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Mean-field theory of the Kondo effect in quantum dots with an even number of electrons
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We investigate the enhancement of the Kondo effect in quantum dots with an even number of electrons,
using a scaling method and a mean field theory. We evaluate the Kondo temp@ra@sea function of the
energy difference between spin-singlet and -triplet states in theAdaind the Zeeman splittinds, . If the
Zeeman splitting is smalE,<Ty, the competition between the singlet and triplet states enhances the Kondo
effect. Tx reaches its maximum arounti=0 and decreases with obeying a power law. If the Zeeman
splitting is strongE > Ty , the Kondo effect originates from the degeneracy between the singlet state and one
of the components of the triplet state-al\ ~E, . We show thallx exhibits another power-law dependence on
E,. The mean field theory provides a unified picture to illustrate the crossover between these regimes. The
enhancement of the Kondo effect can be understood in terms of the overlap between the Kondo resonant states
created around the Fermi level. These resonant states provide the unitary limit of the condGeta2eh.
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[. INTRODUCTION singlet and -triplet states are almost degenerate. We have
calculated the Kondo temperatuiigg as a function ofA,

The Kondo effect observed in semiconductor quantunusing the “poor man’s” scaling method. 2*We have shown
dots has attracted a lot of interést.In a quantum dot, the thatTx(A) is maximal around\ =0 and decreases with in-
number of electrondl is fixed by the Coulomb blockade to creasingA obeying a power lawT(A)>=1/A?. The expo-
integer values and can be tuned by the gate voltage. Usuallyent y is not universal but depends on a ratio of the initial
the discrete spin-degenerate levels in the quantum dot a@oupling constants. Our results indicate that the Kondo effect
consecutively occupied, and the total spin is zero or 1/2 fois enhanced by the competition between singlet and triplet
an even and odd number of electrons, respectively. Thetates, in agreement with the experimental findifgs.

Kondo effect takes place only in the latter case. The spin 1/2 We have disregarded the Zeeman splitting of the spin-
in the dot is coupled to the Fermi sea in external leaddriplet state,—E;M (M=0,£1 is z component of the total
through tunnel barriers, which results in the formation of thespin S=1), since this is a small energy scale in the experi-
Kondo resonant state at the Fermi le¥& The conductance mental situationE,<T .** Pustilnik et al. have studied an-
through the dot is enhanced to a value of the orde®t at ~ other situation where the Zeeman effect is relevasy,
low temperatures of <Ty (Kondo temperatup®*3Thisis  >T.?® They have considered “lateral” quantum dots with
called the unitary limit. Whei is even, there is no localized an evenN, when the ground state is a spin singlet and the
spin and thus the Kondo effect is not relevant. first excited state is a tripletA(<0). By applying a quite

Recently Sasakeét al. has found a large Kondo effect in large magnetic field parallel to the dots, the Zeeman effect
so-called “vertical” quantum dots with an eveN.}* The reduces the energy of one component of the triplet state,
spacing of discrete levels in such dots is comparable with théSM)=|11), and finally makes it the ground state. At the
strength of electron-electron Coulomb interaction. Hence theritical magnetic field ofE,= —A, the energy of the state
electronic states deviate from the simple picture mentione¢iL1) is matched with that of the singlet sta{@©0). They
above™® If two electrons are put into nearly degeneratehave found that a Kondo effect arises from the degeneracy
levels, the exchange interaction favors a spin trigiaind’s ~ between the two states. This is contrast to the usual case with
rule).’® This state is changed to a spin singlet by applying aspin 1/2, in which the Zeeman effect lifts off the degeneracy
magnetic field perpendicularly to the dots, which increasesf the spin states and, as a result, breaks the Kondo effect. A
the level spacing. Hence the energy difference between th&@milar idea has been proposed by Giuliano and
singlet and triplet stated, can be controlled experimentally Tagliacozzc®® Their mechanism might explain some experi-
by the magnetic field. The Kondo effect is significantly en- mental results of the Kondo effect in quantum dots under
hanced around the degeneracy point between the triplet ariigh magnetic fieldé?’ Indeed, this type of Kondo effect
singlet statesA = 0. Tuning of the energy difference between has been reported in carbon nanotubes where the Zeeman
the spin states is hardly possible in traditional Kondo syseffect is stronger than in semiconductor heterostructires.
tems of dilute magnetic impurities in metal and thus this The purpose of the present paper is to construct a general
situation is quite unique to the quantum dot systems. theory for the enhancement of the Kondo effect in quantum

The Kondo effect in multilevel quantum dots has beendots with an even number of electrons, with changingnd
investigated theoretically by several grodps® They have E;. Hence various experimental situations are analyzed in a
shown that the contribution from multilevels enhances theunified way. We adopt the poor man’s scaling method along
Kondo effect. In our previous paprwe have considered with the mean field theory. It is well known that the charac-
the experimental situation by Sasa&kial. in which the spin-  teristic energy scale of Kondo physics, the Kondo tempera-
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ture Ty, is determined by all the energies frofg up to the ~ formation of the underscreened Kondo ground state with
upper cutoff® By the scaling method, we can evaludtg spin 1/2. We should mention that the exact ground state can-
(its exponential part at legsby taking all the energies Ot be determined within the limits of the applicability of
properly?2-2*WhenE, is negligible, the energies from to these approaches. Pustilnik and Glazman have recently pro-
the upper cutoff would feel fourfold degeneracy of the dotposed”;;‘ different model for the *triplet-singlet Kondo
states,|IM) (M=0,+1) and |00), which enhances the €ffect.”™ In our notation, they seC, = V2,C,=0 in Eq.(4)
Kondo temperature. With increasiny, T decreases by a for the singlet state. Their model can be directly mapped

power law?! We extend our previous calculations to the caseOnto a special case of the two-impurity Kondo motfefor

of E,=— A>T, which has been discussed by PustilnikWh'Ch the ground state is a spin singlet. We are concerned

et al?® and Giuliano and TagliacozZ8 We take into account about the case o€;~C,, and we find that the difference

th ) t onlv frofi. to E h v two d between C; and C, reduces as a result of the
€ energies not only Irom to £z, Where only two 0egen- o4 malizatiort! This suggests that the case considered in
erate state$l1) and|00) are relevant, but also fror to

