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Poisson equation and a self-consistent periodical Anderson model

U. Lundin, I. Sandalov, and O. Eriksson
Condensed Matter Theory Group, Uppsala University, Box 530, SE-751 21 Uppsala, Sweden

~Received 24 November 2000; published 8 August 2001!

We show that the formally exact expression for the free energy~with a nonrelativistic Hamiltonian! for the
correlated metal generates the Poisson equation within the saddle-point approximation for the electric potential,
where the charge density automatically includes correlations. In this approximation the problem is reduced to
the self-consistent periodical Anderson model. The parameter of the mixing interaction in this formulation have
to be found self-consistently together with the correlated charge density. The factors, calculated by Irkhin, for
the mixing interaction, which reflect the structure of the many-electron states of thef ion involved, arise
automatically in this formulation and are quite sensitive to the specific element we are interested in. We also
discuss the definitions of the mixing interaction for the mapping fromab initio to model calculations.
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I. INTRODUCTION

The local density approximation~LDA ! to the density
functional theory ~DFT! is working surprisingly well in
many cases for which it is expected not to work at all. One
its most important features is that the self-consistent pro
dure provides a quite accurate distribution of the charge d
sity, calculated from the Kohn-Sham equation,1 which is
more accurate than the Poisson equation. It is also impor
to understand why the form of the potential that has b
derived from the theory of ahomogeneouselectron gas with
the charge density that includes contributions from the loc
ized electrons~the extreme case of nonhomogeneity! works
so well. Below we will show that, at least, the Poisson eq
tion can be formulated also in the case of strongly correla
systems, where some part of the electrons are either full
partly localized. On one hand, physically it is clear that t
role played by the localized~core! electrons in the formation
of the potential is the screening of the nuclear potential
perienced by the conduction electrons~which contribute to
the cohesive energy!. The localized electrons do not contrib
ute to the cohesive energy, and therefore the error, com
from an insufficient description of the core electrons, is n
so essential for the properties derived from a calculation
the total energy at zero temperature. On the other hand
experience accumulated using the DFT shows that it fail
describe the properties that require information ab
~quasi!localized electrons, as in photoelectron spectrosc
experiments, or exchange interactions among localized e
trons in magnetic insulators, semiconductors, etc. In th
cases, methods either completely based on field theor
those combining field theory and DFT are desirable. T
models often used are the Anderson impurity and period
models and here we will discuss mainly the periodi
model. There are two ways for providing methods that co
bine DFT and field theory. The first way is the followin
The field operators can be constructed using the funct
generated within a LDA-DFT calculation, and a correctio
constructed from the differenceH int5H full2H LDA, can be
used to correct the electronic structure generated by the
tial LDA calculation.2 The motivation for using the LDA-
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DFT basis here is that one can expect compensation by
LDA potential from a part of the self-energy for the condu
tion electrons, which corresponds to a static random ph
approximation.3 This way, however, involves complex calcu
lations of the matrix elements of the Coulomb interacti
and frequency-dependent magnitudes, such as the
energy, such that in practice these calculations are quite
to perform.4,5 The other way, used much more often,
through some mapping to the Anderson or Hubbard mod
Then, two difficulties arise.First, the question about doubl
counting of some of the interactions, and also how to cal
late the parameters of the model that is chosen for trea
correlations.Second, the model calculations often involve
redistribution of spectral weights between low- and hig
energy regions and a redistribution of the charge den
caused by it. The latter is never taken into account in
model calculations. It is especially important since any red
tribution of charge involves a large Coulomb energy. This
especially important when the Anderson model is used
discussing magnetic properties. These properties are d
mined by the effective exchange integral;V2/U ~whereV is
the mixing andU is the Hubbard on-site repulsion! and
therefore involvesmall energies. Calculations of this sma
energy difference, having neglected a possibly greater C
lomb energy, can easily lead to a misinterpretation of
experimental data. It is also important that the mixing int
action is representation dependent and, therefore, for the
scription of a real system within a model it is important
define clearly what is mixing interaction for that special ca
This shows the need for a formulation that allows for a se
consistent calculation of the parameters of the model
gether with the charge density. Such an opportunity arise
a natural way if one starts with the full Hamiltonian an
treats the single-ion Coulomb interactions in some appro
mation that takes into account the strong local electron c
relations. Such a scheme has been suggested earlier;6 how-
ever, the strong electron correlations~SEC! have been treated
within the slave-boson technique, which at present seem
be unsatisfactory for reasons that we will not discuss he7

Here we will discuss the parameters of the Anderson mo
within the same scheme, using the definitions of the ope
©2001 The American Physical Society13-1
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tors in a nonorthogonal basis set that is different from Ref
but coincides with those used in Ref. 2 and 8. We ha
discussed a way to calculate the single-site Coulomb re
sion parameter, HubbardU, earlier.2,8,9Here we pay attention
mainly to the mixing interaction. The organization of th
paper is as follows. In Sec. II we rewrite the Hamiltonian
a nonorthogonal basis set and construct the many-elec
operators. Using a saddle-point approximation we get
Poisson equation for the SEC system. In Sec. III we sh
how the periodical Hubbard-Anderson model appears us
the results of Sec. II. In Sec. IV we discuss the mixing p
rameter entering the model, and in Sec. V we conclude w
a discussion.

