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Mesoscopic effects in tunneling between parallel quantum wires
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We consider a phase-coherent system of two parallel quantum wires that are coupled via a tunneling barrier
of finite length. The usual perturbative treatment of tunneling fails in this case, even in the diffusive limit, once
the lengthL of the coupling region exceeds a characteristic length scaleLt set by tunneling. Exact solution of
the scattering problem posed by the extended tunneling barrier allows us to compute tunneling conductances as
a function of applied voltage and magnetic field. We take into account charging effects in the quantum wires
due to applied voltages and find that these are important for one-dimensional–to–one-dimensional tunneling
transport.
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I. INTRODUCTION

Tunneling provides a powerful tool to probe electron
properties of matter.1 Its sensitivity to momentum-resolve
spectral features is determined by geometrical details of
tunnel junction. For example, this sensitivity is complete
lost when tunneling occurs via a point contact, whereas
maximal for an extended, clean tunneling barrier. Since
experimental study of tunneling between two separately c
tacted, parallel, vertically separated two-dimensional~2D!
electron systems became possible,2 electronic structure and
interaction effects in low dimensions have been the sub
of careful investigation. In the ideal case, conservation
canonical momentum in the plane of the 2D electron syste
leads to sharp tunneling resonances; allowing for explora
of electronic subband energies,3 mapping of the 2D Ferm
surface,4 and life-time measurements of 2D Fermi-liqu
quasiparticles.5 Modification of one of the 2D layers into
superlattice of 1D quantum wires has been employed to m
sure vertical tunneling between 1D and 2D electr
systems.6 Constraints on tunneling imposed by the requi
ment of simultaneous conservation of energy and momen
can be tuned by the transport voltage and external magn
fields. In certain situations,7 this makes it possible to observ
features of the momentum-resolved single-electron spe
function directly in tunneling transport.

The method of cleaved-edge overgrowth8 ~CEO! makes it
possible to create long and clean quantum wires
GaAs/GaxAl12xAs heterostructures.9 Using the same tech
nique, systems of two parallel quantum wires with a high a
extremely clean tunneling barrier between them have b
fabricated in double-layer structures.10 This opens up new
possibilities for studying the peculiar dynamics of electro
in interacting 1D systems11,12 using 1D–to–1D tunneling.13

In particular, both the phase-coherence length and the el
mean-free pathl el for electrons in these quantum wires us
ally exceed the wire length.14 This motivates the presen
work where we analyze mesoscopic effects in 1D–to–
transport. In related contexts, phase-coherent transpo
double-wire systems was discussed in terms of device ap
cations. For example, a system of two parallel, identi
quantum wires coupled within a spatial region of lengthL
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,lel via an adjustable tunneling barrier15 was proposed as a
possible realization of a current switch.16 Wave packets of
electrons injected into one of the wires will be coheren
transferred to the other one and back with frequency 2utu/\.
~Here we denoted the tunnel splitting of energy levels in
coupling region by 2utu.! In steady state, this results in
coherent charge oscillation in real space with wavelen
Lt

(0)5p\vF /utu. Modulation of utu controls the signal at the
output of the injecting wire. Ideally, it is maximal~minimal!
when the ratio ofL andLt

(0) is ~half-!integer. In reality, out-
put characteristics depend sensitively on details of the t
neling barrier.17 Assuming the feasibility to engineer barrie
design, coupled quantum wires were suggested18 as realiza-
tions of quantum logical gates.

In this paper, we consider phase-coherent transport
system of parallel quantum wires coupled via a finite tunn
ing barrier. See Fig. 1. Charging effects in the wires cau
by applied voltages influence tunneling in an important w
because they determine the degree to which 1D subband
shifted or filled. The basic physics of this interplay is di
cussed in the following section. Our microscopic model
the double-wire system is introduced in the first part of S
III. Apart from capacitance effects, interactions are neglec
within our approach, which is therefore valid only for vol
ages and in-plane magnetic fields probing the 1D elect

