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A detailed analysis of models that have been used for describing the dynamics of the cantilever in large-
amplitude noncontact dynamic force microscopy is presented. For each model, attention is especially paid to
the nonlinear nature of the problem and its implication for experiments. In particular, in the steady-state
approximation where the equations of motion for an externally and self-driven oscillator are rigorously iden-
tical, the theory predicts the existence of unstable solutions whether the interaction force is dissipative or not.
The need to go beyond the steady-state approximation by including the finite-time response of the system to a
change of tip-surface separation or interaction during the scanning is also discussed.
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[. INTRODUCTION is paid to the nonlinear features of the solutions. For in-
stance, in the steady-state approximation where the equations
Noncontact dynamic force microscop§DFM) (Refs.  of motion for an externally driven and self-driven oscillator

1-4) is a powerful tool for investigating various surfaces atare rigorously identical, the existence of unstable solutions is
an atomic scale. In experiments, the shift of the resonar@n unavoidable consequence of the nonlinearity of the inter-
frequency of the cantilever, which serves as a frequency dedction. This is also true when including the effects of dissi-
termining element, is used for regulating the tip-surfacePation to the surface on the lever of the dynamics. The fail-
separation. It is also possible to obtain additional atomicY'® to systematically observe mechanical instabilities and to

scale information by simultaneously measuring the dampin%ep_roduce the orde_r of r_nagnltude .Of the atomic scale_ corru-
of the lever oscillation due to the surfdc& [these experi- 9atON of the damping signgassuming it results from dissi-

ments have been performed with phase lock IéRipL) tech- pation based on first-principles theory and the fact that
. i . . guantities such as the driving frequency and excitation am-
nigueg. The damping can straightforwardly be interpreted as

dissipation if the oscillator behaves linearly. However, in plitude are dynamically determined indicate the need to go
P Y. '’ “'beyond the steady-state approximation by including the

b ) ) Meinite-time response of the system to a change of separation
pared to the range of the tip-surface nonlinear potential, and; interaction.

it is yet not clear to what extent the problem remains linear.
In interpreting surface images, it is therefore important to Il. STEADY-STATE APPROXIMATION
understand the dynamics of the cantilever before asserting
what the apparatus is actually measuring. Most of the ana-
lytical works on the dynamics of the lever have focused on The theoretical description of DFM operated with large
describing the steady-state solutions of the cantilever equamplitude was begun with the work of GiessiblThe
tion of motion!*~°In this approximation, quantities such as Hamiltonian is
the amplitude, driving frequency, or excitation amplitude are .
treated as parameters. Unfortunately, the stability of the so- H=mC/2+ k24 Ui (x+ LX), @
lutions, which is understootf;'* has only been briefly de- whereL is the mean tip-surface separatidnthe cantilever
scribed and the implication of unstable solutions for real exeffective spring constant, arld; the nonlinear potentialX
periments has not been emphasized enough. MoreovesndY are the lateral coordinates of the tip. The equation of
stability has not been discussed when including dissipatiomotion can be written as a set of first-order differential equa-
to the surface. Consequently, the validity of the steady-statéons referred to as a flow:
approximation has never been seriously challenged. Not in- .
cluded in this approximation is the effect of the time depen- y - w§X+ Fi(x+L)/m
dence of the quantities mentioned above in actual experi- = y
ments and the fact that time-averaged observables, such as
the peak-to-peak oscillation amplitutfeare involved in the  with w%z(wao)zzk/m. The flow is two dimensional and
electronics. autonomougno explicit time dependengeBecause the non-

In this paper, we analyze in detail the models that havdinear potentiallU;| is much smaller thakx?/2, the system
been used for describing the dynamics of the lever. Attentiors only weakly nonlinear. One can therefore use first-order

A. Weakly nonlinear integrable Hamiltonian

, (2)

