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Direct minimization to generate electronic states with proper occupation numbers
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We carry out the direct minimization of the energy functional proposed by Mauri, Galli, and@Ggs. Rev.
B 47, 9973 (1993] to derive the correct self-consistent ground-state solution of the Kohn-Sham equation.
Since this method completely avoids the instability caused by the level crossing, one can determine the
electronic structure of metallic systems to a high degree of accuracy without the aid of level broadening of the
Fermi-distribution function. The efficiency of the method is illustrated by calculating the ground-state energy
of C, and S) molecules and th&/(110) surface to which a tungsten adatom is adsorbed.
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[. INTRODUCTION but also the proper occupation numbers are numerically de-
termined as output quantities. We combine the DM method
In the Kohn-ShantKS) formulation of density-functional with the real-space finite-difference method utilizing the
theory2 the energy functional of a system of electrons istime-saving double-grid techniqd@The real-space calcula-
minimum at the point of the ground-state energy with respection methods have tackled serious drawbacks of the plane-
to the variation of an arbitrary set of single-particle orthonor-wave approach, e.g., its inability to describe strictly nonpe-
mal wave functiong;} and occupation numbefs;}. The riodic systems such as clusters and solid surfaces.
Janak theorefimplies that the occupation numbers of the ~ The rest of this paper is organized as follows: The basic
ground state at zero temperature are chosen Suchnith;dt prinCiple of our method is outlined in Sec. Il, and the tests
for the states of KS eigenvalues below the Fermi level, andvhich we have performed to probe the usefulness of the
n,=0 for those above the Fermi level. In calculating elec-Scheme are presented in Sec. lIl. Finally, in Sec. IV we con-
tronic wave functionS, however' Constraining the occupatiorplude with discussion of future direction for the DM method.
numbers to be integral can frequently cause a convergence
difficulty for metallic systems, because a bunch of single- Il. MATHMATICAL FORMULATION
particle states nest in the energy range including the Fermi
level and some states move through the Fermi level during The MGC energy functional for aN-electron system is
the course of self-consistent calculations, i.e., the so-calle@/'tten as
level crossing happens to occift.
One popular approach to prevent this numerical difficulty M
has been introducing the fractional occupation numbers by E[{¢}.7]= Z 2 Qﬁ< b7
. .. g . . . . o=1] 1,]
using the Fermi-distributioriFD) function with broadening
temperaturd® Further, the thermodynamic free energy is
+77[N—f p(r)er,

- %Vz ¢f’> +Flp'.p']

@

minimized instead of the electronic total energy. This proce-
dure has the advantage that the calculations of electronic
wave functions for metallic systems typically converge morewhere { ¢} is an arbitrary set oM linearly independent
stably and rapidly, and that the broadening of each levebyerlappingwave functions with spin indexr, which are
roughly imitates larger systems or a better sampling in th&.ssumed here to be real functions for simplicity, ands
Brillouin zone. In principle, however, no physical signifi- taken to be not smaller than the number of the occupied
cance is given to temperature or entropy in the context of thtates for each spirE[p',p'] is the sum of the external,

zero-temperature KS scheme. Itis even more serious in pragsartree, and exchange-correlation potential-energy function-
tice that theoretical results depend on the chosen values gfs  is the electronic chemical potentiaQ” is an (M

the fictitio.us_ broadeping temperat¥éand th{at one cannot M) matrix: Qﬁ:25ij —Sﬁ, andS” is the overlap matrix:
always eliminate th|s_dependence by Iowerm.g the temper 7 (47| 47). The charge density is defined as
ture down to zero in metallic systems, since the self- " !
consistent cycle frequently enters into the endless loop at low M
temperature due to the restarting of the level crossing, typical _ . orey o 40 o
examples of which are found in Refs. 5 and 8. p(r)_(,:zu pr(r) and p (r)_iEJ Qij i (NG (0.

In this paper, we demonstrate that the direct minimization 2
(DM) of the energy functional proposed by Mauri, Galli and
Car(MGC) (Ref. 9 can completely avoid the numerical dif- The form of the energy functional Eq1) was originally
ficulty caused by the level crossing, and can give satisfactontroduced for computation with linear system-size scaling
rily the self-consistent solutions of the KS equation withoutO(N), and each wave functiog” was approximated to be a
usage of conventional self-consistent field techniques: ndiVannier-like function localized in an appropriate region of
only the manifold of the correct-electronic wave functionsspace(i.e., a localized orbitalto reduce the amount of com-
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putation. In this paper, we adhere to ordinartendedvave

functions, being free from the errors caused by the localiza-

tion of wave functions.