FIG. 1. Schematic setup for a system of two parallel quant
wires. The magnetic fieldB allows tuning of kinetic vs canonica
momentum. A voltageVU(L) is applied uniformly to the upper
~lower! wire, i.e., raises the chemical potential ofboth left movers
and right movers. The parts of the wires outside the region of sp
where the barrier is finite are leads to ideal reservoirs. For simp
ity, we assume leads of infinite length in our model description.
©2001 The American Physical Society15-1
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BOESE, GOVERNALE, ROSCH, AND ZU¨ LICKE PHYSICAL REVIEW B 64 085315
systems beyond the cutoff for Luttinger-liquid behavior11

Results from lowest-order perturbation theory are compa
with the exact solution using scattering theory. We calcul
linear and differential conductances for 1D–to–1D tunnel
transport, and discuss their features in Sec. IV.

II. EFFECT OF AN APPLIED VOLTAGE

In the typical tunneling experiment, a voltage dropV
across the barrier drives a current. Microscopically, it is of
assumed that the voltage shifts quasiparticle bands in the
subsystems by6eV/2, respectively, as compared to the eq
librium situation where no net current flows. The extern
circuit is supposed to prevent charging of the subsystem19

In general, however, the applied voltage will shift the ban
as well as partly fill them. As the I–V curve for 1D–to–1
tunneling depends sensitively on the scenario of band fil
vs band shifting, we discuss this issue here in some det

At zero temperature, the free energy~per length! of a 1D
system is given by its total energy~per length! Etot , which is
a functional of particle densityn. In a clean quantum wire
n5n0 will be constant. Before applying a voltage, the sy
tem is assumed to be charge neutral, i.e., the uniform e
tronic charge densityen0 is compensated by positive bac
ground and image charges. It is useful to divideEtot into two
parts;Etot5Eint1ECoul. All Coulombic terms~including the
Hartree energy of electrons in the wire! are collected in
ECoul, and Eint is the internal energy of the quantum wi
comprising kinetic and exchange-correlation contributio
For our purposes, we adopt the simple model withECoul

5(eDn)2/2C̃ whereDn is the deviation from the densityn0,
andC̃ denotes the electrostatic capacitance per unit lengt
the wire.20 The applied voltage is assumed to lead to a u
form shift eV with respect to the equilibrium chemical po
tentialm05]Etot /]nun0

of the wire.21–26The induced change

Dn in the total density has to be calculated from

m01eV5
e2

C̃
Dn1

]Eint

]n U
n5n01Dn

. ~1!

In the limit of small voltages (ueVu!m0) where linear-
response theory is valid, we can use

]Eint

]n U
n5n01Dn

2m0'
Dn

D0
. ~2!

Here D0 is the thermodynamic27 density of states~DOS!
defined by D05]n/]mum5m0

5(]2Eint /]n2)n5n0

21 . In the

linear-response limit, it is then possible to expressDn explic-
itly in terms of the external voltage,28

Dn5eV
D0

11z
, ~3!

where the parameterz measures the relative importance
Coulombic and density-of-states effects:
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e2

C̃
D0 . ~4!

We see that, forz!1, a voltage will simplyfill quasiparticle
bands without shifting them~band-filling limit!. In particular,
this applies in the absence of electron-electron interactio
In the opposite casez@1, an applied voltage shifts the band
~band-shifting limit!. This situation is analogous to that of
bulk metal or a single-electron transistor.29 To get an idea of
the situation realized in our system of interest, we estim
the capacitance of a quantum wire byC̃52pe/ ln(R/r), with
R being the distance to surrounding metal gates, andr denot-
ing the characteristic transverse dimension of the wire. Ty
cal values are;10210 F/m. With Fermi energies of quan
tum wires ranging between 1. . . 10 meV, we obtainz
;1 . . . 10. Hence, typical quantum wires are in the interm
diate regime where both band filling and band shifting occ
at the same time. This case is illustrated in Fig. 2. It is i
portant to keep in mind, however, that Eqs.~3! and ~4! are
only valid whenDn!n0. In experiment, voltages compa
rable to and larger thanm0 are applied to probe the ful
single-particle dispersion relation.10 Then, for a quantitative
comparison between theory and experiment,Dn has to be
found from Eq.~1!. For example, a wire whose density wa
initially large enough for it to be in the band-filling limi
crosses over to the band-shifting limit when it is depleted

