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Mean-field theory of the Kondo effect in quantum dots with an even number of electrons
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We investigate the enhancement of the Kondo effect in quantum dots with an even number of electrons,
using a scaling method and a mean field theory. We evaluate the Kondo temperatureTK as a function of the
energy difference between spin-singlet and -triplet states in the dot,D, and the Zeeman splitting,EZ . If the
Zeeman splitting is small,EZ!TK , the competition between the singlet and triplet states enhances the Kondo
effect. TK reaches its maximum aroundD50 and decreases withD obeying a power law. If the Zeeman
splitting is strong,EZ@TK , the Kondo effect originates from the degeneracy between the singlet state and one
of the components of the triplet state at2D;EZ . We show thatTK exhibits another power-law dependence on
EZ . The mean field theory provides a unified picture to illustrate the crossover between these regimes. The
enhancement of the Kondo effect can be understood in terms of the overlap between the Kondo resonant states
created around the Fermi level. These resonant states provide the unitary limit of the conductanceG;2e2/h.
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I. INTRODUCTION

The Kondo effect observed in semiconductor quant
dots has attracted a lot of interest.1–5 In a quantum dot, the
number of electronsN is fixed by the Coulomb blockade t
integer values and can be tuned by the gate voltage. Usu
the discrete spin-degenerate levels in the quantum dot
consecutively occupied, and the total spin is zero or 1/2
an even and odd number of electrons, respectively.
Kondo effect takes place only in the latter case. The spin
in the dot is coupled to the Fermi sea in external lea
through tunnel barriers, which results in the formation of t
Kondo resonant state at the Fermi level.6–8 The conductance
through the dot is enhanced to a value of the order ofe2/h at
low temperatures ofT!TK ~Kondo temperature!.9–13 This is
called the unitary limit. WhenN is even, there is no localize
spin and thus the Kondo effect is not relevant.

Recently Sasakiet al. has found a large Kondo effect i
so-called ‘‘vertical’’ quantum dots with an evenN.14 The
spacing of discrete levels in such dots is comparable with
strength of electron-electron Coulomb interaction. Hence
electronic states deviate from the simple picture mentio
above.15,16 If two electrons are put into nearly degenera
levels, the exchange interaction favors a spin triplet~Hund’s
rule!.15 This state is changed to a spin singlet by applyin
magnetic field perpendicularly to the dots, which increa
the level spacing. Hence the energy difference between
singlet and triplet states,D, can be controlled experimentall
by the magnetic field. The Kondo effect is significantly e
hanced around the degeneracy point between the triplet
singlet states,D50. Tuning of the energy difference betwee
the spin states is hardly possible in traditional Kondo s
tems of dilute magnetic impurities in metal and thus t
situation is quite unique to the quantum dot systems.

The Kondo effect in multilevel quantum dots has be
investigated theoretically by several groups.17–20 They have
shown that the contribution from multilevels enhances
Kondo effect. In our previous paper,21 we have considered
the experimental situation by Sasakiet al. in which the spin-
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singlet and -triplet states are almost degenerate. We h
calculated the Kondo temperatureTK as a function ofD,
using the ‘‘poor man’s’’ scaling method.22–24We have shown
that TK(D) is maximal aroundD50 and decreases with in
creasingD obeying a power law,TK(D)}1/Dg. The expo-
nent g is not universal but depends on a ratio of the init
coupling constants. Our results indicate that the Kondo ef
is enhanced by the competition between singlet and tri
states, in agreement with the experimental findings.14

We have disregarded the Zeeman splitting of the sp
triplet state,2EZM (M50,61 is z component of the tota
spin S51), since this is a small energy scale in the expe
mental situation,EZ!TK .14 Pustilnik et al. have studied an-
other situation where the Zeeman effect is relevant,EZ
@TK .25 They have considered ‘‘lateral’’ quantum dots wi
an evenN, when the ground state is a spin singlet and
first excited state is a triplet (D,0). By applying a quite
large magnetic field parallel to the dots, the Zeeman eff
reduces the energy of one component of the triplet st
uSM&5u11&, and finally makes it the ground state. At th
critical magnetic field ofEZ52D, the energy of the state
u11& is matched with that of the singlet state,u00&. They
have found that a Kondo effect arises from the degener
between the two states. This is contrast to the usual case
spin 1/2, in which the Zeeman effect lifts off the degenera
of the spin states and, as a result, breaks the Kondo effe
similar idea has been proposed by Giuliano a
Tagliacozzo.26 Their mechanism might explain some expe
mental results of the Kondo effect in quantum dots un
high magnetic fields.4,27 Indeed, this type of Kondo effec
has been reported in carbon nanotubes where the Zee
effect is stronger than in semiconductor heterostructures28

The purpose of the present paper is to construct a gen
theory for the enhancement of the Kondo effect in quant
dots with an even number of electrons, with changingD and
EZ . Hence various experimental situations are analyzed
unified way. We adopt the poor man’s scaling method alo
with the mean field theory. It is well known that the chara
teristic energy scale of Kondo physics, the Kondo tempe
©2001 The American Physical Society22-1
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MIKIO ETO AND YULI V. NAZAROV PHYSICAL REVIEW B 64 085322
tureTK , is determined by all the energies fromTK up to the
upper cutoff.7,8 By the scaling method, we can evaluateTK

~its exponential part at least! by taking all the energies
properly.22–24WhenEZ is negligible, the energies fromD to
the upper cutoff would feel fourfold degeneracy of the d
states, u1M & (M50,61) and u00&, which enhances the
Kondo temperature. With increasingD, TK decreases by a
power law.21 We extend our previous calculations to the ca
of EZ52D@TK which has been discussed by Pustiln
et al.25 and Giuliano and Tagliacozzo.26 We take into accoun
the energies not only fromTK to EZ , where only two degen-
erate statesu11& and u00& are relevant, but also fromEZ to
the upper cutoff, where the dot states seem fourfold deg
erate. The latter energy region has been neglected in Ref
and 26. In consequence we find a power-law dependenc
TK on EZ again.

