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A two-dimensional lattice-gas model with triangular symmetry is investigated by using the real-space renor-
malization group~RSRG! approach with blocks of different size and symmetries. It has been shown that the
precision of this method depends strongly not only on the number of sites in the block but also on its symmetry.
In general, the accuracy of the method increases with the number of sites in the block. Using the RSRG
method, we have explored phase diagrams of a two-dimensional Ising spin model and of a triangular lattice gas
with pair lateral repulsive interactions. We have calculated:~i! adsorption isotherms and thermodynamic factors
for different temperatures and~ii ! the coverage dependence for the pair, three, and four nearest-neighboring
particles correlation functions, the tracer, jump, and chemical diffusion coefficients using four different models
of adparticle jumps. All these quantities have also been obtained by Monte Carlo~MC! simulations. Despite the
fact that both methods, RSRG and MC, constitute very different approaches, the correspondence of the nu-
merical data is surprisingly good. Therefore we conclude that the RSRG method can be applied, at least for the
systems discussed here, to characterize the thermodynamic and kinetic properties of strongly interacting ad-
sorbates. It is also shown that drastic changes in the surface diffusion coefficients occur when~i! lateral
interactions force ordering of the adatoms via second-order phase transition and~ii ! different models of
adparticle jumps are used.

DOI: 10.1103/PhysRevB.64.075413 PACS number~s!: 64.60.Ak, 68.35.Rh, 68.35.Fx
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I. INTRODUCTION

The migration of adsorbates on solid surfaces plays
essential role in many physical and chemical processes
as adsorption, desorption, melting, roughening, crystal
film growth, catalysis and corrosion, just to name a few.1–11

Understanding surface diffusion is one of the keys to c
trolling these processes.

In recent years, the effects of lateral interactions on
chemical surface diffusion coefficient of adsorbed partic
have been intensively investigated using many different t
oretical methods applicable to critical phenomena. In fa
mean-field,12–15 Bethe-Peierls,16 real-space renormalizatio
group ~RSRG!,17–20 transfer-matrix, and Monte Carlo~MC!
~Refs. 21–27! methods have been used in order to descr
the surface diffusion phenomenon. It was found that adp
ticle interaction can strongly influence surface diffusion,
pecially at low temperatures and in the close vicinity of s
face phase transitions. From simple physical considerati
it is intuitively expected that attractive interaction betwe
adsorbed species inhibits the adparticle migration and
slows down surface diffusion. In contrast, repulsive inter
tions are expected to accelerate surface diffusion. Des
their simplicity, these rules describe the qualitative behav
0163-1829/2001/64~7!/075413~17!/$20.00 64 0754
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of surface diffusion processes for many systems.25 However,
more sophisticated arguments are required for the descrip
of surface diffusion in the case of ordering when strong l
eral interactions force the system to order below a criti
temperature.

In the present work, we have investigated adparticle d
fusion on a triangular lattice by using the RSRG approa
and compared the results with MC data. Due to the wi
spread availability of powerful supercomputers, the M
simulation of surface diffusion is certainly one of the mo
reliable methods which can be used to study adparticle
fusion on different lattices and for various sets of the int
action parameters. For the MC simulations we used fu
parallelized algorithms optimized for Cray T3E~LC672-128,
operated by the Max-Planck-Gesellschaft in Garching!. For
the RSRG approach we have investigated different RS
transformations with different sizes of spin blocks. Most
these computations are performed on a personal comp
For the larger blocks (1333), we used a parallelized algo
rithm on Cray T3E.

The outline of this paper is as follows. The Hamiltonia
and the calculation of the chemical diffusion coefficient a
described in Sec. II. The RSRG approach employed is a
lyzed in Sec. III while the MC technique used throughout t
©2001 The American Physical Society13-1
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paper is presented in Sec. IV. The results concerning to
phase diagrams and coverage dependence of different q
tities are shown and discussed in Sec. V. Finally we give
conclusions in Sec. VI.

II. DIFFUSION OF PARTICLES ON A TRIANGULAR
LATTICE

In the following, we will consider an idealized solid su
face of triangular symmetry. The potential relief minima
the surface form a two-dimensional triangular lattice w
lattice constanta ~as shown in Fig. 1!. Foreign particles ad-
sorbed on such a surface are assumed to exclusively oc
these sites. If the depth of these potential wells,«, is much
larger than the thermal energy,«@kBT, the adparticles will
stay within the potential minima and from time to time pe
form jumps to empty nearest-neighbor sites. The duration
such a jump is much shorter than the mean time of an ad
ticle sojourn in a site. In this case, we can define a se
occupation numbers$ni% according to

ni5H 1, if site i is occupied

0, if site i is empty.
~1!

A given set of numbers specifies a configuration of the s
tem of adparticles.

We assume that the Hamiltonian of such a system can
written as

Ha52«Na1w(̂
i j &

ninj1c (
^ i jk &

ninjnk , ~2!

whereNa5( ini is the number of adparticles,w is the pair
interaction energy between adparticles in the near
neighbor (nn) sites, andc is the interaction energy of thre
particles occupying the vertices of an elementary triangle

FIG. 1. Triangular lattice divided into three sublattices~each
sublattice is represented by a different symbol!. Several blocks of
sites, labeled according to Table I, used for RSRG transformat
are shown. The jump of adatom from the 0th to the 1st site and
nn’s influencing the jump rate are shown in the center of the figu
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the lattice sites. Symbolŝi j & and ^ i jk & denote summation
over all bonds and elementary triangles of the lattice, resp
tively.

The two first terms on the right-hand side~RHS! of the
Hamiltonian, Eq.~2!, have an obvious symmetry with regar
to the changeni→12ni . This symmetry means that th
phase diagram of the system with only pairwise interactio
must be symmetrical around half monolayer coverageu
5 1

2 . In real systems, such property is rather the excep
than the rule~see, for example, Ref. 28!. Thus one must
conclude that experimentally observed phase diagrams
be obtained using Hamiltonians with terms accounting
more complex multiparticle interactions. The physical re
sons for the introduction of such interactions might be
following. We have considered here a lattice-gas mod
which means that an adsorbed particle occupies some
nite place on the surface, i.e., some of the adsorption s
Therefore the interaction between the adparticles and the
face is rather strong and position dependent. Some kind
chemical bond is formed and, as usual, the charge is tr
ferred between the adparticle and the crystal surface. T
procedure changes both the electron distribution around
particle and the electron density of the crystal in the clo
vicinity of the particle. The charge distortion produces a
pole moment perpendicular to the surface. The dipole m
ments give rise to a strong Coulombian interaction betw
adparticles. It is easy to see that the internal electric field
the system of such dipoles tends to decrease the dipole
ments of the adparticles. The adparticles depolarize e
other and the magnitude of the dipole moments decrease
the adparticle coverage increases. Due to this effect,
work function has usually a nonlinear dependence on
surface coverage. Thus the interaction between any two
particles depends on the surrounding adparticle config
tion. In the simplest possible way, one can account for t
effect by the introduction of the pair interaction parame
dependence on the occupation numbers of the nea
neighbor adparticles as follows

w i j 5w1
1

2
c(̂

i j &
nk , ~3!

where summing is carried out over the nearest-neighbor s
of the i j th lattice bond. Particles adsorbed in these sites h
obviously the strongest effect on the interaction energy of
i th and j th particles. Using the expression given by Eq.~3!
for the pair interaction parameter one can easily obtain
Hamiltonian Eq.~2!. It should be mentioned that the natu
of the interaction energy remains unchanged. Basically,
a Coulombian interaction between adparticles. We do
introduce any unusual multiparticle forces. But in the fram
work of the lattice-gas model it is rather suitable to consid
the adparticle interaction as a sum of different element
interactions: pair, three-, four-particle interactions, and so
The exact interaction potential is represented by a set of
teraction parameters which can be investigated indep
dently.

It is interesting to note that the symmetry of the RSR
transformations used for the investigation of the triangu

ns
e
.
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COLLECTIVE SURFACE DIFFUSION OF REPULSIVELY . . . PHYSICAL REVIEW B64 075413
lattice ~from where the three-particle interaction arises na
rally! allows us to handle equally with the pair interactio
showing the capabilities of the RSRG approach. Howe
the detailed study of the influence of the three-particle in
actions on both the phase diagrams and the thermodyn
quantities is out of the scope of the present paper and fu
efforts will be devoted to elucidate this important issue.