Ref. 32 is by no means a generic one.
the upper cutoff, where the dot states seem fourfold degen- This paper is organized as follows. Our model is pre-

erate. The latter energy region has been neglected in Refs. 2anted in the next section. In Sec. lll. we rederivg(A)

and 26. In consequence we find a power-law dependence Qfhen the Zeeman splitting is irrelevant, using the poor man’s

Tk on Ez again. . scaling method, in a simpler form than our previous wark.
The mean field theory of the Kondo effect was pioneeredrhen we extend our calculations to the caseEgf= — A

by Yoshimori and Sgszd% and is commonly used for the =T, Section IV is devoted to the mean field theory for the

Kondo lattice modef? It is useful to capture main qualitative Kondo effect in quantum dots. First we explain this theory

features of the Kondo effect; renormalizability at the scale ofgy the usual Kondo effect in a quantum dot wii= 1/2.

Ty, resonances at the Fermi level, and resonant transmisthen we apply the mean field scheme to our model with an

sion. The simplicity and universality of the mean field theoryeyen number of electrons in the dot. The conclusions and

have driven us to apply it to the problem in question. Gen-jscussion are given in the last section.
erally the Kondo effect gives rise to a many-body ground

state which consists of the dot staf&M)=f{,,0) and the
conduction electronslc] |0). The total spin of this ground
state is less than the original sgiocalized in the dot. The We are interested in the competition between the spin-
binding energy is of the order of the Kondo temperaflige ~ Singlet and -triplet states in a quantum dot. To model the
We take into account the spin couplings between the dogituation, it is sufficient to consider two extra electrons in a
states and conduction electrogt,c,), by the mean field, guantum dot at the background of a singlet state of all other
neglecting their fluctuation® These spin couplings give rise N—2 electrons, which we will regard as the vacui).

to resonant states around the Fermi lgwekith the width of ~ These two exira electrons occupy two levels of different or-
the order ofT . The conduction electrons can be transported?ital _symmetrff The energies of the levels arg ande,.
through the resonant levels, which yields the unitary limit of Possible two-electron states &i¢ the spin-triplet statelii)

the conductanc&~2e%h. For our study, the mean field the spin-singlet state of the same orbital symmetry as the
calculations have the following advantagéis The enhance-  triplet state, 142(d},d}, —df df,)|0), and iii) two singlet
ment of T, by the competition between the singlet and tripletstates of different orbital symmetrgf,d] |0), d},d}[0).
states can be directly understood in terms of the overlap béAmong the singlet states, we only consider a state of the
tween their Kondo resonant statéis) The power-law depen- lowest energy, which belongs to grotj). Thus we restrict
dence ofT on A or E; is obtained, which is in accordance our attention to four state$S M):

with the calculated results by the scaling meth@il) The

1. MODEL

mean field calculations are applicable to the intermediate re- |11>:diydg¢|0>: (1)
gions where two ofTx, A, andE,, are of the same order.

The poor man’s scaling method hardly gives any results in 1 vt

these regions. Hence we can examine the whole parameter 110)= E(ledZWdlidZmO)’ 2

region of A andE;, by the mean field theory. The disadvan-
tage of the mean field calculations is that they only give

—1v=dT gt
qualitative answerd! Hence the mean field theory and scal- [1-1)=dy,d3,|0), @)
ing method are complementary to each other for understand- 1
ing the Kondo effect. _ . P

We shall discuss the relation of our approach to the renor- 100) \/E(Clledll Cad2,d2))[0), @

malization group analysis of the multilevel Kondo effétt*

Our model effectively reduces to the one with two channelsvhere d! creates an electron with spim in level i. The

in the leads and spin-tripleand -singlex state in the dot coefficients in the singlet stat€,; and C, (|C4|%+|C,|?
when E,<Ty. The ground state of this model would be =2), are determined by the electron-electron interaction and
believed to be a spin singlet, which corresponds to the fulbne-electron level spacing=e¢,—¢;. We setC;=C,=1.
screening of the dot spin. The poor man’s scaling approacfthis is the case fos=0.2° Although C,# C, in general, the
and our mean field theory, however, show a tendency to thecaling analysis shows that the Kondo temperature is the
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(a) energy (b) —E(N)*u, where u is the Fermi energy in the leads, are
positive. We are interested in the case wHere>|A|, 5 and
£ — 00> also exceed the level broadenifig= 7vV? and temperature
00 (11> —— . . .
A 110> 4N (00 T (Coulomb blockade regignin this case we can integrate
— 11> |1-1>L,/3 out the states with one or three extra electrons. This is
Egeq 1 — 10> J0 @ equivalent to Schrieffer-Wolff transformation that is used to
ez 11> obtain the conventional Kondo mode.We obtain the fol-
lowing effective low-energy Hamiltonian

FIG. 1. (a) The energy diagram for the spin stat&svl) consid-
ered in our modelA=Ey—Eg_, andE; is the Zeeman splitting.
(b_) Splnjﬂl.p processes beffwegn the spin states. The exchapge CO¥he Hamiltonian of the dokl 4, reads
plings 3% involving the spin-triplet state only are accompanied by
the scattering of conduction electrons of charindhose involving
both the spin-triplet and -singlet statels,are accompanied by the Hao= 2, EsmfLufsm, (10
interchannel scattering of conduction electrons. SM

Heﬁ:HIeads+Hdot+HS:1+ HS:lHO"’ Héﬁ- (9)

) using pseudofermion operatofs,, (fsy) which create(an-
same as that in the case @;,=C,=1, apart fom a ipiaeg the statg SM). The co%gitioiMof
prefactor! The energies of the triplet state are given by

Es-1im=Es-1—EzM, ©) > flufsw=1 (12)
and the energy of the singlet state is denotedEgy. We SM
defineA by should be fulfilled. The third terrdS=* represents the spin-
flip processes among three components of the spin-triplet
A=Eq~Es-1. (6)  state. This resembles a conventional Kondo Hamiltonian for

The energy diagram for the spin states is indicated in FigS=1 in terms of the spin operat&t
1(a).