II. THE POISSON EQUATION IN THE SYSTEM
WITH SEC

Here we reformulate the derivation given in Ref. 6, b
within a nonorthogonal basis set, and we avoid the sla
boson technique. Let us consider an ion that has a numbn
of f electrons in the ground state. Then, only the transiti
Gn→Gn61 will be allowed in the spectrum of excitation
while all other transitions such asGn→Gn62 ,Gn63, involv-
ing a larger number of electrons, will be strongly suppres
by the large energy separation between these states. I
energy of the atomiclike transitionD2[EG

(n11)2EG8
(n) be-

tween an (n11)- andn-electron state,G andG8, of thef ion
is much higher than the Fermi energy,«F , the number off
electrons in the ion will be fixed. Indeed, in this limit th
upper ‘‘single-electron’’ level is empty while the lower on
even if it forms a band, will be fully filled. In the rare eart
elements the populated part of thef-electron spectral densit
corresponding to the transitionsD1[E(n)2E(n21) is much
lower than«F ~except for Ce, and perhaps Sm!. It can be also
much lower than the bottom of the conduction-electr
bands. When an orbital has such a low energy, the mix
interaction, as well as overlap between these corelike le
and conduction electrons are negligible.10 This physical pic-
ture corresponds to the type ofab initio calculation where
the f electrons are kept in the core. One can use the ma
electron functions for the description of the ground state
an ion from DFT-LDA-based calculations too. All electron
in this case experience the same potential. As has b
shown in Ref. 8, this picture is valid when the energy of t
upper transition,D25E(n11)2En , is much greater than th
Fermi energy. However, the photoelectron spectroscopy
periments show that even in rare earth elements, for wh
this picture seems to be most appropriate, the levelD2 is
sometimes only slightly above«F .11 Therefore, due to the
mixing interaction and, possibly, hopping, a band with mix
f-electron and conduction-electron states12 can be formed. As
discussed in detail in Ref. 8, this leads to shifts of spec
weights from integer values and a violation of the sing
electron picture. These spectral weights, therefore, must
ter the expression for the charge density in the Poisson e
tion. Besides, they control the strength of the mixing a
hopping. Let us derive the Poisson equation, which conta
information about these spectral weights and is valid
only for zero temperature. Here, we will neither consider
08511
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formation of phonons and scattering processes that invo
them, nor plasmons.

A. The Hamiltonian in a nonorthogonal basis set

An orthogonalization procedure of the wave functions b
longing to different ions leads to a coupling of the stat
This makes it difficult to separate the strongest single-
interactions. Therefore, the local strong interactions betw
f electrons can most easily be taken into account in thenon-
orthogonal site representation. For this reason we will,
some extent, use the technique developed previously2 ~below
referred to as I!. The delocalized electrons are treated with
the weak-coupling perturbation theory~WCPT!, while the
localized ~or semi-localized! within the strong-coupling
theory ~SCPT!, see paper I. In order to introduce, for thef
operators~and other core electrons!, the many-electron rep
resentation we rewrite the field operator,ĉs(r ), in the jL
representation

ĉs~r !5E dq e2 iq•rf jL~r !ajL , ~1!

ajL5@~12dL,m!cjL1dL,m f j m#. ~2!

Here, j [Rj is the site,L[( l ,ml ,s51/2,s), l is the orbital
moment,ml is its projection to thez axis,s is electron spin,
ands, its projection to the same axism, indicates localized
electrons. In Eq.~2! we have separated all electrons into tw
classes: core electrons,f j m , which either remain fully local-
ized in solids or only partly delocalized, and delocaliz
electrons,cjL , which will be described ink space in regular
crystals. Since the essential part of the work to be done c
cerns the localized electrons, it is reasonable to formulate
approach in the site representation first. The basis funct
f jL(r ) are in general not orthogonal to each other,

E dr f jL* ~r !f j 8L8~r !5OjL , j 8L8 . ~3!

Therefore, from$cs(r ),cs8
† (r 8)%5d(r2r 8)dss8 , we see

that

$ajL ,aj 8L8
† %5OjL , j 8L8

21 , ~4!

where OjL , j 8L8
21 is the (jL , j 8L8) matrix element of the in-

verse of the overlap matrixO.
The full Hamiltonian is

H5E dr cs
†~r !F p2

2m
2(

j

Zje
2

ur2Rj u
2C`Gcs~r !1Hnn

1
1

2E dr dr 8cs
†~r !cs~r !v~r2r 8!cs8

†
~r 8!cs8~r 8!,

~5!

