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Dynamics of the cantilever in noncontact dynamic force microscopy:
The steady-state approximation and beyond
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A detailed analysis of models that have been used for describing the dynamics of the cantilever in large-
amplitude noncontact dynamic force microscopy is presented. For each model, attention is especially paid to
the nonlinear nature of the problem and its implication for experiments. In particular, in the steady-state
approximation where the equations of motion for an externally and self-driven oscillator are rigorously iden-
tical, the theory predicts the existence of unstable solutions whether the interaction force is dissipative or not.
The need to go beyond the steady-state approximation by including the finite-time response of the system to a
change of tip-surface separation or interaction during the scanning is also discussed.
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I. INTRODUCTION

Noncontact dynamic force microscopy~DFM! ~Refs.
1–4! is a powerful tool for investigating various surfaces
an atomic scale. In experiments, the shift of the reson
frequency of the cantilever, which serves as a frequency
termining element, is used for regulating the tip-surfa
separation. It is also possible to obtain additional atom
scale information by simultaneously measuring the damp
of the lever oscillation due to the surface5–10 @these experi-
ments have been performed with phase lock loop~PLL! tech-
niques#. The damping can straightforwardly be interpreted
dissipation if the oscillator behaves linearly. However,
general, the cantilever is operated with large amplitude co
pared to the range of the tip-surface nonlinear potential,
it is yet not clear to what extent the problem remains line
In interpreting surface images, it is therefore important
understand the dynamics of the cantilever before asse
what the apparatus is actually measuring. Most of the a
lytical works on the dynamics of the lever have focused
describing the steady-state solutions of the cantilever eq
tion of motion.11–15 In this approximation, quantities such a
the amplitude, driving frequency, or excitation amplitude a
treated as parameters. Unfortunately, the stability of the
lutions, which is understood,12,14 has only been briefly de
scribed and the implication of unstable solutions for real
periments has not been emphasized enough. Moreo
stability has not been discussed when including dissipa
to the surface. Consequently, the validity of the steady-s
approximation has never been seriously challenged. No
cluded in this approximation is the effect of the time depe
dence of the quantities mentioned above in actual exp
ments and the fact that time-averaged observables, suc
the peak-to-peak oscillation amplitude,16 are involved in the
electronics.

In this paper, we analyze in detail the models that ha
been used for describing the dynamics of the lever. Atten
0163-1829/2001/64~8!/085409~9!/$20.00 64 0854
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is paid to the nonlinear features of the solutions. For
stance, in the steady-state approximation where the equa
of motion for an externally driven and self-driven oscillat
are rigorously identical, the existence of unstable solution
an unavoidable consequence of the nonlinearity of the in
action. This is also true when including the effects of dis
pation to the surface on the lever of the dynamics. The f
ure to systematically observe mechanical instabilities and
reproduce the order of magnitude of the atomic scale co
gation of the damping signal~assuming it results from dissi
pation! based on first-principles theory and the fact th
quantities such as the driving frequency and excitation a
plitude are dynamically determined indicate the need to
beyond the steady-state approximation by including
finite-time response of the system to a change of separa
or interaction.

II. STEADY-STATE APPROXIMATION

A. Weakly nonlinear integrable Hamiltonian

The theoretical description of DFM operated with lar
amplitude was begun with the work of Giessibl.17 The
Hamiltonian is

H5mẋ2/21kx2/21Ui~x1L;X;Y!, ~1!

whereL is the mean tip-surface separation,k the cantilever
effective spring constant, andUi the nonlinear potential.X
andY are the lateral coordinates of the tip. The equation
motion can be written as a set of first-order differential eq
tions referred to as a flow:

S ẏ

ẋ
D 5S 2v0

2x1Fi~x1L !/m

y
D , ~2!

with v0
25(2p f 0)25k/m. The flow is two dimensional and

autonomous~no explicit time dependence!. Because the non
linear potentialuUi u is much smaller thankx2/2, the system
is only weakly nonlinear. One can therefore use first-or
©2001 The American Physical Society09-1
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perturbation theory17 or Fourier analysis for obtaining an ex
pression for the cantilever resonant frequency shift,

D f NIH52
f 0

2
r ~A,L !, ~3!

where r (A,L) is some unitless average of the interacti
force over one oscillation period,

r ~A,L ![
1

kApE0

2p

Fi~Acosu1L !cosu du. ~4!