The dot is connected to two external leddR with free _ Noa vt A (Y Y A Nt
4d HS=1=>' > J(')[S+cf(',)fc(k?+S_c(')Tc(k'erSZ(c(k',)TTc(k'T)

electrons being described by AR k'1
N : PN QLN ()]
How= 30 2 oleineller cul o)
wherec()! (¢l ) is the creatior(annihilation operator of = 2 i;;z IOLV2(f]4f 10+ Flof1-1)cf) el
an electron in leadr with momentumk, spin o, and orbital kit oo
o . ; ] N
symmetryi(=1,2). The density of states in the leads re + \/E(lerofll_}_fI_lflo)C(k',)T C(k'l)-l,-(fIlfll—fI_lfl_l)
mains constant in the energy band[efD,D]. The tunnel- o o
ing between the dot and the leads is written as x(c(k',);cf(?—c(k',)fc(k'f)]. (12)

- The exchange couplind) is accompanied by the scattering
= e 4. ) :
Hr a;,R kEU, (Ve iCalkoiotH-C.). of conduction electrons of channel The fourth term
HS=1=0 in H4 describes the conversion between the spin-

We assume that the orbital symmetry is conserved in thgiplet and -singlet states accompanied by the interchannel
tunneling processe$.To avoid the complication due to the scattering of conduction electrons

fact that there are two leads=L,R, we perform a unitary
transformation for electron modes in the leads along the

lines of Ref. 9; C(k'(l:(Vf,iC(L',)ka+VE,iC(Fé)k(r)/Vi, 0] HS=1 02%‘,’ J[\/E(filfoo_fgofl—l)c(k')i CE<2T)+\/§(fgof11

= (= Vel + VLicRio) Vi, with Vi= [V [P+ Ve[ e et e e )

The modes{) are not coupled to the quantum dot and shall —f1-1foociri ek’ = (faof oot foof 100 (Chry €k
be disregarded hereafter. ThERqsandH; are rewritten as _C(k%)LTC(k?)—’— (1-2)]. (19

Hieaae= >, elcTe (7)  The coupling constants are given by
ol
Va2
: I0=_——= 14
H=> Vi(c{)Td,,+H.c). (8 2E, (149
Kol
We assume that the state of the dot wiNhelectrons is J= ViV (15)
stable, so that addition/extraction energi&s,=E(N+1) ZAS
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where 1E.=1/E* +1/E~. Note thatJ?=J®J?), The last (@)
term H 4 represents the scattering processes of conduction
electrons without any change of the dot state and is not rel-
evant for the current discussion. The spin-flip processes in-
cluded in our model are shown in Figchl.

Ill. SCALING CALCULATIONS

In this section we calculate the Kondo temperatilize
using the poor man’s scaling technigtfe?*By changing the
energy scalébandwidth of the conduction electrgrfsom D
to D—|dD|, we obtain the scaling equations using the
second-order perturbation calculations with respect to the ex-
change couplings)®, J® andJ. With decreasing, the
exchange couplings are renormalized. The Kondo tempera-
ture is determined as the energy scale at which the exchange
couplings become so large that the perturbation breaks down.

A. In the absence of Zeeman effect

When the Zeeman splitting is small and irrelevaht,
<Tyk, we obtain a closed form of the scaling equations for

J® 3@ and]d in two limits 2! (i) When the energy scale FIG. 2. The scaling calculations of the Kondo temperaliyes
is much larger than the energy differenag|, Hyy can be  a function ofA, (a) when the Zeeman splitting is irrelevari;

safely disregarded iH .. The scaling equations can be writ- <Tk. and(b) in a case off;=—A. D, is the bandwidth in the
ten as leads. In both the figures, cung 6/7=0.25; curveb, 0.15; and
curvec, 0.10, where tafg=J(3)/30),

d JO 3 JO 3 2
_< 5 =—2v| _ ) ) (16) In the intermediate region ofx(0)<A<D,, the ex-
dinD| 3 J@ NNIC) change couplings develop by E@.6) for D>A. Around D
g=A4, J saturates whilg® and J® continue to grow with
decreasindD, following Eq. (17) for D<A. We match the
solutions of these scaling equationsx=A and obtain a
power law of T(A)

(i) ForD<A, the ground state of the dot is a spin triplet an
the singlet state can be disregarded. ThER and J@
evolve independently,

dinD |: 5I0=—2002, (17 Te(A)=T(O)[ T(0)/A TP, 21)

- with
whereas] does not change.
In the case ofA|<Ty, the scaling equationd6) remain 5 9="TJ/[ /(3O — 3@)2/4+ 32+ (3D - 3@ /2] = TP D
valid till the scaling ends. The matrix in E¢L6) has eigen- (22)
values of

for M=) Here (cod,sind)" is the eigenfunction of(lt)he
— 1) 12 o+ (1)_ 1210274092 — 1(1) 1 1(2) matrix in Eq. (16) corresponding toJ,. 6~0 for J
D= (I 9B 22 V(I - )41 T2 9043 ’(01.8) >J@) and = /4 for JM=J?), In general, & =< w/4 and
thus O<tarfd<1.
The larger oneJ ., , diverges upon decreasing the bandwidth  Finally, for A<0, all the coupling constants saturate and
D and determine3y : no Kondo effect is expected, providédl|>T,(0). ThusTx
quickly decreases to zero At~ —T(0). TheKondo tem-
perature as a function af is schematically shown in Fig.