In thermodynamic equilibrium, the system is described
the statistical operatorr,

r5Q21expb~mNa2Ha!, ~4!

where m and Ha denote the chemical potential and th
Hamiltonian of the system, respectively;b[1/kBT.

Q is the grand partition function,

Q5(
$ni %

expb~mNa2Ha!, ~5!

and the summation is carried out over all 2N configurations
of the system.

The occupation numbers are changed with time due to
jumps of adparticles. Here we restrict the considerations
nn uncorrelated jumps only. An adparticle on site 0 can ju
to one of itsnn sites labeled 1–6 in Fig. 1 if the destinatio
is empty. The diffusing adparticle must surmount the pot
tial barrier between the initial site and the final site. In t
case of interacting lattice gases, the activation energie
jumps are affected by the presence of adjacent adparti
We assume that the interactions influence the minima of
periodic potential and consider also the influence of th
interactions on an activated particle at the saddle point~SP!
of the potential barrier. The frequency of adparticle jum
from site 0 to site 1,n01 is influenced by the presence of i
nn’s in the following way:

n015n exp~2bE01!, ~6!

where the activation energy depends on the occupation n
bers of the 0th sitenns as follows

E015«2w(
i 52

6

ni2c(
i 52

5

nini 111wsp~n21n6!2cspn2n6 .

This simple model considers the interaction between
activated particle in the SP and itsnn’s n2 and n6 in the
same manner as the particle interacts with its neighbor
the adsorption site but with other pairwsp and three-particle
csp interaction parameters.

The migration of adparticles is described by a system
balance equations which considers the evolution of the oc
pation numbers in every lattice site. Using the local equil
rium approximation, we reduced this system to the diffus
equation and obtained the expression for the chemical d
sion coefficient. The interested reader is referred to Ref
and 19 for a detailed description of this approach. The
pression for the chemical diffusion coefficient has the f
lowing form:
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D5D0exp~bm!PABu21
]~bm!

] ln u
, ~7!

where D05 3
2 n exp(2b«)a2 is the diffusion coefficient of

noninteracting adparticles,u is the adparticle surface cove
age,](bm)/] ln u is the thermodynamical factor, andPAB is
the configuration factor,

PAB5^h0h1h2h6&12A^h0h1h2n6&1A2B^h0h1n2n6&.
~8!

Here angular bracketŝ•••& denote the average with the st
tistical operator Eq.~4!, hi[12ni is the occupation numbe
for a hole in sitei. ParametersA andB are equal to

A5exp~2bwsp!, B5exp~2bcsp!.

It should be noted that the configuration factor accounts
the contributions from the different configurations of hol
and adparticles. The chemical diffusion coefficient is rep
sented as a sum of diffusion coefficients corresponding to
different elementary jumps of adparticles:~i! without side
(n2 and n6) nns, ~ii ! with only one sidenn, ~iii ! with two
nns. They are described by different four-site correlati
functions and have quite distinct coverage and tempera
dependence. The first term is a monotone decreasing f
tion of coverage, the second has a maximum at some in
mediate coverage and the third is a monotone increa
function of coverage.

We have considered only some special cases with defi
values of the parameters. At first, we setA5B51, neglect-
ing the interactions in the SP.PAB has the simplest possibl
form, which is used widely for the investigation of surfac
diffusion,

PAB5P00[^h0h1&5122u1^n0n1&. ~9!

P00 is the correlation function of two holes in the adjace
nn sites.

It should be noted that the above approximation loo
quite natural, for example, for the honeycomb lattice a
rather oversimplified for the triangular lattice. During th
jump, the activated particle approaches its sidenns. There-
fore its hardly possible to avoid the interaction between
particles. The other factor is the adparticle size. If adpartic
have appreciable diameter, thenn’s in the 2nd and 6th sites
could prevent jump from the 0th site to the 1st site. Even o
particle adsorbed in the 2nd or 6th site can decrease no
ably the rate of jumps. In this case, an activated adpart
must decline from the optimal trajectory over the sad
point of the surface-potential relief.

The second simple model, accounting for the SP inter
tions, corresponds to the obvious choice of the SP interac
parameterswsp5w, csp5c. It means that the adparticles i
the 2nd and 6th sites do not change the jump activation
ergy. Then, the adparticle jump rate from the 0th to the
site is influenced only by itsnns in the 3rd, 4th, and 5th sites
The expression for the configuration factor has the gen
form Eq. ~8!. The similar model accounting for the effect o
the pair lateral interaction~without the three-particle interac
tion! at the SP was investigated in Refs. 29 and 30.
3-3



y
n
io

o
ic
1s
e
gh

ol

ve
te
tio

y
il-

n

th
he
-

s-

r the
be
o-
etic

to
ng
pa-

e
he

the

rac-

-
are
in
ith

ans-

en

st-
ally
ent

o
FM

for

TARASENKO, NIETO, JASTRABI´K, AND UEBING PHYSICAL REVIEW B 64 075413
The next model accounts for the blocking of jumps~when
n25n651 in the example of Fig. 1!. We suppose that the
presence of one sidenn increases the activation energy b
wsp but two sidenns inhibit completely adparticle jumps i
the corresponding direction. In order to obtain the express
for the diffusion coefficient one must setB50 ~infinite
three-particlen0n2n6 repulsion in SP!,

PAB5^h0h1h2h6&12A^h0h1h2n6&[P000012AP0001.
~10!

It should be noted that in the same manner one can c
sider the superblocking model of jumps, when an adpart
in the 2nd or 6th site blocks jumps from the 0th site to the
site due to its finite size. The trajectory of the jump declin
considerably from the optimal minimal action path throu
SP. One sets simplyA50 ~infinite pair SP repulsion!. The
second and third terms are switching off resulting in the f
lowing simple expression:

PAB5^h0h1h2h6&[P0000. ~11!

Introducing the Gibbs free energyF as

F5kBTN21ln Q, ~12!

it is possible to calculate all quantities in Eq.~7! via the
following first and second derivatives of the free energy o
the chemical potential and the pair and three-particle in
action parameters, besides the four-hole correlation func
P0000:

^n0&[u5
]F

]m
, ~13a!

^n0n1&52
1

3

]F

]w
, ~13b!

^n0n1n2&52
1

2

]F

]c
, ~13c!

]m

] ln u
5uS ]2F

]m2D 21

, ~13d!

P00[122u1^n0n1&, ~13e!

P000[123u13^n0n1&2^n0n1n2&. ~13f!

The correlation functionP0000 cannot be calculated exactl
in the framework of the lattice-gas model with the Ham
tonian Eq.~2! and some approximation should be used.

Thus the calculation of the chemical diffusion coefficie
is reduced to the calculating of the free energyF of the
lattice-gas system. However, it is important to recall that
expression for the diffusion coefficient was derived in t
hydrodynamic limit~i.e., for adparticle density inhomogene
ities varying slowly in space and time! and only when the
adparticle jump frequency is determined by Eq.~6!. The ap-
proximation is also invalid in the critical points of the sy
tem, where the critical length diverges, i.e.,j→`.
07541
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III. REAL-SPACE RENORMALIZATION GROUP
TRANSFORMATIONS ON TRIANGULAR LATTICE

In order to determine the free energy of the systemF it is
necessary to use some approximative methods. Even fo
simplest models the problem remains too complex to
solved exactly. The well-known Onsager solution for a tw
dimensional Ising spin model was obtained at zero magn
field, which is equivalent to half surface coverageu5 1

2 ~see,
for example, Ref. 31!.

It is well known that the lattice-gas model is equivalent
the Ising spin model with an external magnetic field. Usi
the linear transformation between spin variables and occu
tion numbers ni5(11si)/2, one can easily obtain th
equivalent reduced Hamiltonian of the Ising model in t
following form:

H~s!5h(
i

si1p(̂
i j &

sisj1t (
^ i jk &

sisjsk1Nc. ~14!

Here the term proportional to the chemical potential and
multiplier 2b are adsorbed in the definition ofH(s); h, p, t
are the external magnetic field, pair, and three-spin inte
tion parameters, respectively,

h5b~m1«23w23c/2!/2,

p52b~w1c!/4,

t52bc/8,

c5b~2m12«23w2c!/4.

