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Poisson equation and a self-consistent periodical Anderson model
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We show that the formally exact expression for the free enéagih a nonrelativistic Hamiltonianfor the
correlated metal generates the Poisson equation within the saddle-point approximation for the electric potential,
where the charge density automatically includes correlations. In this approximation the problem is reduced to
the self-consistent periodical Anderson model. The parameter of the mixing interaction in this formulation have
to be found self-consistently together with the correlated charge density. The factors, calculated by Irkhin, for
the mixing interaction, which reflect the structure of the many-electron states df ibw involved, arise
automatically in this formulation and are quite sensitive to the specific element we are interested in. We also
discuss the definitions of the mixing interaction for the mapping fedinitio to model calculations.
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[. INTRODUCTION DFT basis here is that one can expect compensation by the
LDA potential from a part of the self-energy for the conduc-
The local density approximatiofLDA) to the density tion electrons, which corresponds to a static random phase
functional theory (DFT) is working surprisingly well in  approximatior This way, however, involves complex calcu-
many cases for which it is expected not to work at all. One oflations of the matrix elements of the Coulomb interaction
its most important features is that the self-consistent proceand frequency-dependent magnitudes, such as the self-
dure provides a quite accurate distribution of the charge derenergy, such that in practice these calculations are quite hard
sity, calculated from the Kohn-Sham equatfomhich is  to perform*® The other way, used much more often, is
more accurate than the Poisson equation. It is also importamiirough some mapping to the Anderson or Hubbard models.
to understand why the form of the potential that has beefMhen, two difficulties ariseFirst, the question about double
derived from the theory of homogeneouslectron gas with  counting of some of the interactions, and also how to calcu-
the charge density that includes contributions from the locallate the parameters of the model that is chosen for treating
ized electrongthe extreme case of nonhomogengityorks  correlations.Secondthe model calculations often involve a
so well. Below we will show that, at least, the Poisson equaredistribution of spectral weights between low- and high-
tion can be formulated also in the case of strongly correlate@nergy regions and a redistribution of the charge density
systems, where some part of the electrons are either fully czaused by it. The latter is never taken into account in the
partly localized. On one hand, physically it is clear that themodel calculations. It is especially important since any redis-
role played by the localize@tore electrons in the formation tribution of charge involves a large Coulomb energy. This is
of the potential is the screening of the nuclear potential exespecially important when the Anderson model is used for
perienced by the conduction electrofvghich contribute to  discussing magnetic properties. These properties are deter-
the cohesive energyThe localized electrons do not contrib- mined by the effective exchange integraV?/U (whereV is
ute to the cohesive energy, and therefore the error, cominthe mixing andU is the Hubbard on-site repulsiprand
from an insufficient description of the core electrons, is nottherefore involvesmall energies. Calculations of this small
so essential for the properties derived from a calculation oknergy difference, having neglected a possibly greater Cou-
the total energy at zero temperature. On the other hand, tHemb energy, can easily lead to a misinterpretation of the
experience accumulated using the DFT shows that it fails t@xperimental data. It is also important that the mixing inter-
describe the properties that require information aboutction is representation dependent and, therefore, for the de-
(quas)localized electrons, as in photoelectron spectroscopgcription of a real system within a model it is important to
experiments, or exchange interactions among localized eledefine clearly what is mixing interaction for that special case.
trons in magnetic insulators, semiconductors, etc. In thes&€his shows the need for a formulation that allows for a self-
cases, methods either completely based on field theory aonsistent calculation of the parameters of the model to-
those combining field theory and DFT are desirable. Thegether with the charge density. Such an opportunity arises in
models often used are the Anderson impurity and periodicah natural way if one starts with the full Hamiltonian and
models and here we will discuss mainly the periodicaltreats the single-ion Coulomb interactions in some approxi-
model. There are two ways for providing methods that com-mation that takes into account the strong local electron cor-
bine DFT and field theory. The first way is the following. relations. Such a scheme has been suggested &anigau:
The field operators can be constructed using the functionsver, the strong electron correlatidi®C have been treated
generated within a LDA-DFT calculation, and a correction,within the slave-boson technique, which at present seems to
constructed from the differencl ™= ""—7/'PA can be be unsatisfactory for reasons that we will not discuss here.
used to correct the electronic structure generated by the inHere we will discuss the parameters of the Anderson model
tial LDA calculation? The motivation for using the LDA- within the same scheme, using the definitions of the opera-
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tors in a nonorthogonal basis set that is different from Ref. 6formation of phonons and scattering processes that involve
but coincides with those used in Ref. 2 and 8. We havahem, nor plasmons.