The mean field theory of the Kondo effect was pionee
by Yoshimori and Sakurai29 and is commonly used for th
Kondo lattice model.30 It is useful to capture main qualitativ
features of the Kondo effect; renormalizability at the scale
TK , resonances at the Fermi level, and resonant trans
sion. The simplicity and universality of the mean field theo
have driven us to apply it to the problem in question. Ge
erally the Kondo effect gives rise to a many-body grou
state which consists of the dot statesuSM&5 f SM

† u0& and the
conduction electronsPcks

† u0&. The total spin of this ground
state is less than the original spinS localized in the dot. The
binding energy is of the order of the Kondo temperatureTK .
We take into account the spin couplings between the
states and conduction electrons,^ f SM

† cks&, by the mean field,
neglecting their fluctuations.31 These spin couplings give ris
to resonant states around the Fermi levelm with the width of
the order ofTK . The conduction electrons can be transpor
through the resonant levels, which yields the unitary limit
the conductanceG;2e2/h. For our study, the mean fiel
calculations have the following advantages.~i! The enhance-
ment ofTK by the competition between the singlet and trip
states can be directly understood in terms of the overlap
tween their Kondo resonant states.~ii ! The power-law depen
dence ofTK on D or EZ is obtained, which is in accordanc
with the calculated results by the scaling method.~iii ! The
mean field calculations are applicable to the intermediate
gions where two ofTK , D, andEZ , are of the same orde
The poor man’s scaling method hardly gives any results
these regions. Hence we can examine the whole param
region ofD andEZ by the mean field theory. The disadva
tage of the mean field calculations is that they only g
qualitative answers.31 Hence the mean field theory and sca
ing method are complementary to each other for understa
ing the Kondo effect.

We shall discuss the relation of our approach to the ren
malization group analysis of the multilevel Kondo effect.23,24

Our model effectively reduces to the one with two chann
in the leads and spin-triplet~and -singlet! state in the dot
when EZ!TK . The ground state of this model would b
believed to be a spin singlet, which corresponds to the
screening of the dot spin. The poor man’s scaling appro
and our mean field theory, however, show a tendency to
08532
t

e

n-
25
of

d

f
is-

-

ot

d
f

t
e-

e-

n
ter

d-

r-

s

ll
h
e

formation of the underscreened Kondo ground state w
spin 1/2. We should mention that the exact ground state c
not be determined within the limits of the applicability o
these approaches. Pustilnik and Glazman have recently
posed a different model for the ‘‘triplet-singlet Kond
effect.’’32 In our notation, they setC15A2,C250 in Eq. ~4!
for the singlet state. Their model can be directly mapp
onto a special case of the two-impurity Kondo model,33 for
which the ground state is a spin singlet. We are concer
about the case ofC1'C2, and we find that the difference
between C1 and C2 reduces as a result of th
renormalization.21 This suggests that the case considered
Ref. 32 is by no means a generic one.

This paper is organized as follows. Our model is p
sented in the next section. In Sec. III, we rederiveTK(D)
when the Zeeman splitting is irrelevant, using the poor ma
scaling method, in a simpler form than our previous work21

Then we extend our calculations to the case ofEZ52D
@TK . Section IV is devoted to the mean field theory for t
Kondo effect in quantum dots. First we explain this theo
for the usual Kondo effect in a quantum dot withS51/2.
Then we apply the mean field scheme to our model with
even number of electrons in the dot. The conclusions
discussion are given in the last section.

II. MODEL

We are interested in the competition between the sp
singlet and -triplet states in a quantum dot. To model
situation, it is sufficient to consider two extra electrons in
quantum dot at the background of a singlet state of all ot
N22 electrons, which we will regard as the vacuumu0&.
These two extra electrons occupy two levels of different
bital symmetry.34 The energies of the levels are«1 and «2.
Possible two-electron states are~i! the spin-triplet state,~ii !
the spin-singlet state of the same orbital symmetry as
triplet state, 1/A2(d1↑

† d2↓
† 2d1↓

† d2↑
† )u0&, and ~iii ! two singlet

states of different orbital symmetry,d1↑
† d1↓

† u0&, d2↑
† d2↓

† u0&.
Among the singlet states, we only consider a state of
lowest energy, which belongs to group~iii !. Thus we restrict
our attention to four states,uSM&:

u11&5d1↑
† d2↑

† u0&, ~1!

u10&5
1

A2
~d1↑

† d2↓
† 1d1↓

† d2↑
† !u0&, ~2!

u121&5d1↓
† d2↓

† u0&, ~3!

u00&5
1

A2
~C1d1↑

† d1↓
† 2C2d2↑

† d2↓
† !u0&, ~4!

where dis
† creates an electron with spins in level i. The

coefficients in the singlet state,C1 and C2 (uC1u21uC2u2

52), are determined by the electron-electron interaction
one-electron level spacingd5«22«1. We setC15C251.
This is the case ford50.35 AlthoughC1ÞC2 in general, the
scaling analysis shows that the Kondo temperature is
2-2
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MEAN-FIELD THEORY OF THE KONDO EFFECT IN . . . PHYSICAL REVIEW B64 085322
same as that in the case ofC15C251, apart from a
prefactor.21 The energies of the triplet state are given by

ES51,M5ES512EZM , ~5!

and the energy of the singlet state is denoted byE00. We
defineD by

D5E002ES51 . ~6!

The energy diagram for the spin states is indicated in F
1~a!.