X
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perturbation theory or Fourier analysis for obtaining an ex- and similarly for Eq.(6). Here {L,A,$,Aq4,,X,Y} and
pression for the cantilever resonant frequency shift, {L,A,15,G,w,X,Y} span a seven-dimensional parameter
space for an externally and self-driven oscillator, respec-
tively. It is easy to demonstrate that the equation of motion
for an externally driven and self-driven oscillator are rigor-
ously identical within this approximation. One simply needs
wherer(A,L) is some unitless average of the interactiontg insert the ansatz for(t) into Eq.(6), make the change of
force over one oscillation period, variablet—t,—t, and the assignmenis= 27— wt, (assum-
L 2x ing m=wty<2m7) and G=Ay4/A. Physically, these are
FAL)= _J F,(Acogd+L)cosd dé. 4) eq_uwalent because, for a steady-state,. the causallty relation-
kA ship has the property that there is no distinction between the
) ] lever responding to a periodic external excitation or the lever
The dependence of the frequency shift, B), on the oscil- exciting itself with a time delay. The equivalence of these
lation amplitudeA and its order of magnitude agree well models in the steady state approximation has motivated
with various experimentésee, e.g., Ref.)8 Note that within many authorS~'>%to use the equation of motion of an ex-
this model, the atomic-scale damping is not related to thernally driven oscillator for successfully studying DFM.
dynamics of the cantilever. Following the work of Giessibl, Note the striking resemblance between E5j.and the well-
Eq. (1) has also been used as a starting point by a number @ydied Duffing equatidd with a small anharmonic pertur-

fo
AfN|H:_Er(A,L), (3)

authors'®—2

B. Inclusion of an intrinsic dissipative and forcing term

The treatment can easily be extended by including intrin-
sic dissipation and forcing. The equation of motion can havé'
many variations depending on the specific model used for thE
driving term. Here two models are discussed: the so-calle

externally driven oscillator

@o. o 2
Q—x+ woXx=F;(x+L)/m+ Ajwjcog wt)
0

and the self-driven oscillator

X+

bation.

The effective potential energy;(x+ L) +kx?/2 is obvi-
ously asymmetric aroung=0. Although this may naively
be thought to imply an anharmonic cantilever motion, this is
ot the case since, as pointed out above, the magnituBe of
much smaller thatkx|.?* In the tapping mode, the canti-

{pver motion is still sinusoidal for soft enough surfaces even

though the magnitude of the interaction is usually signifi-
cantly large®~*°An explicit evaluation of the importance of
anharmonicity in DFM based on Fourier analysis is pre-
sented in the Appendix. While Fourier analysis can be used
for obtaining the solutions of the equation of motion, it does
not provide information on their stability. One must have

recourse to the theory of nonlinear differential equatiéns
. wom. for this purpose. The fixed points, corresponding to the
mx-+ Q—X+ kx=F;(x+L)+Gkx(t—tg). (6)  steady-state solutions, can be determined by using the time
0 averaging and perturbation approach or Poincasp. The
A4, G, to, andQ, are the excitation amplitude, gain factor, idea is to reduce the flow, Eq7), to an averaged two-
time delay, and intrinsic quality factor, respectively. Equationdimensional autonomous ofie sign of¢ is determined by
(5) describes PLL electronics. The driving term is exactlythe form of the ansatx=Acost— ¢)]:
sinusoidal because it is the voltage-controlled oscillator )
(VCO) output signaf® Equation(6) describes an experimen- A
tal setup with an automatic gain contr@AdGC) where the .
; . . . i A
time-delayed cantilever signal is used to excite the )
cantilever'® Here Ay and w [Eq. (5)], or G (Ref. 16 andt,
[Eq. (6)] can be complicated functions of time for describing The fixed points are obtained by fixifg and A¢ to zero.

real electronics. Within the Steady'state apprOXimation, hOWTh|S leads to the fo”owing equations of the Steady-state ap-
ever, they are treated as parameters because one segfgximation:

steady-state solutions of the fom(t) = Acost— ¢) for Eq.

1 — wwoAl Qg+ Agw3sin ¢
T 20\ (02— wd)A+Agwicosp+Awdr(AL)]

(5) or x(t)=Acos(t) for Eqg. (6). The main difference with Ay wi— w?
the previous case is that these equations are no longer au- Kcos¢= >——T(AL) 9
tonomougdin Eq. (6), x(t—1ty) cannot be expressed in terms ®Wo
of x(t)]. Equivalently, Eq.(5) can be written as a three- 44
dimensional autonomous flow,
Ag sing ! (10)
— sing= —.
y —S—Zy—w§x+Fi(x+L)/m+Adw§cos{w§) A Qo
x| = , Equations(9) and (10) (Refs. 12 and 14define a hypersur-
y face H in the seven-dimensional parameter space. In the
¢ 1 steady-state approximation, this hypersurface describes all