The casep.0 (p,0) corresponds to ferromagnetic FM
~antiferromagnetic AFM! interaction between spins. Al
though the lattice-gas model and the Ising spin model
fully equivalent, we prefer to use the spin representation
the following sections because of its apparent symmetry w
respect to the external magnetic fieldh. However, we will
refer to lattice-gas terms, where this seems to be more tr
parent.

The triangular Ising spin model is exactly soluble wh
h5t50. For FM interactions, there is a critical point atp*
50.25 ln 3'0.274 653. The point corresponds to the fir
order transition between disordered and ferromagnetic
ordered phases. For AFM interaction critical point is abs
for all finite T. A ground state (T50) has finite energyE0
and entropys0 per spin,32

E05kBTupu,

s0'0.323 066. ~15!

The case of pure three-spin interaction (h5p50) has
been solved exactly by Baxter and Wu.33 For three-spin in-
teractions, there are two Baxter-Wu~BW! critical points at
tBW* 560.5 ln(11A2)'60.4407. The points correspond t
the first-order phase transitions between disordered and A
ordered phases.

It is easy to show from simple energy arguments that
strong enough magnetic fielduh/pu.6 the ground state is
3-4
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ferromagnetic: all spins are up forh.0 and down forh
,0. The AFM ordering is possible for finite temperatures
the weak magnetic fields26,h/upu,6. In order to explain
clearly the AFM ordering recall that a triangular lattice m
be regarded as composed of three equivalent triangular
lattices as shown in Fig. 1. There are two AFM order
phases: one forh.0 and other forh,0. Any AFM ordered
phase corresponds to the threefold degenerate ground
with all spins of any two sublattices aligned along the dire
tion of the external magnetic fieldh and all spins of the third
sublattice aligned in the opposite direction↑↑↓,↑↓↑,↓↑↑
(h.0) and↓↓↑,↓↑↓,↑↓↓ (h,0). The FM ordered struc
tures will be denoted as↓↓↓ for h,0 and↑↑↑ for h.0.

In the RSRG method developed by Niemeyer and v
Leeuwen34 and Nauenberg and Nienhuis,35,36 the whole lat-
tice is divided into blocks~or cells! of L sites.37 A block spin
Sa is assigned to each block. All blocks together must form
triangular lattice with the lattice constantALa. The RSRG
transformation reduces the number of independent varia
from N site spins toN/L block spins. The transformation ca
be described by

exp@H~S!1g#5(
$s%

P~S,s!exp@H~s!#, ~16!

where H(S) is the renormalized Hamiltonian of the bloc
spin system,g is the ‘‘empty set’’ term, andP(S,s) is the
weighting factor with the properties

P~S,s!>0 and (
$S%

P~S,s!51. ~17!

We note that two values of the block spinSa561 corre-
sponds to 2L site spin configurations~sinceL spins are com-
bined to form a block!. Using the weighting factor one ca
distribute the configurations into the domains, correspond
to definite values of the block spin. For blocks with od
number of spinsSa is usually determined by the so-calle
‘‘majority rule’’: 38

Sa5sgnS (
i 51

L

si D , ~18!

where

sgn~x!5H 11, if x.0

21, if x,0.
~19!

For this case, the weighting factor assigns weights 1 or 0
the site spin configurations depending on the sign of the s
of all site spins entering in the block.

For evenL, configurations with zero sum of site spins c
be distributed between domains by using an arbitrary way
any case one obvious condition should be fulfilled: if the s
spin configuration$s1 ,s2 , . . . ,sL% is assigned to a block
spin Sa with weighting factorP, then the configuration
$2s1 ,2s2 , . . . ,2sL% is assigned to the2Sa domain with
the sameP.

In order to carry out the summation in Eq.~16! some
approximations must be used. In the framework of the RS
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approach, one usually employs periodic boundary con
tions. It is assumed that the whole lattice is given by t
periodic continuation of a small cluster of blocks. In th
present work, we consider mostly AFM interaction betwe
spins ~in lattice-gas terminology the interaction represe
repulsion between adjacent adparticles!. In this case, the
AFM ordering is described by three sublattices with differe
magnetization and therefore there must be at least th
blocks in the cluster. For this case, the following equat
gives relation between renormalized and original Hamil
nians:

h1~S11S21S3!13p1~S1S21S2S31S1S3!16t1S1S2S3

13Lg5Z~S1 ,S2 ,S3!, ~20!

where

Z~S1 ,S2 ,S3!5 lnH(
$s%

P~S,s!exp@H~s!#J . ~21!

Here the summation is carried out over all possible confi
rations of spins in a cluster which correspond to defin
values of the block spinsS1,2,3. h1 ,k1 ,t1 are the renormal-
ized parameters of the Hamiltonian. The solution of Eq.~20!
has the following form:

h15 1
8 @Z(111)1Z(112)2Z(122)2Z(222)#,

p15 1
24 @Z(111)2Z(112)2Z(122)1Z(222)#,

t15 1
48 @Z(111)23Z(112)13Z(122)2Z(222)#,

g5
1

24L
@Z(111)13Z(112)13Z(122)1Z(222)#,

~22!

with Z(666)[Z(S1561,S2561,S3561).
As was shown by Nauenberg and Nienhuis,35 the free

energy for any value of interaction parameters can be ev
ated in the series of sequential RSRG transformations of
original Hamiltonian,

F5kBT (
m50

`

L2mg~hm ,pm ,tm!. ~23!

Herehm ,pm ,tm are the parameters of themth RSRG trans-
formation;h05h,p05p,t05t.

The most important property of any RSRG transformat
is the existence of fixed unstable points of the renormali
system, Eqs.~22!. The fixed points are determined by th
conditionsh15h,p15p,t15t. The unstable fixed points o
the system correspond to the critical points of the Ham
tonian, Eq.~14!. The flow of the interaction parameters o
the Hamiltonian in the vicinities of the critical points is de
termined by the matrix of the linearized RSRG transform
tion T̂:

r i12r ic5(
j 51

3

Ti j ~r j2r jc!, ~24!
3-5
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TARASENKO, NIETO, JASTRABI´K, AND UEBING PHYSICAL REVIEW B 64 075413
whererW5$h,p,t% is the vector in the space of the interactio
parameters, describing the system in its initial state,rW1
5$h1 ,p1 ,t1% is the vector describing the system after t
RSRG transformation andrWc is the critical point vector. The
elements of the matrixT̂ have the following form:

Ti j 5S ]r i1

]r j
D

rW5rWc

. ~25!

The eigenvalues of the matrixl i ~which are assumed to
be real and positive! are usually written as

l i
25Lyi. ~26!

The relevant (yi.0) eigenvalues control the critical beha
ior of the thermodynamic quantities. The Hamiltonian E
~14! contains a even term~pair spin interaction!, which is
invariant under a flip of all spins, and odd terms~magnetic
field and three-spin interaction!, which change signs under
spin flip. The eigenvalues are also divided in even and
classes, coupled to the corresponding interaction parame
In the FM critical point all RSRG transformations have o
even, so-called temperaturelike relevant eigenvalue~with ex-
ponentyT), and odd, fieldlike~with exponentyh) and one
irrelevant~with exponenty3,0). The relations of the ther
modynamic critical exponents and the two exponentsyT and
yh are given by the following set of equations:38

a52~12yT
21!, b5~22yh!/yT ,

g52~yh21!/yT , d5yh /~22yh!.

Herea, b, g, andd characterize the singular behavior
the specific heat, spontaneous magnetization, magnetic
ceptibility, and the response to an external magnetic fi
respectively. The exact values of these critical exponents
well known: a50, b51/8, g57/4, andd515. The values
correspond to the following exact ones of the RSRG ex
nents:yT51 andyh515/8. We have also calculated the e
tropy Sc and internal energyUc in the FM critical point for
all RSRG transformations. The best estimates for these t
modynamic functions are obtained from the hig
temperature series40

Sc'0.330 28kB , Uc'20.549 31kBT. ~27!

Comparing the computed values ofpc , yH , andyT with the
exact values, one obtains a valuable measure for the p
sion of the RSRG transformation.