The dot is connected to two external leadsL, R with free
electrons being described by

H leads5 (
a5L,R

(
ks i

«k
( i )ca,ks

( i )† ca,ks
( i ) ,

whereca,ks
( i )† (ca,ks

( i ) ) is the creation~annihilation! operator of
an electron in leada with momentumk, spins, and orbital
symmetryi (51,2). The density of statesn in the leads re-
mains constant in the energy band of@2D,D#. The tunnel-
ing between the dot and the leads is written as

HT5 (
a5L,R

(
ks i

~Va,ica,ks
( i )† dis1H.c.!.

We assume that the orbital symmetry is conserved in
tunneling processes.34 To avoid the complication due to th
fact that there are two leadsa5L,R, we perform a unitary
transformation for electron modes in the leads along
lines of Ref. 9; cks

( i )5(VL,i* cL,ks
( i ) 1VR,i* cR,ks

( i ) )/Vi , c̄ks
( i )

5(2VR,icL,ks
( i ) 1VL,icR,ks

( i ) )/Vi , with Vi5AuVL,i u21uVR,i u2.

The modesc̄ks
( i ) are not coupled to the quantum dot and sh

be disregarded hereafter. ThenH leadsandHT are rewritten as

H leads5(
ks i

«k
( i )cks

( i )†cks
( i ) , ~7!

HT5(
ks i

Vi~cks
( i )†dis1H.c.!. ~8!

We assume that the state of the dot withN electrons is
stable, so that addition/extraction energies,E6[E(N61)

FIG. 1. ~a! The energy diagram for the spin statesuSM& consid-
ered in our model.D5E002ES51 andEZ is the Zeeman splitting.
~b! Spin-flip processes between the spin states. The exchange
plings J( i ) involving the spin-triplet state only are accompanied
the scattering of conduction electrons of channeli. Those involving

both the spin-triplet and -singlet states,J̃, are accompanied by th
interchannel scattering of conduction electrons.
08532
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2E(N)7m, wherem is the Fermi energy in the leads, a
positive. We are interested in the case whereE6@uDu, d and
also exceed the level broadeningG i5pnVi

2 and temperature
T ~Coulomb blockade region!. In this case we can integrat
out the states with one or three extra electrons. This
equivalent to Schrieffer-Wolff transformation that is used
obtain the conventional Kondo model.7,8 We obtain the fol-
lowing effective low-energy Hamiltonian

Heff5H leads1Hdot1HS511HS51↔01Heff8 . ~9!

The Hamiltonian of the dotHdot reads

Hdot5(
S,M

ESMf SM
† f SM , ~10!

using pseudofermion operatorsf SM
† ( f SM) which create~an-

nihilate! the stateuSM&. The condition of

(
SM

f SM
† f SM51 ~11!

should be fulfilled. The third termHS51 represents the spin
flip processes among three components of the spin-tri
state. This resembles a conventional Kondo Hamiltonian
S51 in terms of the spin operatorŜ:

HS515(
kk8

(
i 51,2

J( i )@Ŝ1ck8↓
( i )†ck↑

( i )1Ŝ2ck8↑
( i )†ck↓

( i )1Ŝz~ck8↑
( i )†ck↑

( i )

2ck8↓
( i )†ck↓

( i )!#

5(
kk8

(
i 51,2

J( i )@A2~ f 11
† f 101 f 10

† f 121!ck8↓
( i )†ck↑

( i )

1A2~ f 10
† f 111 f 121

† f 10!ck8↑
( i )†ck↓

( i )1~ f 11
† f 112 f 121

† f 121!

3~ck8↑
( i )†ck↑

( i )2ck8↓
( i )†ck↓

( i )!#. ~12!

The exchange couplingJ( i ) is accompanied by the scatterin
of conduction electrons of channeli. The fourth term
HS51↔0 in Heff describes the conversion between the sp
triplet and -singlet states accompanied by the interchan
scattering of conduction electrons

HS51↔05(
kk8

J̃@A2~ f 11
† f 002 f 00

† f 121!ck8↓
(1)†ck↑

(2)1A2~ f 00
† f 11

2 f 121
† f 00!ck8↑

(1)†ck↓
(2)2~ f 10

† f 001 f 00
† f 10!~ck8↑

(1)†ck↑
(2)

2ck8↓
(1)†ck↓

(2)!1~1↔2!#. ~13!

The coupling constants are given by

J( i )5
Vi

2

2Ec
, ~14!

J̃5
V1V2

2Ec
, ~15!

ou-
2-3
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MIKIO ETO AND YULI V. NAZAROV PHYSICAL REVIEW B 64 085322
where 1/Ec51/E111/E2. Note thatJ̃25J(1)J(2). The last
term Heff8 represents the scattering processes of conduc
electrons without any change of the dot state and is not
evant for the current discussion. The spin-flip processes
cluded in our model are shown in Fig. 1~b!.

III. SCALING CALCULATIONS

In this section we calculate the Kondo temperatureTK
using the poor man’s scaling technique.22–24By changing the
energy scale~bandwidth of the conduction electrons! from D
to D2udDu, we obtain the scaling equations using t
second-order perturbation calculations with respect to the
change couplings,J(1), J(2), and J̃. With decreasingD, the
exchange couplings are renormalized. The Kondo temp
ture is determined as the energy scale at which the exch
couplings become so large that the perturbation breaks do

A. In the absence of Zeeman effect

When the Zeeman splitting is small and irrelevant,EZ
!TK , we obtain a closed form of the scaling equations
J(1), J(2), andJ̃ in two limits.21 ~i! When the energy scaleD
is much larger than the energy differenceuDu, Hdot can be
safely disregarded inHeff . The scaling equations can be wri
ten as

d

d ln D S J(1) J̃

J̃ J(2)D 522nS J(1) J̃

J̃ J(2)D 2

. ~16!