The dependence of the frequency shift, Eq.~3!, on the oscil-
lation amplitudeA and its order of magnitude agree we
with various experiments~see, e.g., Ref. 8!. Note that within
this model, the atomic-scale damping is not related to
dynamics of the cantilever. Following the work of Giessi
Eq. ~1! has also been used as a starting point by a numbe
authors.18–24

B. Inclusion of an intrinsic dissipative and forcing term

The treatment can easily be extended by including int
sic dissipation and forcing. The equation of motion can ha
many variations depending on the specific model used for
driving term. Here two models are discussed: the so-ca
externally driven oscillator

ẍ1
v0

Q0
ẋ1v0

2x5Fi~x1L !/m1Adv0
2cos~vt ! ~5!

and the self-driven oscillator

mẍ1
v0m

Q0
ẋ1kx5Fi~x1L !1Gkx~ t2t0!. ~6!

Ad , G, t0, andQ0 are the excitation amplitude, gain facto
time delay, and intrinsic quality factor, respectively. Equati
~5! describes PLL electronics. The driving term is exac
sinusoidal because it is the voltage-controlled oscilla
~VCO! output signal.25 Equation~6! describes an experimen
tal setup with an automatic gain control~AGC! where the
time-delayed cantilever signal is used to excite
cantilever.1,16 HereAd andv @Eq. ~5!#, or G ~Ref. 16! andt0
@Eq. ~6!# can be complicated functions of time for describi
real electronics. Within the steady-state approximation, h
ever, they are treated as parameters because one
steady-state solutions of the formx(t)5Acos(vt2f) for Eq.
~5! or x(t)5Acos(vt) for Eq. ~6!. The main difference with
the previous case is that these equations are no longe
tonomous@in Eq. ~6!, x(t2t0) cannot be expressed in term
of x(t)#. Equivalently, Eq.~5! can be written as a three
dimensional autonomous flow,

S ẏ

ẋ

j̇
D 5S 2

v0

Q0
y2v0

2x1Fi~x1L !/m1Adv0
2cos~vj!

y

1

D ,

~7!
08540
e

of

-
e
e
d

r

e

-
eks

au-

and similarly for Eq. ~6!. Here $L,A,f,Ad ,v,X,Y% and
$L,A,t0 ,G,v,X,Y% span a seven-dimensional parame
space for an externally and self-driven oscillator, resp
tively. It is easy to demonstrate that the equation of mot
for an externally driven and self-driven oscillator are rigo
ously identical within this approximation. One simply nee
to insert the ansatz forx(t) into Eq. ~6!, make the change o
variablet2t0→t, and the assignmentsf52p2vt0 ~assum-
ing p<vt0<2p) and G5Ad /A. Physically, these are
equivalent because, for a steady-state, the causality rela
ship has the property that there is no distinction between
lever responding to a periodic external excitation or the le
exciting itself with a time delay. The equivalence of the
models in the steady state approximation has motiva
many authors11–15,26to use the equation of motion of an ex
ternally driven oscillator for successfully studying DFM
Note the striking resemblance between Eq.~5! and the well-
studied Duffing equation27 with a small anharmonic pertur
bation.

The effective potential energyUi(x1L)1kx2/2 is obvi-
ously asymmetric aroundx50. Although this may naively
be thought to imply an anharmonic cantilever motion, this
not the case since, as pointed out above, the magnitude oFi
is much smaller thanukxu.24 In the tapping mode, the canti
lever motion is still sinusoidal for soft enough surfaces ev
though the magnitude of the interaction is usually sign
cantly larger.28–30An explicit evaluation of the importance o
anharmonicity in DFM based on Fourier analysis is p
sented in the Appendix. While Fourier analysis can be u
for obtaining the solutions of the equation of motion, it do
not provide information on their stability. One must ha
recourse to the theory of nonlinear differential equation27

for this purpose. The fixed points, corresponding to
steady-state solutions, can be determined by using the
averaging and perturbation approach or Poincare´ map. The
idea is to reduce the flow, Eq.~7!, to an averaged two-
dimensional autonomous one@the sign off is determined by
the form of the ansatzx5Acos(vt2f)#:

S Ȧ

Aḟ
D 5

1

2v S 2vv0A/Q01Adv0
2sinf

~v22v0
2!A1Adv0

2cosf1Av0
2r ~A,L !