Hnn5(
j

ZiZje
2

uRi2Rj u
, ~6!

where C` is the infinite constant*drdr 8d(r2r 8)v(r
2r 8)(s8dss8 that arose when we transforme
3-2
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c1
†c2

†v(1,2)c2c1 into c1
†c1v(1,2)c2

†c2 . We omit this con-
stant below, since it does not influence the physics. Le
rewrite the Hamiltonian in the representation of the functio
f jL(r ) ~which can also be defined in different ways and
shall discuss it later!. Using the expansion in Eq.~1! inserted
into Eq. ~5! gives

H5Hnn1 (
j 2L2 , j 3L3

hj 2L2 , j 3L3

0 aj 2L2

† aj 3L3

1
1

2 (
$ jL %

v j 2L2 , j 3L3 , j 4L4 , j 5L5

† aj 2L2

† aj 5L5
aj 3L3

† aj 4L4
. ~7!

Here

hj 2L2 , j 3L3

0 [S j 2L2UF p2

2m
2(

j

Zje
2

ur2Rj uGU j 3L3D , ~8!

Now we assume that the nuclei are in fixed positions a
separate the part of the Hamiltonian that contains on-
interactions between electrons that are treated as core
trons:

H ion5(
j

H j
ion5(

j
H (

m2 ,m3

hj m2 , j m3

0 f j m2

† f j m3

1
1

2 (
$m%

v j m2 , j m3 , j m4 , j m5
aj m2

† aj m5
aj m3

† aj m4J . ~9!

The single-site part of the problem and the rest will
treated in different approximations. We want to use Hubb
operators that are usually introduced in such a way that t
diagonalize the single-ion Hamiltonian

H j
ionu j ,Gn&5Ej Gn

u j ,Gn&, ~10!

Xj
GnGm[u j ,Gn&^ j ,Gmu. ~11!

Let us now discuss how to construct them.

B. The Hubbard operators in terms of fermions

We are not able to diagonalize the full Hamiltonian e
actly, unless for certain model calculations, and we have
use some approximation. In order to ensure that the grou
state wave function fulfills Hund’s rules, we will follow th
technique by Irkhin and Irkhin,13 who translated the Raca
technique, used in atomic spectroscopy14 for the wave func-
tions, into the operator language. Although this issue
been discussed in Refs. 15 and 2, we find the definition u
not fully satisfactory and in need of a slight modification. F
this reason we discuss the definition of the many-elect
operators and, correspondingly, the connection between
Hubbard operators and the many-electron creation and a
hilation operators and the modification needed. The crea
operator for a group ofn equivalent electrons~say, in anf
shell! in the many-electron stateuGn&5AGn

† u0& in the Irkhin-

Irkhin definition has the form

AGn

† 5
1

An
(

m,Gn21

GGn21

Gn CGn21 ,m
Gn f m

† AGn21

† . ~12!
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Here GGn21

Gn are the fractional parentage coefficients, whi

do not depend on the momentum projections@if n<2, G
51 and the squared coefficient, (GGn21

Gn )2, measures the frac

ture of the stateuGn21& in uGn&]; CGn21 ,m
Gn are the Clebsch-

Gordan coefficients

CGn21 ,m
Gn [C

Ln-1M
L
(n21) ,lml

LnML
(n)

C
Sn21M

S
(n21),1/2,s

SnMS
(n)

, ~13!

where Ln ,ML
(n) ,Sn , and MS

(n) are the orbital moment, its
projection, spin moment, and its projection for then-electron
configurationuGn&. In order to be able to calculate the com
mutation relations between the conduction electrons and
Hubbard operators as well as between the Hubbard opera
themselves, we have to express them in terms of ferm
operators. We have to provide the correct commutation r
tions for Hubbard operators, belonging to the same site

@XgG,XLx#65dGLXgx6dxgXLG. ~14!

If we try to define a Hubbard operator in the form of
product of the operatorsA, i.e., XgG5Ag

†AG , we should get
zero if we multiply byXgGnXLmx for nÞm. This should be
provided by the fact that for the fermion operatorsf 2

5( f †)250. However, the productAGn
ALm

† Þ0, if n,m, be-

cause the operatorsAGn
do not contain information abou

nonfilled orbitals of the shell. Therefore, the operatorsAGn

do not provide the orthogonality of the states with differe
number of electrons in shell. The method suggested in R
15 is to define new operators as follows:

ÃGn

† 5AGn

† )
m

~12n̂m!, ÃGn
5)

m
~12n̂m!AGn

. ~15!