~ii ! For D!D, the ground state of the dot is a spin triplet a
the singlet state can be disregarded. ThenJ(1) and J(2)

evolve independently,

d

d ln D
J( i )522nJ( i )2, ~17!

whereasJ̃ does not change.
In the case ofuDu!TK , the scaling equations~16! remain

valid till the scaling ends. The matrix in Eq.~16! has eigen-
values of

J65~J(1)1J(2)!/26A~J(1)2J(2)!2/41 J̃25J(1)1J(2),0.
~18!

The larger one,J1 , diverges upon decreasing the bandwid
D and determinesTK :

TK~0!5D0exp@21/2nJ1#5D0exp@21/2n~J(1)1J(2)!#.
~19!

Here D0 is the initial bandwidth, which is given by
AE1E2.36

When D.D0, the scaling equations~17! work in the
whole scaling region. This yields

TK~`!5D0exp@21/2nJ(1)# ~20!

for J(1)>J(2). This is the Kondo temperature for spin-tripl
localized spins.37
08532
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In the intermediate region ofTK(0)!D!D0, the ex-
change couplings develop by Eq.~16! for D@D. AroundD

5D, J̃ saturates whileJ(1) and J(2) continue to grow with
decreasingD, following Eq. ~17! for D!D. We match the
solutions of these scaling equations atD.D and obtain a
power law ofTK(D)

TK~D!5TK~0!@TK~0!/D# tan2u, ~21!

with

tanu5 J̃/@A~J(1)2J(2)!2/41 J̃21~J(1)2J(2)!/2#5AJ(2)/J(1)

~22!

for J(1)>J(2). Here (cosu,sinu)T is the eigenfunction of the
matrix in Eq. ~16! corresponding toJ1 . u;0 for J(1)

@J(2) andu5p/4 for J(1)5J(2). In general, 0,u<p/4 and
thus 0,tan2u<1.

Finally, for D,0, all the coupling constants saturate a
no Kondo effect is expected, provideduDu@TK(0). ThusTK
quickly decreases to zero atD;2TK(0). TheKondo tem-
perature as a function ofD is schematically shown in Fig
2~a!.

B. Case ofEZÄÀD

WhenEZ52D, the energies of statesu00& and u11& are
degenerate. Then the Kondo effect is expected even w
uDu@TK(0).25,26 In this subsection we evaluateTK in the
special case ofEZ52D by the poor man’s scaling method

~i! For the energy scale ofD@uDu5EZ , Hdot can be dis-
regarded inHeff . The exchange couplings,J(1), J(2), and J̃,

FIG. 2. The scaling calculations of the Kondo temperatureTK as
a function of D, ~a! when the Zeeman splitting is irrelevant,EZ

!TK , and ~b! in a case ofEZ52D. D0 is the bandwidth in the
leads. In both the figures, curvea, u/p50.25; curveb, 0.15; and
curvec, 0.10, where tan2u5J(2)/J(1).
2-4
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MEAN-FIELD THEORY OF THE KONDO EFFECT IN . . . PHYSICAL REVIEW B64 085322
evolve following Eq.~16!. ~ii ! In another limit of D!uDu
5EZ , only the statesu00& and u11& are relevant. InHeff ,

Heff
u00&,u11&5(

kk8
(

i 51,2
@ 1

2 Js
( i )~ f 11

† f 112 f 00
† f 00!~ck8↑

( i )†ck↑
( i )

2ck8↓
( i )†ck↓

( i )!1 1
2 Jc

( i )~ f 11
† f 111 f 00

† f 00!~ck8↑
( i )†ck↑

( i )

2ck8↓
( i )†ck↓

( i )!#1(
kk8

A2J̃@ f 11
† f 00ck8↓

(1)†ck↑
(2)

1 f 00
† f 11ck8↑

(1)†ck↓
(2)1~1↔2!#. ~23!

Js
( i )5Jc

( i )5J( i ) initially. The scaling procedure yields

d

d ln D
Js

( i )524n J̃2,

d

d ln D
J̃52n~Js

(1)1Js
(2)!J̃, ~24!

and Jc
( i ) do not change. These scaling equations are ne

equivalent to those of the anisotropic Kondo model withS
51/2,22 as pointed out in Refs. 25,26.

When uDu5EZ.D0, the scaling equations~24! remain
valid in the whole scaling region. This yields the Kond
temperature

TK~`!5D0exp@2A~u!/2n~J(1)1J(2)!# ~25!

with

A~u!5H 1

l
lnS 11l

12l D ~0,u<p/8!

2

l
tan21l ~p/8,u<p/4!,

~26!

where l5Aucos 4uu.38 A(u) decreases monotonically wit
increasingu. A(u)→` as u→0. A(p/8)52 and A(p/4)
5p/2. When J(1)1J(2) is fixed, TK(`) is the largest at
J(1)5J(2) (u5p/4) and becomes smaller with decreasi
J(2)/J(1)(5tan2u).

In the intermediate region,TK(0)!uDu5EZ!D0, we
match the solutions of Eqs.~16! and ~24! at D.uDu. We
obtain a power law

TK~D!5TK~0!@TK~0!/uDu#A(u)21. ~27!

Figure 2~b! shows the behaviors ofTK(D) in the case of
EZ52D.

IV. MEAN FIELD CALCULATIONS

A. Kondo resonance for spinSÄ1Õ2

To illustrate the mean field theory for the Kondo effect
quantum dots, we begin with the usual case ofS51/2. We
assume that one level (E0) in a quantum dot is occupied b
an electron with spin either up or down (s5↑,↓). The ef-
fective low-energy Hamiltonian is
08532
ly

H5(
ks

«kcks
† cks1(

s
Es f s

† f s1J(
kk8

(
s,s8

f s
† f s8ck8s8

† cks ,

~28!

with the constraint of

f ↑
†f ↑1 f ↓

†f ↓51. ~29!