We can distinguish two possible ways of dividing the la
tice into blocks. The whole lattice can be divided into po
gons~blocks! of equal form and size in such a way that th
do not penetrate each other. Therefore those blocks m
form a triangular lattice with lattice constantALa. In the first
case, every block contains sites from different sublattic
Such type of blocks is used in the so-calledcell RSRG trans-
formationsand they are denoted asL33. Another alternative
method was suggested by Schick, Walker, and Wortis41,42 for
investigating the AFM properties of a triangular Ising sp
07541
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systems. In this approach, sublattices are divided into blo
of equal form and size but every block contains sites from
single sublattice only. The cluster of three interpenetrat
blocks from three different sublattices has also 3L sites but
the value of any block spin is determined by the spins o
definite sublattice. This RSRG transformations are deno
as L33S ~sublattice transformations!. These interpenetrat
ing blocks have star or snowflake structures and unifo
composition. It is also possible to build blocks which a
neither separate cells nor pure sublattice blocks. Th
blocks contains sites from different sublattices and partia
interpenetrate each other. In general, they have composit
where most of the sites belong to one sublattice with so
mixture of sites from other sublattices.

An extensive analysis have been performed to single
the best RSRG transformation. In this work, we have inv
tigated 27 different transformations with block size varyi
from 3 to 13 lattice sites, shown in Fig. 1. We have us
finite lattices consisting of three block sites with period
boundary conditions~lattices are built by periodic continua
tion of clusters of 3L site spins or three block sites!.

We shall discuss first some general properties of
RSRG transformations. Usually all cell RSRGL33 trans-
formations have only one fixed point in the FM region. T
critical value of the interaction parameterpc approaches
slowly to the exact valuep* if the number of the spins in the
block is increased. However, the accuracy of the RS
transformation depends considerably not only on the bl
size L, but also on both the symmetry of the block and t
composition of sites in the block, i.e., how many sites fro
different sublattices are considered in the block. Indeed,
block size, its symmetry and composition are not indep
dent variables. However, it is hard to estimate definitely
influence of the block symmetry and its composition on t
critical properties but in some cases it is possible to bu
blocks with the same size and different symmetries and c
positions. Actually, there is a strong dependence of the c
cal parameters on the block composition. However, the s
metry of the blocks does not play an important role. It
interesting to investigate the changes of the critical prop
ties upon varying the site composition of the blocks. One c
consider, for example, the sequence of the RSRG trans
mations withL57 ~blocks 8217). All these RSRG transfor
mations use clusters with the same number of sites from
three sublattices (733) but these sites are distributed b
tween blocks in different proportions. The RSRG transf
mations with blocks having mixture composition of sit
from all three sublattices~blocks 8 and 9) do not exhibit the
AFM and BW critical points, but present the best critic
parameters in the FM region as compared with the ot
blocks in the sequence. Block 8 with perfect hexagon sy
metry gives slightly better critical values as compared w
the asymmetrical pentagon block 9. Blocks 10 and 11 h
sites from two sublattices only. The composition and sy
metry of the blocks are the same. They have decreased
curacye.16% and do not describe the AFM ordering. Th
BW critical points are also absent. Blocks 12 and 13 ha
almost uniform composition with only one site from anoth
3-6
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sublattice. The accuracy is about 20% but they describe
AFM ordering. The BW critical points are absent as well.

We use the cell RSRG transformations 433 and 1333
~blocks 5 and 17 in Fig. 1, respectively! for describing the
critical behavior in the FM region. The accuracy of th
RSRG transformation is about 0.52 and 6%, respectiv
They also have rather good values of the exponentsyh

51.85 and 1.78 andyT50.91 and 0.90, respectively. Th
sublattice RSRG transformations 1333S ~blocks 25, 26, and
27! and 1233S ~block 22) having pure composition hav
been used for the AFM region and three-particle interacti

In order to describe the critical behavior for systems w
pair repulsive and three-particle interactions, one must
sublattice RSRGL33S transformations. However, they giv
rather poor results for the FM pair interaction. This situati
is different for honeycomb and square lattices.19,20,27In fact,
in the latter cases, the cell RSRGL32 transformations de
scribe almost equally good both the FM and AFM critic
behavior of lattice-gas systems. The critical properties of
sublattice transformations in the BW critical points do n
depend on the sign of the three-particle interaction. The
solute critical values of the interaction parametert are equal
for positive and negative signs. It seems that for the sub
tice RSRG transformations the block symmetry has mi
effect. Thus pure blocks, which contain sites from a sin
sublattice only~for instance, blocks 14, 15, 16, and 17 in t
sequence of the RSRG transformations withL57, Fig. 1!
have the lowest accuracy for the FM critical values but
best AFM critical parameters in the sequence and desc
the BW phase transitions. It should be noted that for
sublattice 333S transformations the symmetry of the bloc
does not play a decisive role. The RSRG transformati
with different blocks but the same size have the same crit
properties. Similar behavior is observed also for other se
of blocks withL513.

In summary, the accuracy of RSRG transformations in
FM domain decreases as one decreases the admixture of
from different sublattices in the block, but the critical pro
erties of the transformation in the AFM and three-parti
region improves markedly when the composition of t
blocks became more uniform. As a consequence, the ceL
33 RSRG transformations describe the ferromagnetic
havior with rather good accuracy, but work badly in the AF
region and completely fail to describe the BW phase tran
tions. In the case of square and honeycomb lattices the
L32 RSRG transformations work with good and comp
rable accuracy in the FM and AFM regions. It should
noted that theL32 transformations with evenL usually have
not critical point in the AFM region. Therefore, for the cas
of square and honeycomb lattices, it is possible to cho
some definite cell RSRG transformationL32 which de-
scribes the thermodynamical properties in the FM and A
regions with rather good accuracy. For the triangular Is
system, the best results are found whether we use the
RSRG transformations for describing the critical behavior
the FM domain and sublattice RSRG transformations
33S ~flakes 25, 26, and 27 in Fig. 1! for the repulsive and
three-particle interactions. Almost all sublattice transform
07541
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tions give values of zero entropys0 with a rather good ac-
curacy but the cell transformations give increased values
this quantity.

In order to illustrate the influence of both symmetry a
composition of the blocks on the accuracy of the results
discussed in the precedent paragraphs, in Fig. 2 we h
plotted the relative error in determining the critical value
~i! the pair interaction parameter~solid circles denote the
results for cell transformations and full stars correspond
sublattice transformations! and~ii ! the three-particle interac
tion parameter~open stars! as a function of the block sizeL.
The critical parameters for different RSRG transformatio
are compiled in Table I.

IV. SIMULATIONAL DETAILS

A. The Monte Carlo simulation of surface diffusion

The Monte Carlo technique is one of the most reliab
methods which is used widely to study complex phenome
especially when analytical approaches are not available
work badly. In our Monte Carlo algorithm, the system re
resented by the Hamiltonian Eq.~2! is realized by a two-
dimensional array ofM3M sites with triangular symmetry
and periodic boundary conditions. We assume that all
sorption sites are separated by wells of the periodic poten

Initial lattice-gas configuration are generated by throwi
uM2 particles at random on the surface. The jump algorit
can be summarized as follows: First, an initial sitei of the
whole lattice is picked at random, if filled, an adjacent fin
site j is randomly selected. If this destination is vacant
jump can occur with a probability given by

Pi j } exp~2bDEi j !, ~28!

whereDEi j denote the activation energy for such jump a
can be calculated as the energy difference between sad
point energy~describing the wells which need to be ove
come by diffusion adparticles! and the energy of the initia

FIG. 2. The relative error in determining the critical value of t
pair interaction parameter~solid circles denote the results for ce
transformations and full stars correspond to sublattice transfor
tions! and the three-particle interaction parameter~open stars! as a
function of the block sizeL.
3-7
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TABLE I. Compilation of critical values for the different clusters studied in the present work. The first column shows the numbe
block in Fig. 1 and the second one the corresponding RSRG transformations. Composition of the blocks is shown in the third colpc ,
e(%), y1,2,3 are the critical values of the spin pair interaction parameterp, relative error, and exponents in the FM critical point, respective
Sc andUc are the values of the entropy and internal energy in the FM critical point.tc ande(%) are the critical value of the three-partic
interaction parametert and relative error, respectively, in the BW critical points.s0 , ah , uc are the entropy of the ground state, the slope
the phase boundary ath56upu, and the minimum coverage at which the triangular lattice gas has the AFM ordering, respectiveT
50). upminu is the minimum value of the pair interaction energy when the system has the AFM ordering (t50).

