PHYSICAL REVIEW B, VOLUME 64, 085315

Mesoscopic effects in tunneling between parallel quantum wires
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We consider a phase-coherent system of two parallel quantum wires that are coupled via a tunneling barrier
of finite length. The usual perturbative treatment of tunneling fails in this case, even in the diffusive limit, once
the lengthL of the coupling region exceeds a characteristic length dgadet by tunneling. Exact solution of
the scattering problem posed by the extended tunneling barrier allows us to compute tunneling conductances as
a function of applied voltage and magnetic field. We take into account charging effects in the quantum wires
due to applied voltages and find that these are important for one-dimensional-to—one-dimensional tunneling
transport.
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I. INTRODUCTION <l via an adjustable tunneling barrflewas proposed as a
possible realization of a current switthWave packets of
Tunneling provides a powerful tool to probe electronic electrons injected into one of the wires will be coherently
properties of matte.Its sensitivity to momentum-resolved transferred to the other one and back with frequeni¢}/22.
spectral features is determined by geometrical details of theHere we denoted the tunnel splitting of energy levels in the
tunnel junction. For example, this sensitivity is completelycoupling region by £|.) In steady state, this results in a
lost when tunneling occurs via a point contact, whereas it ioherent charge oscillation in real space with wavelength
maximal for an extended, clean tunneling barrier. Since thé (Y= mhve/|t|. Modulation of|t| controls the signal at the
experimental study of tunneling between two separately coneutput of the injecting wire. Ideally, it is maximémninimal)
tacted, parallel, vertically separated two-dimensiotziD) when the ratio ol and LEO) is (half-)integer. In reality, out-
electron systems became possibldectronic structure and put characteristics depend sensitively on details of the tun-
interaction effects in low dimensions have been the subjeateling barriett” Assuming the feasibility to engineer barrier
of careful investigation. In the ideal case, conservation ofdesign, coupled quantum wires were suggéStad realiza-
canonical momentum in the plane of the 2D electron systemtions of quantum logical gates.
leads to sharp tunneling resonances; allowing for exploration In this paper, we consider phase-coherent transport in a
of electronic subband energi@snapping of the 2D Fermi system of parallel quantum wires coupled via a finite tunnel-
surface’ and life-time measurements of 2D Fermi-liquid ing barrier. See Fig. 1. Charging effects in the wires caused
quasiparticles. Modification of one of the 2D layers into a by applied voltages influence tunneling in an important way
superlattice of 1D quantum wires has been employed to medecause they determine the degree to which 1D subbands are
sure vertical tunneling between 1D and 2D electronshifted or filled. The basic physics of this interplay is dis-
system$ Constraints on tunneling imposed by the require-cussed in the following section. Our microscopic model for
ment of simultaneous conservation of energy and momentunihe double-wire system is introduced in the first part of Sec.
can be tuned by the transport voltage and external magnetiél. Apart from capacitance effects, interactions are neglected
fields. In certain situationSthis makes it possible to observe within our approach, which is therefore valid only for volt-
features of the momentum-resolved single-electron spectralges and in-plane magnetic fields probing the 1D electron
function directly in tunneling transport.
The method of cleaved-edge overgrofwtBEO) makes it

I
possible to create long and clean quantum wires in —
GaAs/GaAl,_,As heterostructures.Using the same tech- i L L J
nique, systems of two parallel quantum wires with a high and Vy 1\_> /2
extremely clean tunneling barrier between them have been
fabricated in double-layer structur&sThis opens up new "{
possibilities for studying the peculiar dynamics of electrons \ 3/‘_ _'\4
in interacting 1D systent$*? using 1D—to—1D tunneling® T ’_. ’—‘

