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Optical response in one-dimensional Mott insulators
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We study the optical response of a Mott Hubbard system in the framework of the half–filled extended
Hubbard model using the density matrix renormalization group~DMRG! method. We discuss the appearance
of excitonic features inside the spectral gap as the system goes from the spin density wave~SDW! to the charge
density wave~CDW! phase.
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A detailed understanding of the optical response a
charge gap in the one-dimensional Mott insulators remain
challenge to existing theoretical methods. Renewed inte
in the subject stems from several experiments on mate
such as SrCuO2, Sr2CuO3, conjugated polymers and N
halides1–3 with possible applications such as ultrafast switc
ing in optoelectronic devices. The aim of this letter is
study the effect of nearest neighbor Coulomb repulsion
the optical and Raman spectrum in these systems.

A simplified model which has been used to describe
essential physics of these materials is the extended Hub
model ~EHM! defined as

H52t(
j ,s

~cj 11s
† cj s1H.c.!1U(

j
S nj↑2

1

2D S nj↓2
1

2D
1V(

j
~nj21!~nj 1121!. ~1!

The first term corresponding to hopping between nea
neighbor sites and the second term to the onsite Coulo
repulsion provide the competition between itineracy and
calization in the regular Hubbard model. The third term re
resents Coulomb repulsion between electrons occup
nearest neighbor sites. The Hamiltonian as written ab
guarantees an insulating ground state with a filling of o
electron per site.

Although this model has been widely studied, many qu
tions remain unanswered. The analytic approach at its be
Bethe-ansatz provides an exact solution only whenV50.4

The method has been used to obtain the energy spectrum
thermodynamics, but a reliable computation of dynami
quantities such as the optical response remains elusive. N
perturbative analytic studies of the dynamical response
these systems have largely been constrained to use the
tinuum limit.5

Numerical methods such as exact diagonalization,
though valuable in providing real frequency information, a
limited to small system sizes.6 Quantum Monte Carlo meth
ods can treat large finite size clusters but analytic contin
tion from imaginary to real frequencies is an unreliab
procedure.

The renormalization group idea has helped deal w
some of the toughest problems in physics characterized
large number of degrees of freedom playing an essential r
The efficacy of the idea as a tool to compute experiment
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relevant quantities lies in the ability to integrate out the n
essential degrees of freedom. This has been brought to
tion with tremendous success in a numerical algorithm
low dimensional interacting systems known as the den
matrix renormalization group~DMRG!.7 The numerical so-
lution of finite size systems on a computer is restricted by
exponentially increasing Hilbert space. The DMRG meth
works around this by a systematic truncation. It prescrib
how to retain the most probable states of a subsystem
quired for an accurate description of a particular set of sta
~usually, just the ground state! of the full system. The DMRG
algorithm initially suited to deal only with ground state pro
erties, was subsequently extended to compute dynamical
relation functions.8,9 One of the approaches known as t
‘‘Lanczos vector method’’ constitutes choosing the particu
set above as the ground state plus a set of Lanczos vec
The vectors are chosen to approximate the reduced Hil
space of excited states which connect to the ground state
the operator whose correlation function is desired. T
method is very efficient in capturing low energy sharp fe
tures such as excitons in the optical spectrum; espec
when bulk of the weight is in a single peak. Excitonic fe
tures in multi particle correlation functions have been o
served in the EHM in previous studies.10,11

The EHM at half-filling shows an interesting phase d
gram. In the weak coupling limit (U!t) the system under-
goes a second order transition from a spin density w
~SDW! phase to a charge density wave~CDW! state as a
function of increasingV, atV5U/21d(U). For intermediate
values ofU the SDW and CDW phases are separated b
narrow region with a bond charge density wave~BCDW!
order. As one approaches strong coupling (U@t), the transi-
tion is again from an SDW to a CDW phase atV5U/2
1d(U), but it is now first order. The small correctiond(U)
is positive and approaches zero at both the weak and st
coupling ends. The precise location of a tricritical point
the crossover between the first and second order transit
has been a subject of much investigation12–16and is compli-
cated by the existence of the BCDW order.