Tk(0)=Doexd —1/2vd . ]=Dgexd — 1/2v(IM+ 3],

(19 2(a).
Here Dy is the initial bandwidth, which is given by
JETE™ 3¢ B. Case ofE,=—A
When A>D,, the scaling equation§l7) work in the WhenE,=—A, the energies of staté80) and|11) are

whole scaling region. This yields degenerate. Then the Kondo effect is expected even when

25,26 - : -
_ B (1) |A|>T¢(0).2>° In this subsection we evaluaf in the
Ti(%)=Doexd — 1/2vJ] (20 special case oE,=—A by the poor man’s scaling method.
for JM=J(). This is the Kondo temperature for spin-triplet (i) For the energy scale @>|A|=E;, Hqo can be dis-
localized spins’ regarded irH.¢. The exchange couplingd!¥, 3@, andJ,
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evolve following Eqg.(16). (ii) In another limit of D<|A|

=Ez, only the state$00) and|11) are relevant. IrH, H:% SkclockajLZ EofTrfoJ“]% E fzf(,,cl,g,ckg,
(29
Hle%())"ll):% i_Elz[%JS)(fou—f ofoo)(C(l)Jr Y. with the constraint of
(klr)j'c(l)) +2IO(F] fyp+ £ ofoo)(C(l)TC(l) f}rfT—l—fIfl=1. (29
For electrons in lead&, R, we have performed a unitary
cﬁ',)fc(') ]+2 NCAIRRR OOCS)JC(Z) transformation ofcy,= (V{ ¢ ks + VRCr, kg)/\/ [V [Z+]VR[?

whereV,, is the tunneling coupling to lead.® The last term

+ (DT (2) in Eq. (28) represents the exchange coupling betwé&en
+f00f11ck’T 1+ (1e2)]. (23 =1/2 in the dot and conduction electrofsee Appendix A
IO =30 =30 initially. The scaling procedure yields In the mean field theory, we introduce the order parameter
5= ~ 52 _ S ! fea) +(fle)) (30)
d to describe the spin couplings between the dot states and
i Dj: — I+ 333, (24)  conduction electrons. The mean field Hamiltonian reads

and J®) do not change. These scaling equations are nearly HMF—Z 8ka(er0+z E f1f,— > (V2)(E)c] f,
equwalent to those of the anisotropic Kondo model with ko

=1/22% as pointed out in Refs. 25,26.
When |A|=E,>D,, the scaling equation§24) remain +H.c)+2J[(E)[>+\ E fif,— ) (31
valid in the whole scaling region. This yields the Kondo
temperature The constraint, Eq(29), is taken into account by the last
term with a Lagrange multipliek. By minimizing the ex-
Tk()=Doex —A(0)/12v(IP+3?)] (25 pectation value of e, (E) is determined self-consistently
with (Appendix A).

In the absence of the Zeeman effeEt,=E =E,. The

1 14\ mean field HamiltonianH e, represents a resonant tunnel-

—In( - ) (0<O=ml8) ing through an “energy level,E,=Ey+\, with “tunneling
A(9)= ) (26)  coupling,” V=—2J(E). V provides a finite width of the

~tan 1\ (7/8< O<rl4), resonancel ,= 7v|V|?, with v being the density of states in

the leads. The constraint, E@Q9), requires that the states for

where \ = \/W% A(6) decreases monotonically with the pseudofermions are half-filled, that = . Hence the
increasingd. A(6)—x as 6—0. A(w/8)=2 and A(w/4) Kondo resonant state appears just at the Fermi |gyehs
= /2. When J®+J@ s fixed, T¢() is the largest at indicated in the insetA) in Fig. 3(a). The self-consistent
JD=3@ (p=n/4) and becomes smaller with decreasingcalculations give us the resonant width
J@ I (=tartg). - _

In the intermediate regionT(0)<|A|=E;<D,, we Ao=mv|V2I(E)|?=Dgexd — 1/20J]. (32)
match the solutions of Eq$16) and (24) at D=|A|. We

. This is identical to the Kondo temperatufe .
obtain a power law

In the presence of the Zeeman splittikg,= Eq—E; and
E|=Ey+Ez. Hence the resonant level is split for spin-up
and -down eIectronsET,LzET,pL)\. The constraint, Eq.
Figure 2b) shows the behaviors of(A) in the case of (29), yieldsEy+\=u [see insetB) in Fig. 3(@]. The reso-

Tk(A)=Tk(O)[T(0)/|A[JAD 7, (27)

E;=—A. nant widthA is determined as
IV. MEAN FIELD CALCULATIONS A2+E2=A2, (33
A. Kondo resonance for spinS=1/2 whereA, is given by Eq.(32). The Kondo temperature is

To illustrate the mean field theory for the Kondo effect in evaluated by this widthT((E;)=A. T decreases with in-
guantum dots, we begin with the usual caseSef1/2. We  creasingE, and disappears & ,=T«(0), asshown in Fig.
assume that one leveEf) in a quantum dot is occupied by 3(a).
an electron with spin either up or doww€1,]). The ef- The conductancé& through the dot is expressed, using
fective low-energy Hamiltonian is r,=mv|V,>% as
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@) s Hye=Hueadt Haor Iuel (ENE + EN(E) ~|(E)/?]
1 ¥
" A D L feu—1 (36)
N Iy £ SMISM ,
X
= where
Jye=JMW+/3M24 332 (37)

Ez and

(b) tan(p = \/ﬁ/JMF . (38)

The last term inHye considers the restriction of Eqll).
The expectation value dfl e is minimized with respect to

O E|2. The Kondo temperature can be estimated by

T=mv|Iue(E)/?, (39)