In particular, both the phase-coherence length and the elastic
mean-free path, for electrons in these quantum wires Usu- g1, 1. Schematic setup for a system of two parallel quantum
ally exceed the wire length. This motivates the present ires. The magnetic field allows tuning of kinetic vs canonical
work where we analyze mesoscopic effects in 1D—to—1Dnomentum. A voltagevyy, is applied uniformly to the upper
transport. In related contexts, phase-coherent transport iffower) wire, i.e., raises the chemical potential lwfth left movers
double-wire systems was discussed in terms of device appliandright movers. The parts of the wires outside the region of space
cations. For example, a system of two parallel, identicawhere the barrier is finite are leads to ideal reservoirs. For simplic-
guantum wires coupled within a spatial region of length ity, we assume leads of infinite length in our model description.
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systems beyond the cutoff for Luttinger-liquid behavibr. A
Results from lowest-order perturbation theory are compared
with the exact solution using scattering theory. We calculate
linear and differential conductances for 1D—to—1D tunneling
transport, and discuss their features in Sec. IV.

Il. EFFECT OF AN APPLIED VOLTAGE

In the typical tunneling experiment, a voltage drdp
across the barrier drives a current. Microscopically, it is often
assumed that the voltage shifts quasiparticle bands in the two
subsystems by-eV/2, respectively, as compared to the equi-
librium situation where no net current flows. The external 5 5 A voltageV applied to a quantum wire results, in gen-

circuit is supposed to preven'g charging of _the S_UbsySﬂémS'eral, both in a uniform shift of the 1D subband and charging of the
In general, however, the applied voltage will shift the bandsyre outside the linear-response regime, the parametégpends
as well as partly fill them. As the |-V curve for 1D—to—1D g, yotage. In the double-wire system, a self-consistent treatment of

tunneling depends sensitively on the scenario of band filling:harging effects due to the voltage and tunneling is necessary unless
vs band shifting, we discuss this issue here in some detail.tunneling is weak.

At zero temperature, the free energer length of a 1D
system is given by its total energger length E,;, which is 5
a functional of particle densitp. In a clean quantum wire, {==Dy. (4)
n=ng will be constant. Before applying a voltage, the sys-
tem is assumed to be charge neutral, i.e., the uniform elec- o ] ] )
tronic charge densitgn, is compensated by positive back- e see that, fof<1, a voltage will simplyfill quasiparticle
ground and image charges. It is useful to diviglg into two be}nds W|_thogt shifting thertband-filling limit). In parucular,_
parts; E,o= E;yi+ Ecoy. All Coulombic terms(including the this applies in the absence of e_Iectron—eIectr(_)n interactions.
Hartree energy of electrons in the wirare collected in !N the opposite case>1, an applied voltage shifts the bands
Ecous and E;, is the internal energy of the quantum wire (band-shifting I|m_|). This situation is _analogous to .that of a
comprising kinetic and exchange-correlation contributionsPulk metal or a single-electron tranS|szIrTo get an idea of
For our purposes, we adopt the simple model W, the situation realized in our system~of interest, we estimate
= (eAn)%/2C whereAn is the deviation from the density,, € capacitance of a quantum wire y-2me/In(R/r), with
being the distance to surrounding metal gates,rashehot-
g the characteristic transverse dimension of the wire. Typi-
‘cal values are~10 % F/m. With Fermi energies of quan-
tum wires ranging between .1 .10 meV, we obtain{
. ! ~1...10. Hence, typical quantum wires are in the interme-
An in the total density has to be calculated from diate regime where both band filling and band shifting occurs
at the same time. This case is illustrated in Fig. 2. It is im-
portant to keep in mind, however, that E¢8) and (4) are
. (1) only valid whenAn<n,. In experiment, voltages compa-
n=ng+An rable to and larger thamp, are applied to probe the full
single-particle dispersion relatidfi.Then, for a quantitative
comparison between theory and experimexi, has to be
found from Eq.(1). For example, a wire whose density was
initially large enough for it to be in the band-filling limit
. An crosses over to the band-shifting limit when it is depleted.
“HT R 2 At this point, it is useful to make contact with results
obtained for Tomonaga-LuttingéTL) models° of interact-
Here Dy, is the thermodynamf& density of statesDOS) ing 1D electron systems. Unlike their high.er-dimefns_ional
definedo by Do=an/dp| — (PE, Jon?) L N the counterparts, 1D _metals cannot t_)e described within _the
0 Mlu=po int n=ng’ Fermi-liquid paradigm. Instead, their low-energy properties
linear-response limit, it is then possible to exprassexplic-  are represented by effective TL models, and the phenomenol-
itly in terms of the external voltag®, ogy of a Luttinger liquid* (LL) applies. Instead of Landau
parameters, it is the velocities of certain collective and zero-
0 mode excitations that determine all physical quantities of a
An=eV1T§, (3 LL. In particular, the ratiory=vy/vg of the velocityvy of
the charged zero motfeand the bare Fermi velocity enters
where the parametaf measures the relative importance of the expression for the electrostatic capacitance per unit
Coulombic and density-of-states effects: length of a Luttinger liquid:C,, =e’Dy/(ry—1). HereD,