discussed a way to calculate the single-site Coulomb repul-

sion parameter, Hubbatd, earlier”®°Here we pay attention A. The Hamiltonian in a nonorthogonal basis set

mainly to the mixing interaction. The organization of the
paper is as follows. In Sec. Il we rewrite the Hamiltonian in : ) i .
a nonorthogonal basis set and construct the many-electr nging to d'ﬁer?m ions leads to a coupling of th_e state_s.
operators. Using a saddle-point approximation we get th is makes it difficult to separate the strongest single-site

Poisson equation for the SEC system. In Sec. IIl we Shcng‘\teractions. Therefore, the local strong interactions between

how the periodical Hubbard-Anderson model appears usin etlhectronsl C.";m most east|l¥fbe t?:kentrllnto account 'mm.'ﬁ ¢
the results of Sec. Il. In Sec. IV we discuss the mixing pa- rthogonalsite representation. ~or this reason we will, 1o

rameter entering the model, and in Sec. V we conclude wittyome extent, use the technl_que developed prew%(b@!ovx_/ .
referred to as)l The delocalized electrons are treated within

An orthogonalization procedure of the wave functions be-

a discussion. . : )
ISCUSSI the weak-coupling perturbation theofWCPT), while the
localized (or semi-localizedl within the strong-coupling
Il. THE POISSON EQUATION IN THE SYSTEM theory (SCPT), see paper I. In order to introduce, for the

WITH SEC operatorsand other core electrojshe many-electron rep-

Here we reformulate the derivation given in Ref. 6, but'esentation we rewrite the field operater,(r), in the jL
within a nonorthogonal basis set, and we avoid the slaveteépresentation
boson technique. Let us consider an ion that has a number

of felectrons in the ground state. Then, only the transitions ,},U(r):f dq e"q'rquL(r)ajL, (1)
I''—T,+1 will be allowed in the spectrum of excitations
while all other transitions such d5,—1"+5,["+3, iNvVolv- a =[(1= 8.6+ 8. ufi,- )

ing a larger number of electrons, will be strongly suppressed _ _ _ _ _
by the large energy separation between these states. If tigere, j=R; is the site,L=(l,m;,s=1/2), | is the orbital
energy of the atomiclike transition ,= E(Fn+1)_E(Ff1) be- moment,m; is its projection to thez axis, s is electron spin,

tween an 1+ 1)- andn-electron statel” andT"’, of thef ion and o, its projection to the same axjs, indicates localized
is much higher than the Fermi energy; , the number of electrons. In Eq(2) we have separated all electrons into two
electrons in the ion will be fixed. Indeed, in this limit this Classes: core electronf,, , which either remain fully local-
upper “single-electron” level is empty while the lower one, ized in solids or only_ partly del_ocah;ed, and .delocallzed
even if it forms a band, will be fully filled. In the rare earth €/ectronsc;,, which will be described ik space in regular

elements the populated part of thelectron spectral density Crystals. Since the essential part of the work to be done con-
corresponding to the transitions;=E )~ E, 1, is much cerns the localized electrons, it is reasonable to formulate the

lower thane (except for Ce, and perhaps it can be also approach in the site representation first. The basis functions
much lower than the bottom of the conduction-electron®iL(r) are in general not orthogonal to each other,

bands. When an orbital has such a low energy, the mixing

interaction, as well as overlap between these corelike levels f dr ¢}‘L(r)¢j,L/(r)=(’)1L,j,L/ . (©)]

and conduction electrons are negligib¥eChis physical pic-

ture corresponds to the type ab initio calculation where Therefore, ffom{df,r(r),llfj,/(f')}z 8(r—r")8,,, We see
the f electrons are kept in the core. One can use the manyhat

electron functions for the description of the ground state of

an ion from DFT-LDA-based calculations too. All electrons 15 ,aJT,L,}z(’)jfj,L, , 4)

in this case experience the same potential. As has been 1 ] . ) )
shown in Ref. 8, this picture is valid when the energy of thewhere O;, ;,, is the (L,j’L") matrix element of the in-
upper transitionA,=E . 1)~ E,, is much greater than the Vverse of the overlap matri©.