E, using () determined by the self-consistent calculations
(Appendix B.
FIG. 3. The mean field calculations for the Kondo effect in a  First let us consider the case in the absence of the Zeeman
quantum dot withS=1/2. (a) The Kondo temperatur&y and (b) effect, E;y=Egs—; and Egp=Es—;+A. The resonant level

conductance through the dds, as functions of the Zeeman split- f5r the triplet state is threefold degenerateﬁg,leEszl
ting E; . Ty andE; are in units oDqexp(~1/2vJ) andGisinunits 1) " \whereas the resonant level for the singlet state is at

of (2e*/h)4T' I'g/(I' +Tg)% Inset in (a): The Kondo resonant ~

states created around the Fermi leyelin the leads,(A) in the Eo=Epot . Theselle_vels. are sepgrated by ',[he enelgy

absence andB) presence of the Zeeman splitting. The resonantT_he Lagrange multiplien is determined to fulfll Eq.(lZ_L).

width is given byTy . Figure 4a) shows the calculated results ©f as a function
of A. Both of Tx andA are in units oD exp(—1/vJye). We

find that (i) Tx(A) reaches its maximum at =0, (ii) for

2 2
- 2e” 4Ty [ Ez (34 A>Tg(0), Tk(A) obeys a power law
h (T +TR)? Tk(0)) |
Po_
This is the conductance in the unitary limit fB;=0. Figure Tk(A)A®T¢=const., (40)

3(b) presents thé&e, dependence of the conductance. With ) o )
increasingE,, the splitting between the resonant levels for@nd i) for A<O, Ty decreases rapidly with increasipy|
spin up and down becomes larger. In consequence the arind disappears @ = A~ —T(0):
plitude of the Kondo resonance decreaseg.atwhich re-
duces the conductance. A= —Dgexp( — 1vdye) (1+tarfe) (tarfe) ST,
(41)
B. Kondo resonance in the present model

i . These features are in agreement with the results of the scal-
Now we apply the mean field theory to our model which ing calculations.

has the spin-triplet and -singlet states in a quantum dot. The "te pehaviors offc(A) can be understood as follows.
spin states of the coupling to a conduction electron &e ( The inset of Fig. 4a) schematically shows the Kondo reso-
=1)®(S=1/2)=(S=3/2)®(S=1/2) for the former, and npant states. The resonance of the triplet state is denoted by
(S=0)®(S=1/2)=(S=1/2) for the lattefAppendix B. To  sqjid lines, whereas that of the singlet state is by dotted lines.
represent the competition between the triplet and singlea) When A>T,(0), thetriplet resonance appears around
states, therefore, the order parameter should be a spinor ﬂf, whereas the singlet resonance is far abavéB) With a

S=1/2. ltis{ ﬁ) where decrease in\, the two resonant states are more overlapped at
f e ' - w, which raisesT gradually. This results in a power law of

~ cose(\2f1 e+ F1oci) V3 + (sing) F el Tk(A), Eq.(40). The largest overlap yields the maximum of

=T 4 C03go(\/Efl,lc(kiufIOC(k%))/\/g—(Singo)fgoc(sz) Tk at A=0. (C) When A<O0, the singlet and triplet reso-

(35) nances are located below and abqwgerespectively, being
sharper and farther from each other with increasing Fi-
for JM>J3) A mode of the largest coupling is taken into nally the Kondo resonance disappears\atA .
account in this approximation. The Hamiltonian reads The conductance through the dot is given by
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(a)
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2r <
X
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1 .
0
(b) Ez
1 N (b) 3 T T T T
0]
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|_¥ o d//
0 ' - [ 1N
A
FIG. 4. The mean field calculations for the Kondo effect in the oL L
present model. The Zeeman splitting is disregardeg<{Ty). (a) -10
The Kondo temperatur€ and(b) conductance through the d@, A
as functions of A=Eyp—Eg_,. Tx and A are in units of ) )
Doexp(—1/vdye). G, in units of 2%h, is evaluated in a symmetric FIG. 5. The mean field calculations for the Kondo temperature

case of I =T (i=1,2). tane=33/Jye where curvea, ¢/m T« inthe present model/=0.15 where ta@=\/§j/_JMF. All of
=0.25; curveb, 0.15; and curve, 0.10. Note thatp/7<1/6 in this ~ Ez» A, andTy are in units ofDexp(~1/vJyg). () Tk is plotted in
approximation(casea is only for reference Inset in (a): The  Ez-A plane, by contour lines drawn every 0.25. The lighter shade
Kondo resonant states f&=1 (solid line) and for S=0 (dotted indicates the larger values @ . (b) T as a function ofA when

line) when (A) A>T,(0), (B) A~Tx(0), and(C) A<O. E; is fixed at curvea, O; curveb, 1; curvec, 2; curved, 5; and
curve e, 10. The broken line indicate$y in the case of—A
_ :Ez.
arir A2
Gl(e?/h)= 1L 1R2 = 1; X2 : .
(F{+TR\ (e —E1p)+AY,; of ¢=0.15. Figure §b) presentsTy as a function ofA for

several values oE,. WhenE; is large enough, the Kondo
effect takes place only when the resonant stat¢ldf is
overlapped with that of00). Then T is the largest at\
= —E; and decreases with being away from this value. At
A=—E,, Tk obeys a power law

A2
A10

+f
(e—Ej0)?+A%,

ATETR A%
(T2+T3)? (e —Eon)?+A%,

. (42

X _ _ TK(A)|A|1/(2+3 tan2<p): const., (43)
where '}, = 7|V, |%. The resonant widths aréi;/A,