(7) possible solutions of the equation of motion E§) or Eq.
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(6). The local stability of a given fixed point is determined by 4
linearizing the flow in its vicinity and finding the eigenval-
ues. The secular equation is (epresents the eigenvalyes »
2 .
, . [wwo Aqwgsing ) ) ~
+ + + — -
N Oy A N H{wi[1-9(AL)]—w} \% .
X@wZCOS(b-I- @0 ﬁjwzsind) ) |
A0 Q, AO 2|
=0, (12)
whereg(A,L), a quantity similar ta (A,L), is defined as -4 : : ' '
0 2 4 6 8 10
1 [2=dF;(A cos6+L ;
g(AL)= GJ % co0de. (1) distance(A)
0
FIG. 1. Tip-surface interaction force used for the calculations. A
A steady-state solution is unstable if the condition Morse potential is assumed with parameters described in the text.

Ay 1 (A*,7/2). The emergence of such distorted structures is an

A cos¢p+ —<0 (13 unavoidable consequence of large-amplitude operation even
Qo when the system is only weakly nonline@s is the case

is satisfiedi.e., A >0), or else it is stable. In the following ~ N€re: All solutions are stable except those corresponding to

is referred to as the stability function. Equatiof®, (10), the Iow_er part of_the needle edge which are mdl(_:ated by _the

and (13) provide all the information about the dynamics of dotted line. Solutions are unstable when the stability function

the lever in the steady-state approximation for a conservativg(gef'ned in Eq(13) is smaller than zero, as shown in Fig.
force. .

A solution of particular interest is the one having a phase
/2. According to Egs(13) and (9), it is stable and corre- o _
sponds to a frequency shift equal Ad . *2****Since this When the phase* is fixed to#/2, all solutions have an
state has the maximum amplitude for a giveg it is natu-  amplitudeA* and are stable becauSe: 1/Q5>0. However,
rally referred to as the resonant state. Therefore the introdu¢instable solutions exist for phases' #90°. Even for a
tion of intrinsic dissipation and driving does not alter the small diminution of the phase—for example, whef
conclusion thatAf=Afy,, and the damping is unrelated to =89.5°—unstable solutions emerge in the near-noncontact
the dynamics of the cantilever. region as shown in Figs(8 and 3b). In Figs. 3c) and 3d),

It should be clearly understood that the hypersurface the phase is slightly larger than 90°—that is,
defined by Eqs(9) and(10) is an object whose properties are ¢* =90.5°—and the situation is reversed; some solutions in
independent of the way it is sampled. In order to emphasizée contact region are unstable while all solutions in the non-
this point and demonstrate the relevance of unstable solsontact region are stable.
tions for real experiments, the hypersurfakeis projected Since DFM experiments are usually conducted with con-
onto four constant parameter hypersurfacfls;Aq,X,Y}, stant amplitude, the following constant parameter hypersur-
{$,Ag.X,Y}, {A,¢,X,Y}, and{A,L,X,Y}. For the sake of faces are more directly of interest.
illustration, the following constants are defined:*
=103.5 A, A*=100 A, A =A*/Q, and U;(X*;Y*) is
assumed to be a Morse potential, This projection corresponds to the normal operation for

DFM. When¢* =90°, all solutions are stable independently
X—R¢ of the separatiorL., as shown in Figs. (4 and 4b). The
1—exp( —2b R )H (14 sjtuation is drastically different for phase# +90°. For ex-
. a1 ample, Figs. &) and 4d) show that for a phase* =80°,
with Uo=2.273 eV, b=1.497, andR.=2.357 A The  no stable solution is possible for some separation in the near-
force F; is plotted in Fig. 1. The cantilever is characterized ,gncontact region. It is not difficult to see that if these un-

w2
s={1-—-g(AL)
W

2. Constant parameter hypersurfadap* A5 . X*,Y*}

3. Constant parameter hypersurfadgd*, ¢* ,X*,Y*}

Ui(X;X*;Y*):Uo[

by k=40 N/m, Qo=10" andfy,=150 kHz. stable solutions were to be projected onto the constant pa-
. r ur un rameter hypersurface similar to Fig. 2, they would be on the
1. Constant parameter hypersurfadd.*,Ag . X*,Y*} lower part of the needle edge. For a phase=100° [Fig.