andC denotes the electrostatic capacitance per unit length 9
the wire?’ The applied voltage is assumed to lead to a uni
form shift eV with respect to the equilibrium chemical po-
tential o= JE o/ n|y, of the wire?'~**The induced change

+ V—eZA 4 in
PoT V= ANT T

In the limit of small voltages |€V|<u,) where linear-
response theory is valid, we can use

3Emt
oJn

n=ny+An
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=1mhve is the 1D DOS. Using Eq(4), we find ¢, =r %2
F g Eqld) {L=rn gt v.eV, . @

—1. The noninteracting case whetg=1 corresponds to the (k)= m
band-filling limit, whereas strong Coulomb interactiong; (

—o0) recover the band-shifting limit. We would like to re- Herem s the effective electron mass in the semiconductor
mark thatry constitutes an independent parameter in thehost medium, and,, denotes the energy at the bottom of
low-energy theory of any given real quasi-1D system. It isthe respective wire’s lowest 1D subband. The term
unrelated, except in certain special ca¥em the famous Vuq)€Vu( takes into account the shifting of the band in the
interaction paramete, that enters power-law expressions Uppeflower) wire due to an applied voltage. See Fig. 2. For
for electronic correlation function's.From now on, we con-  simplicity, we neglect effects due to the mutual capacitance
sider the model wherg,>1 butK = 1. This approximation of the two wires, which can be included straightforwardly. In
is valid to describe current experiments where the wires argeneral, the values of,, will depend on voltage. Further-
probably not long enough for the power-law characteristicsnore, except in the limit of weak tunneling whefé

of a LL to be observabl& Even for infinitely long wires, <|eV,/, they have to be determined from a self-consistent
however, our results apply at energies and wave vectors fdfeatment of charging effects resulting from tunneling and
enough from the Fermi points where the single-particle Spece|eCtl'OStatiCS. While this is, in principle, straightforward to

tral function recovers Fermi-liquidlike characteristiés. implement, we choose to focus here on the weak-tunneling
limit that is more relevant for current experiméfitin the

linear-response regime, we have=¢,/(1+¢,) with £,
defined for each wire in analogy to E@).

We consider two quantum wires of infinite length, labeled  Absolute values of energy and taecoordinate are irrel-
U(uppep and L (lower), that are parallel to the direction  evant; results depend only on the difference of subband en-
and located, in thg'z plane, aty=0 andz=z, . The po- ergies, AE,=Eq —Egy, and the wire separationd=z,
tential barrier between them is assumed to be finite and uni-z, . For simplicity, we choosé&,,=0 andz;=0 in the
form in the regiorn x| <L/2 and infinite otherwise. Within the following. Also, to avoid cluttering the notation, we have
standard notation of second quantization, the Hamiltoniarsuppressed spin quantum numbers. In typical CEO struc-
for our system is given by tures, the effect of Zeeman splitting is negligible for the
range of magnetic fields to be considered belbwience,
electron spin leads only to factors of 2 that we include in our

z

a

S

IIl. MODEL AND FORMALISM

H :a;‘j’L HatHun, (58 final formulas for tunneling current and conductances.
dk A. Perturbation theory: Lowest order in tunneling
a™ f _ea( k)cT Cka s (Sb) 38 : :
27 Ka A standard procedut&® for calculating the tunneling
current is to perform perturbation theoryly,,. To leading
L2 . order, the current flowing from the upper to the lower wire is
Hu= | axituloouote) (50