At this point, it is useful to make contact with resul
obtained for Tomonaga-Luttinger~TL! models30 of interact-
ing 1D electron systems. Unlike their higher-dimension
counterparts, 1D metals cannot be described within
Fermi-liquid paradigm. Instead, their low-energy propert
are represented by effective TL models, and the phenome
ogy of a Luttinger liquid31 ~LL ! applies. Instead of Landau
parameters, it is the velocities of certain collective and ze
mode excitations that determine all physical quantities o
LL. In particular, the ratior N5vN /vF of the velocityvN of
the charged zero mode31 and the bare Fermi velocity enter
the expression for the electrostatic capacitance per
length of a Luttinger liquid:C̃LL5e2D0 /(r N21). HereD0

FIG. 2. A voltageV applied to a quantum wire results, in gen
eral, both in a uniform shift of the 1D subband and charging of
wire. Outside the linear-response regime, the parametern depends
on voltage. In the double-wire system, a self-consistent treatmen
charging effects due to the voltage and tunneling is necessary u
tunneling is weak.
5-2
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MESOSCOPIC EFFECTS IN TUNNELING BETWEEN . . . PHYSICAL REVIEW B64 085315
51/p\vF is the 1D DOS. Using Eq.~4!, we find zLL5r N
21. The noninteracting case wherer N51 corresponds to the
band-filling limit, whereas strong Coulomb interactions (r N
→`) recover the band-shifting limit. We would like to re
mark that r N constitutes an independent parameter in
low-energy theory of any given real quasi-1D system. It
unrelated, except in certain special cases,32 to the famous
interaction parameterKr that enters power-law expression
for electronic correlation functions.11 From now on, we con-
sider the model wherer N.1 butKr51. This approximation
is valid to describe current experiments where the wires
probably not long enough for the power-law characteris
of a LL to be observable.33 Even for infinitely long wires,
however, our results apply at energies and wave vectors
enough from the Fermi points where the single-particle sp
tral function recovers Fermi-liquidlike characteristics.34

III. MODEL AND FORMALISM

We consider two quantum wires of infinite length, label
U~upper! and L~lower!, that are parallel to thex direction
and located, in theyz plane, aty50 andz5zU,L . The po-
tential barrier between them is assumed to be finite and
form in the regionuxu<L/2 and infinite otherwise. Within the
standard notation of second quantization, the Hamilton
for our system is given by

H5 (
a5U,L

Ha1H tun, ~5a!

Ha5E dk

2p
ea~k!cka

† cka , ~5b!

H tun5E
2L/2

L/2

dx$t cU
† ~x!cL~x!1H.c.% ~5c!

5E dk

2pE dp

2p
$tk,pckU

† cpL1H.c.%.

~5d!

HereeU(L)(k) is the electronic dispersion relation in the u
per ~lower! wire. Modulo an unimportant phase factor, th
tunneling matrix element is given by35

tk,p52utu
sin@~p2k!L/2#

p2k
5utuA2pL dL~p2k!. ~6!

The second equality in Eq.~6! constitutes the definition o
dL(p2k), which is a finite-size realization of Dirac’sd func-
tion. Tunneling occurs mainly between states with mome
satisfying up2ku,2p/L. Perfect momentum conservatio
holds only in the limitL→`.

We consider the case where a single~the lowest! 1D sub-
band in each wire is occupied and assume a parabolic
band dispersion. The effect of a magnetic fieldBW 5B ŷ ap-
plied perpendicularly to the plane of the two wires can
included by a shift of kinetic with respect to canonic
momentum.36 Then, dispersion relations read (a5U,L)
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2m S k2
eB

\
zaD 2

1E0a1naeVa . ~7!

