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Optical response in one-dimensional Mott insulators
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We study the optical response of a Mott Hubbard system in the framework of the half-filled extended
Hubbard model using the density matrix renormalization gra@@RG) method. We discuss the appearance
of excitonic features inside the spectral gap as the system goes from the spin densi(@agdo the charge
density wave(CDW) phase.
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A detailed understanding of the optical response andelevant quantities lies in the ability to integrate out the non
charge gap in the one-dimensional Mott insulators remains assential degrees of freedom. This has been brought to frui-
challenge to existing theoretical methods. Renewed interesion with tremendous success in a numerical algorithm for
in the subject stems from several experiments on materialew dimensional interacting systems known as the density
such as SrCuf) SrCuQ;, conjugated polymers and Ni matrix renormalization groupDMRG).” The numerical so-
halides~®with possible applications such as ultrafast switch-lution of finite size systems on a computer is restricted by an
ing in optoelectronic devices. The aim of this letter is toexponentially increasing Hilbert space. The DMRG method
study the effect of nearest neighbor Coulomb repulsion omvorks around this by a systematic truncation. It prescribes
the optical and Raman spectrum in these systems. how to retain the most probable states of a subsystem re-

A simplified model which has been used to describe theyuired for an accurate description of a particular set of states
essential physics of these materials is the extended Hubbatdsually, just the ground statef the full system. The DMRG
model (EHM) defined as algorithm initially suited to deal only with ground state prop-

erties, was subsequently extended to compute dynamical cor-
R 1 1 relation function$® One of the approaches known as the
H= _tjzg (Cjs14CjotH.C)F U; TV R Ty “Lanczos vector method” constitutes choosing the particular
’ set above as the ground state plus a set of Lanczos vectors.
The vectors are chosen to approximate the reduced Hilbert
"'V; (nj=1)(nj1—1). @) space of excited states which connect to the ground state via
the operator whose correlation function is desired. This
The first term corresponding to hopping between nearegnethod is very efficient in capturing low energy sharp fea-
neighbor sites and the second term to the onsite Coulomitires such as excitons in the optical spectrum; especially
repulsion provide the competition between itineracy and lowhen bulk of the weight is in a single peak. Excitonic fea-
calization in the regular Hubbard model. The third term rep-tures in multi particle correlation functions have been ob-
resents Coulomb repulsion between electrons occupyingerved in the EHM in previous studit$!
nearest neighbor sites. The Hamiltonian as written above The EHM at half-filling shows an interesting phase dia-
guarantees an insulating ground state with a filling of onegram. In the weak coupling limitl{ <t) the system under-
electron per site. goes a second order transition from a spin density wave

Although this model has been widely studied, many ques{SDW) phase to a charge density wa@DW) state as a
tions remain unanswered. The analytic approach at its best iiunction of increasing/, atV=U/2+ §(U). For intermediate
Bethe-ansatz provides an exact solution only when0.*  values ofU the SDW and CDW phases are separated by a
The method has been used to obtain the energy spectrum andrrow region with a bond charge density walgBCDW)
thermodynamics, but a reliable computation of dynamicalorder. As one approaches strong couplitlgt), the transi-
guantities such as the optical response remains elusive. Notien is again from an SDW to a CDW phase &= U/2
perturbative analytic studies of the dynamical response in+ §(U), but it is now first order. The small correctiai{U)
these systems have largely been constrained to use the cda-positive and approaches zero at both the weak and strong
tinuum limit.> coupling ends. The precise location of a tricritical point at

Numerical methods such as exact diagonalization, althe crossover between the first and second order transitions
though valuable in providing real frequency information, arehas been a subject of much investigatfori®and is compli-
limited to small system sizésQuantum Monte Carlo meth- cated by the existence of the BCDW order.
ods can treat large finite size clusters but analytic continua- In our study we compute the optical response and local
tion from imaginary to real frequencies is an unreliablespectral function of the EHM in the strong coupling regime.
procedure. We fix U at a realistic value of 12 The first order transition

The renormalization group idea has helped deal wittbetween the SDW and CDW phases is manifest in the optical
some of the toughest problems in physics characterized bgroperties as well as in the ground state energy. The relevant
large number of degrees of freedom playing an essential rolealues ofV for SrCuG and Ni halides are in the SDW phase.
The efficacy of the idea as a tool to compute experimentallyAll the results presented in this letter were obtained from
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computations performed with finite size chains =50 A(w) [SDW] A(®) [CDW]
sites with open boundary conditions using the Lanczos vec- .
tor method. Studying other sizebl{=18,34,66) shows that "mwu

| V=63 |

results forNs=50 are generic. We use the finite size version i i

of the DMRG algorithm and choosa= 150 for the largest i 5
sizes. Selected runs performed with higher valuesnafid : e i,

not introduce significant changes in the results. Typical dis- | y_g : ;

carded weights wer®(10®). To validate our code we com- i 5

pare our results for the static and dynamic properties with ? :
exact diagonalization for short chains. 5 m
We use the following definition for the response function:

V=6.4

V=40 : V=65

Xao()= | "t 10laT0 BO10). @ Mﬂu
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The real part of the optical conductivity is defined through [, Ve7.0 ;
the imaginary part of the current—current response with : ;

1 MU dw\ JIMJULUM b
is the paramagnetic current operator. The non-resonant Ra-

—0,
man spectrum in a Mott-Hubbard system is given by the .AUA ] Al ;
response function of the stress energy tehSor, 105 0 5 10 105 0 5 10

® ®

U,(w):;)(]’j(w), ) v=6.1

V=8.0
N

P i T T
j——ltjE (€j416Cj0— Cj4Cj+10) (4) V=62 V=90
O

(e _t,zg (CJ‘T+ 16Cjo T CJ‘TUCJ'HU)' (5 FIG. 1. Local spectral functions for different values of the cou-
’ pling V. Note the abrupt change in particle-hole symmetry between
In the case of an insulator ., is not the dominant contribu- the two phases.
tion to the total Raman spectrum. But it is interesting for a
comparison withy;; becausej and 7 are respectively odd good agreement with a recent calculation for the standard
and even under parity conjugation, apart from an overalHubbard model within the DMRG approathOur method
phase. does not allow a resolution of the tiny bump seen in the
In Fig. 1 we show the local spectral function for various middle of the broad optical absorption band. But,\ass
values ofV ranging from 0 to 9. In the SDW phase, the increased we do notice the formation of a resonance which
single particle gap4,) stays constant until a threshold value gradually gains in weight and shifts towards lower
of V around 3 is reached and then starts reducicf) Fig. ~ frequencies’*° This constitutes a precursor of the excitonic
4). Here and further in this letter when we refer to the gap infeature that we describe further below.
a correlation function we measure the position of the lowest For small values oV the optical &;) and Raman4 ;)
energy peak. We ignore the tail part which comes about dugaps would be expected to coincide with the spectral gap,
to the small finite broadening that is used to represent thds. We find them to be slightly larger because it is not pos-
Lanczos continued fraction. This implies that our values forsible to create fully noninteracting electron-hole pairs in a
the gaps are tight upper bounds to the actual ones. At thinite size chain. Aroun¥/~ 1.5, the optical gap falls below
SDW-CDW transition the spectral gap reduces abruptlythe spectral gap in agreement with previous wdrkhe
reaching a finite value, jumps up and then starts increasingame happens for the Raman gapVat3t. We define a
again in the CDW phase. Note that in the CDW phase, thguantity that we will call the excitonic weight(j;,,) as
site on which we compute the spectral function is empty inthe fraction of the weight in the opticdRaman spectrum
the ground state. belowAq,
In Fig. 2 we report the current-current and nonresonant

Raman response functions in the left and right columns, re- Ag

spectively. A systematic change in the optical response in the JO dw Xijj(rn) (@)

odd (x;;) and even ;) channels is discernible as we Wij(rn=""72 ) (6)
sweep throughv/ across the SDW and into the CDW phase. f do i (@)

For V=0 we see a broad feature centered at aroundn 0 $rn)

085119-2



OPTICAL RESPONSE IN ONE-DIMENSIONAL MOTT ...

%{®) A ©)

v=0.0 . v=0.0

14

V=1.0 V=1.0

V=2.0 V=2.0

Vv=3.0 Vv=3.0

V=4.0 V=4.0

V=50 | V=5.0

V=7.0 3 V=7.0

V=8.0 3 V=8.0

5 100)15 20 5 100)15 20
FIG. 2. Optical and Raman response functions for different val-
ues of the coupling/. The vertical dotted line indicates the magni-
tude of the single-particle spectral gap in each case.