Fermi energy. However, the photoelectron spectroscopy ex- The full Hamiltonian is

periments show that even in rare earth elements, for which

this picture seems to be most appropriate, the levelis H:f dr wT,(r)

2 2
p Zje
, . T 2——2 =R Cx|¥e(r)+Han
sometimes only slightly abover . Therefore, due to the m T [r=Ryl

mixing interaction and, possibly, hopping, a band with mixed 1

f-electron and conduction-electron stafesan be formed. As + _J drdr’ g (N (Dvr—r)g!, (1), (r')
discussed in detail in Ref. 8, this leads to shifts of spectral 2 7 7 7 7 '
weights from integer values and a violation of the single- (5)
electron picture. These spectral weights, therefore, must en-

ter the expression for the charge density in the Poisson equa- ZiZje2

tion. Besides, they control the strength of the mixing and Hnn=2 |R——R| )
hopping. Let us derive the Poisson equation, which contains : b

information about these spectral weights and is valid notwvhere C, is the infinite constantfdrdr’Ss(r—r")v(r
only for zero temperature. Here, we will neither consider the-r')>_,6,,» that arose when we transformed
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YLiv (1,2 into lprv(1,2)¢h4h, . We omit this con-  Here G?” are the fractional parentage coefficients, which

stant below, since it does not influence the physics. Let USo not t;éiaend on the momentum projectidifsn<2, G
rewrite the Hamiltonian in the representation of the functions_ 1 and the squared coefficienGE” )2, measures thé frac-
¢;.(r) (which can also be defined in different ways and we q n-1’ '

shall discuss it later Using the expansion in E@l) inserted  ture of the stateél’,, ;) in |T')]; an—l'l“' are the Clebsch-

into Eq. (5) gives Gordan coefficients
(n) (n)
H:Hnn+ E ho f a-T a; r — ML SiMs
s ioloistaPisl Rist N
jolgdgls 227373 1272 7373 Crop CLn_ll\/l(L“*”JmI Sy MO D20 (13

1
.l o al a,al a
+2 {%_:} Vjaloustaidaba ists ot Risksglsials @)

whereL,,M" s,, and M{") are the orbital moment, its
projection, spin moment, and its projection for tielectron
configuration|T',)). In order to be able to calculate the com-
mutation relations between the conduction electrons and the
p? Z; e ]| Hubbard operators as well as between the Hubbard operators
ﬁ_; m 13'-3)' ®  themselves, we have to express them in terms of fermion
operators. We have to provide the correct commutation rela-
Now we assume that the nuclei are in fixed positions andions for Hubbard operators, belonging to the same site
separate the part of the Hamiltonian that contains on-site
interactions between electrons that are treated as core elec- [XT, XA = s AX Y= X 7XAT, (14
trons:

Here

0 _ .
hj2L2,13L3=(JzL2

If we try to define a Hubbard operator in the form of a
; I_ At
on__ ion_ 0 + product of the operator4, i.e., X”" =A,Ar, we should get
Hm_; Hﬁon_; [Mgs LTTPRN P P9 P zero if we multiply byX?"nXAmX for n=m. This should be
provided by the fact that for the fermion operatof$
=(f")?=0. However, the produdA A} #0, if n<m, be-
i cause the operato&r_ do not contain information about

The single-site part of the problem and the rest will penonfilled orbitals of the shell. Therefore, the operatégs

treated in different approximations. We want to use Hubbardlo not provide the orthogonality of the states with different
operators that are usually introduced in such a way that thepumber of electrons in shell. The method suggested in Ref.

1 t

- gt o ot o4
5 > Uiy ingingins@iuyins®us@ing [+ (9)

diagonalize the single-ion Hamiltonian 15 is to define new operators as follows:

H T =Er |, Ty, (10) ~ S .

P e Al =ALTT (1-ny), Ar =11 @-npAr. (19
“ M
X =[0Gl (12) _ ,
) The product should run over all nonfilled orbitals. Let us
Let us now discuss how to construct them. consider, for example, the two-electron state composed of
fstates|I',)=|L=5MP=45=1M&=0). Then, the op-
B. The Hubbard operators in terms of fermions erator
We are not able to diagonalize the full Hamiltonian ex-

actly, unless for certain model calculations, and we have to ot — > ¢34 Lo 1 £

. . n 3my,3my,~ 12,0120, 3my ;11204 3my; 12,0,
use some approximation. In order to ensure that the ground- mymyoq0p
state wave function fulfills Hund’s rules, we will follow the (16)

