. IX onwards, after glancing only at Sec. III
which we briefly consider the problem perturbatively in o
der to better elucidate the role played by quantum reflect
We emphasize that none of the perturbation section is a
ally necessary for our final conclusions.

II. GEOMETRY AND NOTATION

The incident atom is treated as a point particle at posit
(x,y). To keep the notation simple we leave out thez coor-
dinate and confine our discussion to two spatial dimensio
Thus a cross section will have dimensions of length, etc
will be quite obvious how and wherez may be inserted in al
that follows. Letu represent all the bound degrees of fre
dom of the scattering target, which we take to be a slab
crystalline or amorphous material. LetVc(u), c51,2, . . . ,
be the many-body target wave functions in the absence
interactions with the incident particle, and having ene

FIG. 1. The stationary state one body wave function of the
cident atom moving in the mean potential felt by it. The amplitu
inside the interaction region is supressed byke;Ae. This is tanta-
mount to the reflection of the atom.

FIG. 2. A schematic view of a Feshbach resonance wherein
incident atom forms a long-lived quasibound state with the tar
The many-body wave function in this situation~not shown! has a
large amplitude in the ‘‘interior’’ region near the slab.
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target. These are normalized as*all uduuVc(u)u251. x is the

distance of the scatterer~atom! from the face of the slab
which is approximately~because the wall is rough! along the
line x50. The internal constituents of the slab lie to the le
of x50 and the scatterer is incident from the right wi
kinetic energye5\2ke

2/2m. The total energyE of the sys-
tem is

E5e1Ee
target, ~1!

wherec5e is the index of the ‘‘entrance channel’’ i.e., th
initial internal state of the slab before the collision isVe(u).
Notice that we say nothing about the value ofEe

target itself. In
particular the slab need not be cold.kc is the magnitude of
the wave vectorkW c of the particle when it leaves the target
the stateVc(u) after the collision. Our interest focusses o
ke→0. ke is the magnitude of the wave vector of the incom
ing particle. For the open channelsc51, . . .n ~this defines
n) for which E.Ec

target, kc[A2m(E2Ec
target)/\2 (c<n);

whereas for the closed channels (c.n), E,Ec
target, andkc

[ iA2m(Ec
target2E)/\2[ ikc (c.n). kc.0. We will use

(kcx ,kcy) as thex,y components ofkW c . Let U (int)(x,y,u)
5(2m/\2)V(int)(x,y,u), whereV(int)(x,y,u) describes quite
generally the interaction potential between the incident at
and all the internal degrees of freedom of the slab. For s
plicity we assume for the moment that there is no interact
between slab and atom forx.a.

III. PRELIMINARIES: PERTURBATION

As stated above, we excercise the perturbative treatm
for insight only; our final conclusions are based on nonp
turbative arguments. We treat the interactionU (int)(x,y,u)
between slab and atom by separating out a ‘‘mean’’ poten
felt by the atom that is independent ofy and u; call it
U (0)(x), and treat the remainder U (1)(x,y,u)
[U (int)(x,y,u)2U (0)(x) as a perturbation.

Now the incident beam is scattered by the entire len
~say fromy52L to L52L) of wall which it illuminates.
If all measurements are made close to the wall so that
length 2L is the largest scale in the problem, then it is a
propriate to speak of a cross section per unit length
wall, a dimensionless probability. More specifically, w
will assume that the matrix elementsUcc8

(1) (x,y)
[*all uduVc* (u)U (1)(x,y,u)Vc8(u) of the perturbation
U (1)(x,y,u) are given by the simple formUcc8

(1) (x,y)
5Ucc8

(1) (x) f (y) for yP@2L,L# and 0 elsewhere.f (y) is a
random persistent~does not die to 0 asuLu→`) function that
models the random roughness of the slab and is characte
by its so-called spectral density functionS, a smooth
positive-valued nonrandom function, such that

U E
2L

L

dyeikyf ~y!U2

[2L S~k! ~2!

asL→`.
Now, applying either time-independent perturbati

~equivalently the Born approximation for this geometry! or

-

e
t.
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NO-STICKING EFFECT AND QUANTUM REFLECTION . . . PHYSICAL REVIEW B64 085418
time-dependent perturbation theory via the Golden Rule,
find that the cross section per unit length of wall for inelas
scattering to a final channelc is

Pc←e
in ~u!5

2p

ke
S E

2`

a

dx8f~x8;kcx!Uce
(1)~x8!f~x8;kex! D 2

3S~kcy2key!, ~3!

wheref(x;kx) is the solution of the one-dimensional diffe
ential equation.

S d2

dx2 2U (0)~x!1kx
2Df~x;kx!50 ~4!

which is regular or goes to zero asx→2` inside the slab
and is normalized as

f~x;kx!;sin~kxx1d! as x→`. ~5!

Accepting for the moment~Appendix A! that aske→0 the
amplitude off(x;kex) in the internal regionx,a goes to
zero aske;Ae, then the square of the overlap integral in E
~3! behaves aske

2 . Together with the 1/ke prefactor we get an
overall behavior of ke for the inelastic probability as
claimed.

f(x;kx) is the solution of a one-dimensional Schro¨dinger
equation for the incoming particle in the one-dimensio
long-range potential created by the slab. The suppressio
its amplitude byAe near the slab is due to the reflection
suffers where the interaction turns on. Within the pertur
tive setup the nonsticking conclusion is then alrea
foregone.1

The problem is whether we can really accept this verd
of the one-dimensional unperturbed solution, when in f
we know that the turning on of the perturbation~many-body
interactions! causes a multitude of resonances to be crea
internal resonances being exactly the situation in which
proposition~Appendix A! above is known to badly fail. It
appears that the perturbation is in no sense a small phy
effect. Therefore a nonpeturbative approach is needed. H
we useR-matrix theory in its general form to accomplish th
task.

IV. REDUCTION TO ONE DIMENSION AND S MATRIX

One point that the preceding section has made clear is
it is the motion and energy in thex direction which is most
relevant. To better see this, imagine constraining they mo-
tion in each open channel to be that representing spec
reflection~alternatively any other fixed traveling wave mod
in the y direction!. The reason we may do this without a
fecting our final conclusions is that inclusion of the coupli
to other modes simply gives additional inelastic scatter
channels, which we will find are already expressed with g
erality in the formulation below.

The above argument is equivalent to expanding the
scattering wave function as
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c~x,y,u!5 (
c51

` F E
2`

`

dkycc~x,ky!eikyyGVc~u!, ~6!

and including only the components

c̄c~x![cc~x,ky5kcy! c51,2••• ~7!

while solving the resulting coupled set of equations, with t
potential matrix elementsU (int)(x,kcy2kcy8 ,u) which
couple this subset of modes.

With this understanding we may agree to simply drop
reference to they coordinate and deal simply with the pure
one-dimensional problem~in the scattering degree of free
dom! that presents itself, withV(int)(x,u) being some genera
interaction potential. Continuing to assume for the mom
for simplicity that it is zero forx.a, the scattering wave
function of this simplified system corresponding to the sc
tering particle coming in on one entrance channel, sac
5e, with energye5\2ke

2/(2m) is

c~x,u!5 (
c51

` S e2 ikex

Ake

dce2
eikcx

Akc

SceD Vc~u! x.a.

~8!

We exploit the following exact parametrization for th
entireS matrix:

S5e2 ika
1

12 iAkRAk
~11 iAkRAk!e2 ika ~9!

