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Direct minimization to generate electronic states with proper occupation numbers
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Department of Precision Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan

~Received 30 March 2001; published 6 August 2001!

We carry out the direct minimization of the energy functional proposed by Mauri, Galli, and Car@Phys. Rev.
B 47, 9973 ~1993!# to derive the correct self-consistent ground-state solution of the Kohn-Sham equation.
Since this method completely avoids the instability caused by the level crossing, one can determine the
electronic structure of metallic systems to a high degree of accuracy without the aid of level broadening of the
Fermi-distribution function. The efficiency of the method is illustrated by calculating the ground-state energy
of C2 and Si2 molecules and theW(110) surface to which a tungsten adatom is adsorbed.
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I. INTRODUCTION

In the Kohn-Sham~KS! formulation of density-functiona
theory,1,2 the energy functional of a system of electrons
minimum at the point of the ground-state energy with resp
to the variation of an arbitrary set of single-particle orthon
mal wave functions$c i% and occupation numbers$ni%. The
Janak theorem2 implies that the occupation numbers of th
ground state at zero temperature are chosen such thatni51
for the states of KS eigenvalues below the Fermi level, a
ni50 for those above the Fermi level. In calculating ele
tronic wave functions, however, constraining the occupat
numbers to be integral can frequently cause a converge
difficulty for metallic systems, because a bunch of sing
particle states nest in the energy range including the Fe
level and some states move through the Fermi level du
the course of self-consistent calculations, i.e., the so-ca
level crossing happens to occur.3,4

One popular approach to prevent this numerical difficu
has been introducing the fractional occupation numbers
using the Fermi-distribution~FD! function with broadening
temperature.4,5 Further, the thermodynamic free energy
minimized instead of the electronic total energy. This pro
dure has the advantage that the calculations of electr
wave functions for metallic systems typically converge mo
stably and rapidly, and that the broadening of each le
roughly imitates larger systems or a better sampling in
Brillouin zone. In principle, however, no physical signifi
cance is given to temperature or entropy in the context of
zero-temperature KS scheme. It is even more serious in p
tice that theoretical results depend on the chosen value
the fictitious broadening temperature,6,7 and that one canno
always eliminate this dependence by lowering the temp
ture down to zero in metallic systems, since the se
consistent cycle frequently enters into the endless loop at
temperature due to the restarting of the level crossing, typ
examples of which are found in Refs. 5 and 8.

In this paper, we demonstrate that the direct minimizat
~DM! of the energy functional proposed by Mauri, Galli an
Car ~MGC! ~Ref. 9! can completely avoid the numerical di
ficulty caused by the level crossing, and can give satisfa
rily the self-consistent solutions of the KS equation witho
usage of conventional self-consistent field techniques:
only the manifold of the correct-electronic wave functio
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but also the proper occupation numbers are numerically
termined as output quantities. We combine the DM meth
with the real-space finite-difference method utilizing t
time-saving double-grid technique.10 The real-space calcula
tion methods have tackled serious drawbacks of the pla
wave approach, e.g., its inability to describe strictly nonp
riodic systems such as clusters and solid surfaces.

The rest of this paper is organized as follows: The ba
principle of our method is outlined in Sec. II, and the te
which we have performed to probe the usefulness of
scheme are presented in Sec. III. Finally, in Sec. IV we c
clude with discussion of future direction for the DM metho

II. MATHMATICAL FORMULATION

The MGC energy functional for anN-electron system is
written as

E@$f%,h#5 (
s5↑↓ (

i , j

M

Qi j
s K f j

sU2 1

2
“

2Uf i
sL 1F@r↑,r↓#

1h HN2E r~r !dr J , ~1!

where $f i
s% is an arbitrary set ofM linearly independent

overlappingwave functions with spin indexs, which are
assumed here to be real functions for simplicity, andM is
taken to be not smaller than the number of the occup
states for each spin.F@r↑,r↓# is the sum of the external
Hartree, and exchange-correlation potential-energy funct
als, h is the electronic chemical potential,Qs is an (M
3M ) matrix: Qi j

s 52d i j 2Si j
s , andSs is the overlap matrix:

Si j
s 5^f i

suf j
s&. The charge density is defined as

r~r !5 (
s5↑↓

rs~r ! and rs~r !5(
i , j

M

Qi j
s f j

s~r !f i
s~r !.

~2!