technique by Irkhin and Irkhif® who translated the Racah , . .
. : . combines three term@or brevity below we omit indices$
technique, used in atomic spectrosctifpr the wave func- —3 and spins=1/2):
tions, into the operator language. Although this issue has pins= '
been discussed in Refs. 15 and 2, we find the definition used o ret gt T et Tt
' Al =affy fq, +yfo ), +1.f 1
not fully satisfactory and in need of a slight modification. For r,= ol fa Ty ofa o 41y ] 7

this reason we discuss the definition of the many-electron ..,  _ 5/253,y=27//15. Now, we have to multiply this

operators and, correspondingly, the connection between the -
P P gy ni)_y the product of the factors (in,), whereu runs over all

Hubbard operators and the many-electron creation and an bital hi blom i “the diff
hilation operators and the modification needed. The creatiofMPY Orbitals. From this a problem is apparent: the different
terms of the combinations of Clebsch-Gordan coefficients

operator for a group of equivalent electrongsay, in anf | . . oo ,
sr?elb in the ma%y-elpectronqstateF y=Al |0) irﬁsthye Irkhin-  Involve different orbitals, and therefore it is impossible to
n I choose a single factor that includes all empty orbitals for

Irkhin definition has the form each term in the sum. Thereforach termof the sum must
1 be supplemented with its own factor. In this particular ex-
Al=—"> gl cln Al . (120  ample the new many-electron operator should be defined as
P nwfy  Toea Tooaw #0T0n follows:
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~ - . . Here, repeated indices are summed over. The Hubbard op-
Ar,=a f3Tflim113 (1_”m1T)mlll (1=nm,)) erators can also be written in the Hubbard fopy"']
! 2 =[R;,n,¥)(R;,n+1I| or in terms of products of fermion
R N operators as discussed aboueere |R;,n,y) and |R;,n
T et j j
+ 7f2Tf21mE2 (1_nm1T)mE2 (1=nm,) +1,I') are many-electron- and (h+ 1)-particle states Us-
' 2 ing the definition of the many-electron operators and the
oot - -~ Hubbard operators in terms of Fermion operators one can
+f1Tf3imH¢l (l_nmﬂ) H (1_nmzi) calculate all commutation relations between the conduction
1 my#3
electrons operators and the Hubbard operétors,
— &t At At
=alAr 3111 YAr,21.2) T Ar,a1.3)]- (18 _ 3 _
{ein X =0, 15225 . (21)

. . i’
Obviously, in a general case, when we construct the operator Lty

4 _ -
Ar,, each termin the sum should be multiplied by the prod- Here a,b denote the Fermi-like transitions from time to

uct of the factors (+n,,,) corresponding to this term, (n-+1)-electron statda=a(l,,,[,.1)], a denotes the in-
where the set ofmo} includes only those orbitals that are verse transitionfa=a(I'y.1,In)], é=&(T,, ') and &2

not included in the product of theoperators in the corre- gre the structure constants of the algebra for the Hubbard
sponding term of the Clebsch-Gordan sum. Let us denotgperators,

this productﬁ, where the bar ovell means that it contains
only complementary orbitals. In paper | we used tmbital
representationwhere each Hubbard operator contains only
one term, containing creationf operators for the-electron
state, which is multiplied by the produ€t. We will call it (22)
the elementary operatorn the case of Eq18) these opera- The summation over repeating indices of transitions is im-
tors areAl s 1y, AL o120, andAl ;. 4. We can, there- plied. A Bose-like transition is denoted @$ and a diagonal
281:11) 2(2121) 2(11:3) Bose-like operator is denoted bf, hj =z

- _ 5o
{XP X2 =228, (XD, ZF=eDfX2, (XD, 25 =6 0X2.

fore, make the statement that any operator of a state in
central field(i.e., of the Clebsch-Gordan combination type
or in a crystal field can be represented as a sum of elemerg. The field for the electric potential and the Poisson equation
tary operators with coefficients that are dictated by the sym- The full Coulomb interaction can be written as follows
metry of the surrounding of the ion. Since the construction of

the state in central field within the Racah technique is recurgSee Ref.

sive, i.e., then-electron state is composed af{ 1)-electron

states and one-electron states, tine-()-electron state is 1 - - 4me? . A

made of the combination ofh(-2)- and one-electron states, Ef dalpi(a) = pr(a)] e Lpi(a) = pi(a)]

and so on, this statement needs proof. Let us start with a

many-electron operator, describing one localized electron in 1 _ Ame?.