~Appendix B!. HereR the R matrix is a sum of poles

Rcc8~E!5 (
l51

`
glcglc8
El2E

, ~10!

where

glc5A \2

2mE
all u

duxl~a,u!Vc~u!, ~11!

and wherexl(x,u) ~defined forx<a) are the exact bound
states of the scatterer and slab system confined tox,a by
Neumann boundary conditions atx5a, with energiesEl .

V. S MATRIX NEAR A RESONANCE

As discussed in the Introduction, the resonances are a
to the sticking issue. Sticking is essentially a long-lived F
hbach resonance in which energy has been supplied to
face and bulk degrees of freedom, temporarily dropping
scattering particle into a bound state of the attractive pot
tial. Thus we must study resonances in various circumstan
in the low incident translational energy regime. We deri
the approximation forS(E) nearE5E0, a resonant energy
of the compound system.E0 is the total energy of the com
pound~resonant! system. Within theR-matrix approach, the
compound bound statesxl(x,u) with Neumann boundary
conditions atx5a are properly coupled to the continuum
Some of the eigenstates are weakly coupled to the c
tinuum, as evidenced by small values of theglc’s; these are
the measure of the strength of the continuum couplin
While every one of theR-matrix bound states will result in a
pole El in the R matrix expansion, only the weakly couple
ones are the true long-lived Feshbach resonances of phy
8-3



s
in
-
st

is
xi

y

-
-

re

ce

e

pen

l

in
i-

pen-

usly
ack-

MODY, HAGGERTY, DOYLE, AND HELLER PHYSICAL REVIEW B64 085418
interest. It is also helpful to know that the values of the
‘‘truly’’ resonant poles atEl are the most stable to changes
the positionx5a of the box. This in fact provides one un
ambiguous way to identify them. In Sec. V A below we fir
derive the resonant approximation to theS matrix in the
vicinity of one of these Feshbach resonances when it is
lated. Then in Sec. V B we will derive the resonant appro
mation when the resonances are overlapping, this being
far the more physically relevant case.

A. Isolated resonance

As mentioned, the point of view we will take is to identif
a resonant energy with a particular poleEl in the R matrix
expansion of Eq.~B9!. Those El corresponding to reso
nances are a subsequence of theEl appearing in the expan
sion in Eq.~10!. For E near a well isolated resonance atEl

we separate the sum-over-poles expansion of theR-matrix
into a single matrix term having elementsglcglc8 /(El

2E), plus a sum over all the remaining terms, call itN. If
the energy interval betweenEl and all the other poles is
large compared to the open-open residue atEl then we may
expect that then3n open-open block ofN will have all its
elements be small. Then rewriting the inverse in Eq.~9!

1

12 iAkRAk
[

1

12 i S M1
V

El2ED , ~12!

whereM[AkNAk andVcc8[(Akcglc)(Akc8glc8), and set-
ting M50 allows us to simplify the central term in Eq.~9!
exactly ~we will return to the caseMÞ0),

1

12 iAkRAk
~11 iAkRAk! ~13!

511
1

12
iV

El2E

2i
V

El2E
~with M50! ~14!

511
1

El2E2 i ~Gl/21 iDEl!
2iVk, ~15!

where we used

V25@~gl1
2 k11•••1gln

2 kn!1~gl(n11)
2 kn111••• !#V ~16!

[F S Gl1

2
1•••1

Gln

2 D1 i ~gl(n11)
2 kn111••• !GV

~17!

[S Gl

2
1 iDElDV ~18!

to get the identity

@El2E2 iV#V5@El2E2 i ~Gl/21 iDEl!#V ~19!
08541
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El2E2 i ~Gl/21 iDEl!
V5

1

El2E2 iV
V ~20!

which was used in the last step. Also define (Glc/2)1/2

[glcAkc,c51,2,•••,n, which defines the sign of the squa
root on the left-hand side. Thus we arrive at

Scc85e2 ikcaS dcc81
iGlc

1/2Glc8
1/2

El
(r )2E2 iGl /2

D e2 ikc8a, ~21!

where El
(r )[El1DEl , for the n3n open-open unitary

block of S in the neighborhood of a single isolated resonan
after neglecting the contribution of the background matrixM.
For us the essential point is that

Glc52kc~E!glc
2 , ~22!

i.e., the partial widthsGlc depend on the energyE, through
the kinematic factorkc(E). Mostly this energy dependenc
is small and irrelevant except where thekc’s and henceGlc’s
are varying near 0. These are the partial widths of the o
channels near threshold. HenceuSceu2 (cÞe), an inelastic
probability, behaves likeke;Ae when the entrance channe
is at threshold. Including the background term (MÞ0) does
not change this. To see this we may perform the inverse
Eq. ~9! to first order inM and then get an additional contr
bution of the terms

e2 ikaS 2i

12
iV

El2E

M1
1

12
iV

El2E

1
1

12
iV

El2E

iM
1

12
iV

El2E

2iVD e2 ika ~23!

to the S matrix. Now, bothM and V have a factor ofAkc
multiplying their cth columns~and rows! from their defini-
tions and so a matrix elementbcc8 of the matrix in parenthe-
ses in Eq.~23! will have a Akc and Akc8 dependence. An
inelastic element ofScc8(cÞc8) would therfore take a form
similar to that of Eq.~21!, with the identity matrix element
dcc8 there being replaced bybcc8 . Since our interest is in the
case when the entrance channel is at threshold this de
dence is stillAke, making the inelastic probabilityuSceu2 still
continue to behave aske;Ae, even with background.

B. Overlapping resonances

Here we require the form of theS matrix near an energyE
where many of the quasibound states may be simultaneo
excited, i.e., the resonances overlap. Again, neglecting b
ground for the moment, theS matrix is simply taken to be a
sum over the various resonances,

S512(
l

iAl

E2El
(r )1 iGl /2

, ~24!
8-4
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whereAl is an3n rank 1 matrix with thecc8th component
as Glc

1/2Glc8
1/2 . There is no entirely direct justification of thi

form, but one can see that there is much which it gets corr
TheAl are symmetric, henceS is symmetric. Obviously it

has the poles in the right places, allowing the existence
decaying states with a purely outgoing wave at the reson
energies. A crucial additional assumption that also makeS
approximately unitary is that the signs of theGlc

1/2 are random
and uncorrelated both in the indexl as well asc, regardless
of how close the energy intervals involved may be. O
simple consequence is that we approximately have that

AlAl85dll8GlAl ~25!

in the sense that the lhs is negligible forlÞl8 in compari-
son to the value forl5l8. With Eq. ~25! it is easy to verify
the approximate unitarity ofS. Ultimately, the assumed ran
domness is traced back to the irregularity of the wave fu
tions xl(x,u) in the defining Eq.~11!. Even if the target
itself is a highly regular one must remember that the
xl(x,u) are the solutions in the full presence of the incide
particle at a distance where the interaction is felt ve
strongly.

The random sign assumption has become quite firmly
tablished since its inception in the early days of nucl
physics, due in part to its great success in the prediction
such quantities such as average cross sections.15 Notably, it
was used some time later in predicting the so-called Eric
fluctuations.16 This was the slowly varying energy depe
dence of cross sections in the strongly overlapping regi
such as we wish to consider in this section below.

We investigate first the onset of the overlapping regime
E increases.D(E), the level spacing of the resonantEl

(r ) , is
a rapidly decreasing function of its argument. On the ot
hand,Gl5Gl11Gl21•••1Gln , and since more channe
are open at higher energy,Gl is increasing with the energy o
the resonance. The widths must therefore eventually ove
andGl@D(El

(r )) for the larger members of the sequence
El

(r )’s. In this regard there is a useful estimate due to B
and Wheeler,17 that for n large,

Gl

D~El
(r )!