For electrons in leadsL, R, we have performed a unitar
transformation ofcks5(VL* cL,ks1VR* cR,ks)/AuVLu21uVRu2

whereVa is the tunneling coupling to leada.9 The last term
in Eq. ~28! represents the exchange coupling betweenS
51/2 in the dot and conduction electrons~see Appendix A!.

In the mean field theory, we introduce the order parame

^J&5
1

A2
(

k
~^ f ↑

†ck↑&1^ f ↓
†ck↓&! ~30!

to describe the spin couplings between the dot states
conduction electrons. The mean field Hamiltonian reads

HMF5(
ks

«kcks
† cks1(

s
Es f s

† f s2(
k,s

~A2J^J&cks
† f s

1H.c.!12Ju^J&u21lS (
s

f s
† f s21D . ~31!

The constraint, Eq.~29!, is taken into account by the las
term with a Lagrange multiplierl. By minimizing the ex-
pectation value ofHMF , ^J& is determined self-consistentl
~Appendix A!.

In the absence of the Zeeman effect,E↑5E↓5E0. The
mean field Hamiltonian,HMF , represents a resonant tunne
ing through an ‘‘energy level,’’Ẽ05E01l, with ‘‘tunneling
coupling,’’ Ṽ52A2J^J&. Ṽ provides a finite width of the
resonance,D̃05pnuṼu2, with n being the density of states i
the leads. The constraint, Eq.~29!, requires that the states fo
the pseudofermions are half-filled, that is,Ẽ05m. Hence the
Kondo resonant state appears just at the Fermi levelm, as
indicated in the inset~A! in Fig. 3~a!. The self-consistent
calculations give us the resonant width

D̃05pnuA2J^J&u25D0exp@21/2nJ#. ~32!

This is identical to the Kondo temperatureTK .
In the presence of the Zeeman splitting,E↑5E02EZ and

E↓5E01EZ . Hence the resonant level is split for spin-u
and -down electrons,Ẽ↑/↓5E↑/↓1l. The constraint, Eq.
~29!, yieldsE01l5m @see inset~B! in Fig. 3~a!#. The reso-
nant widthD̃ is determined as

D̃21EZ
25D̃0

2 , ~33!

where D̃0 is given by Eq.~32!. The Kondo temperature is
evaluated by this width,TK(EZ)5D̃. TK decreases with in-
creasingEZ and disappears atEZ5TK(0), asshown in Fig.
3~a!.

The conductanceG through the dot is expressed, usin
Ga5pnuVau2, as
2-5
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G5
2e2

h

4GLGR

~GL1GR!2 F12S EZ

TK~0! D
2G . ~34!

This is the conductance in the unitary limit forEZ50. Figure
3~b! presents theEZ dependence of the conductance. W
increasingEZ , the splitting between the resonant levels f
spin up and down becomes larger. In consequence the
plitude of the Kondo resonance decreases atm, which re-
duces the conductance.

B. Kondo resonance in the present model

Now we apply the mean field theory to our model whi
has the spin-triplet and -singlet states in a quantum dot.
spin states of the coupling to a conduction electron areS
51)^ (S51/2)5(S53/2)% (S51/2) for the former, and
(S50)^ (S51/2)5(S51/2) for the latter~Appendix B!. To
represent the competition between the triplet and sin
states, therefore, the order parameter should be a spin
S51/2. It is ^JW & where

JW 5(
k

S cosw~A2 f 11
† ck↑

(1)1 f 10
† ck↓

(1)!/A31~sinw! f 00
† ck↓

(2)

cosw~A2 f 121
† ck↓

(1)1 f 10
† ck↑

(1)!/A32~sinw! f 00
† ck↑

(2)D
~35!

for J(1).J(2). A mode of the largest coupling is taken in
account in this approximation. The Hamiltonian reads

FIG. 3. The mean field calculations for the Kondo effect in
quantum dot withS51/2. ~a! The Kondo temperatureTK and ~b!
conductance through the dot,G, as functions of the Zeeman spli
ting EZ . TK andEZ are in units ofD0exp(21/2nJ) andG is in units
of (2e2/h)4GLGR /(GL1GR)2. Inset in ~a!: The Kondo resonan
states created around the Fermi levelm in the leads,~A! in the
absence and~B! presence of the Zeeman splitting. The reson
width is given byTK .
08532
r
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e
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HMF5H lead1Hdot2JMF@^JW †&JW 1JW †^JW &2u^JW &u2#

1lS (
SM

f SM
† f SM21D , ~36!

where

JMF5J(1)1AJ(1)213J̃2 ~37!

and

tanw5A3J̃/JMF . ~38!

The last term inHMF considers the restriction of Eq.~11!.
The expectation value ofHMF is minimized with respect to
uJW u2. The Kondo temperature can be estimated by

TK5pnuJMF^JW &u2, ~39!

using ^JW & determined by the self-consistent calculatio
~Appendix B!.

First let us consider the case in the absence of the Zee
effect, E1M5ES51 and E005ES511D. The resonant leve
for the triplet state is threefold degenerate atẼS515ES51
1l, whereas the resonant level for the singlet state is
Ẽ05E001l. These levels are separated by the energyD.
The Lagrange multiplierl is determined to fulfill Eq.~11!.
Figure 4~a! shows the calculated results ofTK as a function
of D. Both ofTK andD are in units ofD0exp(21/nJMF). We
find that ~i! TK(D) reaches its maximum atD50, ~ii ! for
D@TK(0), TK(D) obeys a power law

TK~D!D tan2w5const., ~40!

and~iii ! for D,0, TK decreases rapidly with increasinguDu
and disappears atD5Dc;2TK(0):

Dc52D0exp~21/nJMF!~11tan2w!~ tan2w!2sin2w.
~41!