The intersection of the hypersurfagewith this constant  4(€) and 4f)], some solutions in the contact region become
parameter hypersurface is shown in Figé)2and 2b). It ~ unstable and all others are stable.
corresponds to a phase variation experiment with constant
excitation. The shape of the curves are qualitatively very
similar to that of the Duffing’s problerff. The curves are This projection, shown in Fig. 5, corresponds to a phase
extremely distorted (multivalued around the solution variation experiment at constant amplitude. The nonlinear

4. Constant parameter hypersurfaded*,L* ,X*,Y*}
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As mentioned above, the expression for the frequency
stable —] shift is identical to that found prior to the introduction of
intrinsic dissipation and forcing. Even if the solution with
¢=/2 is stable, it has been shown that many other solu-
tions are not. Since the results presented in Figs. 4 and 5 are
directly comparable with DFM experiments, the existence of
instability can and should be verified experimentally. It is
clear that the steady-state approximation is not satisfactory if
these instabilities cannot be observed. As will be explained
in the following section, instability should exist even when
20 ) ) . X X ) ) the effect of dissipation to the surface on the dynamics of the
-200 -100 0 100 200 cantilever is included.

0-o, (sec™)

1001

unstable ---
80} .

A (A)

60T

407

C. Inclusion of dissipation to the surface

ol " " " ] So far, we have ignored the possibility that energy dissi-
stable — pates to the surface. For a dissipative interaction force
unstable --- Fi(x;X), Egs.(9), (10), and(13) generalize to

A 02— w?
¢ Kd cosp=————1"(AL,w), (15)
mj2p e 1 ®o
®) g b 'y “(AL,w) (16)
—sing=—+r"(A,L,0),
A Qo
: . . . . . . and
-200 -100 0 100 200
w? Aq 1
S= 1——2—g+(A,L,w) — cos¢p+| =—+g (A L,w)
o5 A Qo
1 17
X|—+r"(AL,w) | <0,
Qo ( ))
'T/\ respectively. The average functionand g have been gen-
o eralized to
—
\>.</ 1 2w
%o} ri(A,L,w)E—f F.(A cosf+L;—Aw sing)
kAm 0
cosé g 18
X
— sing | 4 (18)
-200 -100 0 | Joo 200
w-o,(sec”) and
FIG. 2. Steady-state approximation: intersection of the hypersur- N 1 (27 oF JFy
face defined by Eqg9) and (10) with the constant parameter hy- 9 (ALw)= kwlo | ox COSG_E‘” sing

persurfacgL* A} ,X*,Y*}. This corresponds to a phase variation
experiment at constant excitation amplituda, (b), and(c) show cosé

the amplitude, phase, and stability function, respectivedy. (b) [ ] 0. (19
Extremely distorted structures around the solutiorA* (

=100 A 7/2) can be seen and unstable solutions exist bedajise
Sis not always positive. The general features are similar to th
solutions of Duffing’s equation with a small anharmonic

perturbation.

sing@

e Equations(15) and (16) are equivalent to Eqg12) and
(13) in Ref. 33. We immediately examine the nature of the
frequency dependence of the functioh. A dissipative term
which is a separable function afandx does not affect *.
nature is even more apparent; for phases smaller #an This is t_he case fgr t.he f':\tomlc—scale stochastic dlssufétlon
there is no stable solution. Phase variation experiments &t y(x_)x]sanc_j dissipative currents for small-amplitude
constant amplitude have been presented using PLL teciperatiort® This is also the. case for a piecewise continuous
niques and no instability was report&d. function of x in phase withx like phenomenological meta-
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¢" =89.5° ¢ =90.5°
101 101
stable — stable —
—_ unstable -- —_ unstable --
°$ 100 °$1oo -
A (a) A (©)
99 99
2 4 6 o 8 10 2 4 6 8 10
L—A(A) L-A(A)
. ‘ $>0 — of T
T §<0 -] & | $>0 —
S e S | §<0 -
X X o i
S (b) 44
2 4 6 o 8 10 2 4 6 , 8 10
L-A(A) L-A(A)