In Fig. 3 we plot the excitonic weight as a function\éfIn

the case of both response functions it is seen that the exci-
tonic weight is zero until the above mentioned crossing of
gaps occurgcf. Fig. 4. As V is increased further, the exci-
tonic weight starts appearing and a resonance begins separat-
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FIG. 3. Excitonic weight as a function of the couplikg

ing from the rest of the spectrum. Whéf;; ., reaches a
maximum aroundV~4t, the spectrum is dominated by a
sharp excitonic feature carrying most of the weight
—869%477%). This peak, well differentiated from the rest of
i the spectrum, is clearly located inside the single—particle
spectral gap while the rest of the weight falls outside. The
Lanczos method is rather well suited to describe these exci-
tonic features, but it is not so good in capturing detail at the
higher end of the spectrum. The optical bands inside the
one-particle continuum tend to be shifted towards higher en-
ergies. At the same time the relative weight in the excitonic
features is accurately represented, since we find that the sum
3 3 rule for the optical conductivity in terms of kinetic energy is
A 3 Ju obeyed with 1% accuracy or bett@xcept very close to the
VeB.0 VeB0 | transition. As V is increased further beyond~ 4t the exci-
3 ‘ tonic feature starts loosing weight and at the same time
! ! marches towards zero frequency. At the precise point of the
U‘L i l l SDW-CDW transition the excitonic mode reaches the lowest
3 . b L frequencies we can resolve{ 1/L).
In a Mott insulator represented by the half-filled Hubbard
! ! model, creation of an independent electron-hole aira
§ § holon-antiholon pair in the Bethe ansatz langydges a fi-
M UM 3 M | 3 nite energy threshold; namely the spectral gap. This thresh-
old is lowered in the presence of an attractive force by the
‘ ; binding energy of an electron-hole pair called an exciton.
§ § This attraction comes about due to the increased range of
1 f Coulomb repulsion in the EHM and is significantly absent in
ol L 1 the standard Hubbard model. As we incredséhe energy
V=9.0 L || v=00 | gained in binding electron-hole pairs keeps growing continu-

FIG. 4. Gaps for different values of the couplikg
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ously and the excitonic feature moves closer and closer téds B increases further, the SGM enters the attractive regime
zero frequency. At the same time the density of electron andnd kink-antikink bound states known as breathers are
hole states available for binding first increases, reaches farmed. These bound states in the SGM correspond to the
maximum and then goes to zero at the SDW-CDW boundaryexcitons in the EHM that form as the value\éfs increased.
When the energy gained from binding the electron-hole pairgijven that we are interested in the strong coupling regime of
equals the energy cost of creating them across the single EHM, a quantitative comparison with the attractive re-
particle gap, the optical gap vanishes in both the ofid)('  gime of the SGM falls beyond the margin of applicability of
and even f.,) channels. _ _ the scaling limit.

Amongst the examples of 1D Mott insulators mentioned 14 conclude, we have shown that sharp excitonic features

earlier, we focus on $€uG; to indicate the expéirégnental dominate the transport behavior in a particular regime of the
relevance of our results. From previous literature, the EHM at half-filling. This is a direct consequence of the in-
values of the parameters for this material are estimated t0 b@j,sjon of nonlocal Coulomb interaction in this model. These

t~0.55-0.6 eV,U~7.2 eV andV~0.8 eV. Therefore the o, iions are of fundamentally different origin as compared to
material lies right near the boundary where excitonic weightyose in semiconductors formed by the binding of electron-
in x;; begins to appear. Nevertheless, the exciton or its prepgje pairs. Due to strong correlation and low dimensionality,
cursor in the form of a narrow peak distinguished from theg|ecirons decouple into new elementary excitations, namely,
rest of the spectrum should already be seen in the opticalsinons and holons. This necessitates a careful treatment of
conductivity. . o the full many-body problem. The Lanczos method combined
Although our interest is in the strong coupling limit one i, the DMRG approach is a powerful nonperturbative tool
can gain an understanding of the physics at hand by using thg, computing the dynamical correlation functions of a non-
language of the continuum limit applied to the EHftan g system like this. Our numerical approach permits us to
approach which is strictly valid only in the weak coupling gasily include other ingredients such as explicit dimerization

case. Further using bosonization, the model can be split ugnq jnterchain hopping which are present in these materials
into two sine Gordon modelSGM) for the charge and spin i, order to allow a better quantitative comparison with ex-
sectors, respectively. The charge sector is the only one Cgeriments in the future.

interest as far asy(j;) is concerned. On the other hand, spin-

charge separation does not help a studyxaf) because the We are indebted to G. Kotliar for several suggestions and
operator7 involves both the charge and spin sectors. Theo A. Rosch for his keen interest and many comments. We
exact solution of the SGM is available and the spectrum isacknowledge useful discussions with N. Andrei, A. Millis,
governed by a coupling parameter usually caled® For and S. Shastry. We thank K. Hallberg and S.R. White for
B?< 4 the spectrum is built solely of kinks and antikinks. discussions on the DMRG method.
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