In our study we compute the optical response and lo
spectral function of the EHM in the strong coupling regim
We fix U at a realistic value of 12t. The first order transition
between the SDW and CDW phases is manifest in the opt
properties as well as in the ground state energy. The rele
values ofV for SrCuO2 and Ni halides are in the SDW phas
All the results presented in this letter were obtained fro
©2001 The American Physical Society19-1



e
t
on

is
-
it

n

gh

R
th

-
r a

ra

us

e

i
es
du
th
fo
t
tl

sin
th
i

an
r
th
e
e

ard

he

ich
er
ic

ap,
s-
a

u-
en

S. S. KANCHARLA AND C. J. BOLECH PHYSICAL REVIEW B64 085119
computations performed with finite size chains ofNs550
sites with open boundary conditions using the Lanczos v
tor method. Studying other sizes (Ns518,34,66) shows tha
results forNs550 are generic. We use the finite size versi
of the DMRG algorithm and choosem5150 for the largest
sizes. Selected runs performed with higher values ofm did
not introduce significant changes in the results. Typical d
carded weights wereO(1026). To validate our code we com
pare our results for the static and dynamic properties w
exact diagonalization for short chains.

We use the following definition for the response functio

xAB~v!5
i

LE0

`

dtei (v1 i e)t^0u@A†~ t !,B~0!#u0&. ~2!

The real part of the optical conductivity is defined throu
the imaginary part of the current–current response withe
→0,

s8~v!5
1

v
x j j9 ~v!, ~3!

where

j 52 i t(
j ,s

~cj 11s
† cj s2cj s

† cj 11s! ~4!

is the paramagnetic current operator. The non-resonant
man spectrum in a Mott-Hubbard system is given by
response function of the stress energy tensor,17

t52t(
j ,s

~cj 11s
† cj s1cj s

† cj 11s!. ~5!

In the case of an insulatorxtt is not the dominant contribu
tion to the total Raman spectrum. But it is interesting fo
comparison withx j j because,j and t are respectively odd
and even under parity conjugation, apart from an ove
phase.

In Fig. 1 we show the local spectral function for vario
values ofV ranging from 0 to 9t. In the SDW phase, the
single particle gap (Ds) stays constant until a threshold valu
of V around 3t is reached and then starts reducing~cf. Fig.
4!. Here and further in this letter when we refer to the gap
a correlation function we measure the position of the low
energy peak. We ignore the tail part which comes about
to the small finite broadening that is used to represent
Lanczos continued fraction. This implies that our values
the gaps are tight upper bounds to the actual ones. At
SDW-CDW transition the spectral gap reduces abrup
reaching a finite value, jumps up and then starts increa
again in the CDW phase. Note that in the CDW phase,
site on which we compute the spectral function is empty
the ground state.

In Fig. 2 we report the current-current and nonreson
Raman response functions in the left and right columns,
spectively. A systematic change in the optical response in
odd (x j j ) and even (xtt) channels is discernible as w
sweep throughV across the SDW and into the CDW phas
For V50 we see a broad feature centered at aroundU, in
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good agreement with a recent calculation for the stand
Hubbard model within the DMRG approach.18 Our method
does not allow a resolution of the tiny bump seen in t
middle of the broad optical absorption band. But, asV is
increased we do notice the formation of a resonance wh
gradually gains in weight and shifts towards low
frequencies.11,19 This constitutes a precursor of the exciton
feature that we describe further below.

For small values ofV the optical (D j j ) and Raman (Dtt)
gaps would be expected to coincide with the spectral g
Ds . We find them to be slightly larger because it is not po
sible to create fully noninteracting electron-hole pairs in
finite size chain. AroundV;1.5t, the optical gap falls below
the spectral gap in agreement with previous work.10 The
same happens for the Raman gap atV;3t. We define a
quantity that we will call the excitonic weight (Wj j (tt)) as
the fraction of the weight in the optical~Raman! spectrum
below Ds ,

Wj j (tt)5

E
0

Ds
dv x j j (tt)~v!