Here m is the effective electron mass in the semiconduc
host medium, andE0a denotes the energy at the bottom
the respective wire’s lowest 1D subband. The te
nU(L)eVU(L) takes into account the shifting of the band in t
upper~lower! wire due to an applied voltage. See Fig. 2. F
simplicity, we neglect effects due to the mutual capacitan
of the two wires, which can be included straightforwardly.
general, the values ofna will depend on voltage. Further
more, except in the limit of weak tunneling whereutu
!ueVau, they have to be determined from a self-consist
treatment of charging effects resulting from tunneling a
electrostatics. While this is, in principle, straightforward
implement, we choose to focus here on the weak-tunne
limit that is more relevant for current experiment.10 In the
linear-response regime, we havena5za /(11za) with za
defined for each wire in analogy to Eq.~4!.

Absolute values of energy and thez coordinate are irrel-
evant; results depend only on the difference of subband
ergies, DE05E0L2E0U , and the wire separation,d5zU
2zL . For simplicity, we chooseE0U50 and zU50 in the
following. Also, to avoid cluttering the notation, we hav
suppressed spin quantum numbers. In typical CEO st
tures, the effect of Zeeman splitting is negligible for th
range of magnetic fields to be considered below.37 Hence,
electron spin leads only to factors of 2 that we include in o
final formulas for tunneling current and conductances.

A. Perturbation theory: Lowest order in tunneling

A standard procedure19,38 for calculating the tunneling
current is to perform perturbation theory inH tun. To leading
order, the current flowing from the upper to the lower wire

I 5
2e

\ E dk

2pE dp

2p
utk,pu2E

2`

` de

2p
AU~e,k!

3AL~e,p!@ f U~e!2 f L~e!#, ~8!

with Fermi functionsf a(e)51/@11exp$(e2m02eVa)/kBT%#.
The single-particle spectral functions for the wires are giv
within the model specified above, byAa(e,k)52pd@e
2ea(k)#. In the linear-response limit (ueVau!m0), we find
the tunneling conductance

G5
2e2

\3

utu2L

vFUvFL
(

g,g8561

dLS p

2
@gnU2g8nL#2pBD .

~9!

Here vFa and nFa denote the Fermi velocity and electro
density of the respective wire at the equilibrium chemic
potentialm0. The peak-shape functiondL has been defined in
Eq. ~6!, and the relative shift of the 1D Fermi seas due to
applied magnetic field ispB52eB d/\.

In analogy to 2D–to–2D tunneling,4 resonances appear i
the tunneling conductanceG as function of magnetic field
whenever parts of the shifted Fermi surfaces of the two w
overlap. As the 1D Fermi surface consists of just two poin
5-3
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the shape of these resonances is that of a smeared delta
tion of width 2p/L. The peak value of the tunneling condu
tance can be written as

Gpk5n*
2e2

h S pL

Lt
D 2

, ~10!

whereLt5p\AvFUvFL/utu is an effective length scale intro
duced by tunneling, andn* 51 or 2 depending on the num
ber of overlapping Fermi points at peak condition.

In the dirty limit39 where the lengthL of the tunneling
barrier is larger than the mean-free pathl el , Eq. ~9! is still
valid but the peak width is now given by 2p/ l el . Also, the
factor (pL/Lt)

2 in Eq. ~10! has to be replaced b
2p2L l el /Lt

2 . In both the ballistic and diffusive cases, takin
the limit of L→` is unphysical: the conductance through t
barrier cannot exceed 2e2/h per channel. Hence, the actu
small parameter enabling perturbative treatment of tunne
is L/Lt . Smallness ofL/Lt means that the time betwee
tunneling events has to be larger than the time it takes
electrons to traverse the region where the potential ba
between the wires is finite. Only then it will be possible
neglect higher-order effects due to electrons tunneling co
ently back and forth between the wires. Using the exact
lution developed in the following section, we will find in
deed that the perturbative result displayed in Eq.~9! is valid
only as long asL!Lt .

B. Exact solution using scattering theory

As the model defined in Eqs.~5! describes two systems o
noninteracting fermionic quasiparticles that are coupled
tunneling in a finite region of space, we can use scatte
theory for calculating transport.40 To make this explicit, we
rewrite the Hamiltonian of our system in first-quantized n
tation and real-space representation. It is a 232 matrix @be-
cause wave functions are two-component spinors (cU ,cL)T#:

H5S eU~2 i ]x! t~x!

t~x! eL~2 i ]x!
D . ~11!