The form of the energy functional Eq.~1! was originally
introduced for computation with linear system-size scal
O(N), and each wave functionf i

s was approximated to be
Wannier-like function localized in an appropriate region
space~i.e., a localized orbital! to reduce the amount of com
©2001 The American Physical Society05-1
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putation. In this paper, we adhere to ordinaryextendedwave
functions, being free from the errors caused by the local
tion of wave functions.

E@$f%,h# is minimized by a steepest-descent
conjugate-gradient algorithmwithout constraint of the or-
thonormalization of wave functions. The derivative of t
functional with respect to the functionf i

s is required for the
minimization, which is given by

dE@$f%,h#

df i
s

52(
j

M

†~ĤKS
s @$f%#2h!uf j

s&Qji
s

2uf j
s&^f j

su~ĤKS
s @$f%#2h!uf i

s&‡, ~3!

whereĤKS
s @$f%# is the KS Hamiltonian. It is straightforward

to verify that the ground-state energy is a stationary poin
E@$f%,h#. Consider the following set of the ground-sta
wave functions$f i

s0%: uf i
s0&5ai

sux i
s&, where ux i

s& is the

normalized eigenfunction ofĤKS
s at $f i

s%5$f i
s0% with the

eigenvalue« i
s , i.e., ĤKS

s @$f i
s0%#ux i

s&5« i
sux i

s&, and the coef-
ficient ai

s is set such thatuai
su51 for « i

s,h, 0<uai
su<1 for

« i
s5h, andai

s50 for « i
s.h. Obviously,$f i

s0% is a station-
ary point ofE@$f%,h#, since

dE@$f%,h#/df i
su$f i

s%5$f i
s0%54ai

s~12uai
su2!~« i

s2h!ux i
s&

50. ~4!

We now show that the MGC energy functional Eq.~1! is
identical to the functional in the standard form

E@$c%,h#5 (
s5↑↓ (

i

M

ni
sK c i

sU2 1

2
“

2Uc i
sL 1F@r↑,r↓#

1h HN2E r~r !dr J , ~5!

with

r~r !5 (
s5↑↓

rs~r ! and rs~r !5(
i

M

ni
suc i

s~r !u2, ~6!

where$c i
s% and$ni

s% are sets oforthonormalwave functions
and the corresponding occupation numbers, respectively
ni

s varies in the range that2`,ni
s<1. The proof is as

follows: A set of $f i
s% in Eqs.~1! and ~2! is transformed to

an orthonormal set$c̃ i
s% using an orthogonalization algo

rithm, e.g., the Gram-Schmidt method, and thenf i
s is repre-

sented asf i
s5( l

Mcl ,i
s c̃ l

s . Substituting this expansion int
Eqs.~1! and ~2!, we obtain for the energy functional

E@$c̃%,h#5 (
s5↑↓ (

k,l

M

Pkl
s K c̃ l

sU2 1

2
“

2Uc̃k
sL 1F@r↑,r↓#

1h HN2E r~r !dr J , ~7!

and a similar expression for the charge density, where
08510
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Pkl
s 5(

i , j

M

Qi j
s ck,i

s cl , j
s 52Tkl

s 2(
m

M

Tkm
s Tml

s , ~8!

with Tkl
s 5( i

Mck,i
s cl ,i

s . Here, the matrixTs, of which the ele-
ment of thek row and thel column isTkl

s , is a non-negative
definite Hermitian matrix, which can be diagonalized by
unitary matrixUs as (Us†TsUs)kl5dkllk

s with lk
s being a

non-negative eigenvalue ofTs. Hence,

~Us†PsUs!kl5dkl~22lk
s!lk

s . ~9!

Defining c i
s andni

s asc i
s5( j

Mc̃ j
sU ji

s andni
s5(22l i

s)l i
s ,

we obtain Eq.~5! from Eq. ~7!, and the inequality2`,ni
s

<1. ~Q.E.D.!
This proof gives the way how to define and calculate

occupation numbers$ni
s% within the MGC formalism. One

can now recognize that minimizing the MGC energy fun
tional Eq. ~1! with respect to$f i

s% without imposing the
normalization condition is equivalent to treating the occup
tion numbers$ni

s% as fractional occupation variables in the
minimization of the functional Eq.~5!. It can be also noticed
that since the occupation numbers defined above do not
ceed one, the Pauli principle automatically works to prev
more than one electron from falling into each single-parti
level in the course of the minimization of the the ener
functional Eq. ~1!. Kim et al. showed within a non-self-
consistent scheme that the occupation number of the sin
particle level below~above! the Fermi level is an asymptot
toward one~zero! in the vicinity of the stationary ground
state point of the MGC energy functional.11 Following this
argument, one can easily see that as long as initial w
functions for iterations are chosen to be close to the grou
state solution, the variation range of the occupation num
is bounded to 0<ni

s<1 and unphysical negative occupatio
gives rise to no problem in practical calculations. In a
case, one should not worry when some occupation num
are temporarily negative during the minimization process
fore converging to the stationary point because these o
pations do not have a direct physical meaning.