D .

~8!

The fixed points are obtained by fixingȦ and Aḟ to zero.
This leads to the following equations of the steady-state
proximation:

Ad

A
cosf5

v0
22v2

v0
2

2r ~A,L ! ~9!

and

Ad

A
sinf5

1

Q0
. ~10!

Equations~9! and ~10! ~Refs. 12 and 14! define a hypersur-
face H in the seven-dimensional parameter space. In
steady-state approximation, this hypersurface describes
possible solutions of the equation of motion Eq.~5! or Eq.
9-2
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~6!. The local stability of a given fixed point is determined b
linearizing the flow in its vicinity and finding the eigenva
ues. The secular equation is (l represents the eigenvalues!

l21S vv0

Q0
1

Adv0
2sinf

A Dl1$vo
2@12g~A,L !#2v2%

3
Ad

A
v0

2cosf1
vv0

Q0

Ad

A
v0

2sinf

50, ~11!

whereg(A,L), a quantity similar tor (A,L), is defined as

g~A,L ![
1

kpE0

2pdFi~A cosu1L !

dx
cos2u du. ~12!

A steady-state solution is unstable if the condition

S[S 12
v2

v0
2

2g~A,L !D Ad

A
cosf1

1

Q0
2
,0 ~13!

is satisfied~i.e.,l.0), or else it is stable. In the following,S
is referred to as the stability function. Equations~9!, ~10!,
and ~13! provide all the information about the dynamics
the lever in the steady-state approximation for a conserva
force.

A solution of particular interest is the one having a pha
p/2. According to Eqs.~13! and ~9!, it is stable and corre-
sponds to a frequency shift equal toD f NIH .12,14,15Since this
state has the maximum amplitude for a givenAd , it is natu-
rally referred to as the resonant state. Therefore the introd
tion of intrinsic dissipation and driving does not alter t
conclusion thatD f 5D f NIH and the damping is unrelated t
the dynamics of the cantilever.

It should be clearly understood that the hypersurfaceH
defined by Eqs.~9! and~10! is an object whose properties a
independent of the way it is sampled. In order to emphas
this point and demonstrate the relevance of unstable s
tions for real experiments, the hypersurfaceH is projected
onto four constant parameter hypersurfaces:$L,Ad ,X,Y%,
$f,Ad ,X,Y%, $A,f,X,Y%, and $A,L,X,Y%. For the sake of
illustration, the following constants are defined:L*
5103.5 Å , A* 5100 Å , Ad* 5A* /Q0 and Ui(X* ;Y* ) is
assumed to be a Morse potential,

Ui~x;X* ;Y* !5U0H F12expS 22b
x2Rc

Rc
D G J , ~14!

with U052.273 eV, b51.497, andRc52.357 Å .31 The
force Fi is plotted in Fig. 1. The cantilever is characteriz
by k540 N/m, Q05104, and f 05150 kHz.

1. Constant parameter hypersurfacêL * ,Ad* ,X* ,Y* ‰

The intersection of the hypersurfaceH with this constant
parameter hypersurface is shown in Figs. 2~a! and 2~b!. It
corresponds to a phase variation experiment with cons
excitation. The shape of the curves are qualitatively v
similar to that of the Duffing’s problem.27 The curves are
extremely distorted ~multivalued! around the solution
08540
e
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(A* ,p/2). The emergence of such distorted structures is
unavoidable consequence of large-amplitude operation e
when the system is only weakly nonlinear~as is the case
here!. All solutions are stable except those corresponding
the lower part of the needle edge which are indicated by
dotted line. Solutions are unstable when the stability funct
S defined in Eq.~13! is smaller than zero, as shown in Fi
2~c!.

