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A two-dimensional lattice-gas model with triangular symmetry is investigated by using the real-space renor-
malization group(RSRQG approach with blocks of different size and symmetries. It has been shown that the
precision of this method depends strongly not only on the number of sites in the block but also on its symmetry.
In general, the accuracy of the method increases with the number of sites in the block. Using the RSRG
method, we have explored phase diagrams of a two-dimensional Ising spin model and of a triangular lattice gas
with pair lateral repulsive interactions. We have calculafgdadsorption isotherms and thermodynamic factors
for different temperatures an@) the coverage dependence for the pair, three, and four nearest-neighboring
particles correlation functions, the tracer, jump, and chemical diffusion coefficients using four different models
of adparticle jumps. All these quantities have also been obtained by Monte(®HZ)osimulations. Despite the
fact that both methods, RSRG and MC, constitute very different approaches, the correspondence of the nu-
merical data is surprisingly good. Therefore we conclude that the RSRG method can be applied, at least for the
systems discussed here, to characterize the thermodynamic and kinetic properties of strongly interacting ad-
sorbates. It is also shown that drastic changes in the surface diffusion coefficients occufiwageral
interactions force ordering of the adatoms via second-order phase transitioi addferent models of
adparticle jumps are used.
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[. INTRODUCTION of surface diffusion processes for many systérrtdowever,
more sophisticated arguments are required for the description
The migration of adsorbates on solid surfaces plays aof surface diffusion in the case of ordering when strong lat-
essential role in many physical and chemical processes su@hal interactions force the system to order below a critical
as adsorption, desorption, melting, roughening, crystal antemperature.

film growth, catalysis and corrosion, just to name a fetv. In the present work, we have investigated adparticle dif-
Understanding surface diffusion is one of the keys to confusion on a triangular lattice by using the RSRG approach
trolling these processes. and compared the results with MC data. Due to the wide-

In recent years, the effects of lateral interactions on thespread availability of powerful supercomputers, the MC
chemical surface diffusion coefficient of adsorbed particlessimulation of surface diffusion is certainly one of the most
have been intensively investigated using many different thereliable methods which can be used to study adparticle dif-
oretical methods applicable to critical phenomena. In factfusion on different lattices and for various sets of the inter-
mean-field:?~*® Bethe-Peierl$® real-space renormalization action parameters. For the MC simulations we used fully
group (RSRG,Y~?° transfer-matrix, and Monte CarldC) parallelized algorithms optimized for Cray T3EC672-128,
(Refs. 21-2Y methods have been used in order to describ@perated by the Max-Planck-Gesellschaft in Garchitf@r
the surface diffusion phenomenon. It was found that adparthe RSRG approach we have investigated different RSRG
ticle interaction can strongly influence surface diffusion, estransformations with different sizes of spin blocks. Most of
pecially at low temperatures and in the close vicinity of sur-these computations are performed on a personal computer.
face phase transitions. From simple physical considerationg;or the larger blocks (183), we used a parallelized algo-
it is intuitively expected that attractive interaction betweenrithm on Cray T3E.
adsorbed species inhibits the adparticle migration and thus The outline of this paper is as follows. The Hamiltonian
slows down surface diffusion. In contrast, repulsive interac-and the calculation of the chemical diffusion coefficient are
tions are expected to accelerate surface diffusion. Despitdescribed in Sec. Il. The RSRG approach employed is ana-
their simplicity, these rules describe the qualitative behaviotyzed in Sec. lll while the MC technique used throughout the
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the lattice sites. Symbol§j) and(ijk) denote summation
over all bonds and elementary triangles of the lattice, respec-
tively.

The two first terms on the right-hand sid@HS) of the
Hamiltonian, Eq(2), have an obvious symmetry with regard
to the changen;—1—n;. This symmetry means that the
phase diagram of the system with only pairwise interactions
must be symmetrical around half monolayer coverage,
=3. In real systems, such property is rather the exception
than the rule(see, for example, Ref. 28Thus one must
conclude that experimentally observed phase diagrams can
be obtained using Hamiltonians with terms accounting for
more complex multiparticle interactions. The physical rea-
sons for the introduction of such interactions might be the
following. We have considered here a lattice-gas model,
which means that an adsorbed particle occupies some defi-

sublattice is represented by a different symb8&leveral blocks of nite place on the surface, i.e., some of the adsorption sites.