The tunneling matrix element is piecewise constant:t(x)
5utu for uxu<L/2 and t(x)50 otherwise. Hence, region
with uxu.L/2 where the wires are independent act as le
where scattering states can be defined. We attach labe
through 4 to these leads as shown in Fig. 1. The regionuxu
<L/2 where tunneling occurs acts as an effective scatte
The current flowing through the tunnel barrier is th
given by

I 5
2e

h (
m51,2
n53,4

E deuTm,n~e!u2@ f U~e!2 f L~e!#, ~12!

whereTm,n(e) denotes the transmission coefficient for ele
trons with energye that originate in leadm and are scattered
into lead n. We calculate the transmission coefficients
matching scattering states in the leads to the approp
eigenstates of the Hamiltonian~11! in the regionuxu<L/2.
As this is a straightforward exercise, and results for the m
general case are lengthy, we omit explicit formulas he
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Some details are given in the Appendix. Due to the diff
ence of Fermi functions in Eq.~12!, only transmission coef-
ficientsTm,n(e) at energies within the voltage window, i.e
with e2m0P@eVL ,eVU#, contribute. In the limit of small
applied voltage, Eq.~12! yields the linear conductance

G5
2e2

h (
m51,2
n53,4

uTm,n~m0!u2. ~13!

As expected,G obtained from Eq.~13! deviates from the
perturbative result@Eq. ~9!# for long-enough barrier lengthL,
see Fig 3. The oscillatory dependence ofG on L can be tuned
by the applied magnetic field, as seen in the inset of Fig
When the effective tunnel splitting in the coupling region
much smaller than the Fermi energy of the quantum wir
the following approximate formula for the linear condu
tance can be derived~see the Appendix for details!:

G'
2e2

h (
g,g8561

sin2@pA~L/Lt!
21~L/Lgg8!

2#

11~Lt /Lgg8!
2

. ~14!

Here new length scalesLgg8 appear that measure the mi
match of canonical Fermi momentum for pairs of Fer
points from the upper~right-mover g511, left-mover
g521) and lower (g8 analogous! wires:

Lgg85
2p

p

2
@gnU2g8nL#2pB

. ~15!

Exact calculation ofG in the appropriate limit confirms the
validity of Eq. ~14!; see Fig. 4.

IV. RESULTS AND DISCUSSION

Different regimes in the behavior of the linear 1D–to–1
tunneling conductance are distinguished by the interplay
the relevant length scales encountered above. These ar
lengthL of the tunnel barrier,Lt which is a measure of the

FIG. 3. Linear conductance for two identical wires, calculat
exactly ~solid curve! and with perturbation theory~dashed curve!.
Inset: Oscillation of conductance in zero magnetic field~solid! and
with pB50.001kF

(0) ~dotted! wherekF
(0) is the Fermi-wave vector

for zero magnetic field.
5-4
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MESOSCOPIC EFFECTS IN TUNNELING BETWEEN . . . PHYSICAL REVIEW B64 085315
strength of tunneling, and lengthsLgg8 which are defined for
any pairing of a Fermi point from the upper wire with on
from the lower wire. For the following discussion, we co
sider only the largestLgg8 of all possible. ComparingLt with
the other lengths, a weak-tunneling regime (Lt
.max$Lgg8 ,L%) can be distinguished from a strong-tunneli
regime (Lt,max$Lgg8 ,L%). Furthermore, we call the system
in resonancewhen the Fermi points of a correspondingLgg8
are close to each other on the scale of 2p/L, i.e., whenL
,Lgg8 . Conversely, the off-resonance limit is reached
L.Lgg8 .