2. Constant parameter hypersurfacêf* ,Ad* ,X* ,Y* ‰

When the phasef* is fixed top/2, all solutions have an
amplitudeA* and are stable becauseS51/Q0

2.0. However,
unstable solutions exist for phasesf* Þ90°. Even for a
small diminution of the phase—for example, whenf*
589.5°—unstable solutions emerge in the near-noncon
region as shown in Figs. 3~a! and 3~b!. In Figs. 3~c! and 3~d!,
the phase is slightly larger than 90°—that i
f* 590.5°—and the situation is reversed; some solutions
the contact region are unstable while all solutions in the n
contact region are stable.

Since DFM experiments are usually conducted with co
stant amplitude, the following constant parameter hypers
faces are more directly of interest.

3. Constant parameter hypersurfacêA* ,f* ,X* ,Y* ‰

This projection corresponds to the normal operation
DFM. Whenf* 590°, all solutions are stable independen
of the separationL, as shown in Figs. 4~a! and 4~b!. The
situation is drastically different for phasesf* Þ90°. For ex-
ample, Figs. 4~c! and 4~d! show that for a phasef* 580°,
no stable solution is possible for some separation in the n
noncontact region. It is not difficult to see that if these u
stable solutions were to be projected onto the constant
rameter hypersurface similar to Fig. 2, they would be on
lower part of the needle edge. For a phasef* 5100° @Fig.
4~e! and 4~f!#, some solutions in the contact region becom
unstable and all others are stable.

4. Constant parameter hypersurfacêA* ,L * ,X* ,Y* ‰

This projection, shown in Fig. 5, corresponds to a pha
variation experiment at constant amplitude. The nonlin

FIG. 1. Tip-surface interaction force used for the calculations
Morse potential is assumed with parameters described in the te
9-3
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nature is even more apparent; for phases smaller thanp/2,
there is no stable solution. Phase variation experiment
constant amplitude have been presented using PLL t
niques and no instability was reported.32

FIG. 2. Steady-state approximation: intersection of the hyper
face defined by Eqs.~9! and ~10! with the constant parameter hy
persurface$L* ,Ad* ,X* ,Y* %. This corresponds to a phase variatio
experiment at constant excitation amplitude.~a!, ~b!, and~c! show
the amplitude, phase, and stability function, respectively.~a!, ~b!
Extremely distorted structures around the solution (A*
5100 Å ,p/2) can be seen and unstable solutions exist becaus~c!
S is not always positive. The general features are similar to
solutions of Duffing’s equation with a small anharmon
perturbation.
08540
at
h-

As mentioned above, the expression for the freque
shift is identical to that found prior to the introduction o
intrinsic dissipation and forcing. Even if the solution wit
f5p/2 is stable, it has been shown that many other so
tions are not. Since the results presented in Figs. 4 and 5
directly comparable with DFM experiments, the existence
instability can and should be verified experimentally. It
clear that the steady-state approximation is not satisfacto
these instabilities cannot be observed. As will be explain
in the following section, instability should exist even whe
the effect of dissipation to the surface on the dynamics of
cantilever is included.

C. Inclusion of dissipation to the surface

So far, we have ignored the possibility that energy dis
pates to the surface. For a dissipative interaction fo
Fi(x; ẋ), Eqs.~9!, ~10!, and~13! generalize to

Ad

A
cosf5

v0
22v2

v0
2

2r 1~A,L,v!, ~15!

Ad

A
sinf5

1

Q0
1r 2~A,L,v!, ~16!

and

S[S 12
v2

v0
2

2g1~A,L,v!D Ad

A
cosf1S 1

Q0
1g2~A,L,v! D

~17!

3S 1

Q0
1r 2~A,L,v! D,0,

respectively. The average functionsr and g have been gen-
eralized to

r 6~A,L,v![
1

kApE0

2p

Fi~A cosu1L;2Av sinu!

3H cosu

sinu J du ~18!

and

g6~A,L,v![
1

kpE0

2pS ]Fi

]x
cosu2

]Fi

] ẋ
v sinu D

3H cosu

sinu J du. ~19!