The product should run over all nonfilled orbitals. Let
consider, for example, the two-electron state composed
f states,uG2&5uL55,ML

(2)54,S51,MS
(2)50&. Then, the op-

erator

AGn

† 5 (
m1m2s1s2

C3m1,3m2

5,4 C1/2,s1 ;1/2,s2

1,0 f 3m1 ;1/2,s1

† f 3m2 ;1/2,s2

†

~16!

combines three terms~for brevity below we omit indicesl
53 and spins51/2):

AG2

† 5a@ f 3↑
† f 1↓

† 1g f 2↑
† f 2↓

† 1 f 1↑
† f 3↓

† # ~17!

with a5A5/253,g527/A15. Now, we have to multiply this
by the product of the factors (12n̂m), wherem runs over all
empty orbitals. From this a problem is apparent: the differ
terms of the combinations of Clebsch-Gordan coefficie
involve different orbitals, and therefore it is impossible t
choose a single factor that includes all empty orbitals
each term in the sum. Therefore,each termof the sum must
be supplemented with its own factor. In this particular e
ample the new many-electron operator should be define
follows:
3-3
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ÃG2

† 5aF f 3↑
† f 1↓

† )
m1Þ3

~12n̂m1↑! )
m2Þ1

~12n̂m2↓!

1g f 2↑
† f 2↓

† )
m1Þ2

~12n̂m1↑! )
m2Þ2

~12n̂m2↓!

1 f 1↑
† f 3↓

† )
m1Þ1

~12n̂m1↑! )
m2Þ3

~12n̂m2↓!G
[a@ÃG2(3↑,1↓)

† 1gÃG2(2↑,2↓)
† 1ÃG2(1↑,3↓)

† #. ~18!

Obviously, in a general case, when we construct the oper
ÃG2

† , each termin the sum should be multiplied by the prod

uct of the factors (12n̂ms) corresponding to this term
where the set of$ms% includes only those orbitals that ar
not included in the product of thef operators in the corre
sponding term of the Clebsch-Gordan sum. Let us den
this productP̄, where the bar overP means that it contains
only complementary orbitals. In paper I we used theorbital
representation,where each Hubbard operator contains o
one term, containingn creationf operators for then-electron
state, which is multiplied by the productP̄. We will call it
theelementary operator. In the case of Eq.~18! these opera-
tors areÃG2(3↑,1↓)

† , ÃG2(2↑,2↓)
† , andÃG2(1↑,3↓)

† . We can, there-

fore, make the statement that any operator of a state
central field~i.e., of the Clebsch-Gordan combination typ!
or in a crystal field can be represented as a sum of elem
tary operators with coefficients that are dictated by the sy
metry of the surrounding of the ion. Since the construction
the state in central field within the Racah technique is rec
sive, i.e., then-electron state is composed of (n21)-electron
states and one-electron states, the (n21)-electron state is
made of the combination of (n22)- and one-electron state
and so on, this statement needs proof. Let us start wi
many-electron operator, describing one localized electro
orbital 1. The electron state has the formf 1

†)nÞ1(12n̂n). In
order to construct the state, which contains two electr
localized in the states 1 and 2, we have to multiply t
operator by f 2

† from the left-hand side. Sincef 2
†(12n̂2)

5 f 2
† , all extra factors (12n̂n) are automatically projected

out and we are back at Eq.~12!. Therefore, each step to
higher number electron operator will be started again w
Eq. ~12!. This means that the factorsP̄ should be added in
each term of the sum in the last step only. Thus, the Hubb
operator can be written in the form

XgG5Ãg
†ÃG , ~19!

where each elementary operator entering the sum for the
eratorÃg

† contains the projecting productP̄g
( i ) . The same is

valid for ÃG andP̄G
( j ) . Then, we can represent eachf j m op-

erator in any place where we meet it, particularly, in t
Hamiltonian, in terms of Hubbard operatorsXj

a[Xj
a(g,G)

[Xj
[g,G] :

f j m[~ f m!aXj
a . ~20!
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Here, repeated indices are summed over. The Hubbard
erators can also be written in the Hubbard formXj

[g,G]

[uRj ,n,g&^Rj ,n11,Gu or in terms of products of fermion
operators as discussed above~here uRj ,n,g& and uRj ,n
11,G& are many-electronn- and (n11)-particle states!. Us-
ing the definition of the many-electron operators and
Hubbard operators in terms of Fermion operators one
calculate all commutation relations between the conduc
electrons operators and the Hubbard operators,2

$cjL ,Xj 8
ā %5OjL , j 8n

21 f n
b«j

bāZj 8
j . ~21!