orbital 1. The electron state has the fofﬁﬂy#l(l— n,).In ) dq Pq?Pq' (23

order to construct the state, which contains two electrons
localized in the states 1 and 2, we have to multiply this

operator byf} from the left-hand side. Sincé)(1—n,)

=f}, all extra factors (+n,) are automatically projected
out and we are back at E¢L2). Therefore, each step to a
higher number electron operator will be started again with ;i(q)zz (zj_E sjé(q)zj‘s’)eiqRJ, (24
Eqg. (12). This means that the factof$ should be added in J ¢

each term of the sum in the last step only. Thus, the Hubbard ) ) ) )
operator can be written in the form andef is the form factor of the ion, which takes into account

the contribution of the orbitale and x into the transition¢

Here p;(q) describes the nuclear densities screened by the
core electrons

X" =ATA, (19

where each elementary operator entering the sum for the op- Si(q)= f dr €97, (1) ¢y, (N (F1F,)5; (25)
eratorA’ contains the projecting produtt!’. The same is

valid for Ar andTI{P. Then, we can represent eaf) op-  the indexj in ¢;,(r) denotes affiliation of this function to
erator in any place where we meet it, particularly, in thethe ion onR;. All other electrons belong either to the class

Hamiltonian, in terms of Hubbard operatovq'"zxj"(y’r) of the transitions between different ions, or to a mixed state
=X between conduction and localized electrons, or to the con-

ava duction electrons. The operator of the charge den;%,i(;q),
f.=(f)°X]. (200 of these remaining electrons can be written as follows:

085113-4



POISSON EQUATION AND A SELF-CONSISTEN. .. PHYSICAL REVIEW B 64 085113

~ st T Bdr 2

pl@)= 2 OJLJ'L (@)cficint 2 Ojjr(@) 1= | Deq(n)exp — | o—| da a%eq(7)e—q(7)
jLiy’ jLjr’ 0 OT

(33

X f raCT Xa,+(9 AN fT g)(;C’ !

AR i D)Xy under the trace of the partition function. We make the shift
tyacf byayb

(1= 8;) Oy ur(@(FL)A(FL)PXEX], . (26) 4me.

The interaction between all nuclei that are screened by their eal7) = oqlT)H q? Fa 9

electrons is
in this Gaussian integral. This allows us to rewrite the Cou-

1 - Ame?. lomb interaction in terms of interaction of electrons with the
7| dapi(a) o pi(—q)—Hp. 27 random field ¢q(7). This shift generates the term
(—=H S, which cancels theét 59 in H;y but adds the term
Here, Hp takes into account the terms that are double

counted in the first term, since there is no interaction of the iefﬁ f ~ N
. o ! b~ _ + _ .
ion with itself: 2 J, d7 | da [eq(7)p—o(7)+pg(T)e—o(T)]. (39
1 A re? Note that, although thé orbitals of the same site are or-
Hp=5 2 fdQ(Zj—Eé Sf(Q)Zf) 7 thogonalized, thegy#0 components of the overlap matrix

have nonzero values and, therefore, nondiagonal transitions
&#[T',T"] enter the expression forcomponent of the charge
zi-> Sjg(Q)Zf)- (28)  density. Thus, we have to work with the following expres-
¢ sion for the partition function:

X

The terms of this interaction at smaj] as well asH, itself, P q?

diverge. This is the standard problem of screening. The _:f Do,(7)ex _f de dg ——o@g(1)@_o(7)
; . K ) . . Z q 0 874 q

Hamiltonian in the many-electron representation is 0

H=Ho+ (H U+ T), (29) xexp{— BF[eq(7),¢—o(1)]}, (36)
whereT is the kinetic energy, and the zero Hamiltonian is Where
-E[‘Pq(T)NPfq(T)]

1 B (0)
E——In<TTexr(—f er dq(Tq—HP—HD))> ,
Here H§ describes the electrons treated as core electrons B 0

when the interaction between the ions and all other electrons (37)
is switched off:

H0=H§+Hg=j§r} Efrhi + 2 hi, L chep . (30

IE)Z
e-lirs Py &€ qu[ﬁ pi(a), (38)
ir ' ieRj 2m ieRj|Rj_ri| 4
1 . ~ ~ .
1 2 Zj(-:‘2 . F) 31) szzf dq [le‘Pq(T)_M]p—q(T)+Pq(7)[|e‘P—q(T)_M]a
+ = ir.
2i,i’eRj|ri_ri/| (39
0_q/cC X
The partition function, written in the standard form, is Hi=HotHg. (40)

Here, we have used the fact that the fielglg ) commute

with any operator. The functiodF is written in the form

usually used for the cumulant expansion.