No. Cluster pc e y1,2,3 Sc /kB 2Uc /kBT tc e s0 ah uc upminu

1 333 1:1:1 0.243 11.4 1.76, 0.9, -1.2 0.439 0.378 a 0.299 b

2 333S 3:0:0 0.185 32.7 1.45,0.6,-1.1 0.612 0.124 60.741 68.2 0.324 0.909 0.250 0.711
3 333S 3:0:0 0.185 32.7 1.45,0.6,-1.1 0.612 0.124 60.741 68.2 0.324 0.909 0.250 0.711
4 433 3:1:0 0.231 15.8 1.69,0.8,-1.1 0.612 0.124 a 0.327 b

5 433 2:1:1 0.273 0.52 1.85,0.9,-1.0 0.337 0.541 a 0.333 b

6 433S 4:0:0 0.203 26.3 1.62,0.4,-0.7 0.593 0.204 a 0.358 b

7 433S 4:0:0 0.198 27.8 1.62,0.4,-0.8 0.596 0.194 a 0.374 b

8 733 3:3:1 0.255 7.4 1.80,0.9,-0.9 0.411 0.428 a 0.322 b

9 733 3:2:2 0.251 8.7 1.77,0.9,-1.0 0.426 0.406 a 0.318 b

10 733 4:3:0 0.231 15.8 1.66,0.8,-1.2 0.501 0.299 a 0.324 b

11 733 4:3:0 0.232 15.5 1.67,0.8,-1.4 0.499 0.302 a 0.325 b

12 733 6:1:0 0.220 20.0 1.59,0.7,-1.3 0.538 0.245 a 0.325 1.642 0.315 0.860
13 733 6:1:0 0.220 20.0 1.59,0.7,-1.3 0.538 0.245 a 0.325 1.642 0.315 0.860
14 733S 7:0:0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 60.558 26.7 0.325 1.312 0.293 0.801
15 733S 7:0:0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 60.558 26.7 0.325 1.312 0.293 0.801
16 733S 7:0:0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 60.558 26.7 0.325 1.312 0.293 0.801
17 733S 7:0:0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 60.558 26.7 0.325 1.312 0.293 0.801
18 933 3:3:3 0.255 7.3 1.78,0.9,-0.9 0.415 0.425 a 0.320 b

19 933S 9:0:0 0.200 27.1 1.43,0.6,-1.2 0.589 0.174 60.533 20.9 0.326 1.757 0.319 0.851
20 933 9:0:0 0.202 26.6 1.43,0.5,-1.2 0.585 0.180 60.529 20.0 0.326 1.459 0.305 0.818
21 1233 4:4:4 0.257 6.6 1.79,0.9,-0.9 0.410 0.433 a 0.319 b

22 1233S 12:0:0 0.203 26.0 1.43,0.5,-1.1 0.586 0.185 60.500 13.5 0.325 1.372 0.299 0.771
23 1333 7:3:3 0.257 6.3 1.79,0.9,-0.8 0.407 0.439 a 0.324 b

24 1333 6:6:1 0.251 8.5 1.75,0.9,-0.9 0.434 0.400 a 0.324 b

25 1333S 13:0:0 0.205 25.3 1.42,0.5,-1.2 0.580 0.191 60.498 13.0 0.324 1.366 0.298 0.784
26 1333S 13:0:0 0.205 25.3 1.42,0.5,-1.2 0.580 0.191 60.498 13.0 0.324 1.37 0.298 0.784
27 1333S 13:0:0 0.205 25.3 1.42,0.5,-1.2 0.580 0.191 60.498 13.0 0.324 1.37 0.298 0.784

aBaxter-Wu transition is absent.
bAFM critical ordering is absent.
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site « i , the latter being influenced by the nearest-neigh
interactions as already mentioned:

DEi j 5«SP2S « i1w(
i j

ninj D . ~29!

One Monte Carlo step~MCS! corresponds toM2 interroga-
tions in random order of lattice sites.

A large number of initial MCS’s were performed befo
any quantity is calculated in order to establish a desired t
peratureT and to reach the thermodynamic equilibrium. A
in Refs. 25 and 43 the approach to equilibrium is monito
by following the total energy and is assumed to occur wh
this quantity fluctuates about an average value. The time~in
units of MCS’s! needed for equilibration depends on the l
tice size, temperature, and coverage. Typically, 2.53105

MCS’s are required to establish equilibrium in lattices co
taining up to 36336 sites. In order to obtain accurate valu
07541
r

-

d
n

-

-

for the different quantities, runs of up to 53105 for up to
128 different initial configurations were performed.

The chemical diffusion coefficientDc which is a many
particle diffusion coefficient, has been determined via t
different methods, namely the fluctuation method and
Kubo-Green method. In essence, the fluctuation met
measures the particle number autocorrelation funct
f n(t)/ f n(0) for a small probe region embedded in the who
two-dimensional lattice. For the autocorrelation function,
can write

f n~ t !

f n~0!
5

^dNp~ t !dNp~0!&

^dNp
2&

. ~30!

Here, Np is the number of adparticles in the probe are
Details of this methods are presented in Refs. 44 and 45.
ratio f n(t)/ f n(0) is then compared with the theoretic
curve,46,47 yielding Dch . Thus this method is a compute
3-8
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simulation of the field emission fluctuation method used
perimentally to determine adsorbate diffusion coefficients

The second method for determining the chemical dif
sion coefficient is based on the Kubo-Green equation, wh
we write here as11

DKG5S ]@m/kBT#

] ln u DDJ . ~31!

HereDJ is the jump diffusion coefficient given by1

DJ5 lim
t→`

F 1

2dNt K S (
i 51

N

„RW i~ t !2RW i~0!…D 2L G . ~32!

The jump diffusion coefficient~sometimes also referred to a
kinetic factor! is also a many particle diffusion coefficient.

The thermodynamic factor of Eq.~31! is obtained in ei-
ther one of its two equivalent forms,

S ]@m/kBT#

] ln u D
T

5F ^~dN!2&

^N& G21

, ~33!

either via the differentiation of adsorption isotherms obtain
in the grand canonical ensemble or via the normalized me
square fluctuationŝ(dN)2&/^N& obtained in the canonica
ensemble.

We have also measured the tracer surface diffusion c
ficient Dt by following the noncorrelated random walk o
N5uM2 tagged particles.Dt is defined through the genera
ized definition

Dt5 lim
t→`

F 1

2dt
^uRW ~ t !2RW ~0!u2&G , ~34!

whered is the Euclidean dimension~in the case of surface
diffusion d52); the vectorRW (t) determines the position of
tagged particle at timet, and „RW (t)2RW (0)…2 is its mean-
square displacement, which is expressed in units of the
tice constant. The tracer diffusion coefficient is a sing
particle diffusion coefficient. However, in the course
Monte Carlo simulations it is quite useful to average over
N particles according to

Dt5 lim
t→`

F 1

2dNt (i 51

N

^uRW i~ t !2RW i~0!u2&G . ~35!

As in previous studies,25,48 the various diffusion coeffi-
cients are normalized with respect toDo , the chemical dif-
fusion coefficient of Langmuir gas.

B. Monte Carlo simulations of adsorption-desorption processes
in the grand canonical ensemble

Adsorption-desorption processes on a triangular latt
gas surface ofM2 adsorption sites are simulated in conta
with an ideal gas phase of particles at temperatureT. The
particles are characterized by their chemical potentialm. The
surface as well as the adsorbent are inert upon adsorptio
07541
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the grand canonical ensemblem, T, and the generalized vol
umeV of the physical system are the thermodynamic para
eters.

The grand partition functionJ(m,T,V) of interacting
particles within the volumeV is

J~m,T,V!5 (
N51

`
exp~Nm/kBT!

N!L3N E
V
expS 2

U~xN!

kBT DdxN,

~36!

whereN denotes the number of particles withinV, U the total
interaction energy ofN particles with coordinates specifie
by the setxN5$x1 , . . .xN%. L represents the thermal wav
length of the particle according to

L5S h2

2mkBTD 1/2

, ~37!

with m being the mass of the adsorbed particle. It must
noted that, in Eq.~5!, the grand partition function has bee
written in terms of site occupation numbers$ni% while we
have used in Eq.~36! a second representation considering t
coordinates of states specified by the setxN5$x1 , . . .xN%.
Obviously, both representations describe the same phys
system. The probability of finding the system in a state spe
fied by xN is given by

P~xN!5

expS Nm

kBTDexpS 2
U~xN!

kBT D
N!JL3N

. ~38!