Here, a,b denote the Fermi-like transitions from then- to
(n11)-electron state@a5a(Gn ,Gn11)#, ā denotes the in-

verse transition@ ā5ā(Gn11 ,Gn)#, j5j(Gn ,Gn8) and «j
bā

are the structure constants of the algebra for the Hubb
operators,

$Xj
b ,Xj

ā%5«j
bāZj

j , $Xj
b ,Zj

j%5«a
bjXj

a , $Xj
b̄ ,Zj

j%5« ā
b̄j

Xj
ā .

~22!

The summation over repeating indices of transitions is
plied. A Bose-like transition is denoted asZj and a diagonal
Bose-like operator is denoted ashj

G , hj
G[Zj

j(G,G) .

C. The field for the electric potential and the Poisson equation

The full Coulomb interaction can be written as follow
~see Ref. 6!

1

2E dq@ r̂ i~q!2 r̂ r~q!#
4pe2

q2
@ r̂ i~q!2 r̂ r~q!#

[
1

2E dq r̂q

4pe2

q2
r̂q . ~23!

Here r̂ i(q) describes the nuclear densities screened by
core electrons

r̂ i~q!5(
j

S Zj2(
j

Sj
j~q!Zj

jDeiq•Rj , ~24!

andSj
j is the form factor of the ion, which takes into accou

the contribution of the orbitalsn andm into the transitionj

Sj
j~q!5E dr eiq•rf j n* ~r !f j m~r !~ f n

†f m!j; ~25!

the indexj in f j m(r ) denotes affiliation of this function to
the ion onRj . All other electrons belong either to the cla
of the transitions between different ions, or to a mixed st
between conduction and localized electrons, or to the c
duction electrons. The operator of the charge density,r̂ r(q),
of these remaining electrons can be written as follows:
3-4
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r̂ r~q!5 (
jL j 8L8

O jL j 8L8~q!cjL
† cj 8L81 (

jL j 8L8
O jL j 8m8~q!

3~ f m8!
acjL

† Xj 8
a

1O j m j 8L8~q!~ f m
† ! āXj

ācj 8L8

1~12d j j 8!O j m j 8m8~q!~ f m
† ! ā~ f m8!

bXj
āXj 8

b . ~26!

The interaction between all nuclei that are screened by t
electrons is

1

2E dq r̂ i~q!
4pe2

q2
r̂ i~2q!2HD . ~27!

Here, HD takes into account the terms that are dou
counted in the first term, since there is no interaction of
ion with itself:

HD5
1

2 (
j
E dqS Zj2(

j
Sj

j~q!Zj
jD4pe2

q2

3S Zj2(
j

Sj
j~q!Zj

jD . ~28!

The terms of this interaction at smallq, as well asHD itself,
diverge. This is the standard problem of screening. T
Hamiltonian in the many-electron representation is

H5H01~H Coul1T!, ~29!

whereT is the kinetic energy, and the zero Hamiltonian is

H05H 0
X1H 0

c5(
j G

Ej G
† hj

G1( hjL , j 8L8
0c cjL

† cj 8L8 . ~30!

Here H 0
X describes the electrons treated as core elect

when the interaction between the ions and all other electr
is switched off:

Ej G5S j ,GU (
i PRj

pi
2

2m
2 (

i PRj

Zje
2

uRj2r i u

1
1

2 (
i ,i 8PRj

Zje
2

ur i2r i 8u
U j ,G D . ~31!

The partition function, written in the standard form, is

Z5Tr exp@2b~H2mN!#

5Z0

1

Z0
TrFexp@2bH0#Ttexp

3S 2E
0

b

dt Hint~t! D G
[Z0K TtexpS 2E

0

b

dt Hint~t! D L (0)

. ~32!

Let us write the partH rr
Coul of Hint in the Fourier transformed

form, Eq. ~26!. Then, we introduce the Gaussian function
integral
08511
ir

e
e

e

ns
ns

l

15E Dwq~t!expS 2E
0

b dt

8pE dq q2wq~t!w2q~t! D
~33!

under the trace of the partition function. We make the sh

wq~t!→wq~t!1 i
4pe

q2
r̂q , ~34!

in this Gaussian integral. This allows us to rewrite the Co
lomb interaction in terms of interaction of electrons with t
random field wq(t). This shift generates the term
(2H rr

Coul), which cancels theH rr
Coul in Hint but adds the term

2
ie

2 E0

b

dtE dq @wq~t!r̂2q~t!1 r̂q~t!w2q~t!#. ~35!

Note that, although thef orbitals of the same site are o
thogonalized, theqÞ0 components of the overlap matri
have nonzero values and, therefore, nondiagonal transit
jÞ@G,G# enter the expression forq component of the charge
density. Thus, we have to work with the following expre
sion for the partition function:

Z

Z0
5E Dwq~t!expS 2E

0

b

dtE dq
q2

8p
wq~t!w2q~t! D

3exp$2bFi@wq~t!,w2q~t!#%, ~36!

where

Fi@wq~t!,w2q~t!#

[2
1

b
lnK TtexpS 2E

0

b

dtE dq~Tq2Hr2HD! D L (0)

,

~37!