Zs exd — BHol7.exp Since both the mixing interaction and overlap matrices are
nonzero, a part of the charge is in the mixefistates. Be-
sides, thef subsystem is described in terms m@dnlinear X
operators. For these reasons we cannot describe the full con-

B
_fo d7 Hin(7)
tribution from the termuN in the zero Hamiltonian. The
EZO<TTexp( B deTHim( 7-))>(0). (32 field 4(7) can be interpreted as the field for the electrical
0

Z=Trexd — B(H—uN)]

1
= ZO il

X

potential that is generated by the Coulomb interaction. If we

sete=0 the system does not have charged particles, and
Let us write the par‘Hg;’“' of H;. in the Fourier transformed therefore there is no contribution to the partition function
form, Eq.(26). Then, we introduce the Gaussian functionalfrom this field. Ate#0 in a nonhomogeneous system an
integral average charge density is not equal to zero, and, therefore,

085113-5



U. LUNDIN, I. SANDALQV, AND O. ERIKSSON

the expectation valuéey(7)),, is nonzero too. Taking the
functional derivative of the free energy, we find that the

PHYSICAL REVIEW B64 085113

Let us now insert intoH;, the expression fop, in the
jL-representation. Taking into account that

saddle-point approximation generates the Poisson equation

for this field:
SF 8(-TnZ) ¢ e
8¢ o(7) 00 o(7) =~ g {®ad(M)et 5 (p(7)),=0.

(41)

The static part of the field of the electrical potenta(r) is
connected with the fielde) as follows:

d(r)= lim i{e(r,7)),=i{e(r,0)),.

7——0

(42

e B e *
EJ dqg (D(q)OjL,j’L’(q)_Ej dr ¢jL(r)‘b(r)¢j'L'(r)

(49

are matrix elements of the self-consistent Coulomb field, we

find that 7 actually gives the periodic Hubbard-Anderson
Hamiltonian

=ViLj

7?=qu 9?P(q)P(—Qq)

Thus, we have the Poisson equation for the electric potential

@(r),

V2D(r)=—4m(py(0)),, (43

where the charge density is the difference between the den-

sities of the delocalized electrons and the “soft” ibmhere
the polarization of the ion and excitations are alloyved

Ill. THE SELF-CONSISTENT HUBBARD-ANDERSON
MODEL

The field o(r,7) contains the average static field and de-
viations of it:

1
o(r,7)= =@ (1) + 5¢(r,7). (44
It is reasonable to start with the approximatiop(7)
—i{@q(0)),—P(0q), and to neglect the fluctuations of this
field. Then, we obtain the following saddle-point Hamil-
tonian:

ﬂo:f dg ?®()P(—a)+ 2 (N jr—p O i)

><CJTLC]"L’+E (E](?*)_n,u)hr, (45)
~ e ~ ~
Fhni=T+ 5 | 40 [0(@ o+ (~@)]—Hp.
(46)
Here
62
h;L,er/=(1L %Hb(r)j'L') 47

+2 (hLDA_,LL O)jL,j’L’C}‘LCj’L’—’—E (~EJ(?)_n/.L)hJF

+2

t r.r
Viwju (FLf,) Nz He,

p2
ﬁ'FV_/.LO

+2

a~T ya
)' . (Fu)%eL X,
L u

p2 o
+(ﬁ+V—Mo (fL)ax?cj,L}
jmg' !
2
+E (1_5”1) ﬁ‘FV_MO)

A

X (F1)R(F )X X0, = Hp . (50)
Thus, within this approximation, the single-ion enerdig

are shifted by the self-consistent field of interaction with
other ions, delocalized electrons and the localized ones, but
belonging to other site€ (= E{Y +(I'|®(r)|T"). However,

the self-consistent field should be found from the Poisson
equation, and therefore it contains only the Hartree part of
the interaction between the collective quasiparticles. Never-
theless, this problem does not coincide with the single-
particle Hartree approximation, since it contains additional
information about the structure of the many-electron states
IT') of the ion. Due to the nonlinearity of the problem the
approximations for the Green functio(S8F's) can be used in

a different form from the standard single-particle problem in
the Hartree approximation. Particularly, as seen from the so-
lution of the self-consistent Anderson model, presented in
Ref. 16, the potential depends implicitly on the many-body
population numbers of the ion states already in the lowest

is the frequency matrix of the conduction electrons in the@PProximation.