FIG. 3. Steady-state approximation: intersection of the hypersurface defined b{@Egsd(10) with the constant parameter hypersur-

face{®* A} ,X*,Y*}. (a and(c) [(b) and(d)] show the amplitudéstability functior] at 89.5° and 90.5°, respectively. For a phase 90°, all
solutions have an amplituds* =100 A and are stable sin®=1/Q3>0 independently of the separatiof@), (b) However, even for a
small diminution of the phase—for examplg* =89.5°—some solutions in the near-noncontact region become unstablessiiicéc), (d)

Similarly, for a slight augmentation of the phagé& =90.5°, there are unstable solutions in the contact region.

stable stick-slip processé&$?*3*However, Loppacheet al® A B(w) could also account for the frequency dependence of
have used a different model for the dissipative current; they *. It is illuminating to rewrite Eqs(15) and(16) as

used a retarded dissipative force of the foFw F cos (wt

+A¢) whereF andA¢ are functions ofw. This leads to a 5

termF cosAg/kA that contributes ta *. Moreover, any ad- tan(ﬁ_[l/QoJrr(A’L,w)]/ (“’0 2‘“ (AL )
)

hesion hysteresisgi.e., stick-slip processg¢svhich are not
exactly in phase with the velocity but have some phase (20

2

¢" =90° 0" =80° 9" =100°
100 | stable =1 409 stable =1 449 H
~ unstable == i (e)
o0 0 o et of
2 Rad H
% 100 -100 4 <00} % stable  —
3 (a) :" (C) E unstable =«
L 200 -200 J/ 200} %
3 K 5
800 = 4 6 0 03 4 6 50 0 4 6 8 10
L-AA) L-AA) L-A(A)
2 s>0 =] °f [ —
$§=1/0Q,>0 H
o S§<0 == H S>0 =
g > ] 5<0
X o : <0 =
2 ) H
(b) (d) 14 (f)
0 N —_— i
0 —~
2 4 6 8§ 10 2 4 6 8 10 2 4 6 8 10

_L-A(A) . L-AA) L-A(A)
FIG. 4. Steady-state approximation: intersection of the hypersurface defined b{@FEgsd (10) with the constant parameter hypersur-

face {A*,¢* ,X*,Y*}. This corresponds to the normal DFM operati¢a), (c), and (e) [(b), (d), and (f)] show frequency shift profile
[stability functionS] at 90°, 80°, and 100°, respective{y) For a phase 90°, all solutions are stable bec#bs8is always larger than zero.

The situation is drastically different when the phase differs from 96f,.(d) When ¢* =80°, some solutions become unstable in the
near-noncontact regiotte), (f) for ¢* =100°, some of the solutions in the contact region are unstable.
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FIG. 5. Steady-state approximation: intersection of the hypersurf
face defined by Eq99) and (10) with the constant parameter hy-
persurfacg A* ,L* ,X*,Y*}. This corresponds to a phase variation
experiment at constant amplitud@), (b), and(c) show the excita-
tion curve, phase, and stability functioB respectively. For¢

< /2, all solutions are unstable sin€&<0.
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According to Eq.(20), the dependence af® on the fre-
quency implies that dissipation affects the frequency of the
solution corresponding ta/2:

f
Af:_EOrJr(A,L,fO—i-Af)iAfMH. (22)

On the other hand, Eq&20) and(21) imply that this solution
would not necessarily have the maximum amplitude because
of the frequency dependence of. For constant amplitude,
the minimum excitation amplitudéy occurs at the fre-
quencyw,, given by

2 2 4
wi— W 2w or
(B[220

wq

o

(23

1+‘AL or
05 r(”w'\")&_w

@M

The minimum of the excitation curve coincides with the
phasew/2 only if r~/dw=0; otherwise, there is a phase

shift ¢y :
tang 20u 90 /(9Ir (24)
angy=| —+— —
M w(z) dw oy dw o

It is emphasized that these frequency dependences are linked
to slow dissipation processes but not to the atomic-scale sto-
chastic dissipatiotf because the time scale of the motion of
surface atoms is much smaller than that of the cantilever. It is
worth noting that if the frequency dependence of the slow
dissipation processes is roughly linear aroungl, then Eqg.