Tq[F p̂2

2m
G

q

r r~q!, ~38!

Hr5
1

2E dq @ iewq~t!2m#r̂2q~t!1 r̂q~t!@ iew2q~t!2m#,

~39!

H i
05H 0

c1H 0
X . ~40!

Here, we have used the fact that the fieldswq(t) commute
with any operator. The functionF is written in the form
usually used for the cumulant expansion.

Since both the mixing interaction and overlap matrices
nonzero, a part of the charge is in the mixedc f states. Be-
sides, thef subsystem is described in terms ofnonlinear X
operators. For these reasons we cannot describe the full
tribution from the termmN̂ in the zero Hamiltonian. The
field wq(t) can be interpreted as the field for the electric
potential that is generated by the Coulomb interaction. If
set e50 the system does not have charged particles,
therefore there is no contribution to the partition functi
from this field. At eÞ0 in a nonhomogeneous system
average charge density is not equal to zero, and, there
3-5
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the expectation valuêwq(t)&w is nonzero too. Taking the
functional derivative of the free energy, we find that t
saddle-point approximation generates the Poisson equa
for this field:

dF

dw2q~t!
[

d~2T ln Z!

dw2q~t!
52

q2

8p
^wq~t!&w1

ie

2
^r̂q~t!&w50.

~41!

The static part of the field of the electrical potentialF(r ) is
connected with the field̂w& as follows:

F~r ![ lim
t→20

i ^w~r ,t!&w5 i ^w~r ,0!&w . ~42!

Thus, we have the Poisson equation for the electric poten
F(r ),

¹2F~r !524p^r̂q~0!&w , ~43!

where the charge density is the difference between the
sities of the delocalized electrons and the ‘‘soft’’ ion~where
the polarization of the ion and excitations are allowed!.

III. THE SELF-CONSISTENT HUBBARD-ANDERSON
MODEL

The fieldw(r ,t) contains the average static field and d
viations of it:

w~r ,t!5
1

i
F~r !1dw~r ,t!. ~44!

It is reasonable to start with the approximationiwq(t)
→ i ^wq(0)&w→F(q), and to neglect the fluctuations of th
field. Then, we obtain the following saddle-point Ham
tonian:

H̃05E dq q2F~q!F~2q!1( ~hjL , j 8L82m OjL , j 8L8!

3cjL
† cj 8L81( ~Ej G

(n)2nm!hj
G , ~45!

H̃int5T1
e

2E dq @F~q!r̂2q1 r̂qF~2q!#2HD .

~46!

Here

hjL , j 8L85S jLU p̂2

2m
1F~r !U j 8L8D ~47!

is the frequency matrix of the conduction electrons in
self-consistent fieldF(r ). The Hamiltonianh̃ for them can
be obtained if we make a transformation to the orthogo
variablesa, using the Cholesky decomposition for the ove
lap matrixO:

c†~h2m O!c5c†@ Z̄~ Z̄21hZ21!Z2mZ̄Z#c

5~c†Z̄!@ h̃2mI #~Zc!5a†@ h̃2mI #a.

~48!
08511
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Let us now insert intoH̃int the expression forr̂q in the
jL -representation. Taking into account that

e

2E dq F~q!OjL , j 8L8~q!5
e

2E dr f jL* ~r !F~r !f j 8L8~r !

[VjL , j 8L8 ~49!

are matrix elements of the self-consistent Coulomb field,
find that H̃ actually gives the periodic Hubbard-Anderso
Hamiltonian

H̃5E dq q2F~q!F~2q!

1( ~hLDA2m O! jL , j 8L8cjL
† cj 8L81( ~Ẽj G

(n)2nm!hj
G

1( FVj m, j m8~ f m
† f m8!

jÞ[G,G]Zj1H.c.

1( S p2

2m
1V2mOD

jL , j 8m8

~ f m8!
acjL

† Xj 8
a

1S p2

2m
1V2mOD

j m, j 8m8

~ f m
† ! āXj

ācj 8LG
1( ~12d j j 8!S p2

2m
1V2mOD

j m, j 8m8

3~ f m
† ! ā~ f m8!

bXj 8
ā Xj 8

b
2HD . ~50!