Equations~15! and ~16! are equivalent to Eqs.~12! and
~13! in Ref. 33. We immediately examine the nature of t
frequency dependence of the functionr 1. A dissipative term
which is a separable function ofx and ẋ does not affectr 1.
This is the case for the atomic-scale stochastic dissipatio34

@;g(x) ẋ# and dissipative currents for small-amplitud
operation.35 This is also the case for a piecewise continuo
function of x in phase withẋ like phenomenological meta

r-

e

9-4
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FIG. 3. Steady-state approximation: intersection of the hypersurface defined by Eqs.~9! and~10! with the constant parameter hypersu
face$f* ,Ad* ,X* ,Y* %. ~a! and~c! @~b! and~d!# show the amplitude@stability function# at 89.5° and 90.5°, respectively. For a phase 90°,
solutions have an amplitudeA* 5100 Å and are stable sinceS51/Q0

2.0 independently of the separation.~a!, ~b! However, even for a
small diminution of the phase—for example,f* 589.5°—some solutions in the near-noncontact region become unstable sinceS,0. ~c!, ~d!
Similarly, for a slight augmentation of the phasef* 590.5°, there are unstable solutions in the contact region.
he

as

of
stable stick-slip processes.18,24,33However, Loppacheret al.8

have used a different model for the dissipative current; t
used a retarded dissipative force of the formF5F̃ cos (vt

1Dw) whereF̃ andDw are functions ofv. This leads to a
term F̃ cosDw/kA that contributes tor 1. Moreover, any ad-
hesion hysteresis~i.e., stick-slip processes! which are not
exactly in phase with the velocity but have some ph
08540
y

e

Db(v) could also account for the frequency dependence
r 1. It is illuminating to rewrite Eqs.~15! and ~16! as

tanf5@1/Q01r 2~A,L,v!#Y S v0
22v2

v0
2

2r 1~A,L,v!D
~20!
r-

.
he
FIG. 4. Steady-state approximation: intersection of the hypersurface defined by Eqs.~9! and~10! with the constant parameter hypersu
face $A* ,f* ,X* ,Y* %. This corresponds to the normal DFM operation.~a!, ~c!, and ~e! @~b!, ~d!, and ~f!# show frequency shift profile
@stability functionS# at 90°, 80°, and 100°, respectively.~a! For a phase 90°, all solutions are stable because~b! S is always larger than zero
The situation is drastically different when the phase differs from 90°.~c!, ~d! When f* 580°, some solutions become unstable in t
near-noncontact region;~e!, ~f! for f* 5100°, some of the solutions in the contact region are unstable.
9-5
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and

Ad

A
5AS v0

22v2

v0
2

2r 1~A,L,v!D 2

1@1/Q01r 2~A,L,v!#2.

~21!

FIG. 5. Steady-state approximation: intersection of the hyper
face defined by Eqs.~9! and ~10! with the constant parameter hy
persurface$A* ,L* ,X* ,Y* %. This corresponds to a phase variatio
experiment at constant amplitude.~a!, ~b!, and~c! show the excita-
tion curve, phase, and stability functionS, respectively. Forf
,p/2, all solutions are unstable sinceS,0.
08540
According to Eq.~20!, the dependence ofr 1 on the fre-
quency implies that dissipation affects the frequency of
solution corresponding top/2:

D f 52
f 0

2
r 1~A,L, f 01D f !ÞD f NIH . ~22!

On the other hand, Eqs.~20! and~21! imply that this solution
would not necessarily have the maximum amplitude beca
of the frequency dependence ofr 2. For constant amplitude
the minimum excitation amplitudeAd occurs at the fre-
quencyvM given by

S v0
22vM

2

v0
2

2r 1~A,L,vM!D S 2vM

v0
2

1
]r 1

]v U
vM

D
5S 1

Q0
1r 2~A,L,vM! D ]r 2

]v U
vM

. ~23!

The minimum of the excitation curve coincides with th
phasep/2 only if ]r 2/]v50; otherwise, there is a phas
shift fM :

tanfM5S 2vM

v0
2

1
]r 1

]v U
vM

D Y ]r 2

]v U
vM

. ~24!