self-consistent fieldb(r). The Hamiltonianh for them can
be obtained if we make a transformation to the orthogon
variablese, using the Cholesky decomposition for the over-
lap matrix O:

clth—u0)ec=c[Z(Z"*hz Y Z— uZZ]c
=(c'Z)[h- pul1(Ze)=a'[h—ul]a.
(48)

al

The exchange contribution appears in first order between
Flectrons via the fluctuation of the field ¢
o«(T8¢(7) S¢(7')). This study we leave for the future, how-
ever, it is interesting to note that this exchange involves also
the contributions from fluctuations caused by the intra-ion
transitions.

The charge density and the averagec; /), (¢/ X7),

(Xf‘,cm, (X?X?), for the Poisson equation can be found
from the GF's. It is clear that if it is possible to approximate
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this potential by a spherically symmetrical on¥,,;, atom in the elementary cell, then, the single-ion matrix ele-
=08,,/V;, then (foM)'f= ¢ rr for the orbitals,u, occu-  ments and energies do not depend on the ion indeke
pied in the statd". Hamiltonian is written using the new variables:

IV. MIXING INTERACTION ch=% e *Ric, , CJTL=§k: efRicl , (59

Let us now rewrite the problem in a form close to the
standard periodical Anderson model. This allows us to dis
cuss different possible definitions for the matrix element of T 77171 -

- ) ; o c'(h—uO)c=c'[Z(Z2"*hZ"*)Z—uZZ]c
the mixing interaction. Usually the Hamiltonian of the (h=r0) [ )2-neZ]

We want to decompose the overlap matrix,

Anderson model is written in the following form: =(c'Z)[h—pl](Ze)=al[h—pulla, (55
. . . _ L t
H A S EECLTCK(;*'E [Vﬁﬂe'k'RiCkUTf. ‘H.c. th|sJr Eﬁroduges transformed operatorg,=Z; Cy , «,
ko ke 1w =c, Z(”. It is easy to see that they are orthogonal to each
other:

ot

g hothatis i jpalip : pliulip T T L T T
N R Tn ! akyaky,-i-aky,aky—zg (CkLCka+CkL'CkL)Zk Y

i{m}
(51)
Hereey is the spectrum of the conduction electrowg,, is L ALy S 1 LISL
the matrix element of mixing interaction, =Zg(Z ) UL ) 2 T =6y
(56)
ﬁJ“V(r))‘PM(r_RJ)’ (52 At last, diagonalizing the conduction-electron Hamiltonian
Z hz~ 1, we have

=20 YLz

2

Vﬁﬁf dr ¢ 7(r)
and UMMMM4 is the matrix elements of the Coulomb in-
trashell interactions. For the mixing no problem arises in thex, 2 B e
case of the impurity Anderson model, since the potential ir?H_f dg q?®(QP(=a)+ 2 [~ 1 I00Cin
this case is the difference between the periodical potential for
the conduction electrons and the potential of the impurity, EM_n)ht + V. (fTf )EFITTIZE
although the local on-site term is equal to zero due to sym- 2 (B0 -nu) ! 2 Vit wlu) !
metry reasons, overlap with the orbitals of neighboring ions _
gives a nonzero contributiofsee the paper by Andersgh +H.c]+ > [Vi(k)eik'RjEl)\Xjar-i- H.cl+>, (1— 1)
In the case of the periodic Anderson modeAM) this form

of the matrix element suggests that either the potential has 2
different symmetry from the Bloch wave functions, or the X %Jrv—,u(?)
functionsey; “(r) ande,(r—R;) are not orthogonal. It is not i’
clear how to fulfill the first assumption in the case of elemen- t\a, byayb
tal metals(like Ce metal since we are dealing with a peri- X)) PXXG = Ho (57
odic system. In the second case where the band energy and mixing matrix elements are
2 P O e ~1\Ly' g\
f dr ¢ 7(1)| 2=+ V(1) | @, (1= Ry) e =93 K)(Z H L ()(Z D 0, (k) (58