=(2 CO§¢)/3’9A10/A02(0032@)/& andAgo/Ag=sirfe with  \hich is indicated by a broken line in Fig.i§. This is
Ao=mv|Iue(E)|?. The conductancé as a function oA is  qualitatively in agreement with the calculated results by the
shown in Fig. 4b), in a symmetric case of | =I'y (i  scaling method.
=1,2). G=2e%h for A>0, whereasG goes to zero sud- Figure 6 indicates the conductan in Ez-A plane,
denly forA<0. AroundA =0, G is larger than the value in when¢=0.157 andI'| =T (i=1,2). G takes the value of
the unitary limit, 22/h, which is attributable to nonuniversal 2e?/h aroundE,=0 andA>0, and also along the line of
contribution from the multichannel nature of our moffel. E;=—A. (G>2€e?h in the neighborhood oE,=A=0, as
In the presence of the Zeeman splittinG;yy=Es-1 discussed aboveFor sufficiently largeE,, our model is
—EzM, the resonant level of the triplet state is split into nearly equivalent to the anisotropic Kondo model wih
three. With increasingE;, the Kondo effect is rapidly =1/225?HenceG=2e?/h atA=—E, and reduces to zero
weaken except in the region &f~—E,. In Fig. 5a), we  asA deviates from this value, in the same way as in Fig) 3
show the Kondo temperatuii in E,-A plane, in the case for the case o5=1/2.
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effectively for an increase ifi. In the mean field calcula-
tions, the interchannel couplings are taken into account in
Eq. (37) only partly. In fact, conduction electrons of channel
1 and 2 independently take part in the conductance(42).

By the perturbation calculations with respect to the exchange
couplings, we find that mixing terms between the channels
appear in the logarithmic corrections to the conduct&hce.
We could improve the mean field calculations by adopting
another form of the order parameter than ).

Our calculated results being expressed in term&,0E,
and Ty are applicable to any experimental realization, either
at small or large magnetic fielB. At small B, our results
explain the experimental findings by Sasakial:'* The
Kondo effect is largely enhanced arouAd=0 whenA is
tuned by the orbital effect of the magnetic field=0 atB
~0.2 T, where the Zeeman effect can be safely disregarded.

FIG. 6. The mean field calculations for the conducta@da the At_larg_e B, the Zeeman effect splits three components Qf the
present modelG is plotted inE,-A plane, by contour lines drawn spin-triplet state. The Kondo effect has -been observed in car-
every 0.2(2%h). The lighter shade indicates the larger values of 20N nanotubes @~1 T (Ez=gugB with g=2.0) where
G. E, and A are in units ofDoexp(—1/vdyg). /m=0.15 where the energy of one component of the triplet state coincides

tang=\33/dye, andT! =T (i=1,2). with that of the singlet stat® The Kondo effect induced by
the Zeeman effect may be observed in quantum dots on
V. CONCLUSIONS AND DISCUSSION semiconductor heterostructures with a smaller g factpr (

. . ~0.4), under higher magnetic field3?® In such experi-
The Kondo effect in quantum dots with an even number, ) 9 g P

. . ; ments, the value of the Zeeman splittieg can be controlled
of electrons has been investigated theoretically. The Kond Pty

By applying a large magnetic field parallel to the dot while
temperaturel ¢ has been calculated as a function of the en-,"_ ="~ e -
ergy differenced = Eqo— Ex. ; and the Zeeman splittingy, A=Eqgy—Egs-1 by a small magnetic field perpendicularly to

ing th 's scaling method and field theory e 4%
using theé poor mans scaling method and mean fIeld tNeory. 1, s naner, we have restricted our considerations to the

The scaling calculations have indicated that the competitior%pace 0fC,=C, in Eq. (4). This is a good starting point in

between the spin-triplet and -singlet states significantly eNs e vicini fA=03%5 ation i
. =01 h
hances the Kondo effect. When the Zeeman effect is |rreI:[ e vicinity o 0 Investigation in the space o,

evant,E,<Ty, Tk is maximal aroundd =0 and decreases =\2 andszo,_hO\_Never, ha_s shown d|ffe£en§2f|xed points
: ) - of the renormalization flow in cases d&,=0"“ and E,
with A obeying a power law. In a case of A=E,, the

— _As 25 . . . ~
Kondo effect takes place from the degeneracy between twg A>Ty.” In possible realization€,~ C, for small|A|

» 38 ;
states|00) and|11). Even in this case, the contribution from and C2|<C1 .forhlar?e 4], and o?]r calculatlonsbcould beh
the other states of higher enerdg) and|1 —1), plays an incomplete in the latter region. The crossover between the

important role in the enhancement B . As a resultT, is regions requires further studies. A generalized renormaliza-

maximal arouncE,=0 and depends oF, by a power law tion analysis is in progress for this problem.
again.

The mean field theory yields a clear-cut view for the
Kondo effect in quantum dots. Considering the spin cou- The authors are indebted to L. P. Kouwenhoven, S. De
plings between the dot states and conduction electrons asFaanceschi, J. M. Elzerman, K. Maijala, S. Sasaki, W. G. van
mean field,(f5ycl)), we find that the resonant states areder Wiel, Y. Tokura, L. I. Glazman, M. Pustilnik, and G. E.
created around the Fermi level. The resonant width is W. Bauer for valuable discussions. The authors acknowledge
given by the Kondo temperatufig . The unitary limit of the  financial support from the “Netherlandse Organisatie voor
conductanceG ~ 2e?/h, can be easily understood in terms of Wetenschappelijk OnderzoekNWO). M. E. is also grateful
the tunneling through these resonant states. In our model, tier financial support from the Japan Society for the Promo-
overlap between the resonant state§efl andS=0 in the tion of Science for his stay at Delft University of Technol-
dot enhances the Kondo effect. The mean field calculation€gy.
have led to a power-law dependencelgfon A and onE,,
in accordance with the scaling calculations. APPENDIX A: MEAN FIELD CALCULATIONS FOR  S=1/2

The mean field theory is not quantitatively accurate for
the evaluation ofT,.%! (In the case ofS=1/2, the exact
value of Tk is obtained accidentallyln our model, the scal-

ACKNOWLEDGMENTS

The original Hamiltonian for a quantum dot with one en-
ergy level reads

ing calculations indicate that all the exchange couplings, N +
JM, 3@ andJ, are renormalized altogether following Eq. _QZ‘,R %‘ 8kc“'k0C“'k”+a=§L“,R % (VaCokodotH-C)
(16) when|A| andE; are much smaller than the energy scale