Thus, within this approximation, the single-ion energiesẼj G
(n)

are shifted by the self-consistent field of interaction w
other ions, delocalized electrons and the localized ones,
belonging to other sites:Ẽj G

(n)5Ej G
(n)1^GuF(r )uG&. However,

the self-consistent field should be found from the Poiss
equation, and therefore it contains only the Hartree par
the interaction between the collective quasiparticles. Nev
theless, this problem does not coincide with the sing
particle Hartree approximation, since it contains additio
information about the structure of the many-electron sta
uG& of the ion. Due to the nonlinearity of the problem th
approximations for the Green functions~GF’s! can be used in
a different form from the standard single-particle problem
the Hartree approximation. Particularly, as seen from the
lution of the self-consistent Anderson model, presented
Ref. 16, the potential depends implicitly on the many-bo
population numbers of the ion states already in the low
approximation.

The exchange contribution appears in first order betw
electrons via the fluctuation of the field w
}^Tdw(t)dw(t8)&. This study we leave for the future, how
ever, it is interesting to note that this exchange involves a
the contributions from fluctuations caused by the intra-
transitions.

The charge density and the averages^cjL
† cj 8L8&, ^cjL

† Xj 8
a &,

^Xj 8
ā cjL&, ^Xj

āXj 8
b &, for the Poisson equation can be foun

from the GF’s. It is clear that if it is possible to approxima
3-6
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this potential by a spherically symmetrical one,Vj m j m8
5dmm8Vj , then (f m

† f m)j5dj,[G,G] for the orbitals,m, occu-
pied in the stateG.

IV. MIXING INTERACTION

Let us now rewrite the problem in a form close to t
standard periodical Anderson model. This allows us to d
cuss different possible definitions for the matrix element
the mixing interaction. Usually the Hamiltonian of th
Anderson model is written in the following form:

H (And)5(
ks

«k
scks

† cks1(
ks

@Vkm
s eik•Rjcks†f

j m
1H.c.

1 (
j $m%

Um1m2m3m4
f j m1

† f j m2

† f j m3
f j m4

1(
j m

em f j m
† f j m .

~51!

Here«k
s is the spectrum of the conduction electrons,Vkm

s is
the matrix element of mixing interaction,

Vkm
s 5E dr fk*

s~r !S p2

2m
1V~r ! Dwm~r2Rj !, ~52!

and Um1m2m3m4
is the matrix elements of the Coulomb in

trashell interactions. For the mixing no problem arises in
case of the impurity Anderson model, since the potentia
this case is the difference between the periodical potentia
the conduction electrons and the potential of the impur
although the local on-site term is equal to zero due to sy
metry reasons, overlap with the orbitals of neighboring io
gives a nonzero contribution~see the paper by Anderson17!.
In the case of the periodic Anderson model~PAM! this form
of the matrix element suggests that either the potential
different symmetry from the Bloch wave functions, or th
functionsfk*

s(r ) andwm(r2Rj ) are not orthogonal. It is no
clear how to fulfill the first assumption in the case of eleme
tal metals~like Ce metal! since we are dealing with a per
odic system. In the second case

E dr fk*
s~r !S p2

2m
1V~r ! Dwm~r2Rj !

5«k
sE dr fk*

s~r !wm~r2Rj !5«k
sO ks, j m . ~53!

Therefore, in order to have a nonzero mixing, one has
work in terms of a nonorthogonal basis set, but in this c
~a! there is a contribution from the chemical potential to t
partition function that affects the mixing, and~b! the nonor-
thogonality causes nonzero anticommutation relations
tween thef andc operators. This is never taken into accou
in model calculations.

Let us consider the consequences from our formulat
Since the mixing matrix element has a single-electron fo
let us make in our saddle-point Hamiltonian a transformat
that diagonalizes the conduction electrons. First we hav
rewrite the Hamiltonian, Eq.~50! in k space~for the formu-
las to be transparent, we will write them for the case of o
08511
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atom in the elementary cell, then, the single-ion matrix e
ments and energies do not depend on the ion index!. The
Hamiltonian is written using the new variables:

cjL5(
k

e2 ik•RjckL , cjL
† 5(

k
eik•RjckL

† , ~54!

We want to decompose the overlap matrix,

c†~h2mO!c5c†@ Z̄~ Z̄21hZ21!Z2mZ̄Z#c

5~c†Z̄!@ h̃2mI #~Zc!5a†@ h̃2mI #a, ~55!

this introduces transformed operatorsakg5Zk
gLckL , akg

†

5ckL
† Z̄k

Lg . It is easy to see that they are orthogonal to ea
other:

akgakg8
†

1akg8
† akg5Zk

gL~ckLckL8
†

1ckL8
† ckL!Z̄k

L8g8

5Zk
gL~O 21!LL8Z̄k

L8g8

5Zk
gL~Zk

21!Lg1~ Z̄21!g1L8Z̄k
L8g85dgg8 .

~56!