.n, ~26!

wheren is the number of open channels. Appendix C deriv
this using a phase space argument. Here we point out
this is entirely consistent with the assumption of the rand
signs, indeed it requires it to be true. Take for exampl
typical inelastic amplitude

Scc852 i(
l

Glc
1/2Glc8

1/2

El
(r )2E2 iGl /2

~cÞc8!. ~27!

SinceG5nD and Gl5Gl11Gl21•••Gln , it follows that
the typical size of a partial widthGlc is D. Therefore the
typical magnitude ofGlc

1/2Glc8
1/2 is D, but the sign fluctuates

randomly over the indexl, because of the assumed rando
ness of theGlc

1/2. Thus for energies in the overlapping doma
08541
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Scc8 is a sum ofn complex numbers each of typical siz
D/G51/n, but random in sign. This makes for a sum
order 1/An. Clearly this is the right order of magnitude re
quired to make then3n matrix S unitary.

Unlike the case of the isolated resonance, theS-matrix
elements here are smoothly varying inE. Replacing the iden-
tity matrix element of Eq.~24! with a background matrixB
just shifts this smooth variation by a constant. IfBcc8 is also
thought of as arising from a sum over the individual bac
grounds then for the same reasons as discussed at the e
the preceding sectionuBceu2;ke;Ae for an entrance chan
nel near the threshold. For simplicity we will continue
take Bcc85dcc8 . One may verify that the background doe
not affect our conclusions below.

VI. Q MATRIX AND STICKING

From the viewpoint of scattering theory, the sticking
the incident particle to the target is just a long-lived res
nance. It is natural then to investigate the time delay for
collision. Smith14 introduced the collision lifetime orQ
matrix,

Q[ i\S
]S†

]E
, ~28!

which encapsulates such information. The right-hand s
~rhs! of Eq. ~28! involves the ‘‘open-open’’ upper left block
of S so that Q is also ann3n energy-dependent matrix
having dimensions of time. IfvW is a vector whose entries ar
the coefficients of the incoming wave in each channel th

vW t rQ(E)vW is the average delay time experienced by such
incoming wave. Because physically the particle is incide
on only one channel,vW consists of all 0’s except for a 1 in the
eth slot so that the relevant quantity is just the matrix e
mentQee(E). Smith shows that this delay time is the surpl
probability of being in a neighborhood of the target~mea-
sured relative to the probability if no target were prese!
divided by the flux arriving in channele. This matches our
intuition that when the delay time is long, there is a high
probability that the particle will be found near the target.

Now as a Hermitian matrix,Q(E), can be resolved into
its eigenstatesvW (1)

•••vW (n) with eigenvaluesq1•••qn . The
components ofvW (1) are the incoming coefficients of a quas
bound state with lifetimeq1 and so on. Then

vW t rQ~E!vW 5(
j 51

n

qj uvW ( j )
•vW u2. ~29!

As can be seen from this expression, the average time d
results, in general, from the excitation of multiple quasistu
states each with its lifetimeqj and probability of formation
uvW ( j )

•vW u2. However, we will find that using our resonant a
proximation to theS matrix near a resonant energyEl

(r ) the
time delay will consist of only one term from the sum on t
rhs of Eq.~29!, all the other eigenvalues being identically

Using Eq.~28!,
8-5
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Q~E!5 i\S (
l8

2 iAl8

@E2El8
(r )

2 iGl8/2#2

2( ll8

AlAl8

@E2El
(r )1 iGl /2#@E2El8

(r )
2 iGl8/2#2D

~30!

which using Eq.~25! simplifies to

5(
l

\

~E2El
(r )!21~Gl/2!2

Al , ~31!

a remarkably simple answer. We needQee(E), wheree is the
entrance channel,

Qee~E!5(
l

\Gle

~E2El
(r )!21~Gl/2!2

~32!

5(
l

S \Gl

~E2El
(r )!21~Gl/2!2

3
Gle

Gl
D ,

~33!

where the second equation has the interpretation~for each
term! as the lifetime of the mode, multiplied by the probab
ity of its formation. Note how for each resonanceEl

(r ) there
is only one term corresponding to the decomposition of
~29!. The actual measured lifetime is the average ofQee(E)
averaged over the energy spectrumug(E)u2 of the collision
process.

A. Energy averaging over spectrum

With the target in stateVe(u) wherec5e is the entrance
channel, the energy of the target is fixed, and the tim
dependent solution will look like

c~x,u,t !5E dEFg~E!(
c51

` S e2 ikc(E)x

Ake~E!
dce

2
eikc(E)x

Akc~E!
S~E!ceD Vc~u!G . ~34!

Recall,E is the total energy of the system. We are interes
in the threshold situation where the incident kinetic energy
the incoming particlee→0. This can be arranged ifg(E) is
peaked atE0 with a spreadDE such that~i! E0 is barely
aboveEe

targetand~ii ! DE5de is some small fraction ofe, the
mean energy of the incoming particle. The second condi
ensures that we may speak unambiguously of the incom
particle’s mean energy. So,

^Qee~E!&[E dEug~E!u2Qee~E! ~35!

.
1

DEE dEQee~E!; ~36!
08541
.

-

d
f

n
g

^& denotes the average over theDE interval. NowQee(E) is
just a sum of Lorentzians centered at theEl

(r )’s with width
Gl and Eq.~36! is just a measure of their mean value ov
the DE interval.

So long as theDE interval around which we are averag
ing is broad enough to straddle many of these Lorentzia
the mean height is just

1

DE
3r~E!DE3

\pGle

Gl
, ~37!

where the third factor is the area under the ‘‘lth’’ Lorentzian.
This is true regardless of whether or not they are overl
ping. It will be convenient to writeGl as

Gl5n32k̄lvar~gl!, ~38!

where var(gl) is the variance of the set ofglc’s over then

open channels andk̄l is a mean or effective wave numberkc
over the open channels, which for a particular realizationl
we take to be defined by Eq.~38! itself. Let ^& denote the
average over the occurrences of the quantity in theDE in-
terval.G[^Gl&, k̄[^k̄l&. Then Eq.~37! simplifies to

^Qee~E!&.\
1

D

ke^gle
2 &

nk̄^var~gl!&
~39!

.
\

G

ke

k̄
~40!

which tends to 0 aske;Ae. The form of Eq.~40! and all the
steps leading up to it remain valid whether the Lorentzia
are overlapping or not, as long as theDE5De interval
which we are averaging over includes many of them.

B. On an isolated resonance

If the target is cold enough that the resonances are
lated, then as the incident particle’s energye→0, adhering to
the conditionDe,e will eventually result inDe becoming
narrower than the resonance widths. It becomes possible
for De to be centered right around a single isolated re
nance atEl

(r ) . In this case^Qee(E)& is found simply by
putting E5El

(r ) , because the spectrumug(E)u2 is well ap-
proximated byd(E2El

(r )). So

^Qee~E!&5
\Gle

Gl
2

5
\

Gl

Gle

Gl
5

\

Gl

ke

nk̄
. ~41!

Even in this case there is theAe behavior ase→0 and there
is no sticking.