sites, labeled according to Table I, used for RSRG transformationghen?fore the interaction betwggn the adparticles and the sur-
are shown. The jump of adatom from the Oth to the 1st site and th Aace 1S rather strong and position dependent. Some_ kind of
nn’s influencing the jump rate are shown in the center of the figure.Chemlcal bond is formed a_nd, as usual, the charge is tran_s-
ferred between the adparticle and the crystal surface. This
paper is presented in Sec. IV. The results concerning to thBroqedure changes both the e!ectron distribution around the
. Co . ap(zll’tlde and the electron density of the crystal in the close
phase diagrams and coverage dependence of different quan-.. . . . ; ;
”» . : ; ) vicinity of the particle. The charge distortion produces a di-
tities are shown and discussed in Sec. V. Finally we give our . )
conclusions in Sec. VI. pole mo_men_t perpendicular to the sgrfa_ce. The_ dipole mo-
ments give rise to a strong Coulombian interaction between
adparticles. It is easy to see that the internal electric field in
Il. DIFFUSION OF PARTICLES ON A TRIANGULAR the system of such dipoles tends to decrease the dipole mo-
LATTICE ments of the adparticles. The adparticles depolarize each
_ . _ _ ) . other and the magnitude of the dipole moments decreases as
In the following, we will consider an idealized solid sur- o adparticle coverage increases. Due to this effect, the
face of triangular symmetry. The potential relief minima of \yrk function has usually a nonlinear dependence on the
the surface form a two-dimensional triangular lattice withg, face coverage. Thus the interaction between any two ad-
lattice constan (as shown in Fig. 1L Foreign particles ad-  yaticles depends on the surrounding adparticle configura-
sorbed on such a surface are assumed to exclusively occupyn |n the simplest possible way, one can account for this
these sites. If the depth of these potential wedlsis much  effect by the introduction of the pair interaction parameter

larger than the thermal energy?>kgT, the adparticles will  gependence on the occupation numbers of the nearest-
stay within the potential minima and from time to time per- neighbor adparticles as follows

form jumps to empty nearest-neighbor sites. The duration of

such a jump is much shorter than the mean time of an adpar- 1

ticle sojourn in a site. In this case, we can define a set of eij=¢+ —4/12 N, (3
occupation numberfn;} according to 271

® O @€ 8|0 @ @& O

® & & @ @

FIG. 1. Triangular lattice divided into three sublatticesach

o ) where summing is carried out over the nearest-neighbor sites
e if sitei is occupied ) of theij th lattice bond. Particles adsorbed in these sites have
ni= 0, ifsitei is empty. obviously the strongest effect on the interaction energy of the

ith andjth particles. Using the expression given by EB).
A given set of numbers specifies a configuration of the sysfor the pair interaction parameter one can easily obtain the

tem of adparticles. Hamiltonian Eq.(2). It should be mentioned that the nature
We assume that the Hamiltonian of such a system can b@f the interaction energy remains unchanged. Basically, it is
written as a Coulombian interaction between adparticles. We do not

introduce any unusual multiparticle forces. But in the frame-

work of the lattice-gas model it is rather suitable to consider

Ho=—eNg+ o> nini+y >, ninjng, (2)  the adparticle interaction as a sum of different elementary

(j) (ijk) interactions: pair, three-, four-particle interactions, and so on.

The exact interaction potential is represented by a set of in-
whereN,=2;n; is the number of adparticles; is the pair teraction parameters which can be investigated indepen-

interaction energy between adparticles in the nearestdently.

neighbor @n) sites, andy is the interaction energy of three It is interesting to note that the symmetry of the RSRG
particles occupying the vertices of an elementary triangle ofransformations used for the investigation of the triangular
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lattice (from where the three-particle interaction arises natu- a(Buw)
rally) allows us to handle equally with the pair interaction DZDOGXP(/?M)PABe_lm,
showing the capabilities of the RSRG approach. However,
the detailed study of the influence of the three-particle interwhere D=3 v exp(—Be)a? is the diffusion coefficient of
actions on both the phase diagrams and the thermodynamimninteracting adparticles), is the adparticle surface cover-
guantities is out of the scope of the present paper and futurege,d(Bur)/d In 6 is the thermodynamical factor, afthg is
efforts will be devoted to elucidate this important issue. the configuration factor,

In thermodynamic equilibrium, the system is described by
the statistical operatgp, PAB:<h0hlh2h6>+2A<h0hlh2n6>+AZB<hOhln2n6>-(

()

p=Q 'expB(uNa—Ha), (49 Here angular brackets - -) denote the average with the sta-

) , tistical operator Eq(4), h;=1—n; is the occupation number
wherg " .and H. denote the chemical potential and the fo 4 hole in sitei. Parameteré andB are equal to
Hamiltonian of the system, respectivel§=1/kgT.