2e (dk [ dp = de
|=7f Zfﬁ“k,plzf_szu(f'k)
XAL(e,p)[fu(e)=fLle)], (8)

69 with Fermi functionsf ,(€) = 1[ 1+ exp{(e—uo—eV,)/kgT}].
Here ey() (k) is the electronic dispersion relation in the up- The single-particle spectral functions for the wires are given,
per (lower) wire. Modulo an unimportant phase factor, the within the model specified above, b, (e,k)=27d[e
tunneling matrix element is given B —€,(K)]. In the linear-response limiféV,|< ), we find
the tunneling conductance

si(p—k)L/2]

dk [ dp "
:Jﬂf z{tk'pckucpﬁ H.c}.

pP— k ™ ’
o _ o =73 vrw 2 o Zlyny=y'nl-ps|.
The second equality in Eq6) constitutes the definition of FUTFL 5,y =21
S, (p—Kk), which is a finite-size realization of Dirac&func- ©)

tion. Tunneling OCCcurs mainly betWeen states W|th momentq{ere UEa and nFa denote the Fermi Ve|ocity and e|ectron
satisfying |p—k|<2/L. Perfect momentum conservation density of the respective wire at the equilibrium chemical
holds only in the limitl — . _ potentialuo. The peak-shape functiofy has been defined in
We consider the case where a singfee lowest 1D sub-  Eq, (6), and the relative shift of the 1D Fermi seas due to the
band in each wire is occupied and assume a parabolic sul@-pp”ed magnetic field ipg= —eB d/7.
band dispersion. The effect of a magnetic fiélekB y ap- In analogy to 2D—to—2D tunnelintyresonances appear in
plied perpendicularly to the plane of the two wires can bethe tunneling conductancgé as function of magnetic field
included by a shift of kinetic with respect to canonical whenever parts of the shifted Fermi surfaces of the two wires
momentunt® Then, dispersion relations read € U,L) overlap. As the 1D Fermi surface consists of just two points,
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the shape of these resonances is that of a smeared delta func-
tion of width 277/L. The peak value of the tunneling conduc-
tance can be written as

L 2€?

ka:n T

whereL = wh\vggvg/|t] is an effective length scale intro-

duced by tunneling, and* =1 or 2 depending on the num-
ber of overlapping Fermi points at peak condition.

In the dirty limit*® where the length_ of the tunneling
barrier is larger than the mean-free péth Eq. (9) is still
valid but the peak width is now given by#l. Also, the
factor (wL/L;)? in Eq. (10) has to be replaced by
272L 4/LZ. In both the ballistic and diffusive cases, taking  FIG. 3. Linear conductance for two identical wires, calculated
the limit of L — o0 is unphysical: the conductance through theexactly (solid curvg and with perturbation theorgdashed curve
barrier cannot exceede3/h per channel. Hence, the actual Inset: Oscillation of conductance in zero magnetic figdlid) and
small parameter enabling perturbative treatment of tunnelingith ps=0.001k® (dotted wherek® is the Fermi-wave vector
is L/L;. Smallness ofL/L, means that the time between for zero magnetic field.
tunneling events has to be larger than the time it takes the
electrons to traverse the region where the potential barriepome details are given in the Appendix. Due to the differ-
between the wires is finite. Only then it will be possible to €nce of Fermi functions in Eq12), only transmission coef-
neglect higher-order effects due to electrons tunneling coheficients T, ,(€) at energies within the voltage window, i.e.,
ently back and forth between the wires. Using the exact sowith e—uoe[eV ,eVy], contribute. In the limit of small
lution developed in the following section, we will find in- applied voltage, Eq(12) yields the linear conductance
deed that the perturbative result displayed in &).is valid