In the extreme case that there are no other open chan
at all (n51), ^Qee(E)&.\Gle /Gl

25\/Gle becauseGl

5Gle . In fact, e51, and ^Qee(E)& diverges, implying in
this case that it is possible to have the particle stick. This
an exception to all the cases above but is experimentally
so relevant because we may always expect to find some
thermic channels open for a target with many degrees
freedom.
8-6
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VII. INELASTIC CROSS SECTIONS AND STICKING

Another physically motivated measure of the sticki
probability may be obtained by studying the total inelas
cross section of the collision. The idea is that any long-liv
‘‘sticking’’ is overwhelmingly likely to result in an inelastic
collision process; i.e., that the scattering particle will leave
a different channel than it entered with. Using the origin
Wigner approach it is possible to show that for our ca
where we have only one scattering degree of freedom,
inelastic probability for an exothermic and endothermic c
lision vanishes likeke . The only possible exception to this
a measure zero chance of a resonance exactly at the thre
energyEe

target. In the event that there is a resonanceEl
(r )

close to but above this threshold energy, it is only necess
thatE is belowEl

(r ) ~by an energy of at leastDE, the spread
in energy! in order to observe the usual Wigner thresho
behavior:

Pinelastic→0 like ke}Ae, ~42!

for the inelastic probability. However, our problem is u
usual in the sense that because of the large number o
grees of freedom of the target, we will always find res
nances betweenEe

target and E no matter how smallE
2Ee

target5e is. Thus the Wigner regime is not accessib
Still the surprise is that a simple computation reveals that
same behavior holds for largen:

Pinelastic~E!5(
cÞe

Pc←e~E! ~43!

5(
cÞe

uSce~E!u2 ~44!

5(
cÞe

(
l

(
l8

Glc
1/2Gle

1/2

E2El
(r )2 iGl/2

Gl8c
1/2Gl8e

1/2

E2El
(r )1 iGl/2

~45!

⇒Pinelastic~E!5(
l

Gl

~E2El
(r )!21~Gl/2!2

Gle ,

~46!

where we used the random sign property of theGlc
1/2’s and the

understanding that(cÞeGlc.(all cGlc5Gl . Since the sum
(cÞe is over then@1 open channels, omission of a sing
term can hardly matter. Apart from the factor\/Gl , the rhs
of the above equation is identical to the expression
Qee(E) in Eq. ~33!. AveragingPinelastic(E) over many reso-
nancesEl

(r ) ~overlapping or not! we may use the same alge
braic simplifications as before to show

^Pinelastic&5
ke

k̄
. ~47!

As ke tends to 0, this gives theAe Wigner behavior showing
that there is no sticking.

The above argument fails when there is only one op
channel. There are no inelastic channels to speak of. In
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case, if the energyE coincides with a resonant energyEl
(r )

we will have the exceptional case of sticking, as discusse
the end of the previous section. But as pointed out there,
is primarily of theoretical interest only.

VIII. CHANNEL DECOHERENCE

The only case for which the particle sticks is seen to
the case when we are sitting right on top of a resonance w
the incoming energy so well resolved that we are comple
within the resonance width,and there are no exothermic
channels open. Having no such channels open amounts
infintesimally low energy for a large target. Otherwise, t
sticking probability tends to 0 asAe in every case.

A. Time-dependent picture

From the time-independent point of view, the physic
reason for the absence of low-energy sticking is containe
the factorGle /Gl of Eq. ~33!. This is the formation prob-
ability for the compound state. We will explain physical
why it is small forn@1. The resonance state is a many-bo
entangled state. If we imagine the decay of this compou
state~already prepared by some other means, say! each open
channel carries away some fraction of the outgoing flux, w
no preference for any one particular channel. Running
whole process in reverse it becomes evident that the o
mum way toform the compound state is to have each cha
nel carry an incoming flux with exactly the right amplitud
and phase. This, however, corresponds to an entangled in
state. With all the incoming flux instead constrained to be
only one channel it becomes clear that we are not exci
the resonance in the optimal way and the buildup of am
tude inside is not so large; i.e., the compound state ha
small probability of forming.

The time-dependent view is even more revealing. Imag
a wave-packet incident on the system. For a single op
channel Feshbach resonance, the buildup of amplitude in
interior region can be decomposed as follows. As the lead
edge of the wave packet approaches the region of attrac
most is turned away due to the quantum reflection phen
ena.~It is a useful model to think of the quantum reflectio
as due to a barrier located some distance away from
interaction region.! The wave function in the interaction re
gion constructively interferes with new amplitude enteri
the region. At the same time, the amplitude leaving the
gion is out of phase with the reflected wave, canceling it a
assisting more amplitude to enter. The result is a la
buildup of probability in spite of the effective barrier; i.e.,
resonance.

Now suppose many channels are open. All the flux en
ing the interior must of course return, but it does so fra
mented into all the other open channels. Only the fract
that makes it back into the entrance channel has the op
tunity to interfere~constructively! with the rest of the enter-
ing wave packet. The constructive interference is no lon
efficient and is in fact almost negligible forn@1, thereby
ruining the delicate process that was responsible for
buildup of the wave function inside. The orthogonality of th
8-7
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other channels prevents interference in the scattering dim
sion. If we trace over the target coordinates, leaving only
scattering coordinate, most of the coherence and the
structive interference is lost, and no resonant buildup occ
Therefore one way to understand the nonsticking is to
that decoherence is to blame.

B. Fabry-Perot and measurement analogy

Suppose we have a resonant quantum-mechanical Fa
Perot cavity, where the particle has a high probability
being found in between the two reflecting barriers. Now, d
ing the time it takes for the probability to build up in th
interior, suppose we continually measure the position of
particle inside. In doing so we decohere the wave funct
and in fact never find it there at all. Alternatively, imagin
simply tilting one barrier~mirror! to make it nonparallel to
the first and redirecting the flux into an orthogonal directio
again spoiling the resonance. Measurement entangles o
~orthogonal! degrees of freedom with the one of intere
resulting in flux being effectively redirected into orthogon
states. Thus the states of the target~if potentially excitable!
are in effect continually monitoring~measuring! to see if the
incoming particle has made it in inside, ironically then pr
venting it from ever doing so. The buildup process of co
structive interference in the interaction region, described
the preceding paragraph, is slower than linear int. Therefore
the constant measurement of the particle’s presence~and re-
sultant prevention of sticking! is an example of the Zeno
‘‘paradox’’ in measurement theory.

All this does not tell us much about how sticking turns
as the incident translational energy is raised. Moreover,
dicting the sticking probabilities quantitatively require
knowledge of the long-range form of the potential. This
the subject of the following sections of our paper, where
WKB analysis proves very useful. Quantum reflection is
physical phenomenon linked directly to the failure of t
WKB approximation.

IX. QUANTUM REFLECTION AND WKB

Let us consider the typical case of an attractive poten
arising out of the cumulative effect of van der Waals attr
tions between target and incident atoms. A classical a
would proceed straight into the interaction region show
no sign of reflection, but the quantum-mechanical probabi
of being found inside is suppressed by a factor ofk ~as k
→0) as compared to the classical probability~see Secs. III
and XIII!, wherek is the wave vector of the incoming atom
~Since we are dealing with one body wave functions, fro
here on we will suppress the subscript ‘‘e’’ on the wave
numberk.! This is tantamount to saying that quantum m
chanically the amplitude is reflected back without penet
ing the interaction region, analogous to the elementary c
of reflection from the edge of a step-down potential in o
dimension while attempting to go over the edge. A use
way to view this is to attribute the reflection to the failure
the WKB approximation.