Q is the grand partition function, A=exp—Besy), B=exp—Bisp).

It should be noted that the configuration factor accounts for
Q= expB(uN,—H,), (5)  the contributions from the different configurations of holes
{ni} and adparticles. The chemical diffusion coefficient is repre-
sented as a sum of diffusion coefficients corresponding to the
different elementary jumps of adparticle) without side

The occupation numbers are changed with time due to th N2 andne) nns, (ii) with only one sidenn, (iii) with two

jumps of adparticles. Here we restrict the considerations tg - They are described by different four-site correlation
Jump P ' functions and have quite distinct coverage and temperature

nn uncorrelated jumps only. An adparticle on site 0 can jumpdependence. The first term is a monotone decreasing func-

FO one of '_}_in nds#es_labeijed 1t_|6 n F'%‘ 1if the ietitmatl;)n tion of coverage, the second has a maximum at some inter-
It's lert;]pty. bet ! us"t]r? a Pt‘firl'c_? muz tshurnfw_ouln it € lpotﬁn'mediate coverage and the third is a monotone increasing
ial barrier between the initial site an e final site. In theg - tin of coverage.

case of interacting lattice gases, the activation energies OP We have considered only some special cases with definite

jumps are affected b'y the presence of adjacent. "’}dpartide%lues of the parameters. At first, we get B=1, neglect-
We assume that the interactions influence the minima of th g the interactions in the SP,,5 has the simplest possible

periodic potential and consider also the influence of thes C : . L

interactions on an activated particle at the saddle p@mx Eoifrfrgéi;vnhlch Is used widely for the investigation of surface
of the potential barrier. The frequency of adparticle jumps '
from site O to site 1y, is influenced by the presence of its Pag=Poi=(Nohy)=1—26+(ngn,). (9)
nn’s in the following way:

and the summation is carried out over all onfigurations
of the system.

Pqo is the correlation function of two holes in the adjacent

vor= v expl — BEqy), (6)  Nnsites.
01 H=BEo) It should be noted that the above approximation looks

where the activation energy depends on the occupation nuniuite natural, for example, for the honeycomb lattice and

bers of the 0th sitens as follows rather oversimplified for the triangular lattice. During the
jump, the activated particle approaches its gides. There-
6 5 fore its hardly possible to avoid the interaction between ad-
Eoi=&— QDE ni— ¢z NN+ 1+ @sp(Na+ Ng) — YrspNaNe. particles. The other factor is the adparticle size. If adparticles
i=2 i=2

have appreciable diameter, tha's in the 2nd and 6th sites
could prevent jump from the Oth site to the 1st site. Even one
This simple model considers the interaction between thearticle adsorbed in the 2nd or 6th site can decrease notice-
activated particle in the SP and iten's n, and ng in the  ably the rate of jumps. In this case, an activated adparticle
same manner as the particle interacts with its neighbors imust decline from the optimal trajectory over the saddle
the adsorption site but with other pagt, and three-particle point of the surface-potential relief.
¥sp interaction parameters. The second simple model, accounting for the SP interac-
The migration of adparticles is described by a system ofions, corresponds to the obvious choice of the SP interaction
balance equations which considers the evolution of the occuparametersps,= ¢, ¥s,= . It means that the adparticles in
pation numbers in every lattice site. Using the local equilib-the 2nd and 6th sites do not change the jump activation en-
rium approximation, we reduced this system to the diffusionergy. Then, the adparticle jump rate from the Oth to the 1st
equation and obtained the expression for the chemical diffusite is influenced only by itans in the 3rd, 4th, and 5th sites.
sion coefficient. The interested reader is referred to Refs. The expression for the configuration factor has the general
and 19 for a detailed description of this approach. The exform Eq.(8). The similar model accounting for the effect of
pression for the chemical diffusion coefficient has the fol-the pair lateral interactiotwithout the three-particle interac-
lowing form: tion) at the SP was investigated in Refs. 29 and 30.
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The next model accounts for the blocking of junipdien lll. REAL-SPACE RENORMALIZATION GROUP
n,=ng=1 in the example of Fig. )l We suppose that the TRANSFORMATIONS ON TRIANGULAR LATTICE

presence of one siden increases the activation energy by In order to determine the free energy of the sysiinis