D. In consequence two channels in the leads are coupled T Haot (A1)
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with This yieldsEqy+\ =0. The minimization oE,, with respect
to A (or [(E)|?) determinesh
Hgo= >, Eod'd,+Udld.d'd, . A2
o o () e _ Z In E2+A2 N
For the state of one electron in the dot, the addition and dA 2m 77”‘] '

extraction energies are given W =Ey+U—u and E-
=u—Ey, respe?:tively. Tge partaslmeter’oéo andMU, in Eq. For Ez=0, we find
A2) should be determined to fit these energies to experimen- < ~
'Eal c}ata. For conduction electrons in IeadsR,gwe perfo?m a A=Doex ~1/2vJ]=Ao. (A8)
unitary transformation,cy,= (V} ¢ ko + VECrKo)/V, Ek(r This is equal to the Kondo temperatuiig,. ForE;#0, Eq.
=(~VRiCLkot VLiCrI)V,  with  V=\[V[+][Vg]?, (A7) yields
along the lines of Ref. 9. We disregard the moE,g,sthat are
uncoupled to the quantum dot.

We consider the Coulomb blockade region for one elec-
tron, where botfE* andE~ are much larger than the level

A?+EZ=AZ. (A9)

Using theT matrix, T, the conductance through the dot,

broadeningl’= 7mvV? (v being the density of states in the G, is given by
leads and temperature. Integrating out the dot states with e?
zero or two electrons by the Schrieffer-Wolff G= F(ZWV)ZE [(RK 0| TIL ko) [?
transformatior’;® we obtain the effective low-energy Hamil- 4 P
tonian
€ oy VAR
H=2 eyciCert 2 Eoflf+I2 [Sicy 0 h (IVL+|VR[?)?
g g kk/
+5.¢!, ¢ +5,c!, . co—cl, el (A3) X 2 (e ol T o) |2
— %k okl k' okl T Bk Ykl = 7 a
E=E =

under a constraint of Eq29). In the second term we have i ‘
included the Zeeman effedE; | =E,=E,. The third term e’ 4I'I'g A? ‘
represents the exchange coupling between the dot spin and Y ' (A10)

h 2 & CE 2. %2
conduction electrons withl=V?%E,, where 1E.=1/E" (T +Tr) (6—E,)"+A ‘s:u

+1/E”. By expressing the spin operat& as S,=flf ,  wherel',=7v|V,|2. This yields Eq(34) in the text. On the

8 =f1f,, §,=(flf,~17f,)/2, one finds that Eq(A3) is  second line in Eq.(A10), |¢x,)=cl,|0)=(V(|L ko)
identical to Eq.(29). +Vg|R,ko))/V, and theT matrix is evaluated in terms of

The mean field Hamiltonian, Eq31), includes “energy the Green function, EqA4), |V|?G (e =&y).
levels” for pseudofermionsE,=E,+ \, which are coupled
to the leads with “tunne”ng amp"tude‘f}': — \/§J<E> The APPENDIX B: MEAN FIELD CALCULATIONS IN THE

Green function for the pseudofermions is PRESENT MODEL
1 For the spin states of the coupling between the spin triplet
G, (e)= _ _ (A4) S=1 in the dot and a conduction electron, we introduce
7 —E,+iA spinors ofS=1/2 and 3/2. Using the Clebsch-Gordan coef-

~ ~ ficients, they are given by
where A= 7v|V|2. This represents the resonant tunneling

with the resonant widtf . 0 (V2 + el /3
The expectation value of the Hamiltonian, E®1), is 0= 2 (V2] o+ L) V3) (BY)
written as -1 107k
X E 3 =2 ~ £ c(')
o A E, A AIE,,+A2 A ()11 0
= ——+—tan '—+— —\+— i i
MF < s E, 27 : D2 N GO = 11C + \/_floc I3 (B2
(AS) R I 1C(I)_ \/—floc(l))/\/§ .
whereDg is the bandwidth in the leadsiVe setu=0 in this —fI 10(')
3%%??(1')(' The constraint of E(R9) is equivalent to the con- The exchange couplings between the triplet state and con-
duction electrons, Eq12), can be rewritten as
(9EMF__ E tan 15— 1=0 A6 S=1 [ YT - a0
- o E, = (A6) H> :ing(')[_ZQllz Qipt Q3 Qgp). (BI
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In the same way we define the spinorsSsf 1/2 to represent
the spin couplings between the singlet st&te0 and a con-

duction electron
k

wherei =2 and 1 fori=1 and 2, respectively. The conver-
sion between the triplet and singlet states, @8), is rewrit-
ten as

()

N
focCk/’

- (B4)
- fgoc(kIT)

Moo= G S (OG0 Hel (89
i=12

In HS=1+HS=1=% a mode of the largest coupling with

=1/2 is given by

E =(cose) O+ (sing) ¥ (B6)

for JM=J() which is Eq.(35) in the text. The correspond-
ing eigenvalue is given by EG37) and ¢ is determined as in
Eq. (398).

The mean field Hamiltonian, E¢36), represents the reso-

nant tunneling through the energy levels for the pseudo-

fermions,Esy=Esu+ \. The expectation value of E¢36),
Eve, is evaluated in the same way as in Appendix A.
JEme/IN=0 yields

A A A
tan 1 =2+ tan 1=t tan =2

(B7)
Eix E1o 00

=1,

PHYSICAL REVIEW B 64 085322

where the resonant widths aré;;/A,=(2 cose)/3,
Ao/Ao=(coe)/3, and Agl/Ay=sirfe with A,
=mv|Iu(E)|?. We setu=0 here. MinimizingEye with
respect taA,, we obtain
2 E2+A2, 1
§(Cosz<p)lnT+§(co§cp)ln
0
Efo+ A%
D3

=2 %2
SETRAYT)
2
0

2

+(sirfe)In -3

(B8)

Equations(B7) and (B8) determine\ andA, (or [(E)|?).
The conductance through the dot is given by

e? .
G= F(27w)2 > URK o' ,j|TIL ka,i)|?

i,j,o,0

E T E =M
2 i i
e r I
=g (2mv)° 2 i Ri —
ij,o0 FL+FR FL+FR
XN T2 . (BY)
E=E =

where T'=7v|V,|2 and |¢)y=(V_|L ko,i)
+Vgi|Rko,i))/V;. The T matrix can be evaluated, using
the Green function for the pseudofermiorSgy(e)=[¢
—Esut+iAgy] 1, as in Appendix A. This yields Eq42) in
the text.