E[{¢#},7] is minimized by a steepest-descent or
conjugate-gradient algorithrwithout constraint of the or-
thonormalization of wave functions. The derivative of the
functional with respect to the functiog” is required for the
minimization, which is given by

M

SE , N
M#; (AL (}1- m|60)Q]

o7
L CHIG PR RR I pa )
whereHg J{#}] is the KS Hamiltonian. It is straightforward

to verify that the ground-state energy is a stationary point of

E[{#},7]. Consider the following set of the ground-state
wave functions{$?%}: |¢°)=a’|x"), where|x?) is the
normalized eigenfunction dfiZs at {7} ={¢7°} with the
eigenvalues?, i.e.,HZJ {47} x")=27|x7), and the coef-
ficienta” is set such thaia]| =1 for e/ <5, 0<|a|<1 for
e7=7, anda’=0 for ¢7> 7. Obviously,{#7°} is a station-
ary point of E[{ ¢}, 7], since

SE[{ &}, 0l 867|147y~ 1400, = 407 (1~ EMBICHEE1P%)
(4)

We now show that the MGC energy functional Ed) is
identical to the functional in the standard form

=0.

1
_Ty2
2V

M
E[{lﬂ}:ﬂ]:(r;l Z nf’< o l//i"> +F[p',p']

N—jp(r)dr},

+7 5

with

M
p(r)= :EH p°(r) and p"(ﬂzZ N7l (D)2, (6)

where{y{} and{n/} are sets obrthonormalwave functions
and the corresponding occupation numbers, respectively, b
n varies in the range thato<n/<1. The proof is as
follows: A set of{¢{} in Egs.(1) and(2) is transformed to

an orthonormal sefy?} using an orthogonalization algo-
rithm, e.g., the Gram-Schmidt method, and thkghis repre-
sented asp?=3Mc? .y . Substituting this expansion into
Egs.(1) and(2), we obtain for the energy functional

1
_Ty2
2V

M
E[{Z”}’”]:,,:EN ; PL’|<<7/|" ?zf'k’>+F[pﬂpi]

+7][N_f p(r)dr],

and a similar expression for the charge density, where

()
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P‘k’|=i2]_ Qi(JTC(kr,icl(r,jZZT(krl_% Tkm 8
with T‘kﬂ:Ei""cZ’ic,‘fi . Here, the matrixt 7, of which the ele-
ment of thek row and thel column isTy,, is a non-negative
definite Hermitian matrix, which can be diagonalized by a
unitary matrixU? as U°TT7U%) = 8\ with N being a
non-negative eigenvalue d. Hence,

(UTPIU%) = S(2—NNY . 9
Defining ¢{” andn{ asy{=="47U7 andn/=(2—-\{)\{,
we obtain Eq(5) from Eq.(7), and the inequality-o<n/
<1.(Q.E.D)
This proof gives the way how to define and calculate the
occupation numberén} within the MGC formalism. One
can now recognize that minimizing the MGC energy func-
tional Eq. (1) with respect to{¢;} without imposing the
normalization condition is equivalent to treating the occupa-
tion numbers{n{} asfractional occupation variables in the
minimization of the functional Eq5). It can be also noticed
that since the occupation numbers defined above do not ex-
ceed one, the Pauli principle automatically works to prevent
more than one electron from falling into each single-particle
level in the course of the minimization of the the energy
functional Eq.(1). Kim et al. showed within a non-self-
consistent scheme that the occupation number of the single-
particle level below(above the Fermi level is an asymptote
toward one(zerg in the vicinity of the stationary ground-
state point of the MGC energy functiondl Following this
argument, one can easily see that as long as initial wave
functions for iterations are chosen to be close to the ground-
state solution, the variation range of the occupation number
is bounded to &n{=<1 and unphysical negative occupation
gives rise to no problem in practical calculations. In any
case, one should not worry when some occupation numbers
are temporarily negative during the minimization process be-
fore converging to the stationary point because these occu-
pations do not have a direct physical meaning.