These features are in agreement with the results of the s
ing calculations.

The behaviors ofTK(D) can be understood as follows
The inset of Fig. 4~a! schematically shows the Kondo res
nant states. The resonance of the triplet state is denote
solid lines, whereas that of the singlet state is by dotted lin
~A! When D@TK(0), the triplet resonance appears aroun
m, whereas the singlet resonance is far abovem. ~B! With a
decrease inD, the two resonant states are more overlappe
m, which raisesTK gradually. This results in a power law o
TK(D), Eq. ~40!. The largest overlap yields the maximum
TK at D50. ~C! When D,0, the singlet and triplet reso
nances are located below and abovem, respectively, being
sharper and farther from each other with increasinguDu. Fi-
nally the Kondo resonance disappears atD5Dc .

The conductance through the dot is given by

t

2-6
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G/~e2/h!5
4GL

1GR
1

~GL
11GR

1 !2 S D̃11
2

~«2Ẽ11!
21D̃11

2

1
D̃10

2

~«2Ẽ10!
21D̃10

2 D
1

4GL
2GR

2

~GL
21GR

2 !2

D̃00
2

~«2Ẽ00!
21D̃00

2 U
«5m

, ~42!

where Ga
i 5pnuVa,i u2. The resonant widths areD̃11/D̃0

5(2 cos2w)/3, D̃10/D̃05(cos2w)/3, andD̃00/D̃05sin2w with
D̃05pnuJMF^JW &u2. The conductanceG as a function ofD is
shown in Fig. 4~b!, in a symmetric case ofGL

i 5GR
i ( i

51,2). G52e2/h for D.0, whereasG goes to zero sud
denly for D,0. AroundD50, G is larger than the value in
the unitary limit, 2e2/h, which is attributable to nonuniversa
contribution from the multichannel nature of our model.21

In the presence of the Zeeman splitting,E1M5ES51
2EZM , the resonant level of the triplet state is split in
three. With increasingEZ , the Kondo effect is rapidly
weaken except in the region ofD;2EZ . In Fig. 5~a!, we
show the Kondo temperatureTK in EZ-D plane, in the case

FIG. 4. The mean field calculations for the Kondo effect in t
present model. The Zeeman splitting is disregarded (EZ!TK). ~a!
The Kondo temperatureTK and~b! conductance through the dot,G,
as functions of D5E002ES51 . TK and D are in units of
D0exp(21/nJMF). G, in units of 2e2/h, is evaluated in a symmetric

case ofGL
i 5GR

i ( i 51,2). tanw5A3J̃/JMF where curvea, w/p
50.25; curveb, 0.15; and curvec, 0.10. Note thatw/p<1/6 in this
approximation~case a is only for reference!. Inset in ~a!: The
Kondo resonant states forS51 ~solid line! and for S50 ~dotted
line! when ~A! D@TK(0), ~B! D;TK(0), and~C! D,0.
08532
of w50.15p. Figure 5~b! presentsTK as a function ofD for
several values ofEZ . WhenEZ is large enough, the Kondo
effect takes place only when the resonant state ofu11& is
overlapped with that ofu00&. Then TK is the largest atD
52EZ and decreases withD being away from this value. At
D52EZ , TK obeys a power law

TK~D!uDu1/(213 tan2w)5const., ~43!

which is indicated by a broken line in Fig. 5~b!. This is
qualitatively in agreement with the calculated results by
scaling method.

Figure 6 indicates the conductanceG in EZ-D plane,
whenw50.15p andGL

i 5GR
i ( i 51,2). G takes the value of

2e2/h aroundEZ50 andD.0, and also along the line o
EZ52D. (G.2e2/h in the neighborhood ofEZ5D50, as
discussed above.! For sufficiently largeEZ , our model is
nearly equivalent to the anisotropic Kondo model withS
51/2.25,26 HenceG52e2/h at D52EZ and reduces to zero
asD deviates from this value, in the same way as in Fig. 3~b!
for the case ofS51/2.

FIG. 5. The mean field calculations for the Kondo temperat

TK in the present model.w/p50.15 where tanw5A3J̃/JMF . All of
EZ , D, andTK are in units ofD0exp(21/nJMF). ~a! TK is plotted in
EZ-D plane, by contour lines drawn every 0.25. The lighter sha
indicates the larger values ofTK . ~b! TK as a function ofD when
EZ is fixed at curvea, 0; curveb, 1; curvec, 2; curved, 5; and
curve e, 10. The broken line indicatesTK in the case of2D
5EZ .
2-7
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V. CONCLUSIONS AND DISCUSSION

The Kondo effect in quantum dots with an even numb
of electrons has been investigated theoretically. The Ko
temperatureTK has been calculated as a function of the e
ergy differenceD5E002ES51 and the Zeeman splittingEZ ,
using the poor man’s scaling method and mean field the
The scaling calculations have indicated that the competi
between the spin-triplet and -singlet states significantly
hances the Kondo effect. When the Zeeman effect is ir
evant,EZ!TK , TK is maximal aroundD50 and decrease
with D obeying a power law. In a case of2D5EZ , the
Kondo effect takes place from the degeneracy between
states,u00& andu11&. Even in this case, the contribution from
the other states of higher energy,u10& and u1 21&, plays an
important role in the enhancement ofTK . As a result,TK is
maximal aroundEZ50 and depends onEZ by a power law
again.