The overall computational scaling in our DM procedu
combined with the real-space finite-difference method
Ref. 10 amounts toO(M2Ngrid) operations in the calcula
tions of the energy functional Eq.~1! and its derivative Eq.
~3!, since thef i

s’s are now assumed to beextendedwave
functions. Here,Ngrid is the number of coarse grid points i
real space. It is noted thatO(M2Ngrid) is equal to the scaling
order in the orthogonalization of wave functions indispen
able in the conventional approach of solving the KS equat
by an iterative algorithm, and that the dominant scaling
the calculations of the energy functional and its derivat
based on a plane-wave basis set is alsoO(M2Nbasis) with
Nbasis being the number of plane-wave basis functions, wh
advantage is taken of the fast Fourier-transform techniqu

III. TEST CALCULATIONS AND DISCUSSION

In order to illustrate the utility of the DM method and th
difficulty in the usage of the FD function, the electron
5-2
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DIRECT MINIMIZATION TO GENERATE ELECTRONIC . . . PHYSICAL REVIEW B 64 085105
structures of C2 , Si2, and a tungsten adatom adsorbed on
W(110) surface are calculated. Hereafter, we obey the n
point finite-difference formula12 for the derivative arising
from the kinetic-energy operator, and the dense-grid spa
is fixed at hdens5h/3, where h denotes the coarse-gri
spacing.10 The norm-conserving pseudopotential is employ
in a Kleinman-Bylander nonlocal form.13,14

We show in Figs. 1 and 2 the results of the application
the carbon dimer as a demonstration of the potential po
that our DM method can correctly evaluate both the manif
of the electronic wave functions and the occupation numb
The carbon dimer is one of the most suitable examples
this purpose, because a number of investigations3,8,12,15 al-
ready showed that the mathematical minimum of the ene
functional is with fractional occupations in a certain range
the atomic separation,16 e.g., Pederson and Jackson8 found
that the fractionally occupied states appear over the rang
atomic separationR52.4–3.7 a.u. and the KS eigenvalu
of these states are degenerate at the Fermi level. In Fig
and 2, we took the grid spacingh50.33 a.u. in a cell of
163 a.u. under the nonperiodic boundary condition~bc! of
vanishing wave function, and set the number of electronN
58 and the number of wave functionsM55. Exchange-
correlation effects were treated with the local-dens
approximation17 according to Pederson and Jackson.8 Figure
1 illustrates the ground-state total energy, the KS eigenva
of the 1pu and 2sg states, and the occupation number of t
1pu state as a function of the atomic separation. The re
of the brute-force method15 implementing the manual dete
mination of the occupation numbers is also depicted her
confirmation of the accuracy of our DM method. The resu
obtained from our DM method accord with those from t
other method all over the range of the atomic separation,

FIG. 1. C2 adiabatic-potential curve, eigenvalues of 1pu and
2sg states, 1pu occupancy as a function of atomic separationR. In
~a!, the solid adiabatic-potential curve is the result with the fra
tional occupancy by our DM method, and the dashed curvesa and
b are those with the occupation of thesg state constrained to be
and 1, respectively. In~b!, the solid~dotted! curve represents the
eigenvalue of 1pu (2sg) state, and the dash-dotted curve shows
occupation number of 1pu state. Circles correspond to data o
tained by the brute-force method of Ref. 17.
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we can confirm the accuracy and efficiency of our D
method. The calculated equilibrium bond length of t
ground-state geometry isR52.34 a.u., being out of the de
generate range, which is in agreement with the experime
value 2.35 a.u. In Fig. 2, we plot the occupation numbers
the states atR52.30 a.u. and 2.50 a.u. as a function of t
number of conjugate-gradient iterations, where the electro
structure atR52.40 a.u. is used as the starting point. O
can see that the iterative process is markedly stable and
DM procedure gives good convergence of the occupa
numbers.

We next give an example that the FD method including
fictitious broadening temperature leads to an incorr
ground-state geometry in molecular-dynamics simulatio
Figures 3~a! and 3~b! show the calculated results of the fre
energy and the force on each atom versus the atomic sep
tion for the silicon dimer, respectively. The calculation w
performed under the following conditions: the grid resoluti
h50.50 a.u., a cell of 243 a.u. under the nonperiodic bc an

TABLE I. The diffusion barrier of a tungsten adatom on th

rigid W(110) surface along the@11̄1# direction. Data from our DM
method and the FD scheme including a broadening temperature
presented.