It is emphasized that these frequency dependences are li
to slow dissipation processes but not to the atomic-scale
chastic dissipation34 because the time scale of the motion
surface atoms is much smaller than that of the cantilever.
worth noting that if the frequency dependence of the sl
dissipation processes is roughly linear aroundvM , then Eq.
~21! can be rewritten asAd(vM1dv)/A'AK1(dv)21K2,
wheredv represents any departure fromvM such thatdv
!vM , andK1 , K2 are constant. In other words, as long
the slow dissipation mechanisms are not very sensitive fu
tions of the frequency, then the excitation curve should
approximately symmetrical aroundvM . In any case, these
frequency dependences need to be more cautiously stu
and are beyond the scope of this work.

Apart from these possible small frequency dependen
the physical origin ofr 1 andr 2 is very different~this is also
true for g1 and g2). Here r 1 is essentially related to the
average force over an oscillation period;r 2 depends on the
dissipation mechanism involved. It is thus unrealistic to
sume that the average force and dissipation mechanism c
ensure that the projection similar to that shown in Fig. 2
always singled valued@i.e., the stability functionS in Eq.
~17! always larger than zero# for any separationL. In other
words, unstable solutions should exist even when some
sipation to the surface takes place.

r-
9-6



DYNAMICS OF THE CANTILEVER IN NONCONTACT . . . PHYSICAL REVIEW B 64 085409
III. FULLY NONAUTONOMOUS TREATMENT

In real DFM experiments,A, f, L, v, X, Y, andAd are not parameters but~time-dependent! variables. The fully nonauto-
nomous three-dimensional flow is

S ẏ

ẋ

j̇
D 5S 2

v0

Q0
y2v0

2x1Fi„x1L~j!;X~j!;Y~j!…/m1Ad~j!v0
2cos@v~j!j#

y

1

D ; ~25!
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a similar generalization holds for Eq.~6!. It is urgent to
clarify whether or not this extra nonautonomicity can al
the dynamics of the lever in DFM. The inclusion of the r
sponse of the system to a change ofL, X, or Y could add
extra structure to the global stable manifold of the perio
cycles. A step in this direction is found in Ref. 36 where
was argued that nonautonomous nonlinear effects (L was a
variable! could contribute to the atomic-scale corrugation
the damping signal for PLL electronics~see, for example
Ref. 6! even though the cantilever motion is sinusoidal to
high degree of accuracy. Note that the simulations prese
in Ref. 16 which aim at understanding a different type
electronics setup, do not show any departure from
steady-state approximation~the phase was alwaysp/2!.

There are a number of reasons to believe that the f
nonautonomous equation of motion needs to be conside
First, instabilities predicted in the steady-state approxima
have not been observed experimentally. Second, the hy
surfaceH is extremely distorted around solutions withp/2,
which can become unstable even for a small perturbation
the other hand, it is well known that three-dimensional flo
can lead to a practically infinite set of new phenomena~e.g.,
chaotic behavior!.27 This may not the case in the steady-sta
approximation because$L,A,f,Ad ,v,X,Y% are treated as
parameters, which means that the system has in fact b
assumed to respondinstantaneouslyto any change in the
separation or interaction. In real experiments, however,
response of the system is not instantaneous. For exam
PLL electronics was reported to take;1 ms to adjust its
phase to an input signal phase step.25 Also the electronics
depends on time-averaged observables. For instance, th
citation or gain factor depends on the peak-to-peak osc
tion amplitude which is a time-averaged quantity. Moreov
the sensitivity to a sudden change may be reduced bec
the feedback circuit depends on the history of such tim
averaged observables@see, for example, Eq.~2! in Ref. 16#.

Consider, for example, the case where the tip is initia
located directly above one surface atom and a small cha
in X occurs~during the scanning!. The situation is equivalen
to a sudden small change in the interaction force~diminu-
tion!. If the lever is oscillating at one of the fixed points wi
f5p/2 in the hypersurfaceH and if the response of th
electronics is not instantaneous, then there is a chance
for some time the lever would be oscillating at a frequen
below that of the new resonance, which may lead to subs
tially different dynamics.
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Thus, these considerations in addition to the discuss
presented in Ref. 36 for PLL electronics and the failure
observe instability experimentally may indicate that a pro
treatment of the fully nonautonomous flow is essential
understanding the dynamics of the lever operated with la
amplitude. We emphasize that the equations for an extern
driven and self-driven oscillator are potentially different on
within a fully nonautonomous treatment. In fact, there is
reason to believe that nonautonomous nonlinear effects
any, should be the same since the equivalence between
two models only holds within the steady-state approxim
tion. This may explain why different electronics setup c
lead to different results.