The mean field theory yields a clear-cut view for t
Kondo effect in quantum dots. Considering the spin co
plings between the dot states and conduction electrons
mean field,^ f SM

† ck,s
( i ) &, we find that the resonant states a

created around the Fermi levelm. The resonant width is
given by the Kondo temperatureTK . The unitary limit of the
conductance,G;2e2/h, can be easily understood in terms
the tunneling through these resonant states. In our model
overlap between the resonant states ofS51 andS50 in the
dot enhances the Kondo effect. The mean field calculati
have led to a power-law dependence ofTK on D and onEZ ,
in accordance with the scaling calculations.

The mean field theory is not quantitatively accurate
the evaluation ofTK .31 ~In the case ofS51/2, the exact
value ofTK is obtained accidentally.! In our model, the scal-
ing calculations indicate that all the exchange couplin
J(1), J(2), and J̃, are renormalized altogether following E
~16! whenuDu andEZ are much smaller than the energy sca
D. In consequence two channels in the leads are cou

FIG. 6. The mean field calculations for the conductanceG in the
present model.G is plotted inEZ-D plane, by contour lines drawn
every 0.2(2e2/h). The lighter shade indicates the larger values
G. EZ and D are in units ofD0exp(21/nJMF). w/p50.15 where

tanw5A3J̃/JMF , andGL
i 5GR

i ( i 51,2).
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effectively for an increase inTK . In the mean field calcula-
tions, the interchannel couplings are taken into accoun
Eq. ~37! only partly. In fact, conduction electrons of chann
1 and 2 independently take part in the conductance, Eq.~42!.
By the perturbation calculations with respect to the excha
couplings, we find that mixing terms between the chann
appear in the logarithmic corrections to the conductanc21

We could improve the mean field calculations by adopt
another form of the order parameter than Eq.~35!.

Our calculated results being expressed in terms ofD, EZ ,
andTK are applicable to any experimental realization, eith
at small or large magnetic fieldB. At small B, our results
explain the experimental findings by Sasakiet al.:14 The
Kondo effect is largely enhanced aroundD50 when D is
tuned by the orbital effect of the magnetic field.D50 at B
'0.2 T, where the Zeeman effect can be safely disregard
At largeB, the Zeeman effect splits three components of
spin-triplet state. The Kondo effect has been observed in
bon nanotubes atB'1 T (EZ5gmBB with g52.0) where
the energy of one component of the triplet state coinci
with that of the singlet state.28 The Kondo effect induced by
the Zeeman effect may be observed in quantum dots
semiconductor heterostructures with a smaller g factorg
'0.4), under higher magnetic fields.25,26 In such experi-
ments, the value of the Zeeman splittingEZ can be controlled
by applying a large magnetic field parallel to the dot wh
D5E002ES51 by a small magnetic field perpendicularly t
the dot.

In this paper, we have restricted our considerations to
space ofC15C2 in Eq. ~4!. This is a good starting point in
the vicinity of D50.35 Investigation in the space ofC1

5A2 andC250, however, has shown different fixed poin
of the renormalization flow in cases ofEZ5032 and EZ
52D@TK .25 In possible realizations,C2'C1 for small uDu
and C2!C1 for large uDu,38 and our calculations could b
incomplete in the latter region. The crossover between
regions requires further studies. A generalized renormal
tion analysis is in progress for this problem.
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APPENDIX A: MEAN FIELD CALCULATIONS FOR SÄ1Õ2

The original Hamiltonian for a quantum dot with one e
ergy level reads

H5 (
a5L,R

(
ks

«kca,ks
† ca,ks1 (

a5L,R
(
ks

~Vaca,ks
† ds1H.c.!

1Hdot ~A1!

f

2-8
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with

Hdot5(
s

E0ds
†ds1Ud↑

†d↑d↓
†d↓ . ~A2!

For the state of one electron in the dot, the addition a
extraction energies are given byE15E01U2m and E2

5m2E0, respectively. The parameters,E0 and U, in Eq.
~A2! should be determined to fit these energies to experim
tal data. For conduction electrons in leadsL, R, we perform a
unitary transformation,cks5(VL* cL,ks1VR* cR,ks)/V, c̄ks

5(2VR,icL,ks1VL,icR,ks)/V, with V5AuVLu21uVRu2,
along the lines of Ref. 9. We disregard the modesc̄ks that are
uncoupled to the quantum dot.

We consider the Coulomb blockade region for one el
tron, where bothE1 andE2 are much larger than the leve
broadeningG5pnV2 (n being the density of states in th
leads! and temperature. Integrating out the dot states w
zero or two electrons by the Schrieffer-Wol
transformation,7,8 we obtain the effective low-energy Hami
tonian

H5(
ks

«kcks
† cks1(

s
Es f s

† f s1J(
kk8

@Ŝ1ck8↓
† ck↑

1Ŝ2ck8↑
† ck↓1Ŝz~ck8↑

† ck↑2ck8↓
† ck↓!# ~A3!

under a constraint of Eq.~29!. In the second term we hav
included the Zeeman effect,E↑,↓5E06EZ . The third term
represents the exchange coupling between the dot spin
conduction electrons withJ5V2/Ec , where 1/Ec51/E1

11/E2. By expressing the spin operatorŜ as Ŝ15 f ↑
†f ↓ ,

Ŝ25 f ↓
†f ↑ , Ŝz5( f ↑

†f ↑2 f ↓
†f ↓)/2, one finds that Eq.~A3! is

identical to Eq.~28!.
The mean field Hamiltonian, Eq.~31!, includes ‘‘energy

levels’’ for pseudofermions,Ẽs5Es1l, which are coupled
to the leads with ‘‘tunneling amplitude,’’Ṽ52A2J^J&. The
Green function for the pseudofermions is

Gs~«!5
1

«2Ẽs1 iD̃
, ~A4!

where D̃5pnuṼu2. This represents the resonant tunneli
with the resonant widthD̃.