2
ly as long ag <L;. 2e
ony as fong as =t G=— 2 |Tma(no)l (13

m=1,2
n=3,4

wl\?
S o

G (2e°/h)

B. Exact solution using scattering theory
As expectedG obtained from Eq.(13) deviates from the
aperturbative resultEq. (9)] for long-enough barrier length,

ee Fig 3. The oscillatory dependencezobn L can be tuned

y the applied magnetic field, as seen in the inset of Fig. 3.
When the effective tunnel splitting in the coupling region is
much smaller than the Fermi energy of the quantum wires,
the following approximate formula for the linear conduc-
tance can be derive@ee the Appendix for detajts

As the model defined in Eq$5) describes two systems of
noninteracting fermionic quasiparticles that are coupled vi
tunneling in a finite region of space, we can use scatterin
theory for calculating transpotf. To make this explicit, we
rewrite the Hamiltonian of our system in first-quantized no-
tation and real-space representation. It isx@2matrix [be-
cause wave functions are two-component spinggs, () ' I:

eu(—idy) t(x) : | 2 2
=l c(—ioy)" (11 o 2 »d sin[mV(L/L)?+(L/L,,,0)?]
L) 1+(LJL,,)2

(14)

The tunneling matrix element is piecewise constdiik)
=[t| for [x|<L/2 andt(x)=0 otherwise. Hence, regions Here new length scales,,, appear that measure the mis-
with |x|>L/2 where the wires are independent act as leadsnatch of canonical Fermi momentum for pairs of Fermi
where scattering states can be defined. We attach labelspbints from the upper(right-mover y=+1, left-mover
through 4 to these leads as shown in Fig. 1. The re@i¢on y=—1) and lower ¢’ analogouswires:

=<L/2 where tunneling occurs acts as an effective scatterer.

The current flowing through the tunnel barrier is then 2

given by L, = - : (15
E[?’nu_ y'nL]—ps

2
'ZWe 2, fdele,n<e>|2[fu<e>—fL<e>], (12
m=1,2

m=12 Exact calculation ofG in the appropriate limit confirms the

validity of Eq. (14); see Fig. 4.

whereT, ,(€) denotes the transmission coefficient for elec-

Frons with energy that originate in Ieagdn gnd are spgttered IV RESULTS AND DISCUSSION

into lead n. We calculate the transmission coefficients by

matching scattering states in the leads to the appropriate Different regimes in the behavior of the linear 1D—to—1D
eigenstates of the Hamiltoniaidl) in the region|x|<L/2.  tunneling conductance are distinguished by the interplay of
As this is a straightforward exercise, and results for the mosthe relevant length scales encountered above. These are the
general case are lengthy, we omit explicit formulas herelengthL of the tunnel barrierl; which is a measure of the
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FIG. 4. Contour plot of the linear conductan@ers AE, andpg
for L=L{"=100k{ . (Here,L{”) andk{") are the tunneling length

and Fermi-wave vector whehE,=0 andB=0. Due to our gauge eViug
choice, kgy= mny/2 is unaffected by the external magnetic figld.
The oscillatory structure is well described by H44). For our FIG. 5. Differential conductance for 1D—to—1D tunneling in the

choice of parametersG=0 at in-resonance condition. Note that ideal band-filling case@=c), shown as a logarithmic gray-scale

tuning the magnetic field near off-resonance maxifeay., for  plot in arbitrary units. Parameters used ar,=0.2u, andk{)L

AE;=0 andpg=0.07kgy) has a strong effect 0G. =100. k&) is the Fermi-wave vector of the upper wire at zero
voltage. The finite width of bright resonance features as well as the

strength of tunneling, and lengths,,, which are defined for ~appearance of darker maxima is due to the finite lengtf the

any pairing of a Fermi point from the upper wire with one tunnel barrier. Note the symmetry with respect to voltage reversal,

from the lower wire. For the following discussion, we con- Which is a key feature of the band-filling case.