(21) can be rewritten ag\y(wy+ dw)/A~ K, (dw)’+Kj,,
where dw represents any departure fram, such thatéw
<wy, andKy, K, are constant. In other words, as long as
the slow dissipation mechanisms are not very sensitive func-
tions of the frequency, then the excitation curve should be
approximately symmetrical around,,. In any case, these
requency dependences need to be more cautiously studied

and are beyond the scope of this work.

the physical origin of © andr ~ is very different(this is also

Apart from these possible small frequency dependences,

A, i 0?2 ’ 2
s s— 1" (ALo)| +[1Qo+r (AL,w)]%
@

true forg* andg™). Herer? is essentially related to the
average force over an oscillation periad; depends on the
dissipation mechanism involved. It is thus unrealistic to as-
sume that the average force and dissipation mechanism could
ensure that the projection similar to that shown in Fig. 2 is
always singled valuedli.e., the stability functionS in Eq.

(17) always larger than zetdor any separatior.. In other
words, unstable solutions should exist even when some dis-
sipation to the surface takes place.

085409-6



DYNAMICS OF THE CANTILEVER IN NONCONTACT . .. PHYSICAL REVIEW B 64 085409

Ill. FULLY NONAUTONOMOUS TREATMENT

In real DFM experimentsA, ¢, L, o, X, Y, andA, are not parameters b(time-dependentvariables. The fully nonauto-
nomous three-dimensional flow is

o
y ——Oy—wSX+ Fi(x+L(£);X(£); Y(€)Im+Aq(€) w§cod w(£)E]
x| = ; 25
’ y (25
§ 1
|
a similar generalization holds for Ed6). It is urgent to Thus, these considerations in addition to the discussion

clarify whether or not this extra nonautonomicity can alterpresented in Ref. 36 for PLL electronics and the failure to
the dynamics of the lever in DFM. The inclusion of the re- observe instability experimentally may indicate that a proper
sponse of the system to a changelofX, or Y could add treatment of the fully nonautonomous flow is essential for
extra structure to the global stable manifold of the periodicunderstanding the dynamics of the lever operated with large
cycles. A step in this direction is found in Ref. 36 where it @mplitude. We emphasize that the equations for an externally
was argued that nonautonomous nonlinear effectsvas a  driven and self-driven oscillator are potentially different only

variable could contribute to the atomic-scale corrugation of Within @ fully nonautonomous treatment. In fact, there is no
the damping signal for PLL electronidsee, for example, '€2SOn to believe that nonautonomous nonlinear effects, if
Ref. 6 even though the cantilever motion is sinusoidal to a@": Should be the same since the equivalence between the

high degree of accuracy. Note that the simulations presentet&v0 models only holds within the steady-state approxima-

in Ref. 16 which aim at understanding a different type Oft|on. Thi; may explain why different electronics setup can
electronics setup, do not show any departure from théead to different results.
steady-state approximatidthe phase was always/2).

There are a number of reasons to believe that the fully IV. SUMMARY
nonautonomous equation of motion needs to be considered. . o
First, instabilities predicted in the steady-state approximation N summary, in the steady-state approximation where the
have not been observed experimentally. Second, the hypefduations _of motion for an externally and self-driven oscil-
surface?{ is extremely distorted around solutions witif2,  lator are rigorously identical, Eq$9), (10), and (13) [Egs.
which can become unstable even for a small perturbation. Oft9. (16), and(17)] provide all information about the solu-
the other hand, it is well known that three-dimensional flowstions for a conservativédissipativg force. It is explained
can lead to a practically infinite set of new phenoména., why instability is an unavo!dable consequence of the non!ln-
chaotic behavior?” This may not the case in the steady-state®ar nature of the interaction for_ Iarge-_amplltude operation
approximation becauséL,A,$,Aq,,X,Y} are treated as €VeN when t.h.e interaction force is dissipative and _how thls
parameters, which means that the system has in fact be&Quld be verified expenmentally. Because the solgt|ons with
assumed to responihstantaneousiyto any change in the 9= /2 are located in a very hlghly nonll_near region of the
separation or interaction. In real experiments, however, th@ypersurface and because in this approximation the response
response of the system is not instantaneous. For exampl@f the system is in fact assumed to be instantaneous, it is
PLL electronics was reported to takel ms to adjust its Important to consider the dynamical problem in a fully non-
phase to an input signal phase steplso the electronics autonomous way and to include the finite-time response of
depends on time-averaged observables. For instance, the € system. We are currently working on extending our pre-
citation or gain factor depends on the peak-to-peak oscilla¥ious works in this direction. In parallel, effort should also
tion amplitude which is a time-averaged quantity. MoreoverP& put into understanding atomic-scale dissipation mecha-
the sensitivity to a sudden change may be reduced becau8ms in DFM based on first-principles theory. An important
the feedback circuit depends on the history of such time&nd original proposal was recently made by Kantorovich for
averaged observablésee, for example, Eq2) in Ref. 1¢.  treating the stick-slip process as a nonequilibrium pr_o%ss.