The overall computational scaling in our DM procedure
combined with the real-space finite-difference method of
Ref. 10 amounts t®(M?Nyiq) operations in the calcula-
tions of the energy functional Eq1l) and its derivative Eq.

l(l ), since the¢’s are now assumed to bextendedwave

functions. HereN,iq is the number of coarse grid points in
real space. It is noted théI(MZNgrid) is equal to the scaling
order in the orthogonalization of wave functions indispens-
able in the conventional approach of solving the KS equation
by an iterative algorithm, and that the dominant scaling in
the calculations of the energy functional and its derivative
based on a plane-wave basis set is @M ?Ny,qd With
Npasisbeing the number of plane-wave basis functions, when
advantage is taken of the fast Fourier-transform technique.

Ill. TEST CALCULATIONS AND DISCUSSION

In order to illustrate the utility of the DM method and the
difficulty in the usage of the FD function, the electronic
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FIG. 1. G adiabatic-potential curve, eigenvalues ofland 0 50 100 150 200

20 states, Ir, occupancy as a function of atomic separatfonin

(a), the solid adiabatic-potential curve is the result with the frac-
tional occupancy by our DM method, and the dashed cuavasd FIG. 2. The occupation numbaf'=(2—\?)\? as a function of

b are those with the occupation of the state constrained to be 0 the number of conjugate-gradient iteratiofor the definition of

apd 1, respectively. Iiib), the solid(dotted curve represents the A7, see the text preceding E).] The solid(dotted curve repre-
eigenvalue of ir, (20,) state, and the dash-dotted curve shows thegents the occupation numbers of the,X(20 ) state. The curves in
occupation number of #, state. Circles correspond to data 0b- (5) and (b) are the results in the cases of the atomic separation
tained by the brute-force method of Ref. 17. =2.30 a.u. and 2.50 a.u., respectively, and each run starts from the

) electronic structure eR=2.40 a.u.
structures of ¢, Si,, and a tungsten adatom adsorbed on the

W(110) surface are calculated. Hereafter, we obey the ninq,—ve can confirm the accuracy and efficiency of our DM
point finite-difference formuf¥ for the derivative arising method. The calculated equilibrium bond length of the
from the kinetic-energy operator, and the dense-grid Spacmground-state geometry R=2.34 a.u., being out of the de-

is fixed at hyens=h/3, where h denotes the coarse-grid gonerate range, which is in agreement with the experimental
spacing’” The norm-conserving pseudopotential is employed,; e 2.35 a.u. In Fig. 2, we plot the occupation numbers of

i i 14

n %Kleknman-iylancier ndorzﬂor(]:al forrlrl?. f th licati the states aR=2.30 a.u. and 2.50 a.u. as a function of the
€ Show In FIgs. 1 an the resu ts of the app lgatlon Ohumber of conjugate-gradient iterations, where the electronic

the carbon dimer as a demonstration of the potential powgftructure alR=2.40 a.u. is used as the starting point. One

that our DM method can correctly evaluate both the manifold,,y gee that the iterative process is markedly stable and our

of the electronic wave functions and the occupation numberst procedure gives good convergence of the occupation
The carbon dimer is one of the most suitable examples foﬁumbers

thisdpurﬁose,dt;ﬁc?l{ﬁe a T;]meet( Ofl inye'stigafiéﬁt%hlf’ al- We next give an example that the FD method including a
ready showed that the mathematical minimum ot the energy, iy ;g broadening temperature leads to an incorrect
functional is with fractional occupations in a certain range Ofground-state geometry in molecular-dynamics simulations
the atomic sgparaﬂolr‘?,e.g., Pederson and JackSdound thgures 3%a) and 3b) show the calculated results of the free
that the fract|onally occupied states appear over'the range %nergy and the force on each atom versus the atomic separa-
a]tcorr?lc separatlorR:d2.4—3.7 a.u. arr:d It:he KSI elgler|1va|I:l_Jes tion for the silicon dimer, respectively. The calculation was

of these states are degenerate at the Fermi level. In Figs. Jo tormed under the following conditions: the grid resolution

and 2, we took the grid spacing=0.33 a.u. in a cell of h=0.50 Il of 24 der th iodic b d
16 a.u. under the nonperiodic boundary conditidti) of =0 aU. acellors% al. underthe nonperodic bt an

vanishing wave function, and set the number of electfdns
=8 and the number of wave functiordd =5. Exchange-