To be specific, we keep the geometry of Sec. II in min
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For a low incoming energye[\2k2/2m, a left-moving
WKB solution begun well inside the interaction region w
fail to match onto a purely left-going WKB solution as w
integrate out to large distances because the WKB criterio

ul8~x!u5U\p8

p2 U!1 ~48!

for the local accuracy of the wave function will in gener
fail to be valid in some intermediate region. For bound
potentials that turn on abruptly, for example atx5a, it is
obvious that WKB will fail nearx;a. For long-range po-
tentials such as a power lawV(x)52cn /xn it is not imme-
diately obvious where this region of WKB failure lies, if
exists at all. It turns out that even in this case it is possible
identify ~for small enoughe) a distance~dependent one) at
which the potential ‘‘turns on’’ and where WKB will fail. We
will show below that WKB is at its worst@ ul8(x)u is maxi-
mized# at a distancex where the kinetic and potential ene
gies are approximately equal, i.e., whereuV(x)u;e. The dis-
tance away from the slab at which the particle is turn
around—or quantum reflected—is precisely this distan
Furthermore, one may heuristically expect that the grea
the failure of WKB, the greater the reflection.

Figure 3 shows a plot of the error term in Eq.~48! for
three different values of the incoming energy of neon on
semi-infinite slab of SiN. The essential points to notice a

~i! There is a greater error incurred in attempting to ap
the WKB ~classical mechanics! approximation to colder at-
oms than to warmer ones. Consequently, we expect tha
slower the atom, the more nonclassical its behavior. In p
ticular, slow enough atoms will be ‘‘quantum reflected’’ an
will not stick.

~ii ! As the incoming velocity is decreased the atom
reflected at distances progressively further and further a

FIG. 3. The WKB error of Eq.~48! for three different values of
the incoming energy 200, 2, and 0.02 nK, vs the distancex nm from
the slab~SiN!. The long-range form of the potential2c3 /x3 (c3

5220 meV Å3) is also shown for which the negative ‘‘y axis’’ is
calibrated in the different units of energy. The sticking probabilit
for the three cases are approximately 1, 0.6, 0.1.
8-8
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from the slab. This is because the interval inx around which
the WKB error is large, may be identified as the region fro
which the atom is reflected.

A useful qualitative rule of thumb obtained in Sec.
below is that the region of WKB error reaches all the w
out to those regions where the potential energy is s
roughly the same order of magnitude as the incoming ene
@Eq. ~52!#. This means that ase→0 the error is still large
where the potential energy graph looks essentially flat.
fact ase→0 it is easily shown that a plot of the WKB erro
will show a nonuniform convergence to a polynomial pr
portional to

xn/221 for all n.0 ~49!

Figure 3 shows the case forn53.

X. WKB FAILURE

Differentiating p2/2m1V(x)5e with respect tox, we
have

p85
2mV8

p
~50!

which when used repeatedly to eliminatep8 shows that
up8/p2u in Eq. ~48! is maximized when

p2

3m
5

V82

V9
. ~51!

For V(x)52cn /xn, this is exactly when

uV~x!u5eS 2~n11!

n22 D . ~52!

We discover that forn.2 only, we have a point where WKB
is at its worst at a distancex whereuV(x)u;e, and moreover,
that this maximum behaves like

maxUp8

p2U; 1

cn
1/ne1/221/n

;
1

cn
1/nk122/n

~53!

which for n.2 diverges ask→0. Note how aweakerpo-
tential ~smaller cn) is better at reflecting a particle at the
same energy, but allows the atom to approach closer. He
tically a sketch ofV(x)52cn /xn reveals why: the weake
potential is seen to turn on more abruptly at a point close
x50, promoting an greater breakdown of WKB there. Alte
natively a simple scaling argument with Schrodinger’s eq
tion reveals the same trend.

The above conclusions are valid only forn.2. For n
<2 the error term of Eq.~48! looks qualitatively different
from that in Fig. 3. It is small at all distances except neax
50 where it diverges to infinity, as is evident from Eq.~49!.
If the physical parameters are such that this region wh
WKB fails very close to the slab is never actually manifest
the long-range part of the potential then the ‘‘no-reflectio
classical behavior will be valid all the way up to distanc
near the slab where the atom will begin to feel the sho
08541
ll
y

n

is-

o

-

re

’

t-

range forces and lose energy to the internal degrees of f
dom. For such a case then withn,2 we believe one willnot
observe quantum reflection.

XI. STICKING PROBABILITY

Having established that the reflection is caused by a w
defined localized region, we solve the one-dimensio
Schrodinger equation around this region to accurately co
pute the reflection probability. For an attractive power-la
potential V(x)52cn /xn, the relevant one-dimensiona
equation is

S d2

dx2 1
an

n22

xn
1k2D fe~x!50. ~54!

fe(x) is the entrance channel wave function. The leng
scale

an[~2mcn /\2!1/(n22), ~55!

contains all the qualitative information about the reflectio
Its relevance is twofold. First, the sticking probability fo
small k, behaves as

Psticking;Nnkan , ~56!

whereNn is a pure numeric constant~roughly of order 10 for
n53, and of order 1 forn54,5), see Ref. 20.Psticking may
be computed numerically for anyk, and Fig. 4 showsPsticking
vs kan for n53,4, and 5. Second, the distance at which
particle is turned around is estimated by solving

S an

x D n

5~kan!2 ~57!

for x, which is just the requirement thatuV(x)u5e. Equation
~56! together with Eq.~55! makes plain that a smallercn is
more conducive to making quantum reflection happen, wh

FIG. 4. Sticking probabilities for an atom incident on surfa
providing a long-range interaction of the formV(x)52cn /xn for
the casesn53, 4, 5. Note that the length scalean used to compute
the dimensionlesskan coordinate on the ‘‘x axis’’ vs which we plot
the sticking probabilities is different for eachn.
8-9
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Eq. ~57! indicates that the turnaround point is then neces
ily closer to the surface. With these effects in mind, we lo
at some specific cases.

XII. EXAMPLES

We examine the case of incidence on a slab which may
treated as semi-infinite, and also the case when it is a
film. It is useful to first look at these cases pretending ther
no Casimir interaction, and assuming that the short-ra
form of the potential is everywhere valid. Afterwards we p
in the Casimir interaction. For clarity we will pick a specifi
example of target and incident atoms for most of our disc
sions, by specifying the numeric values for the short-ran
potential between the atom and semi-infinite slab, since th
are most comprehensively tabulated in Ref. 18.

Figure 5 shows the sticking probability vs the temperat
of an incoming Ne atom in units of 1029 K. The slab is
silicon-nitride~SiN!. The various curves are for the differe
cases depending on whether we are considering a thic
thin slab, and whether the Casimir effect is included or n
We will discuss these cases below, pointing out the relev
length and energy scales involved in deciding to label
slab as semi-infinite or thin. The mapping from the ma
ematically naturalkan ~with n53 andc35220 meV Å3)
scale of Fig. 4 to the more physical temperature scale of
5 is made using

T.@69.08 K# S mH

matom
D 3S meV Å3

c3
D 2

~ka3!2, ~58!

where we used̂e&5(3/2)kBT to compute the temperatur
by setting^e& equal to the incoming energy.mH5 mass of
hydrogen atom and for our examplemNe520.03 mH .

All the graphs in Fig. 5 have an initial slope of 0.5 ind
cating theAe behavior of the sticking probabilities once th
energies are low enough to be in the quantum reflection
gime. A particular temperature at which there is a transit
to the post-threshold sticking regime, we arbitrarily~but in-
tuitively! define as the temperature where the slope beco
0.4. For the thin-film case of 10 nm in our example th
temperature is 10 nK.

FIG. 5. Sticking probabilities vs temperature of incident Ne
oms on SiN. The broken line indicates the inclusion of the v
long-range Casimir forces~see text!. The large dot demarcates th
regions of threshold and postthreshold, using the criterion sugge
at the end of Sec. XII.
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While the parameters in our example are fairly typical,
is clear that the cubic dependence on mass and quad
dependence on thec3 coefficient in Eq.~58! will make this
temperature range over quite a few orders of magnitude.
c3’s in Ref. 18, listed in units of meV Å3 for a variety of
surface atom pairs, range in values from 100 to 3000.