1D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M.A. Kastner, Natufeondon 391,
156 (1999; D. Goldhaber-Gordon, J. ®es, M.A. Kastner, H.
Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. L8&tt, 5225
(1998.

2S.M. Cronenwett, T.H. Oosterkamp,
ence281, 540(1998.

3F. Simmel, R.H. Blick, J.P. Kotthaus, W. Wegscheider, and M.

Bichler, Phys. Rev. Lett83, 804 (1999.
4J. Schmid, J. Weis, K. Eberl, and K.v. Klitzing, Phys. Rev. Lett.
84, 5824(2000.

SW.G. van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman

S. Tarucha, and L.P. Kouwenhoven, Scie@88, 2105(2000.

6J. Kondo, Prog. Theor. Phy82, 37 (1964.

7A. C. Hewson,The Kondo Problem to Heavy Fermiof&am-
bridge, Cambridge, England, 1993

8K. Yosida, Theory of MagnetisniSpringer, New York, 1996

9L.I. Glazman and M.ERakh, Pis’'ma zh. ksp. Teor. Fiz.47,
378(1988 [ JETP Lett.47, 452(1988)].

107 K, Ng and P.A. Lee, Phys. Rev. Lel, 1768(1988.

1A, Kawabata, J. Phys. Soc. Jp60, 3222(1991).

125, Hershfield, J.H. Davies, and J.W. Wilkins, Phys. Rev. LG.
3720(199)); Phys. Rev. B46, 7046(1992.

13y, Meir, N.S. Wingreen, and P.A. Lee, Phys. Rev. L&, 2601
(1993.

145 sSasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel,
M. Eto, S. Tarucha, and L.P. Kouwenhoven, Nat(rendon
405, 764 (2000.

153 Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P.
Kouwenhoven, Phys. Rev. Left7, 3613(1996.

and L.P. Kouwenhoven, Sciig| p Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M.

Eto, D.G. Austing, T. Honda, and S. Tarucha, Scie?tg 1788
(1997.

17T, Inoshita, A. Shimizu, Y. Kuramoto, and H. Sakaki, Phys. Rev.
B 48, R14725(1993; T. Inoshita, Y. Kuramoto, and H. Sakaki,
Superlattices Microstruc2, 75 (1997).

18T, Pohjola, J. Kaig, M.M. Salomaa, J. Schmid, H. Schoeller, and
G. Scha, Europhys. Lett40, 189 (1997.

BW. 1zumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. &in2444
(1998.

20A. Levy Yeyati, F. Flores, and A. Mari+Rodero, Phys. Rev. Lett.
83, 600(1999.

2I\M. Eto and Yu.V. Nazarov, Phys. Rev. Le85, 1306(2000.

22p W. Anderson, J. Phys. 8 2436(1970.

23p. Noziees and A. Blandin, J. Phy¢Parig 41, 193(1980).

24D.L. Cox and A. Zawadowski, Adv. Phyd7, 599 (1998.

25M. Pustilnik, Y. Avishai, and K. Kikoin, Phys. Rev. LeB4, 1756
(2000.

26D, Giuliano and A. Tagliacozzo, Phys. Rev. L&, 4677(2000.

085322-10



MEAN-FIELD THEORY OF THE KONDO EFFECT IN . .. PHYSICAL REVIEW B4 085322

27, P. Kouwenhover(private communications numberi is conserved in the tunneling processes between the dot
283. Nygad, D.H. Cobden, and P.E. Lindelof, Natuiteondon 408 and leads.

342 (2000. 350ne finds thatC;=C,=1 in the case of5=0, considering the
29A. Yoshimori and A. Sakurai, Suppl. Prog. Theor. Ph48, 162 matrix element of the Coulomb interaction betwed] |0)

andd},d] |0), (22€’/r|11)=K. In rectangular dot$Ref. 14,
30 . the matrix elemenK is not zero and of the same order as the
C. Lacroix and M. Cyrot, Phys. Rev. B0, 1969(1979. exchange interaction{12/e?/r|21)=J, and smaller than the

Th|§ mean field theory is equivalent to the me_an field theory Hartree term(11/€?/r|11)~ (charging energy typically by one
using the slave bosons far=« Anderson model in the Kondo order. In a case of(llleZ/r|11>=(22|e2/r|22> C,/C,=(5

(1970.

region (Ref. 7). This method is exact in the lardé-imit when + 6%+ K?)/K and thusC;~C, for 6~K (when the singlet and
the dot state idN-fold degenerate. triplet states are degenerag; J).

%M. Pustilnik and L.I. Glazman, Phys. Rev. Le#6, 2993(2000.  36Fp M. Haldane, J. Phys. CL 5015(1978.

%), Affleck, AW.W. Ludwig, and B.A. Jones, Phys. Rev.®, 37| Okada and K. Yosida, Prog. Theor. Phy§, 1483(1973.
9528(1995. %8This result is different from that in Ref. 25, which treats the

34The different symmetry means different orbital quantum number  situation ofC,=12,C,=0 in Eq. (4). Their calculations might
for the one-electron states in a quantum dot. We consider the be better wherfA|=E; is so large thats>K (Ref. 35 (|A|
situation for vertical quantum dots where the orbital quantum increases with). See discussion in Sec. V.

085322-11