E
0

`

dv x j j (tt)~v!

. ~6!

FIG. 1. Local spectral functions for different values of the co
pling V. Note the abrupt change in particle-hole symmetry betwe
the two phases.
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In Fig. 3 we plot the excitonic weight as a function ofV. In
the case of both response functions it is seen that the e
tonic weight is zero until the above mentioned crossing
gaps occurs~cf. Fig. 4!. As V is increased further, the exc
tonic weight starts appearing and a resonance begins sep

FIG. 2. Optical and Raman response functions for different v
ues of the couplingV. The vertical dotted line indicates the magn
tude of the single-particle spectral gap in each case.
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ing from the rest of the spectrum. WhenWj j (tt) reaches a
maximum aroundV;4t, the spectrum is dominated by
sharp excitonic feature carrying most of the weig
–86%~77%!. This peak, well differentiated from the rest o
the spectrum, is clearly located inside the single–part
spectral gap while the rest of the weight falls outside. T
Lanczos method is rather well suited to describe these e
tonic features, but it is not so good in capturing detail at
higher end of the spectrum. The optical bands inside
one-particle continuum tend to be shifted towards higher
ergies. At the same time the relative weight in the excito
features is accurately represented, since we find that the
rule for the optical conductivity in terms of kinetic energy
obeyed with 1% accuracy or better~except very close to the
transition!. As V is increased further beyondV;4t the exci-
tonic feature starts loosing weight and at the same t
marches towards zero frequency. At the precise point of
SDW-CDW transition the excitonic mode reaches the low
frequencies we can resolve (v;1/L).

In a Mott insulator represented by the half-filled Hubba
model, creation of an independent electron-hole pair~or a
holon-antiholon pair in the Bethe ansatz language! has a fi-
nite energy threshold; namely the spectral gap. This thre
old is lowered in the presence of an attractive force by
binding energy of an electron-hole pair called an excito
This attraction comes about due to the increased rang
Coulomb repulsion in the EHM and is significantly absent
the standard Hubbard model. As we increaseV the energy
gained in binding electron-hole pairs keeps growing conti

l-

FIG. 3. Excitonic weight as a function of the couplingV.

FIG. 4. Gaps for different values of the couplingV.
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ously and the excitonic feature moves closer and close
zero frequency. At the same time the density of electron
hole states available for binding first increases, reache
maximum and then goes to zero at the SDW-CDW bound
When the energy gained from binding the electron-hole p
equals the energy cost of creating them across the si
particle gap, the optical gap vanishes in both the odd (x j j )
and even (xtt) channels.

Amongst the examples of 1D Mott insulators mention
earlier, we focus on Sr2CuO3 to indicate the experimenta
relevance of our results. From previous literature,20,21 the
values of the parameters for this material are estimated to
t'0.55–0.6 eV,U'7.2 eV andV'0.8 eV. Therefore the
material lies right near the boundary where excitonic wei
in x j j begins to appear. Nevertheless, the exciton or its p
cursor in the form of a narrow peak distinguished from t
rest of the spectrum should already be seen in the op
conductivity.

Although our interest is in the strong coupling limit on
can gain an understanding of the physics at hand by using
language of the continuum limit applied to the EHM;14 an
approach which is strictly valid only in the weak couplin
case. Further using bosonization, the model can be spli
into two sine Gordon models~SGM! for the charge and spin
sectors, respectively. The charge sector is the only on
interest as far as (x j j ) is concerned. On the other hand, sp
charge separation does not help a study of (xtt) because the
operatort involves both the charge and spin sectors. T
exact solution of the SGM is available and the spectrum
governed by a coupling parameter usually calledb.22 For
b2,4p the spectrum is built solely of kinks and antikink
ev
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As b increases further, the SGM enters the attractive reg
and kink-antikink bound states known as breathers
formed. These bound states in the SGM correspond to
excitons in the EHM that form as the value ofV is increased.
Given that we are interested in the strong coupling regime
the EHM, a quantitative comparison with the attractive
gime of the SGM falls beyond the margin of applicability
the scaling limit.