sider only the largedt ., of all possible. Comparing, with .

the other lengths, a weak-tunneling regimeL, ( resonance conditions. Measured on the scale of resonance

>maxL.., ,L}) can be distinguished from a strong-tunneling peaks, the off-resonance conductgnce is_ orders of magnitude
regime ay_yt<max{L . L}). Furthermore, we call the system smaller. We have calculated the differential conductance as a
in resonancavhen the Fermi points of a corresponding,, function of magnetic field and voltage whose resonance con-
are close to each other on the scale af/P. i.e. whenlL dition corresponds to a Fermi point of one wire coinciding
N with a point on the dispersion curve of the other wire. The

<L,, . Conversely, the off-resonance limit is reached forexact Igcation of thesepcoincidences in #eB plane de-
L>L,,. 0 ! . P .

In the strong-tunneling regime, the linear conductance osP€NdS sensitively on charging effects in the quantum wires.

cillates as a function of with wavelengthL; and maximum In_ the f?]"()w'?hg’ Welffocus_ ?n E{heh“m't of V\f/_?akly cciu_pled
amplitude 2%h (4€?/h for identical wires. Previously, WI'€S where the seli-consistent charge prohie IS not impor-

P . : tantly affected by tunneling. Furthermore, we consider the
when the feasibility of using the double-wire system as a< "~ X S .
y g y ituation with symmetric bia¥ = —V_ =V/2. Figures 5 and

directional coupler was discussed, the in-resonance limit wa iively. show | hmi le blots of the ab
considered only® Control of directional-coupler operation is respectively, snow ‘ogariinmic gray-scale plots of the ab-
then possible only by varying,, i.e., essentially only by solute value of the differential tunneling conductance for the
tr 1€, . G =
adjusting the barrier height. Here we find that, in the off-ideal band-filing €=c) and band-shiftingC=0) cases’
resonance limit, the device is tunable, in addition to varyingBright lines are formed by points in thé-B plane where the
t, by an applied magnetic field or, equivalently, by adjustingabove-mentioned resonance condition is fulfilled. Due to the
the density mismatch in the two wires. This is seen already ifiinite length of the tunnel barrier, more maxima appear with
the inset of Fig. 3 and, more clearly, in Fig. 4. Itis, therefore,Peak values being orders of magnitude smaller than at the
possible to adjust the effective length scale for coherent eledesonance peaks. In the band-shifting case, resonance lines
tron transfer between the wires by applying a magnetic fieldare direct images of parts of the wires’ electronic dispersion
WhenL is equal to several timds,, the difference between Curves. In particular, the extension of the leaf-shaped struc-
the effective transfer length in a magnetic field dndeads ~ ture in the positive and negative voltage direction provides a
to an accumulated phase shift over many oscillations that cafirect measure of the respective wire's Fermi energy. This is
reachﬂ-/z W|th0ut Concomitant IOSS in amplitude_ In particu_ not the case fOI’ the band-ﬂl“ng I|m|t, Wh|Ch IS Charactenzed
lar for CEO structures, operating the system in off-resonancBY @ resonance line running close to the voltage axis when
mode provides a convenient alternative to ghgrdly fea-  Eo<wo. Its leaf structure is symmetric under voltage rever-
sible) adjustment of the high tunnel barrier. sal, with extension irfpositive or negativevoltage direction
The weak-tunneling limit is well-suited for spectroscopic given by 2(uo—|AEy|). In real systems, the capacitanCe
application of 1D—to—1D tunneling. Sharp peaks are exhibis finite, and an intermediate picture will be obtained for the
ited by both the linear and differential conductances for in-differential tunneling conductance. An example is shown in
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V. CONCLUSIONS

Motivated by recent experiment, we have investigated lin-
ear and differential conductances for 1D—to—1D transport.
Our results show that effects due to phase coherence and
charging of the wires are important for realistic double-wire
structures. Regimes of weak and strong tunneling, as well as
in and out of resonance, are distinguished and their key fea-
tures discussed. We point out possibilities for device appli-
cation of 1D-to—1D tunneling and its use for electron-
dispersion spectroscopy.