;grprrecl)iit:rczgtioeﬁf;e;(iorgﬁg totrsgfjeedrsxltgndﬂj]i\cL%(;;lilg-;i?gs'tymetmd and the FD scheme including a broadening temperature are
1 illustrates the ground-state total energy, the KS eigenvaluéosresemed'
of the 17, and 2 stgtes, and the oqcupanon pumber of theTemperature(mH)
1, state as a function of the atomic separation. The result

Number of conjugate-gradient iterations

TABLE I. The diffusion barrier of a tungsten adatom on the
rigid W(110) surface along thel 11] direction. Data from our DM

Diffusion barrier(eV)

of the brute-force methddimplementing the manual deter- Present work 1.40
mination of the occupation numbers is also depicted here in.0 1.43
confirmation of the accuracy of our DM method. The results2.0 1.54
obtained from our DM method accord with those from thes.0 1.54

other method all over the range of the atomic separation, and
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g o7 ’&”\;\ (crossegfor the surface diffusion discussed in the text.
L \%&\Qs\ ]
v\ . . .
002} v\;\K- were employed. Only th€ point of the Brillouin zone was

sampled. Using our DM approach we first evaluate the
ground-state geometry for the adatom located at a hollow site
A, and then displace the adatom along ffid1] direction
FIG. 3. (a)Si, free energy andb) force on each Si atom as a {rom the pointA to the nearest hollow sit@ (see Fig. 4 The
function of atomic separatioR obtained by the DM method and the diffusion barrier of the tungsten adatom is given in Table I.
conventional FD method at different broadening temperatiites The numerical error for the barrier &t=2 mH in the FD
The calculated points are fit to spline-interpolated curves as a guidéethod is found to be not negligible but about 10% of the
to the eye. The free energy in the DM method is identical to thetrue value obtained from our DM scheme. In addition, it is
total energy. In(b), the force in the FD method is defined as the noted that the convergence acT mH becomes very slow
derivative of the free energy with respect to the atomic position,or diverges in several points on the p#&B.
while the force in the DM method is the true Hellmann-Feynman
force defined as the derivative of the total energy.

38 4.0 42 4.4 4.6
Atomic separation R (a.u.)

IV. CONCLUSION
the local-spin-density approximatithfor the exchange-
correlation potential. The experimetitproved that the en-
ergy difference between two molecular configuratidis
(1Ug)2(10'u)2(177u)4 and (i) (109)2(10u)2(20—g)2(177u)2

We have presented a quite simple and fast algorithm to
search out stably the self-consistent ground-state solution as
the mathematically well-defined minimum of the energy
L . . ' functional to a high degree of accuracy, and demonstrated
that form the double minimum is quite small, the equmbnumthat our DM procedure can completely avoid the conver-
]E)an. Iengtg tlﬁ 4.07 a"é‘ f(:rtthe (_:t?]ng]gu:au@h?rt]dt4l.25 ad. gence difficulty caused by the level crossing. Our scheme
or (ii), and the groun state wi e lowest total energy ISrequires no additional statistical parameter such as a broad-
the latter. Some theoretical analyses have been carried out é‘?ﬂng temperature. Since many of those who studyahe

H H H ,15,19 H H o . h . g
examine the ;ltuatlo??. AS seen in Fig. 3, our DM Pro- initio molecular dynamics for metallic systems by using the
cedure can yield results that are in good agreement with thg broadening frequently worry about entering into the end-

_empmg?l flata. Onhthetiﬁntr?ryt/), tlhe _cc_)nventlonf;t_l FD f!?etho ess loop of the self-consistent cycle as the broadening tem-
is unable to search out the global minimum configurafion erature goes to zero and have a question for the reliability

in molecular-dynamics iterations at a broadening temperatur; f the calculation at a finite value of the broadening tempera-

T=1 mH. At a IOV\.’ temperature .Q-FO'S mH, _the ED ture, our method would be a great blessing to them. More-
method leads to a mistake of regarding the configuraibn o0 \when a system is assumed to be described in terms of

as the ground state with the lowest total energy, although ong.5ji,ed wave functions, our procedure makes it possible to
can find the minimum configuratiofii) by the FD calcula-  perform the calculation with linear system-size scaling

tions Sweeping near the configuratign. . O(N). Research in this direction is in progress.
As a final example, we evaluatelhe energy barrier for a

tungsten adatom to hop along th&11] direction on the

W(110) surface. Our test system is a cell of 17 tungsten ACKNOWLEDGMENTS
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