Temperature~mH! Diffusion barrier~eV!

Present work 1.40
1.0 1.43
2.0 1.54
4.0 1.54

-

e

FIG. 2. The occupation numberni
s[(22l i

s)l i
s as a function of

the number of conjugate-gradient iterations.@For the definition of
l i

s , see the text preceding Eq.~9!.# The solid~dotted! curve repre-
sents the occupation numbers of the 1pu (2sg) state. The curves in
~a! and ~b! are the results in the cases of the atomic separatioR
52.30 a.u. and 2.50 a.u., respectively, and each run starts from
electronic structure atR52.40 a.u.
5-3
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KIKUJI HIROSE AND TOMOYA ONO PHYSICAL REVIEW B64 085105
the local-spin-density approximation17 for the exchange-
correlation potential. The experiments18 proved that the en-
ergy difference between two molecular configurations~i!
(1sg)2(1su)2(1pu)4 and ~ii ! (1sg)2(1su)2(2sg)2(1pu)2

that form the double minimum is quite small, the equilibriu
bond length is 4.07 a.u. for the configuration~i! and 4.25 a.u.
for ~ii !, and the ground state with the lowest total energy
the latter. Some theoretical analyses have been carried o
examine the situation.12,15,19As seen in Fig. 3, our DM pro-
cedure can yield results that are in good agreement with
empirical data. On the contrary, the conventional FD meth
is unable to search out the global minimum configuration~ii !
in molecular-dynamics iterations at a broadening tempera
T>1 mH. At a low temperature T.0.5 mH, the FD
method leads to a mistake of regarding the configuration~i!
as the ground state with the lowest total energy, although
can find the minimum configuration~ii ! by the FD calcula-
tions sweeping near the configuration~ii !.

As a final example, we evaluate the energy barrier fo
tungsten adatom to hop along the@11̄1# direction on the
W(110) surface. Our test system is a cell of 17 tungs
atoms with 102 electrons, consisting of one adatom and
rigid W(110) planes, under the periodic bc at the@001# and

@11̄0# directions, and the nonperiodic bc of vanishing wa
function at the@110# one~i.e., thin-film model!. The number
of wave functionsM564 for each spin, the coarse-grid spa
ing h50.30 a.u., and the local-spin-density approximat

FIG. 3. ~a!Si2 free energy and~b! force on each Si atom as
function of atomic separationR obtained by the DM method and th
conventional FD method at different broadening temperatureT.
The calculated points are fit to spline-interpolated curves as a g
to the eye. The free energy in the DM method is identical to
total energy. In~b!, the force in the FD method is defined as t
derivative of the free energy with respect to the atomic positi
while the force in the DM method is the true Hellmann-Feynm
force defined as the derivative of the total energy.
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were employed. Only theG point of the Brillouin zone was
sampled. Using our DM approach we first evaluate
ground-state geometry for the adatom located at a hollow
A, and then displace the adatom along the@11̄1# direction
from the pointA to the nearest hollow siteB ~see Fig. 4!. The
diffusion barrier of the tungsten adatom is given in Table
The numerical error for the barrier atT52 mH in the FD
method is found to be not negligible but about 10% of t
true value obtained from our DM scheme. In addition, it
noted that the convergence at T<1 mH becomes very slow
or diverges in several points on the pathAB.

IV. CONCLUSION

We have presented a quite simple and fast algorithm
search out stably the self-consistent ground-state solutio
the mathematically well-defined minimum of the ener
functional to a high degree of accuracy, and demonstra
that our DM procedure can completely avoid the conv
gence difficulty caused by the level crossing. Our sche
requires no additional statistical parameter such as a br
ening temperature. Since many of those who study theab
initio molecular dynamics for metallic systems by using t
FD broadening frequently worry about entering into the en
less loop of the self-consistent cycle as the broadening t
perature goes to zero and have a question for the reliab
of the calculation at a finite value of the broadening tempe
ture, our method would be a great blessing to them. Mo
over, when a system is assumed to be described in term
localized wave functions, our procedure makes it possible
perform the calculation with linear system-size scali
O(N). Research in this direction is in progress.
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FIG. 4. Top view ofW(110) surface-layer atoms~large open
circles!, second-layer atoms~small open circles! and adatom
~crosses! for the surface diffusion discussed in the text.
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