ACKNOWLEDGMENTS

eVino Useful discussions with M. Btiker, G..Sch'u, and A.

Yacoby are gratefully acknowledged. This work was sup-

FIG. 6. Differential conductance for 1D—to—1D tunneling in the ported by DFG within Sonderforschungsbereich 195, Gra-
ideal band-shifting cas&{=0). We show a logarithmic gray-scale duiertenkolleg “Kollektive Phaomene im Festkper”

plot of its absolute value. Parameters and gray-scale units are ti®-B.), and the Emmy-Noether-ProgramifA.R.). U.Z.
same as in Fig. 5. A characteristic feature of the band-shifting casthanks the Braun Submicron Center at the Weizmann Insti-
is that the edges of the leaf-shaped structure in the voltage directioitite, Israel, for hospitality during a visit sponsored by the EU
are exactly at the Fermi energies of the two wires. The differentiaLSF program.

conductance is negative on the low-magnetic-field resonance lines.

APPENDIX: CALCULATION OF TRANSMISSION

Fig. 7, whereC has a value such th@{,=0.5 at zero volt- COEFFICIENTS

age. Depletion of one of the wires for increasing voltage Equationg12) and(13) express tunneling current and lin-
leads to a crossover to the band-shifting situation. As a reear conductance in terms of transmission coefficients
sult, the ideal band-shifting limit is not easily distinguished Ty, n(€). These transmission coefficients can be obtained ex-
from the intermediate case. Quantitative comparison of th@ctly by matching eigenstates of Hamiltonidrigiven in Eq.
measured resonance structure in the differential conductanéél)] with eigenvaluee in the coupling region |k|<L/2) to

with results expected from an independent measurement @pPpropriate eigenstates in the leads. For example, to calcu-
Fermi energies, electron densities etc. will have to includdate T1,, we use theAnsdze

the effect of the finiteC. Conversely, for known Fermi-sea 1 ¢
parameters, the value & can be extracted by fitting the ‘I’E(X)|X<—L/2=( )eik{f)er( 11) ekl
measured resonance pattern of the differential conductance 0 0

for 1D—to—1D tunneling.

aik{ x.

(Ala)

13

tio) 0\ .
¥ 0o 2= ( ;2) e ( m) e’ (alb)

(@
o (@)
VWixere= 2 |d( )( m))e'k* "

(a)

U=\ @

(d) elk* X . (AlC)
v

+d

Here wave vector$< (,_) are solutions ofe= EU(L)(kU(L))
with positive (+) and negative {) group velocityvy,
= dpkeu( (K), respectively. With the energy dispersion in
9 the coupling region given byeiék) Heu(k)+ e (K)]
Vi, +|t|y1+r? we have e=e.(k®). The function r
=[ey(k)—€.(k)1/2|t| measures the mismatch in the disper-
FIG. 7. Differential conductance for 1D—to—1D tunneling in an sions of the two wires and determines the amplitudes
intermediate situation with finit&. Shown is its absolute value ina = V(1= r/V1+r?)/2, v. =+ \(1Fr/J1+r?)/2. Requiring
logarithmic gray-scale plot. See Fig. 5 for a legend. In addition tocontinuity of the wave function and current conservation at
the parameters used in Fig. 5, we havg=C, =8ss,/(k)ag)  the locationsx==L/2 yields a system of linear equations
whereag is the Bohr radius in the semiconductor host material. from which the coefficients,,, and d'® are found. Trans-
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mission coefficients entering Eq§l2) and (13) are then energies, only amplitudes for right-moving partial waves in
given by T n(€) =tmnVlvL fvyl. Ansatz(Al) are significantly different from zero. Neglecting

The linear conductance is given in terms of transmissiorleft-moving partial waves and the small density mismatch,
coefficienté® at the equilibrium chemical potentiat,, as  the matching procedure yields,=i sin(kL)/\V1+r? with
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