— _ p2 )
a — g*\ IyyL| & _ )2

—ef [ r 6170, 1-R)=e{O, . 69 NOTTIOED [ vowo !
Therefore, in order to have a nonzero mixing, one has to Evzr(k)(fﬂf)a, (59
work in terms of a nonorthogonal basis set, but in this case
(a) there is a contribution from the chemical potential to the
partition function that affects the mixing, arid) the nonor-
thogonality causes nonzero anticommutation relations be- _
tween thef andc operators. This is never taken into account E(fl)av:?(k), (60)
in model calculations. o

Let us consider the consequences from our formulationwhere {9} diagonalizesZ *hz~!, and v} is the one-
Since the mixing matrix element has a single-electron formelectron hybridization parameter. Thus, the matrix element of
let us make in our saddle-point Hamiltonian a transformatiorthe mixing interaction has to be found self-consistently to-
that diagonalizes the conduction electrons. First we have tgether with the charge densifwhich in turn depends on the
rewrite the Hamiltonian, Eq:50) in k space(for the formu-  particular approximation in which the PAM is solyednd
las to be transparent, we will write them for the case of onecan be represented in the form of a sum over all localized

2

p—+V—M0) (ZeH k) (Fh)

KA
Vi =| 5 .

085113-7



U. LUNDIN, I. SANDALQV, AND O. ERIKSSON PHYSICAL REVIEW B64 085113

TABLE |. Coefficients for the mixing interaction for many-body states. Forfteeries, taken

from Ref. 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[fs,ﬂ2 1 225 23 18 0.9 0.15 O 1.6 23 41 17 09 0.3 0
[fwﬂz 0 0.25 06 08 063 O 09 05 13 41 30 33 28 1

orbitals of products of the matrix element of the single-impurity) should be calculated from aab initio approach
particle potentialon the conduction-electron Bloch function and a consensus is not yet achieved. This motivated us to
o (r) and the localized orbitaly,(r)] and the factor make an attempt to derive the parameters from a total Hamil-
(f,)2 which reflects the contribution of this orbital into a tonian. Since the Anderson model is usually used for the
fermionlike transition. Irkhin and Irkhil? have performed description of the cases when strong electron correlations are
the calculation of this factor for thef4elements, making use well developed, it is reasonable to consider strong intra-
of the Racah technique leaving the single-particle matrix elatomic Coulomb interactions first. For this reason we have
ement undefined. Setting=a(l',,,I',,_1) and u=(l,m,o) performed a derivation of the self-consistent PAM in four
and using the result of the calculation of Irkhin and Irkhin, steps:(i) first we separate, in the Hamiltonian, the strong
we can write these coefficients as follows: intra-atomic interactions and approximately diagonalized
them with the help of many-electron functions describing

(fL)a:<Fﬂ|f|Tm(r|rn—l> d 1 1
ifferent ion termsyii) we expressed all operators, describ-
S, L, Jn ing f and core electrons in terms of Hubbard operatiis;
r we performed the Hubbard-Stratonovich decoupling of the
=Vn[FallTaial) So-1 Lo-1 Jnea Gr:,l' Coulomb interaction, and finallgiv) we found the equation
12 | j for the electric potential in a saddle-point approximation.

This lead us to the effective Hamiltonian, which coincide
with the generalized PAM.
where y=(Im,o) are the one-electron quantum numbers, ol three operations before making the saddle-point ap-
[a]=2a+1 andG," is the parentage Racah coefficients proximation are exact. However, the saddle-point approxi-
and j=1+1/2. The coefficients f(:l)g are different for the Mmation neglects the contributions from the exchange interac-
two channelsj =5/2 andj = 7/2. The square of these coeffi- tion for the delocalized particle@xcitations and Coulomb
cients are given in Table I. screening effects, which appear only in the next orders with
However, there are more considerations to the problentespect to fluctuations of this field near its saddle-point
since the Bloch orbitals are not orthogonal to the localizedvalue. Thus, we may conclude that from this point of view
orbitals. In the equation of motion for the operators appeathis model is quite rough. On the other hand, the way sug-
combinations involving the overlap matrices. For the Hamil-gested here has an obvious advantage compared to the PAM
tonian, which includes hopping and mixing interactidttee ~ with non-self-consistent parameters since it, at least, takes
periodic Hubbard-Anderson modglthe diagram technique care about perturbations of the local charge density which
and different approximations for the Green functidi@&F) may introduce quite large changes in energy.
are given in paper |, while the full self-consistent solution for
rare earths in the simplest possible approximation is pre-
sented in Ref. 16.

(61)
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