In the strong-tunneling regime, the linear conductance
cillates as a function ofL with wavelengthLt and maximum
amplitude 2e2/h (4e2/h for identical wires!. Previously,
when the feasibility of using the double-wire system as
directional coupler was discussed, the in-resonance limit
considered only.16 Control of directional-coupler operation i
then possible only by varyingLt , i.e., essentially only by
adjusting the barrier height. Here we find that, in the o
resonance limit, the device is tunable, in addition to vary
t, by an applied magnetic field or, equivalently, by adjusti
the density mismatch in the two wires. This is seen alread
the inset of Fig. 3 and, more clearly, in Fig. 4. It is, therefo
possible to adjust the effective length scale for coherent e
tron transfer between the wires by applying a magnetic fie
WhenL is equal to several timesLt , the difference between
the effective transfer length in a magnetic field andLt leads
to an accumulated phase shift over many oscillations that
reachp/2 without concomitant loss in amplitude. In partic
lar for CEO structures, operating the system in off-resona
mode provides a convenient alternative to any~hardly fea-
sible! adjustment of the high tunnel barrier.

The weak-tunneling limit is well-suited for spectroscop
application of 1D–to–1D tunneling. Sharp peaks are exh
ited by both the linear and differential conductances for

FIG. 4. Contour plot of the linear conductanceG vs DE0 andpB

for L5Lt
(0)5100/kF

(0) . ~Here,Lt
(0) andkF

(0) are the tunneling length
and Fermi-wave vector whenDE050 andB50. Due to our gauge
choice,kFU5pnU/2 is unaffected by the external magnetic field!
The oscillatory structure is well described by Eq.~14!. For our
choice of parameters,G50 at in-resonance condition. Note th
tuning the magnetic field near off-resonance maxima~e.g., for
DE050 andpB50.07kFU) has a strong effect onG.
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resonance conditions. Measured on the scale of reson
peaks, the off-resonance conductance is orders of magni
smaller. We have calculated the differential conductance
function of magnetic field and voltage whose resonance c
dition corresponds to a Fermi point of one wire coincidi
with a point on the dispersion curve of the other wire. T
exact location of these coincidences in theV–B plane de-
pends sensitively on charging effects in the quantum wir
In the following, we focus on the limit of weakly couple
wires where the self-consistent charge profile is not imp
tantly affected by tunneling. Furthermore, we consider
situation with symmetric biasVU52VL5V/2. Figures 5 and
6, respectively, show logarithmic gray-scale plots of the
solute value of the differential tunneling conductance for
ideal band-filling (C̃5`) and band-shifting (C̃50) cases.41

Bright lines are formed by points in theV–B plane where the
above-mentioned resonance condition is fulfilled. Due to
finite length of the tunnel barrier, more maxima appear w
peak values being orders of magnitude smaller than at
resonance peaks. In the band-shifting case, resonance
are direct images of parts of the wires’ electronic dispers
curves. In particular, the extension of the leaf-shaped st
ture in the positive and negative voltage direction provide
direct measure of the respective wire’s Fermi energy. Thi
not the case for the band-filling limit, which is characteriz
by a resonance line running close to the voltage axis w
E0!m0. Its leaf structure is symmetric under voltage rev
sal, with extension in~positive or negative! voltage direction
given by 2(m02uDE0u). In real systems, the capacitanceC̃
is finite, and an intermediate picture will be obtained for t
differential tunneling conductance. An example is shown

FIG. 5. Differential conductance for 1D–to–1D tunneling in th

ideal band-filling case (C̃5`), shown as a logarithmic gray-scal
plot in arbitrary units. Parameters used areDE050.2m0 andkFU

(0)L
5100. kFU

(0) is the Fermi-wave vector of the upper wire at ze
voltage. The finite width of bright resonance features as well as
appearance of darker maxima is due to the finite lengthL of the
tunnel barrier. Note the symmetry with respect to voltage rever
which is a key feature of the band-filling case.
5-5
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Fig. 7, whereC̃ has a value such thatzU50.5 at zero volt-
age. Depletion of one of the wires for increasing volta
leads to a crossover to the band-shifting situation. As a
sult, the ideal band-shifting limit is not easily distinguish
from the intermediate case. Quantitative comparison of
measured resonance structure in the differential conduct
with results expected from an independent measuremen
Fermi energies, electron densities etc. will have to inclu
the effect of the finiteC̃. Conversely, for known Fermi-se

parameters, the value ofC̃ can be extracted by fitting th
measured resonance pattern of the differential conducta
for 1D–to–1D tunneling.