Consider, for example, the case where the tip is initially!n doing so he may be able to treat atomic-scale
located directly above one surface atom and a small chang%OChaSt'% ** and metastable stick-slip procesSewithin
in X occurs(during the scanning The situation is equivalent the same theoretical framework.
to a sudden small change in the interaction fofdeninu-
tion). If the lever is oscillating at one of the fixed points with ACKNOWLEDGMENTS
¢=ml2 in the hypersurfacé{ and if the response of the
electronics is not instantaneous, then there is a chance that This work was supported in part by a Grant-in-Aid on
for some time the lever would be oscillating at a frequencyPriority Areas from the Ministry of Education, Science and
below that of the new resonance, which may lead to substarGulture, Japan. M.G. acknowledges support from the Minis-
tially different dynamics. try of Education of Japan.

085409-7



M. GAUTHIER, N. SASAKI, AND M. TSUKADA

APPENDIX

The cantilever motion can be rigorously described by in-
troducing the quantityx representing the cantilever motion
departure from purely sinusoidal,

X=Xp+ Ox=A cog wt— ¢) + X, (A1)
where  8x=6p/2+ 2,87 cosn(wt— )+ _,8, sinn(wt
—¢). By Fourier expanding the interaction forEe, the fol-
lowing can be obtained:

(,(),/Qo'f' 5I’2
(1—w'?)—(ry+6ry)

tang= (A2)

A 2=[(1—0'2)—(r1+6r) P+[(0'1Qg) + () 1%,

(A3)
whereo'=w/wg andAj=A4/A. Herer,, is given by
1 (2=
M= WJO Fi(xo+L)cosn(0—¢)de, (A4)

with = wt. Here ér,, r, represent corrections from first-
harmonic motion. In the noncontact limifyr,, or, can be
written

’ o]

5 o
5r1%§91ro+|22 910", 5r2*§2 [ PTR

(A5)
with g, defined as
.1 (emdF| 1
9n|=GL ax | atcog(l=n)(6-¢)]
Xo
*cog (I+n)(6— )]} do. (AB)

The coefficientss’ ; =8, /A can be determined by solving
the following set of 2V — 1 linear equationdyl representing
the order of the highest harmonic included in the calculation
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0.01

A(A)

-0.01

1 2 3
number of cycles

FIG. 6. Anharmonic effect. The quanti@provides information
on the importance of anharmonic effects in DFM. In the noncontact
limit, A can be calculated with the procedure explained abdve.
differs from zero by at most-0.015 A at the separatioh*
=1035 A.
s
’ M

- 0 ,
(1-n?) 5’:+n/Q06’n—g:07—§ gm &' ~Th,

M

£

=2

+
_ Yoo

> g4 8 r+~rg,

M
(1-n?) &', —n/Q 5,;+—|:22 g, 8 ~0. (A7)

Roughly speaking, Eq$A5) and (A7) are accurate as long
as|o’ —1|<1 and|ggy/2<1. A useful quantity for measur-

ing the deviation from purely sinusoidal isA
=\x2+(x/w)?—A. This is plotted in Fig. 6 for the force

described in the text dt* =103.5 A . The quantityA de-
parts from zero by at most 0.015 A . Apart from the in-
troduction of the driving term, these considerations are simi-
lar to those discussed by ‘Bg in Ref. 24. Here we
emphasize the following. In the noncontact region, &)
provides a very simple way to calculate accurately the anhar-
monic terms; one simply has to solve a set of linear equa-
tions.
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