Following the Metropolis scheme,49 the transition probability
from a statexN to a new statexN8 is defined by

W~xN→xN8!5minH 1,
P~xN8!

P~xN!
J . ~39!

Equation~39! satisfies the principle of microscopic rever
ibility.

In adsorption-desorption equilibrium, there are two
ementary ways to perform a change of the system state~i!
the adsorption of one particle on the surface~adding one
particle into the adsorbed phase volumeV), and~ii ! the de-
sorption of one particle from the adsorbed phase~removing
one particle from the volumeV). The corresponding transi
tion probabilities are

W~xN→xN11!5minH 1,
p*

N11
expF2

U~xN11!2U~xN!

kBT G J ,

W~xN→xN21!5minH 1,
N

p*
expF2

U~xN21!2U~xN!

kBT G J ,

~40!

respectively. Herep* 5pV/kBT andp is the gas pressure. In
order to obtain Eqs.~40!, it has been considered tha
exp(m/kBT)5pVL3/kBT for an ideal gas phase.

The adsorption-desorption algorithm in the grand cano
cal ensemble consists of the following steps:
3-9
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TARASENKO, NIETO, JASTRABI´K, AND UEBING PHYSICAL REVIEW B 64 075413
~i! Set the value ofp* ~or m) and temperatureT.
~ii ! Set an initial statexN by adsorbingN molecules onto

the lattice ofM2 adsorption sites with energies already a
signed.

~iii ! Choose randomly one of theM2 sites, and generate
random numberjP@0,1#

• if the site is empty then adsorb a particle ifj<W(xN

→xN11),
• if the site is occupied then desorb the particle ifj

<W(xN→xN21).
One Monte Carlo step~MCS! corresponds toM2 repeti-

tions of step~iii !. Before sampling the quantities of interes
thermodynamic equilibrium has to be established, and
requires usually a few hundred MCS’s. However, at low te
peratures and in case of ordering up to'105 MCS’s are
performed for equilibration. The quantities of interest a
obtained by averaging overM 8'104 successive configura
tions separated from each other byM 9'102 MCS’s.

V. RESULTS AND DISCUSSIONS

Using the most accurate sublattice RSRG transformat
we have investigated repulsively interacting adparticles o
triangular lattice. We have calculated the temperature
coverage dependence of thermodynamics quantities of in
est. In order to demonstrate the accuracy of the RSRG
sults, we have compared the corresponding findings with
simulation data.

As it was already mentioned, in the present paper, we
only consider the influence of repulsive pair interactions
both the phase diagram and the thermodynamic quanti
i.e.,f.0 andc50. In future works we will show how such
behaviors are modified due to the presence of either att
tive or three-particle interactions.

We will start with the phase diagram of the triangul
antiferromagnet. The global phase diagram is a very comp
surface in three-dimensional space of the Hamiltonian in
action parameters (h,p,t). It has been previously investi
gated by Schick, Walker, and Wortis.41,42 They used 333S
RSRG transformation~block 1 in Fig. 1!. We are interested
mainly in calculating thermodynamic properties of the latt
gas and a complete understanding of the peculiarities of
phase diagram is a very important help in the description
coverage dependence of the thermodynamical quantities
culated for different temperatures.

The (h/upu,T/Tcmax
) phase diagram of the spin Ising sy

tem in the AFM domain consists of two symmetrical arou
h50 curves~for t50), one of them is shown in Fig. 3~a!.
Here Tcmax

is the maximal temperature, when the AFM o

dering is still possible~for t50). The curves determine th
regions of existence for the AFM ordered phases. The crit
line falls toT50 ath/upu50,66 in exact agreement with a
analytical investigation of the AFM triangular Ising spin sy
tem ground state.32

The slope of the critical line at zero temperature,h/upu
56,T50, is known exactly and can be also used to che
the accuracy of the RSRG transformation. One expects
following linear relationship near this point:42
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h/upu'62ah /upu, ah5 ln@~1115A5!/2#/2'1.20.

The 1333S RSRG transformations giveah51.366 in a
good agreement with the exact value. The relation betw
critical magnetic field and pair interaction parameterh/upu
566 at zero temperature is determined only by the coo
nate number of the latticez (z56 in our case!, and all RSRG
transformations yield the exact relation without any error

The phase diagram was also investigated by the trans
matrix method50 and MC simulations.51 The results of the
investigations agree quite well with the phase diagr
shown in Fig. 3~a!.

The same phase diagram for the lattice-gas system
shown in Fig. 3~b!. All sublattice RSRG transformations giv
very similar phase diagrams for the Ising spin system in
dimensionless coordinate axes (h/upu,T/Tcmax

), but the same
phase diagrams are rather different when are plotted for
lattice-gas system (u,T/Tcmax

). Here, we show the phase dia

gram obtained by using the 1333S RSRG transformation.
The critical value of the surface coverageuc'0.298, cor-

responding to the critical value of the magnetic fieldh/upu
526 slightly differs from the exact value

u* 5~52A5!/10'0.276 39,

FIG. 3. Phase diagram for~a! antiferromagnetic Ising spin sys
tem on a triangular lattice and~b! lattice gas with lateral repulsion
between adparticles on a triangular lattice.
3-10
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obtained for the hard hexagon model.52 It should be noted
that the maximum of the critical temperature on the surf
coverage is slightly shifted from the stoichiometric valueu
5 1

3 : Tcmax
5Tc(u'0.338).

We have also calculated adsorption isotherms for rep
sively interacting adparticles. The results, obtained by RS
~solid lines! and MC~symbols! methods, are shown in Fig. 4
At high temperatures the isotherms are close to the Langm
case~homogeneous lattice gas without lateral interactio!,
i.e., u(m)5expb(m1«)/@11expb(m1«)#. At low tempera-
tures, two broad plateaus occur aroundu5 1

3 and u5 2
3 , re-

spectively. These plateaus correspond to the AFM orde
phases of the Ising spin system. The coincidence betw
RSRG and MC data is very good over the whole range
temperatures and surface coverage.

The quantity being most sensitive to the phase transiti
is the second derivative of the free energy over the chem
potential]2F/]m2. This quantity is proportional to the iso
thermal susceptibilityxT and represents the mean-squa
coverage fluctuations~or in magnetic language, the mea
square fluctuations of the magnetization of the correspond
spin system!,

xT5kBTS ]2F

]m2D
T

[N21(
i j

^~ni2u!~nj2u!&. ~41!

For high temperatures~Langmuir case!, the mean-square su
face coverage fluctuations are equal tou(12u). For low
temperatures, the fluctuations exhibit maxima on the crit
line Tc(u) @see the arrows in Fig. 5~a!#. In this case, the
density fluctuations are strongly suppressed at the stoic
metric coverages (u5 1

3 and u5 2
3 ) due to the strong repul

sion between the adparticles. Any density disturbance~i.e.,
the displacement of an adparticle from its stable position
the filled sublattice to any site of the empty sublattice! sub-
stantially increases the energy of the system and is ther

FIG. 4. Adsorption isotherms: surface coverageu vs reduced
chemical potentialm/kBT for several different temperatures e
pressed in units ofK5kBTu/wnnu as indicated. Solid lines are ob
tained by the RSRG method, symbols denote MC data. The cri
value iskBTc /uwu50.910 24.
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dynamically unfavorable. As the coverage is not equal tou
5 1

3 or u5 2
3 , there are fluctuations of the nonstoichiomet

nature that do not require additional energy for their ex
tence and cannot be removed from the system by adpar
jumps. ThereforexT increases whenu deviates fromu5 1

3

and u5 2
3 . Upon decreasing the temperature, the cover

dependence ofxT(u) has deep and narrow minima at the
coverages but remains analytical. There are a good coi
dence between RSRG and MC data in the whole cover
range for different temperatures excluding the vicinities
the critical lines.

The thermodynamic factor, entering the expression for
chemical diffusion coefficient, is simply related to the is
thermal susceptibility by

]~bm!/] ln u[u/xT .

The coverage dependence of the thermodynamic facto
plotted in Fig. 5~b!. This quantity exhibits two peaks whic
are consequence of the plateaus shown by the adsorp
isotherms. Upon decreasing the temperature, these pe
which correspond to the maxima of the AFM ordered stru
tures, become more pronounced. It is interesting to note t
at the critical coverages, for each temperature considered
low the critical one, the thermodynamic factor presents we

al

FIG. 5. ~a! Isothermal susceptibility lnxT and ~b! thermody-
namic factor versusu for several temperatures expressed in units
kBT/uwu as indicated. Solid lines are obtained by the RSRG meth
symbols denote MC data.
3-11
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TARASENKO, NIETO, JASTRABI´K, AND UEBING PHYSICAL REVIEW B 64 075413
minima which are a consequence of the AFM ordered ph
The coverage dependence in these critical points is non
lytic.