A. Semi-infinite slab „without Casimir …

Even thoughc3 coefficients are known both theoretical
and experimentally for many surface-atom pairs, for co
pleteness we take a moment to look at a quick way of e
mating them. This is provided by the London formula

Vatom-atom~r !5
23

2

I AI B

I A1I B

aAaB

r 6 [
2c6

r 6 , ~59!

which estimates the van der Waals interaction between
two atoms.I is the ionization potential anda the polarizabil-
ity of each atom. Then summing over all the atoms in t
semi-infinite slab~thick! we get

Vslab-atom~x!5
2pc6ratoms

6
3

1

x3[
2c3

x3 , ~60!

whereratoms5 the density of slab atoms. These estimates
not very accurate, but correctly indicate the physical qua
ties on which the answer depends. As mentioned, Ref.
provides a useful compendium of these coefficients. We h
usedc3522064 meV Å3 for neon atoms incident on sili
con nitride from work of Ref. 19. This choice ofc3 makes

a3.212 nm. ~61!

Thus the ‘‘semi-infinite slab’’ curve of Fig. 5 is then53
curve of Fig. 4 scaled to temperature units using Eq.~58!.

B. Thin slab „without Casimir …

From far enough away any slab will appear thin. T
surface-atom interaction will behave like

2c3

x3 2
2c3

~x1d!3 .
23dc3

x4 ~62!

for x@d, whered is the thickness of the slab. The resultin
c4 coefficient equal to 3dc3 gives ana4 coefficient that can
be written as

a45A2m

\2 3dc35a3F3d

a3
G (1/2)

. ~63!

For macroscopic values ofd(@a3) then, it is only for van-
ishingly small incident energies that the finiteness of the s
becomes apparent. For any macroscopicd this will be physi-
cally irrelevant. For microscopicd(!a3), however, this
window in energy over which the thinness of the slab ma
an appreciable difference can be larger and even prevai
all energies. To continue our illustrative example we pick t
microscopic value of d510 nm. This makes a4
.800 nm. The ‘‘thin slab’’ curve of Fig. 5 shows that th

-
y

ed
8-10



s

be

ed
n-

rs

at
e
A
io
ef

of

t
e
e

-

rm
a
ce
t

th
ilit
is
in
se

e
s
nl
rg
nt
or
hi
re

ich
r a
is-

ce

ing
the

(
s

c-

e of

s in
6.1
n
ere
K.
i-

o
ady

ir
r is

m
ver

ting

the
ust
ve-
on-
ange
ent

up-
po-

NO-STICKING EFFECT AND QUANTUM REFLECTION . . . PHYSICAL REVIEW B64 085418
sticking probabilities are substantially reduced and the on
of quantum reflection occurs at a much higher energy.

As a benchmark case, we also include what will likely
the physically limiting case for a continuous film ofd51
nm. This further reduces the sticking probabilities for a fix
temperature by a factor ofA10, because the important qua
tity a4 is reduced by this much@Eq. ~63!#. The transition
temperature appears to have increased by three orde
magnitude versus the semi-infinite case.

C. Semi-infinite slab „Casimir regime…

As the incoming energye tends to 0, we have seen th
the turnaround region from which the atom ‘‘quantum r
flects’’ moves progressively further away from the slab.
large distances, however, it is well known that the interact
potential itself takes on a different form due to Casimir
fects. In particular, a semi-infinite dielectric slab~dielectric
constantes) has an interaction potential with an atom
polarizability a given by

Vslab-atom~x!5
23

8p

\ca

x4

es21

es137/23
x→` ~64!

5
2235~eV2Å !a

x4

es21

es137/23
x→`

~65!

Even for sufficiently largex, the form above is not exact bu
a good approximation found in Ref. 21. Our purpose her
only to estimate the various numbers to see their relevanc
will suffice to putaNe50.39Å3 and the last factor involving
es is replaced by 1 since most solids and liquids havees

substantially greater than 1. This gives ac4
(C) coefficient of

93104 meV Å4 and hence a resultinga4
(C)593 nm. The

superscript ‘‘C’’ reminds us it is due to the Casimir interac
tion which is valid only for large enoughx.

To estimate the distance beyond which the Casimir fo
itself is valid, we use the statement from Ref. 22: ‘‘Within
factor of 2, the van der Waals potential is correct at distan
less than 0.12l tr , while the Casimir potential is correct a
distances at longer range.’’l tr5(1240 nm)/(DE/eV) here
is the wavelength associated with the transition between
ground and excited state that gives the atom its polarizab
DE is the transition energy measured in eV. Knowing th
much we may deduce the qualitative features of the stick
probability curve the arguments being similar to the ca
above.

For this Casimir case and the one below, however, ther
a caveat. The exact manner in which the potential change
near range form to its long-range Casimir form can certai
affect the sticking probabilities at the intermediate ene
where it makes this transition. Some numerical experime
tion choosing arbitrary forms of the potential having the c
rect short-range and long-range behavior confirms t
Therefore the curves in Fig. 5 involving Casimir forces a
only quantitatively andnot qualitatively correct.
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D. Thin slab „Casimir regime…

Even for a thin slab we expect that the distance at wh
the Casimir interaction is valid remains the same as fo
semi-infinite slab made of the same material. At these d
tances ifx@d is also valid, then one may expect the surfa
atom interaction to behave like

2c4
(C)

x4
2

2c4
(C)

~x1d!4
.

24dc4
(C)

x5
. ~66!

The length scale

a5
(C)5a4

(C)F 4d

a4
(C)G 1/3

~67!

associated with thisc554dc4
(C) coefficient makesa5

(C)

5717 nm. Figure 5 shows a slight decrease in the stick
probabilities, the effect being evidently less here than in
case of the thick slab.

E. Hydrogen on ‘‘thick’’ helium

Rather atypical, but extremely favorable parametersc3
518 meV Å3) are found in the case of hydrogen atom
incident on bulk liquid helium. Evidence for quantum refle
tion was experimentally seen in this system.23 The following
is a comparison with the parameters used in our exampl
Ne on SiN:

mNe/mH520.03 andc3
(Ne-SiN)/c3

( H-He)5220/18. ~68!

Using these along with Eq.~58!, we see that the sticking
probabilities for this case are in fact the same curves a
Fig. 5 except shifted to the right in temperature by about
orders of magnitude. This puts it exactly in the milli-Kelvi
regime where sticking probabilities of about 0.01–0.03 w
observed as temperatures ranged from about 0.3 to 5 m23

However, the sticking probabilities predicted by the ‘‘sem
infinite slab(C)’’ curve of Fig. 5 are about a factor of 2.5 to
large, but we feel there is good reason for this. We alre
mentioned the qualitative manner in which the Casim
forces were included but it seems that a greater erro
caused for another reason. The length scalea3517 nm for
H-He is so small that the WKB error is close in~see Fig. 3!
where the interaction potential is not exactly of the for
;1/x3. Practically speaking this means that the region o
which we must integrate Eq.~54! must include points close
to the slab to get some convergence and thus we are viola
the assumption that the potential is;1/x3 there. This prob-
lem would not plague the Ne-SiN case too much, because
length scale there is substantially bigger. For H-He we m
include some short-range information to get an impro
ment. Still it is the long-range forces that are mostly resp
sible. Reference 24 and others have modeled this close r
behavior and obtained better agreement; the improvem
coming from explicit consideration of the bound states s
ported by the close range potential. These appear in the
tential matrix elements of perturbation theory.
8-11
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XIII. RELATION TO THRESHOLD BEHAVIOR

We now wish to take a broader view of the quantum
flection behavior at threshold (k→0), and the sticking tha
sets in as the energy is increased—a postthreshold beha
In particular we want to make connection to, and extend
well-known threshold behaviors of inelastic rates which w
first stated most generally by Wigner in Ref. 25. For e
ample, Wigner showed that the exothermic excitation ra
for collisions between two bodies with bound internal d
grees of freedom tend to a constant value as their rela
translational energy tends to 0, provided there is no re
nance at the 0 translational energy threshold. Equivalen
the exothermic inelastic cross section diverges as 1/v, a fact
known in the still older literature as the ‘‘1/v law.’’ v is the
relative velocity of the collision. Notice especially the pr
viso in the statement above, that there be no resonance a
threshold energy; suggesting that the many resonances
tween 0 ande provided by a many-body target could ma
the law inoperative. But the first part of this paper esta
lished quite generally that in this many-resonance regime
1/v law is reinstated.