To conclude, we have shown that sharp excitonic featu
dominate the transport behavior in a particular regime of
EHM at half-filling. This is a direct consequence of the i
clusion of nonlocal Coulomb interaction in this model. The
excitons are of fundamentally different origin as compared
those in semiconductors formed by the binding of electr
hole pairs. Due to strong correlation and low dimensional
electrons decouple into new elementary excitations, nam
spinons and holons. This necessitates a careful treatme
the full many-body problem. The Lanczos method combin
with the DMRG approach is a powerful nonperturbative to
for computing the dynamical correlation functions of a no
trivial system like this. Our numerical approach permits us
easily include other ingredients such as explicit dimerizat
and interchain hopping which are present in these mate
in order to allow a better quantitative comparison with e
periments in the future.

We are indebted to G. Kotliar for several suggestions a
to A. Rosch for his keen interest and many comments.
acknowledge useful discussions with N. Andrei, A. Milli
and S. Shastry. We thank K. Hallberg and S.R. White
discussions on the DMRG method.
.

ch,

.

K.
ett.

,

1Y. Mizuno, K. Tsutsui, T. Tohyama, and S. Maekawa, Phys. R
B 62, R4769~2000!.

2Conjugated Conducting Polymers, edited by H. Kiess~Springer-
Verlag, Berlin, 1992!.

3H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Y
mashita, Y. Taguchi, and Y. Tokura, Nature~London! 405, 929
~2000!.

4E.L. Lieb and F.Y. Wu, Phys. Rev. Lett.20, 1445~1968!.
5D. Controzzi, F.H.L. Essler, and A.M. Tsvelik,

arXiv:cond-mat/0005349~unpublished!.
6R.M. Fye, M.J. Martins, D.J. Scalapino, J. Wagner, and

Hanke, Phys. Rev. B44, 6909~1991!.
7S.R. White, Phys. Rev. Lett.69, 2963 ~1992!; Phys. Rev. B48,

10345~1993!.
8K.A. Hallberg, Phys. Rev. B52, 9827~1995!.
9T.D. Kuhner and S.R. White, Phys. Rev. B60, 335 ~1999!.

10W. Stephan and K. Penc, Phys. Rev. B54, R17269~1996!.
11E.R. Chalbaud and J-P. Gallinar, J. Phys.: Condens. Matte1,

3325 ~1989!; J–P. Gallinar, Phys. Rev. B48, 5013~1993!.
12J.E. Hirsch, Phys. Rev. Lett.53, 2327~1984!.
.

.

13J.L. Cannon, R.T. Scalettar, and E. Fradkin, Phys. Rev. B44,
5995 ~1991!.

14J. Voit, Phys. Rev. B45, 4027~1992!.
15G.P. Zhang, Phys. Rev. B56, 9189~1997!.
16M. Nakamura, Phys. Rev. B61, 16377~2000!.
17B.S. Shastry and B.I. Shraiman, Phys. Rev. Lett.65, 1068~1990!.
18E. Jeckelmann, F. Gebhard, and F.H.L. Essler, Phys. Rev. Lett85,

3910 ~2000!.
19F. Gebhard, K. Bott, M. Scheidler, P. Thomas, and S.W. Ko

Philos. Mag. B75, 47 ~1997!.
20C. Kim, A.Y. Matsuura, Z.X. Shen, N. Motoyama, H. Eisaki, S

Uchida, T. Tohyama, and S. Maekawa, Phys. Rev. Lett.77, 4054
~1996!.

21R. Neudert, M. Knupfer, M.S. Golden, J. Fink, W. Stephan,
Penc, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. L
81, 657 ~1998!.

22A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik,Bosonization
and Strongly Correlated Systems~Cambridge University Press
Cambridge, England, 1998!.
9-4