In Figs. 6~a!, ~b!, and ~c! we show the coverage depe
dence for the correlation functionsP00,P000, andP0000, re-
spectively. These quantities are needed for the evaluatio
the chemical diffusion coefficient@see Eq.~7!# and describe
the probability of finding two, three, and four emptynn sites,
respectively. Again the solid lines represent RSRG res
while symbols denote MC data. The coincidence of RS
and MC data is also very good. At high temperatures
dependences are close to the mean-field results,P005(1
2u)2,P0005(12u)3,P00005(12u)4 ~dashed lines in Figs
6!. It is seen clearly that low-temperature dependences of
correlation function P00 and P000 have the following
asymptotic linear behavior:

P00.122u, 0<u<1/3,

P00.2/32u, 1/3<u<2/3,

P00→0, 2/3<u<1,

P000.123u, 0<u<1/3,

FIG. 6. Surface coverage dependences for the configuration
tors ~a! P00, ~b! P000, and ~c! P0000 for different temperatures
expressed in units ofkBT/uwu as indicated. Solid lines and symbo
represent RSRG and MC results, respectively. The dotted cu
represent the Langmuir case, i.e.,P005(12u)2,P0005(12u)3,
andP00005(12u)4.
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P000→0 1/3<u<1. ~42!

These coverage dependences can be explained very e
The linear behavior at small coverages (u<1/3) is largely
due to the fact that at these coverages adparticles are ab
avoid contact with each other and therefore^n0n1& and also
^n0n1n2& are negligibly small. Therefore at small coverage
every incoming particle adsorbed on the lattice removes
two-hole and six three-hole configurations. Thus the pr
abilities of finding these configurations can be approxima
as 1263~number of particles,Na)/~number of bonds, 3N)
5122u and 1263Na /~number of triangles, 2N)5123u.
At coverages 2/3.u.1/3 every additional adparticle has t
occupy empty lattice sites on other sublattices and thus
stroys only three two-hole configurations. All three-hole co
figurations have disappeared ifu>1/3. ThereforeP00 can be
approximated as 1/3233(Na2N/3)/3N52/32u and P000
→0. Whenu>2/3 all two-hole configurations disappear an
P00→0.

The four-hole correlation functionP0000 cannot be calcu-
lated exactly using the expression for the free energy,
~23!. We have approximated the four-hole correlation fun
tion by the following simple expression:

P0000'P000
2 /P00. ~43!

The coincidence with the data obtained by MC simulations
rather good. Only at very low temperature, the coverage
pendences of the four-hole correlation functionP0000 have
small discrepancies due to the approximative express
used for its evaluation. Figure 6 clearly shows thatP00,P000,
andP0000 are smooth functions of coverage even at the cr
cal points of the phase transition between ordered and di
dered lattice-gas phases.

In the following, we shall focus on the temperature a
coverage dependences of the surface diffusion coefficie
As it is already mentioned, we will consider only those cas
where adsorbed particles interact repulsively. Four differ
diffusional mechanisms will be considered according to S
II, namely~i! diffusion of repulsively interacting particle ne
glecting the interactions in the SP (A5B51); ~ii ! diffusion
considering SP interactions;~iii ! blocking mechanism (B is
canceled out!, and ~iv! superblocking model. The differen
chemical and jump diffusion coefficients can be evaluated
each case using the four different expressions for the co
lation factor Eqs.~9!, ~8!, ~10!, and ~11!, respectively. The
coverage dependences of the tracer, jump, and chemica
fusion coefficients for each model and for some represe
tive values of temperature are shown in Figs. 7–10.

First, we proceed to the analysis of the coverage dep
dence of the normalized tracer diffusion coefficient. Figu
7~a!, 8~a!, 9~a!, and 10~a! show our Monte Carlo results fo
Dt

n/Do ~diffusion neglecting the interactions in the SP!,
Dt

SP/Do ~diffusion including the SP interactions!, Dt
b/Do

~blocking mechanism!, and Dt
sb/Do ~superblocking model!,

respectively. In all the cases considered, different values
temperature were considered and the curves are labeled
cording to this parameter which is expressed in terms of
ratio K[kBT/w. From a first inspection of Figs. 7~a!, 8~a!,

c-
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9~a!, and 10~a!, it is intuitively obvious that the effect o
repulsive interactions is markedly more pronounced at
temperatures.

In Fig. 7~a! we can see that at the highest temperat
considered in the present work,K52, the tracer diffusion
coefficientDt

n/Do decreases monotonically upon increasi
the surface coverageu. This behavior is completely simila
to that observed for the Langmuir case~noninteracting lattice
gas on a homogeneous lattice!, which is to be expected a
T→` ~noninteracting limit!. The deviations from Langmui
behavior becomes more pronounced upon decreasing
temperature when the influence of the repulsive interacti
force the system to a second-order phase transition. The p
ence of repulsive interactions between adsorbed particle
expected to accelerate surface diffusion. At low covera
~where the adatoms are far apart on average! the accelerating
effect of the repulsive interactions is much less pronoun
as compared with the behavior observed at large cover
Upon decreasing the temperature below the critical one,
tracer diffusion coefficient,Dt

n exhibits two pronounced
minima at the stoichiometric coverages. This behavior
clearly attributed to the ordering present on the surface an

FIG. 7. ~a! Normalized tracer diffusion coefficientDt
n/Do , ~b!

normalized jump diffusion coefficientDJ
n/Do , and~c! chemical dif-

fusion coefficientDch
n /Do , as a function of surface coverage fo

different temperatures expressed in units ofkBTu/wnnu as indicated.
The adparticles follows the mechanism of jumps given by Eq.~9!
~surface diffusion of repulsively interacting particles neglecting
interactions in the SP!. As in previous studies~Refs. 25 and 48!, the
diffusion coefficients are normalized with respect toDo , the chemi-
cal diffusion coefficient of the Langmuir gas.
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similar to the one found on the square lattice, with the d
ference that here there are two minima at low tempera
instead of one. This difference is clearly explained due to
different shape of the phase diagrams in both cases.
presence of minima in the surface coverage dependenc
Dt

n can be analyzed according to

Dt
n5 f V^Pj&, ~44!

wheref is the tracer correlation factor,53,54 V is the vacancy
availability factor,2 and^Pi j & is the average jump probability
given by Eq.~28!. It has been demonstrated in the literatu
that the minimum ofDt

n basically reflects minima of both th
average jump probabilitŷPi j & and the correlation factorf in
agreement with Refs. 25,29,55 and 56. For large valuesu
the vacancy availability factorV goes to zero and dominate
the tracer diffusion coefficient asu→1.

The first and second models of jumps are very similar a
give only quantitatively different dependences for the tra
diffusion coefficient.Dt

SP/Do also presents two well define
minima at the critical lines which are certainly more pr
nounced as compared withDt

n , see Fig. 8~a!.
The coverage dependence of the tracer diffusion coe

cient in the case of blocking diffusion and superblocki
mechanism;Dt

b/Do @Fig. 9~a!# andDt
sb/Do @Fig. 10~a!#, re-

spectively, show also similar characteristics as compare
that explained in the above paragraphs forDt

n . All the main
features observed in Figs. 7~a! and 8~a! at low temperatures
are now emphasized due to the blocking mechanism

e

FIG. 8. As in Fig. 6, for collective surface diffusion considerin
the effects of SP interactions according to Eqs.~8!.
3-13
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TARASENKO, NIETO, JASTRABI´K, AND UEBING PHYSICAL REVIEW B 64 075413
creases considerably the diffusion activation energy. The
fect of blocking in surface diffusion atu51/3 can be easily
understood. Due to both the ordered phase and the bloc
mechanisms most of the jumps in this case are flip flop
which do not contribute to an increase in the mean-squ
displacement of particles causing a very deep minimum
the tracer diffusion coefficientDt

b @Fig. 9~a!#. At u> 2
3 two

sublattices are filled completely, most of the particles
immobile, diffusion is better described in terms of holes, a
the same argument can be used to explain the second m
mum inDt

b . The minima inDt
b @Fig. 9~a!# are clearly deepe

compared to that shown by theDt
n @Fig. 7~a!# which are only

produced by the ordered structure on the surface. The su
blocking mechanism only emphasizes the effects descr
above, Fig. 10~a!.