The expectation value of the Hamiltonian, Eq.~31!, is
written as

EMF5(
s

F2
D̃

p
1

Ẽs

p
tan21

D̃

Ẽs

1
D̃

2p
ln

Ẽs
21D̃2

D0
2 G2l1

D̃

pnJ
,

~A5!

whereD0 is the bandwidth in the leads.7 We setm50 in this
appendix. The constraint of Eq.~29! is equivalent to the con
dition

]EMF

]l
5

1

p (
s

tan21
D̃

Ẽs

2150. ~A6!
08532
d

n-

-

h

nd

This yieldsE01l50. The minimization ofEMF with respect
to D̃ ~or u^J&u2) determinesD̃

]EMF

]D̃
5

1

2p (
s

ln
Ẽs

21D̃2

D0
2

1
1

pnJ
50. ~A7!

For EZ50, we find

D̃5D0exp@21/2nJ#[D̃0 . ~A8!

This is equal to the Kondo temperature,TK . For EZÞ0, Eq.
~A7! yields

D̃21EZ
25D̃0

2 . ~A9!

Using theT matrix, T̂, the conductance through the do
G, is given by

G5
e2

h
~2pn!2(

s
u^R,k8suT̂uL,ks&u2U

«k5«k85m

5
e2

h
~2pn!2

uVLu2uVRu2

~ uVLu21uVRu2!2

3 (
s

u^ck8suT̂ucks&u2U
«k5«k85m

5
e2

h

4GLGR

~GL1GR!2 (
s

D̃2

~«2Ẽs!21D̃2U
«5m

, ~A10!

whereGa5pnuVau2. This yields Eq.~34! in the text. On the
second line in Eq. ~A10!, ucks&5cks

† u0&5(VLuL,ks&
1VRuR,ks&)/V, and theT matrix is evaluated in terms o
the Green function, Eq.~A4!, uṼu2Gs(«5«k).

APPENDIX B: MEAN FIELD CALCULATIONS IN THE
PRESENT MODEL

For the spin states of the coupling between the spin trip
S51 in the dot and a conduction electron, we introdu
spinors ofS51/2 and 3/2. Using the Clebsch-Gordan coe
ficients, they are given by

VW 1/2
( i ) 5(

k
S ~A2 f 11

† ck↑
( i )1 f 10

† ck↓
( i )!/A3

~A2 f 121
† ck↓

( i )1 f 10
† ck↑

( i )!/A3
D , ~B1!

VW 3/2
( i ) 5(

k S f 11
† ck↓

( i )

~2 f 11
† ck↑

( i )1A2 f 10
† ck↓

( i )!/A3

~ f 121
† ck↓

( i )2A2 f 10
† ck↑

( i )!/A3

2 f 121
† ck↑

( i )

D . ~B2!

The exchange couplings between the triplet state and c
duction electrons, Eq.~12!, can be rewritten as

HS515 (
i 51,2

J( i )@22VW 1/2
( i )†VW 1/2

( i ) 1VW 3/2
( i )†VW 3/2

( i ) #. ~B3!
2-9
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In the same way we define the spinors ofS51/2 to represent
the spin couplings between the singlet stateS50 and a con-
duction electron

CW ( i )5(
k

S f 00
† ck↓

( ī )

2 f 00
† ck↑

( ī )D , ~B4!

where ī 52 and 1 fori 51 and 2, respectively. The conve
sion between the triplet and singlet states, Eq.~13!, is rewrit-
ten as

HS51↔052A3J̃ (
i 51,2

@CW ( i )†VW 1/2
( i ) 1H.c.#. ~B5!

In HS511HS51↔0, a mode of the largest coupling withS
51/2 is given by

JW 5~cosw!VW 1/2
(1)1~sinw!CW (1) ~B6!

for J(1)>J(2), which is Eq.~35! in the text. The correspond
ing eigenvalue is given by Eq.~37! andw is determined as in
Eq. ~38!.

The mean field Hamiltonian, Eq.~36!, represents the reso
nant tunneling through the energy levels for the pseu
fermions,ẼSM5ESM1l. The expectation value of Eq.~36!,
EMF , is evaluated in the same way as in Appendix
]EMF /]l50 yields

tan21
D̃11

Ẽ11

1tan21
D̃10

Ẽ10

1tan21
D̃00

Ẽ00

5p, ~B7!
h-

c

M

tt

an
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-

.

where the resonant widths areD̃11/D̃05(2 cos2w)/3,
D̃10/D̃05(cos2w)/3, and D̃00/D̃05sin2w with D̃0

5pnuJMF^JW &u2. We setm50 here. MinimizingEMF with
respect toD̃0, we obtain

2

3
~cos2w!ln

Ẽ11
2 1D̃11

2

D0
2

1
1

3
~cos2w!ln

Ẽ10
2 1D̃10

2

D0
2

1~sin2w!ln
Ẽ00

2 1D̃00
2

D0
2

1
2

nJ
50. ~B8!

Equations~B7! and ~B8! determinel and D̃0 ~or u^JW &u2).
The conductance through the dot is given by

G5
e2

h
~2pn!2 (

i , j ,s,s8
u^R,k8s8, j uT̂uL,ks,i &u2U

«k5«k85m

5
e2

h
~2pn!2 (

i , j ,s,s8

GR
j

GL
j 1GR

j

GL
i

GL
i 1GR

i

3u^ck8s8
( j ) uT̂ucks

( i )&u2U
«k5«k85m

, ~B9!

where Ga
i 5pnuVa,i u2 and ucks

( i )&5(VL,i uL,ks,i &
1VR,i uR,ks,i &)/Vi . The T matrix can be evaluated, usin
the Green function for the pseudofermions,GSM(«)5@«

2ẼSM1 iD̃SM#21, as in Appendix A. This yields Eq.~42! in
the text.
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