IV. SUMMARY

In summary, in the steady-state approximation where
equations of motion for an externally and self-driven osc
lator are rigorously identical, Eqs.~9!, ~10!, and ~13! @Eqs.
~15!, ~16!, and~17!# provide all information about the solu
tions for a conservative@dissipative# force. It is explained
why instability is an unavoidable consequence of the non
ear nature of the interaction for large-amplitude operat
even when the interaction force is dissipative and how t
could be verified experimentally. Because the solutions w
f5p/2 are located in a very highly nonlinear region of th
hypersurface and because in this approximation the resp
of the system is in fact assumed to be instantaneous,
important to consider the dynamical problem in a fully no
autonomous way and to include the finite-time response
the system. We are currently working on extending our p
vious works in this direction. In parallel, effort should als
be put into understanding atomic-scale dissipation mec
nisms in DFM based on first-principles theory. An importa
and original proposal was recently made by Kantorovich
treating the stick-slip process as a nonequilibrium proces37

In doing so he may be able to treat atomic-sc
stochastic34,38 and metastable stick-slip processes33 within
the same theoretical framework.
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APPENDIX

The cantilever motion can be rigorously described by
troducing the quantitydx representing the cantilever motio
departure from purely sinusoidal,

x5x01dx5A cos~vt2f!1dx, ~A1!

where dx[d0/21(n52
` dn

1 cosn(vt2f)1(n52
` dn

2 sinn(vt
2f). By Fourier expanding the interaction forceFi , the fol-
lowing can be obtained:

tanf5
v8/Q01dr 2

~12v82!2~r 11dr 1!
, ~A2!

A8 d
25@~12v82!2~r 11dr 1!#21@~v8/Q0!1~dr 2!#2,

~A3!

wherev8[v/v0 andAd8[Ad /A. Herer n is given by

r n[
1

k ApE0

2p

Fi~x01L ! cosn~u2f! du, ~A4!

with u[vt. Heredr 1 , dr 2 represent corrections from firs
harmonic motion. In the noncontact limit,dr 1 , dr 2 can be
written

dr 1'
d08

2
g10

1 1(
l 52

`

g1l
1 d8 l

1 , dr 2'(
l 52

`

g1l
2 d8 l

2 ,

~A5!

with gnl
6 defined as

gnl
6[

1

kpE0

2pdFi

dx U
x0

1

2
$cos@~ l 2n!~u2f!#

6cos@~ l 1n!~u2f!#% du. ~A6!

The coefficientsd8n
6[dn

6/A can be determined by solvin
the following set of 2M21 linear equations,M representing
the order of the highest harmonic included in the calculati
s.

p

-

A

n,
.

08540
-

:

S 12
g00

1

2 D d082(
l 52

M

g0l
1 d8

l1'r 0 ,

~12n2! d8n
11n/Q0 d8n

22gn0
1

d08

2
2(

l 52

M

gnl
1 d8 l

1'r n ,

~12n2! d8n
22n/Q0 dn8

12(
l 52

M

gnl
2 d8 l

2'0. ~A7!

Roughly speaking, Eqs.~A5! and ~A7! are accurate as long
as uv821u!1 andug00

1 u/2!1. A useful quantity for measur

ing the deviation from purely sinusoidal isÃ

[Ax21( ẋ/v)22A. This is plotted in Fig. 6 for the force
described in the text atL* 5103.5 Å . The quantityÃ de-
parts from zero by at most;0.015 Å . Apart from the in-
troduction of the driving term, these considerations are si
lar to those discussed by Du¨rig in Ref. 24. Here we
emphasize the following. In the noncontact region, Eq.~A7!
provides a very simple way to calculate accurately the anh
monic terms; one simply has to solve a set of linear eq
tions.

FIG. 6. Anharmonic effect. The quantityÃ provides information
on the importance of anharmonic effects in DFM. In the noncont

limit, Ã can be calculated with the procedure explained aboveÃ
differs from zero by at most;0.015 Å at the separationL*
5103.5 Å .
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