From Figs. 7~b!, 8~b!, 9~b!, and 10~b! it can be concluded
that the coverage dependence of the jump diffusion coe
cients;DJ

n/Do , DJ
SP/Do , DJ

b/Do , andDJ
sb/Do , respectively,

does not present a qualitative different behavior as comp
with the already shown by the normalized tracer diffusi
coefficients@Figs. 7~a!, 8~a!, 9~a!, and 10~a!#. It is quite ob-
vious and expected that the tracer and the jump diffus
coefficients behave in a strikingly similar way. In particula
it is known that they are numerically equal if there are
velocity-velocity cross correlation terms.47 However, it is in-
teresting to note that they represent different views of
diffusive phenomenon. In fact, the tracer diffusion coefficie
describes the motion of tagged particles on the surface w

FIG. 9. As in Fig. 6, for collective surface diffusion considerin
the ‘‘blocking mechanism’’ according to Eqs.~10!.
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the jump diffusion coefficient represents the mobility of t
center of mass of the system. In Figs. 7~b!, 8~b!, 9~b!, and
10~b!, lines represent RSRG calculations while symbols
note MC results. There is a good coincidence between RS
and MC data in the whole coverage range for different te
peratures excluding the coexistence region of the phase
gram at very low temperatures.

The dependences of the chemical diffusion coefficient
coverage and temperature are shown in Figs. 7~c!, 8~c!, 9~c!,
and 10~c! for Dch

n /Do , Dch
SP/Do , Dch

b /Do and Dch
sb/Do , re-

spectively. In these figures, solid lines represent RSRG
sults obtained through the evaluation of Eq.~7! while sym-
bols denote MC data.

In the limits of u→0,1; a jumping adparticle has none o
five nn’s, respectively. Therefore the limiting values of th
chemical diffusion coefficient for the four models of jump
considered are equal to

lim
u→0

Dch
n,SP,b,sb5D0 ,

lim
u→1

Dch
n 5D0expb~5w!,

lim
u→1

Dch
SP5D0expb~3w!,

lim
u→1

Dch
b,sb50. ~45!

FIG. 10. As in Fig. 6, for collective surface diffusion conside
ing the ‘‘superblocking mechanism’’ according to Eqs.~11!.
3-14
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COLLECTIVE SURFACE DIFFUSION OF REPULSIVELY . . . PHYSICAL REVIEW B64 075413
The chemical diffusion coefficientDch
b (Dch

sb) goes to zero at
u51 due to the blocking~superblocking! effect.

In the whole range of temperatures considered here
low coverage ln@Dch

n,SP(u)/D0# grows almost linearly with cov-
erageu, as the mean number of nearest neighbors for
jumping particles is also growing on average. It is interest
to note that qualitatively the same behavior is visible at c
erages slightly below full coverage, where the diffusion c
efficient is decreased whenu approaches saturation. At suc
coverages the relaxation of density fluctuations proceeds
the diffusion of holes. As a consequence, the diffusion co
ficient grows with the density of holesuh512u.

Generally speaking, the first and second models of jum
are very similar and give only quantitatively different cove
age dependences of the chemical diffusion coefficient. V
similar dependences had been obtained using the projec
operator technique and generalized Darken equation29,30

where the effect of the lateral interaction at the SP with
sidenn’s was also taken into account.

As temperature is lowered, the density fluctuations gr
and cause the reduction of the diffusion coefficient as
surface coverage approaches to the critical line. In fact, at
critical densities the diffusion coefficient exhibit minim
corresponding to the maxima of the mean-square den
fluctuations. These minima are clearly visible for RSRG a
have been also shown in the behavior of the thermodyna
factor, Fig. 5~b!, by means of MC modeling~see also Ref.
26!. At low temperatures the chemical diffusion coefficien
Dch

n,SP change rather abruptly at the stoichiometric coverag
see Figs. 7~c! and 8~c!, respectively. Two jumps of the dif
fusion activation energy at the stoichiometric coverages
obviously related to the formation of completely occupi
sublattices, which changes considerably the migration of
particles over surface. Foru, 1

3 adparticles migrate over tri
angular lattice. The diffusion activation energy is equal to«
and slightly influenced by the lateral interaction withnn’s.
As u→ 1

3 one of the three sublattices is filled. An AFM o
dered phase (↑↓↓) emerges from the disordered state and
rest of adparticles, adsorbed on the other two sublattices,
be considered as adsorbed on a honeycomb lattice gas.
adparticle of the subsystem has threenn’s. Therefore the
jumps of these adparticles are the most probable and give
main contribution to the surface diffusion. The diffusion a
tivation energy decreases by 3w (w for the second model o
jumps as twonn’s do not influence the activation energy!.
For u> 1

3 , adparticles migrate over effective honeycomb l
tice with reduced depth of the potential minima:«e f f5«
23w. In fact, the coverage dependences of the diffusion
efficients foru. 1

3 are very similar to the corresponding d
pendences obtained for the honeycomb lattice.19 The forma-
tion of the AFM phase (↑↑↓) is equivalent to the formation
of the orderedc(232) structure on the honeycomb lattic
and cause the same peculiarities on the dependences o
chemical diffusion coefficient. Atu> 2

3 , two sublattices are
filled completely, most of the particles are immobile and d
fusion is better described in terms of holes.

The block and superblock models give quite differe
coverage dependences for the chemical diffusion coeffici
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see Figs. 9~c! and 10~c!, respectively. The main peculiarity o
these dependences is the slowdown of the diffusion coe
cient to zero atu51. The chemical diffusion coefficient ha
the following coverage dependence foru close to monolayer
coverage:

Dch
b }12u,

Dch
sb}~12u!2. ~46!

The chemical diffusion coefficientsDch
b,sb go to zero atu

51 due to the blocking effect. A similar slowdown of th
chemical diffusion coefficient at coverages close to
monolayer was observed experimentally for alkali- a
alkaline-earth adatom diffusion on W~110! and Mo~110!.57

The chemical diffusion coefficient drops down for orders
magnitude in a narrow range below monolayer coverage

It should be noted that the peculiarities arising due to
phase transitions in the system are completely determine
the thermodynamic factor and do not depend on the mode
jumps. A model of jump determines the limiting values of t
diffusion coefficient at both zero and monolayer coverag
and the general critical behavior of the coverage depende
is not very much influenced.

The agreement between the RSRG results and MC da
rather good for the whole range of coverages and temp
tures. Even for low temperatures (T,Tc) the discrepancies
between the different methods are relatively small. Howev
at very low temperatures (T!Tc), there are some noticeabl
deviations between RSRG and MC results in the vicinities
the critical region.

Summing up all results, one can conclude that the RS
method can be used successfully for investigations of Isi
like systems. There is excellent coincidence between d
obtained by RSRG and MC methods in the whole cover
region for different temperatures. Only in the close viciniti
of the critical points for the divergent quantities proportion
to the second derivatives of the free energy over its variab
such as isothermal susceptibility, does the RSRG appro
not give accurate results.

VI. CONCLUSIONS

We have investigated a number of RSRG transformati
on a triangular lattice with blocks of different size and sym
metries. It has been shown that the precision of the met
depends strongly not only on the number of sites in the bl
but also on its symmetry and composition. In general
accuracy of the method increases with the number of site
the block. The most accurate results have been obtained
the largest clusters (1333, 1233S) which could be handled
on our computers.

Using the RSRG method we have explored the phase
gram of a triangular lattice gas with repulsion between
adparticles. The critical parameters coincide rather well w
the known values for these parameters. We have calcul
adsorption isotherms at different temperatures, the cove
3-15
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dependences of the pair, three-, and four-particle correla
functions for nearest-neighboring adparticles, the cover
dependences of the isothermal susceptibility, and the tra
jump, and chemical diffusion coefficient at different tem
peratures. All these quantities have been compared to co
sponding MC simulation results. The coincidence betwe
RSRG and MC data is very good and therefore we h
concluded that the RSRG method is a very useful met
which can be used to characterize the thermodynamic
kinetic properties of strong interacting adsorbates on a tr
gular lattice.
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