At last, diagonalizing the conduction-electron Hamiltoni
Z̄21hZ21, we have

H̃5E dq q2F~q!F~2q!1( @«kl2m # c̃kl
† c̃kl

1( ~ẼG
(n)2nm!hj

G1( @Vm,m8~ f m
† f m8!

jÞ[G,G]Zj
j

1H.c.#1( @Vl
ā~k!eik•Rj c̃kl

† Xj 8
a

1H.c.#1( ~12d j j 8!

3S p2

2m
1V2mOD

j m, j 8m8

3~ f m
† ! ā~ f m8!

bXj
āXj 8

b
2HD , ~57!

where the band energy and mixing matrix elements are

«kl5qg*
l~k!~ Z̄k

21!gLhL,L8~k!~Zk
21!Lg8qg8

l
~k!, ~58!

Vl
ā~k!5qg*

l~k!~ Z̄21!gLS p2

2m
1V2mOD

jL , j 8m8

~ f m8!
a

[vm8
l

~k!~ f m8!
a, ~59!

Vl*
ā~k!5S p2

2m
1V2mOD

j m, j 8L

~Zk
21!Lgug

l~k!~ f m
† ! ā

[~ f m
† ! āvm8

* l
~k!, ~60!

where $q% diagonalizesZ̄21hZ21, and v i
l is the one-

electron hybridization parameter. Thus, the matrix elemen
the mixing interaction has to be found self-consistently
gether with the charge density~which in turn depends on the
particular approximation in which the PAM is solved! and
can be represented in the form of a sum over all localiz
3-7
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TABLE I. Coefficients for the mixing interaction for many-body states. For thef series, taken
from Ref. 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

@ f 5/2#
2 1 2.25 2.3 1.8 0.9 0.15 0 1.6 2.3 4.1 1.7 0.9 0.3 0

@ f 7/2#
2 0 0.25 0.6 0.8 0.63 0 0.9 0.5 1.3 4.1 3.0 3.3 2.8 1
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orbitals of products of the matrix element of the sing
particle potential@on the conduction-electron Bloch functio
fkl(r ) and the localized orbitalxm(r )] and the factor
( f m8)

a, which reflects the contribution of this orbital into
fermionlike transition. Irkhin and Irkhin15 have performed
the calculation of this factor for the 4f elements, making use
of the Racah technique leaving the single-particle matrix
ement undefined. Settingā5ā(Gn ,Gn21) and m5( l ,m,s)
and using the result of the calculation of Irkhin and Irkh
we can write these coefficients as follows:

~ f m
† ! ā5^Gnu f lms

† uGn21&

5An@Gn#@Gn11#H Sn Ln Jn

Sn21 Ln21 Jn21

1/2 l j
J GGn21

Gn ,

~61!

where g5( lmls) are the one-electron quantum numbe
@a#52a11 andGGn21

Gn is the parentage Racah coefficien

and j 5 l 11/2. The coefficients (f m
† ) ā are different for the

two channels,j 55/2 andj 57/2. The square of these coeffi
cients are given in Table I.

However, there are more considerations to the probl
since the Bloch orbitals are not orthogonal to the localiz
orbitals. In the equation of motion for the operators app
combinations involving the overlap matrices. For the Ham
tonian, which includes hopping and mixing interactions~the
periodic Hubbard-Anderson model!, the diagram technique
and different approximations for the Green functions~GF!
are given in paper I, while the full self-consistent solution f
rare earths in the simplest possible approximation is p
sented in Ref. 16.

V. DISCUSSION

Many different suggestions exist in the literature on h
the parameters of the Anderson Hamiltonian~periodical or
2

.
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impurity! should be calculated from anab initio approach
and a consensus is not yet achieved. This motivated u
make an attempt to derive the parameters from a total Ha
tonian. Since the Anderson model is usually used for
description of the cases when strong electron correlations
well developed, it is reasonable to consider strong int
atomic Coulomb interactions first. For this reason we ha
performed a derivation of the self-consistent PAM in fo
steps:~i! first we separate, in the Hamiltonian, the stro
intra-atomic interactions and approximately diagonaliz
them with the help of many-electron functions describi
different ion terms;~ii ! we expressed all operators, descri
ing f and core electrons in terms of Hubbard operators;~iii !
we performed the Hubbard-Stratonovich decoupling of
Coulomb interaction, and finally~iv! we found the equation
for the electric potential in a saddle-point approximatio
This lead us to the effective Hamiltonian, which coincid
with the generalized PAM.

All three operations before making the saddle-point a
proximation are exact. However, the saddle-point appro
mation neglects the contributions from the exchange inte
tion for the delocalized particles~excitations! and Coulomb
screening effects, which appear only in the next orders w
respect to fluctuations of this field near its saddle-po
value. Thus, we may conclude that from this point of vie
this model is quite rough. On the other hand, the way s
gested here has an obvious advantage compared to the
with non-self-consistent parameters since it, at least, ta
care about perturbations of the local charge density wh
may introduce quite large changes in energy.
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