Here we re-examine the Wigner behavior from a differe
point of view using our understanding of quantum reflectio
In addition to furthering an intuitive understanding of th
Wigner behavior, viewing things in this way will lead natu
rally to predicting a generic postthreshold behavior~e.g., the
1/v law is replaced by a 1/v2 law! and an understanding o
when the sticking sets back in ase is increased.

We shift our attention to a three-dimensional geometry
incidence on a localized cluster instead of the o
dimensional case of incidence on a slab. So long as the ta
dimensions are dwarfed by the incidence wavelength we
find that both problems are effectively one dimensional
cause it is only thes wave which can penetrate the intera
tion region. For clarity we will deal with both cases sep
rately.

Threshold and postthreshold inelastic cross sections

The starting point is the template provided by the Gold
Rule,

dse→c}
1

k
r~Ec!U E

all rW
d3rfc,kWc

(2)
~rW !Uce~rW !fe,kW

(1)
~rW !U2

~69!

for the differential cross section for inelastic transitions fro
internal stateVe(u) to Vc(u) wherekW andkW c are the incom-
ing and outgoing directions of the incident atom. We d
scribe briefly how Eq.~69! is arrived at.

For each internal stateVc(u) (c51,2, . . .n) that we may
imagine freezing the target in (u incorporates all the targe
degrees of freedom!, there is some effective potential felt b
the incoming atom. These potentials are just the diago
elements of the complete interaction potentialU(x,u) in the
Vc(u) basis, which if present all by themselves~off-diagonal
elements 0! could only cause an elastic-collision to occur.
is the off-diagonal elements that may be thought of as ca
ing the inelastic transitions. Treating them as a perturba
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on the elastic-scattering wave functions we use the Gol
Rule to obtain Eq.~69!. r(E) is the energy density of state
of the free atom.fe,kW

(1)(rW) is the entrance channel wave fun

tion andfc,kWc

(2) (rW) is the final channel wave function. They a

both exact elastic-scattering wave functions in the potent
Uee(rW) and Ucc(rW), respectively. The factor of 1/k divides
the Golden Rule rate by the flux to get the probability.

Now all the k dependence ofdse→c and hencese→c is
due to~i! the factor 1/k, and~ii ! the sensitivek dependence
of the amplitude of the entrance channel wave function
side the interaction region over which the overlap integra
Eq. ~69! takes place. This is simply because the incom
amplitude is more reflected away by the potential ask→0
resulting in the interior amplitude being suppressed by a f
tor of k as compared to what one would expect classical

1. Incidence on a slab

For this one-dimensional situation we speak of an inel
tic probability instead of a cross section, but otherwise E
~69! remains entirely valid here also with the obvious mo
fications.

For k→0, when WKB is invalid, we established quit
generally that the entrance channel wave functionfe(x)
when normalized to have a fixed incoming flux, had its a
plitude inside the interaction region behaving like

fe~xinside!;k threshold. ~70!

Now the change from quantum reflection at threshold
sticking at postthreshold~see Fig. 4! begins to a occur a
those energies at which the WKB wave functions—whi
show no quantum reflection—may be increasingly trust
At these energies where WKB is valid we may simply u
the well-known WKB amplitude factor 1/Ak(x), to conclude
that

fe~xinside!;Ak postthreshold. ~71!

The probability density of being found inside then behav
like k2 at threshold~quantum reflection! and like k at post-
threshold~no quantum reflection!, respectively.

The probability density inside the interaction region
smaller compared to the outside by a factor ofk, even when
there is no quantum reflection; this is simply a kinemati
effect. Classically what is unexpected is that for sm
enoughk near threshold, the probabilities inside arefurther
suppressed by a factor ofk. Quantum reflection of the am
plitude from the region arounduV(x)u5e ~Sec. IX!, goes
hand in hand with the quantum suppression of the amplit
within this region. So finally including thisk dependence of
the amplitude offe(x) found in Eqs.~70! and ~71! we get

Pe→c}k threshold,

Pe→c}const postthreshold. ~72!
8-12



th
fo
e
it

ia
ux
d
s-
s’
e-

st

he
e
os
s

um
g

th
te

er
l
er
n

ic

in
er

ce
-

Fe
c
ge
n-

t
th
an
p

, as

nc-
e-

by
m.

lly

en
in
the

ra-

-
rted
the
at
va-
E-
ci-
27.

n,
is

ight

iza-

te-
n

of

in-
e-

NO-STICKING EFFECT AND QUANTUM REFLECTION . . . PHYSICAL REVIEW B64 085418
2. Incidence on a cluster

Since for large wavelengths only thes wave interacts with
the cluster it is clear that the problem may be reduced in
usual manner to a one-dimensional problem again. There
for a unit s-wave fluxthe inelastic probabilities will behav
as before as in Eqs.~72!, but what is really relevant is a un
plane-waveflux which provides as-wave flux of p/k2. i.e.
Even though the problem is one-dimensional in the rad
co-ordinate, the required normalization for the incoming fl
is not fixed to be a constant as before, but is now require
grow as;1/k2, in order to correctly account for the increa
ing ~ask→0) range of impact parameters that all ‘‘count a
s wave. Thus we have simply to multiply the on
dimensional probabilities of Eqs.~72! by this factor of 1/k2,
and conclude that the inelastic cross sections for this clu
geometry behave like

se→c}
1

k
threshold,

se→c}
1

k2 postthreshold. ~73!

The threshold result of Eq.~73! is just the Wigner 1/v law we
spoke of in Sec. XIII. But now we can say more. As t
incoming wavelengthl increases, we first witness for larg
enoughl a quadratic dependence to the exothermic cr
section (s}l2). It is only at still larger wavelengths that thi
dependence eventually changes over to a linear ones
}l). This happens when the sticking yields to the quant
reflection. This energy is mostly determined by the lon
range form of the potential, and has nothing to do with
bound-state energies or any other details involving the in
action potential.

XIV. CONCLUSION

We have presented a general approach to the low-en
sticking problem, in the form ofR-matrix theory. Severa
supporting arguments for the nonsticking conclusion w
given. Perhaps most valuable is the physical decohere
picture associated with the conclusion that there is no st
ing in the zero translational energy limit.

Reviewing the observations leading up to the nonstick
conclusion, we start with the near 100% sticking in the z
translational energy limit classically~sticking probability 1!.
We then invoke the phenomenon of quantum reflection~Fig.
1!, which keeps the incident particle far from the surfa
~sticking probability 0!. Third, we note that quantum reflec
tion can be overcome by resonances~Fig. 2!, and since reso-
nances are ubiquitous in a many body target, being the
hbach states by which a particle could stick to the surfa
perhaps sticking approaches 1 after all. Fourth, we sug
that decoherence~from the perspective of the incoming cha
nel, with elastic scattering defined as coherent! ruins the
resonance effect, reinstating the quantum reflection as
determining effect. Finally, then, there is no sticking, and
short answer as to why is: quantum reflection and m
channel decoherence. The ultrashort explanation is sim
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quantum reflection, but this is dangerous and nonrigorous
we have tried to show.