FIG. 6. Differential conductance for 1D–to–1D tunneling in t

ideal band-shifting case (C̃50). We show a logarithmic gray-scal
plot of its absolute value. Parameters and gray-scale units are
same as in Fig. 5. A characteristic feature of the band-shifting c
is that the edges of the leaf-shaped structure in the voltage dire
are exactly at the Fermi energies of the two wires. The differen
conductance is negative on the low-magnetic-field resonance l

FIG. 7. Differential conductance for 1D–to–1D tunneling in

intermediate situation with finiteC̃. Shown is its absolute value in
logarithmic gray-scale plot. See Fig. 5 for a legend. In addition

the parameters used in Fig. 5, we haveC̃U5C̃L58««0 /(kFU
(0)aB)

whereaB is the Bohr radius in the semiconductor host material
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V. CONCLUSIONS

Motivated by recent experiment, we have investigated
ear and differential conductances for 1D–to–1D transp
Our results show that effects due to phase coherence
charging of the wires are important for realistic double-w
structures. Regimes of weak and strong tunneling, as we
in and out of resonance, are distinguished and their key
tures discussed. We point out possibilities for device ap
cation of 1D–to–1D tunneling and its use for electro
dispersion spectroscopy.
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APPENDIX: CALCULATION OF TRANSMISSION
COEFFICIENTS

Equations~12! and~13! express tunneling current and lin
ear conductance in terms of transmission coefficie
Tm,n(e). These transmission coefficients can be obtained
actly by matching eigenstates of HamiltonianH @given in Eq.
~11!# with eigenvaluee in the coupling region (uxu<L/2) to
appropriate eigenstates in the leads. For example, to ca
late T1,n , we use theAnsätze

Ce~x!ux,2L/25S 1

0D eikU
(1)x1S t11

0 D eikU
(2)x1S 0

t13
D eikL

(2)x,

~A1a!

Ce~x!ux.L/25S t12

0 D eikU
(1)x1S 0

t14
D eikL

(1)x, ~A1b!

Ce~x!u uxu,L/25 (
a5a,b

H d1
(a)S u1

(a)

v1
(a)D eik1

(a)x

1d2
(a)S u2

(a)

v2
(a)D eik2

(a)xJ . ~A1c!

Here wave vectorskU(L)
(6) are solutions ofe[eU(L)(kU(L)

(6) )
with positive (1) and negative (2) group velocityvU(L)
5]\keU(L)(k), respectively. With the energy dispersion
the coupling region given bye6(k)5 1

2 @eU(k)1eL(k)#
6utuA11r 2, we have e[e6(k6

(a,b)). The function r
5@eU(k)2eL(k)#/2utu measures the mismatch in the dispe
sions of the two wires and determines the amplitudesu6

5A(16r /A11r 2)/2, v656A(17r /A11r 2)/2. Requiring
continuity of the wave function and current conservation
the locationsx56L/2 yields a system of linear equation
from which the coefficientstmn and d6

(a) are found. Trans-

he
se
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mission coefficients entering Eqs.~12! and ~13! are then
given byTm,n(e)5tmnAuvL /vUu.

The linear conductance is given in terms of transmiss
coefficients40 at the equilibrium chemical potentialm0, as
expressed in Eq.~13!. To derive Eq.~14!, we consider, e.g.
T1,4. When the tunnel splitting 2utu and Fermi-energy mis
match of the two wires is much smaller than their Fer
ics

n

W

ys

ys
,

.

ys

,

ld

d-

,

.

6

p
n

s-
on
y

-
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energies, only amplitudes for right-moving partial waves
Ansatz~A1! are significantly different from zero. Neglectin
left-moving partial waves and the small density mismat
the matching procedure yieldst145 i sin(ktL)/A11r 2 with
kt5tA11r 2/\vF . In the regime considered, we haver
'Lt /L11 with L11 defined in Eq.~15!. Similar calculations
for other transmission coefficients finally yield Eq.~14!.
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