Having thus shown that the entrance channel wave fu
tion is largely unaffected by all the internal degrees of fre
dom we were able to predict sticking probabilities solely
consideration of the long-range forces acting on the ato
WKB proved to be a valuable tool in this context, especia
since it nicely contrasts the classical behavior~of sticking!
with quantum reflection. The old Wigner threshold law wh
viewed in this light naturally led to the discovery of certa
definite postthreshold laws which are obeyed as soon as
classical behavior becomes valid at slightly higher tempe
tures.
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APPENDIX A: QUANTUM SUPPRESSION

Proposition: Aske→0 the amplitude off(x;kex) in the
internal regionx,a goes to zero aske;Ae.

A little thought aided by a sketch of the wave functio
such as in Fig. 1, will easily convince one of the truth of th
statement. Here we will spell out the argument as one m
naturally think of it.

Suppose we temporarily disregard the required normal
tion of f(x;kx) of Eq. ~5! and fix its initial conditions~slope
and value! at some point inside the interaction regionx,a
such that the regularity condition is ensured. Then we in
grate out tox5a. Let us denote this unnormalized solutio
with a prime, asf8(x;kx). The point is that forkx varying
near 0, bothv ~the value! ands ~the slope! that the solution
emerges with atx5a, are independent ofkx and in fact the
interior solution thus obtained is itself independent ofkx .
This is because the local wave vectork(x)
5A2m@e2U(x)#/\2 essentially stays the same function
x for all e near 0. Therefore forx.a f8(x;kx) continues
onto

v cos@kx~x2a!#1
s

kx
sin@kx~x2a!#, x.a. ~A1!

This is a phase-shifted sine wave of amplitude;1/kx . We
must enforce the normalization of Eq.~5! and therefore get
f(x;kx);kxf8(x;kx) which is the proposition.

APPENDIX B: R MATRIX AND S MATRIX

S is found in analogy to the one-dimensional case by
troducing the matrix version of the inverse logarithmic d
rivative atx5a calledR(E) the WignerR matrix defined by

vW 5R~E!sW, ~B1!
8-13
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where the components ofvW and sW are the expansion coeffi
cients ofc(x5a,u) and]c(x5a,u)/]x, respectively, in the
Vc(u) basis.

1. The R matrix

Supposing]c(x5a,u)/]x to be known, we will~like in
electrostatics! use the Neumann Green’s functio
GN(x,u;x8,u8) to constructc(x,u) everywhere in the inte-
rior x,a. c(x,u) satisfies the full Schro¨dinger equation
with energyE. We needxl(x,u)l51,2, . . . , thenormalized
eigenfunctions of the full Schro¨dinger equation in the inte
rior x,a with energiesEl , satisfying Neumann boundar
conditions]x(x5a,u)/]x50. So

S 2\2

2m
¹21Vint~x,u!2EDc~x,u!50, ~B2!

S 2\2

2m
¹21Vint~x,u!2ElDxl~x,u!50, ~B3!

S 2\2

2m
¹21Vint~x,u!2EDGN~x,u;x8,u8!

5d~x2x8!d~u2u8!, ~B4!

where¹2[]2/]x21]2/]u2 and

]GN~x5a,u;x8,u8!/]x50 and
]x~x5a,u!

]x
50

~B5!

⇒GN~x,u;x8,u8!5 (
l51

`
xl~x,u!xl~x8,u8!

El2E
. ~B6!

GN is symmetric in the primed and unprimed variables.
Stokes’ theorem,

~2\2/2m!E
x8,a

dx8E
all u8

du8~f1¹82f22f2¹82f1!

5~2\2/2m!E
x85a,all u8

du8~f1¹ n̂
8f22f2¹ n̂

8f1!,

~B7!

where ¹ n̂
8(•)[ x̂8(•)•¹8 with f15c(x8,u8) and f2

5GN(x,u;x8,u8) gives

c~x,u!5
\2

2mE
all u8

du8GN~x,u;x8,u8!
]c~x85a,u8!

]x8
,

x,a. ~B8!

Put x5a and it is deduced using Eqs.~B1!, ~B6!, and ~B8!
together that

Rcc8~E!5 (
l51

`
glcglc8
El2E

, ~B9!
08541
whereglc5A \2

2m
*all uduxl(a,u)Vc(u).

2. The S matrix

Now shifting attention to the outside (x.a), we see that
we can compute both¹ n̂c(a,u) andc(a,u) on the surface
x5a using the asymptotic form of Eq.~8! which automati-
cally gives these expanded in theVc(u) basis. Writing the
matrix Eq.~B1! is now simple. It is best to do it all in matrix
notation, and thus be able to treat all possible independ
asymptotic boundary conditions simultaneously.

Let eikx, Ak, and 1/Ak be diagonal matrices with diagona
elementseikcx, Akc, and 1/Akc. Then Eq.~B1! reads

e2 ika

Ak
2

eika

Ak
S5 iRkS 2e2 ika

Ak
2

eika

Ak
SD . ~B10!

Each columnc51, . . . ,n of the matrix equation above i
just Eq.~B1! for the solution corresponding to an incomin
wave only in channelc ~for c.n the wave functions blow up
as x→`). Remembering that nondiagonal matrices do n
commute, we solve forS to get

S5e2 ikaAk
1

12 iRk
~11 iRk!

1

Ak
e2 ika ~B11!

which with some simple matrix manipulation yields Eq.~9!
of Sec. IV. It may be shown that the open-open part of thS
matrix—then3n submatrixScc8 with c,c851,2, . . . ,n—is
unitary.

APPENDIX C: G¶nD

With the large number of degrees of freedom involv
and assuming thorough phase space mixing associated
the resonance we may reasonably describe the compo
state wave function by a classical ensemble of poi
(x,px ,u,pu) in the combined phase space of the joint syst
given by the normalized distribution

1

rC~E!
d@E2H~x,px ,u,pu!#. ~C1!

It is understood in the above that the system is restricte
be in the regionx,a. This makes all accessible states
energyE with x,a equally likely. Then the rate of escap
G/\ through the hypersurfacex5a of the members of this
ensemble is

G

\
5

1

rC~E!
E

x5a
dudpuE

pxP[0,`]
dpx

px

m

3d@E2H~x,px ,u,pu!#. ~C2!

px /m is just the velocity in phase space of a point atx5a in
8-14
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the x̂ direction. At x5a we have supposed no interactio
Hence the Hamiltonian separates in Eq.~C2!. Therefore

G

\
5

1

rC~E!
E dudpuE

0

`

dS px
2

2mD
3dFE2S px

2

2m
1H target~u,pu! D G ~C3!

5
1

rC
E

H target(u,pu),E
dudpu ~C4!
s

t.

-

er

er

08541
5
1

rC
VC.

1

2p\rQ
VQ5

1

2p\
nD. ~C5!

ThereforeG/D.n. rQ (rC) is the quantum~classical! den-
sity of states~phase space volume! of the joint system at
energyE. VQ (VC) is the quantum~classical! total number
of states~total phase space volume! of only the target below
energy E. We have used the correspondence between
classical and quantum density of states. 1/rQ is identified
with D, and the number of states of the target having ene
less thanE is just n, the number of open channels.
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