¢sp but two sidgn ns'inhi.bit completely adpqrticle Jumps in. necessary to use some approximative methods. Even for the
the correspoqdmg dlre(_:tlpn. In order to obtain the.exp_ressmgimplest models the problem remains too complex to be
for the diffusion coefficient one must s&=0 (infinite

three-particlengn,n, repulsion in SP solved exactly. The well-known Onsager solution for a two-
P oN2Me rep ' dimensional Ising spin model was obtained at zero magnetic
P as={hoh1hshg) + 2A(hoh1hone)=Pooost 2A Pooor. field, which is equivalent to half surface coverage 3 (see,
(10) for e_xample, Ref. 31 _ _ _
It is well known that the lattice-gas model is equivalent to
It should be noted that in the same manner one can corthe Ising spin model with an external magnetic field. Using
sider the superblocking model of jumps, when an adparticléhe linear transformation between spin variables and occupa-
in the 2nd or 6th site blocks jumps from the Oth site to the 1stion numbersn;=(1+s;)/2, one can easily obtain the
site due to its finite size. The trajectory of the jump declinesequivalent reduced Hamiltonian of the Ising model in the
considerably from the optimal minimal action path throughfollowing form:
SP. One sets simpbA=0 (infinite pair SP repulsion The
second and third terms are switching off resulting in the fol- _ . . <
lowing simple expression: H(S)_hzi 5 p(iEj) SISJ+t(ijEk) SSSctNe. (14

Pag={hoh1hshg)=Py000. (11)  Here the term proportional to the chemical potential and the
multiplier — 8 are adsorbed in the definition bf(s); h, p, t
Introducing the Gibbs free energyas are the external magnetic field, pair, and three-spin interac-
tion parameters, respectively,
F=kgTN1InQ, (12
it is possible to calculate all quantities in Ef) via the h=plute=3e=3yl2)I2,
following first and second derivatives of the free energy over p=—B(e+ )4,
the chemical potential and the pair and three-particle inter-
action parameters, besides the four-hole correlation function t=—Byl8,
Poooo:
c=B2u+2s—3¢—i)l4.
JdF
(no)=0= EPk (139 The casep>0 (p<0) corresponds to ferromagnetic FM
(antiferromagnetic AFN! interaction between spins. Al-
10F though the lattice-gas model and the Ising spin model are
(Ngny)=— 3 @v (13b fully equivalent, we prefer to use the spin representation in
the following sections because of its apparent symmetry with
= respect to the external magnetic fisdd However, we will
(ngnyny)=— = —, (130  refer to lattice-gas terms, where this seems to be more trans-
29y
parent.
o\ —1 The triangular Ising spin model is exactly soluble when
I -9 E (130 h=t=0. For FM interactions, there is a critical point fai
dln e au? ’ =0.25In3=0.274 653. The point corresponds to the first-
order transition between disordered and ferromagnetically
Poo=1—26+(ngn,), (139  ordered phases. For AFM interaction critical point is absent
for all finite T. A ground state T=0) has finite energy,
Poo=1— 36+ 3(Nony) — (Nonyny). (13f)  and entropys, per spin}”
The correlation functiorP 5o, cannot be calculated exactly Eo=kgT|p|,
in the framework of the lattice-gas model with the Hamil-
tonian Eq.(2) and some approximation should be used. S9~0.323 066. (15
Thus the calculation of the chemical diffusion coefficient
is reduced to the calculating of the free enefgyof the The case of pure three-spin interaction=p=0) has

lattice-gas system. However, it is important to recall that thoeen solved exactly by Baxter and \WuFor three-spin in-
expression for the diffusion coefficient was derived in theteractions, there are two Baxter-WBW) critical points at
hydrodynamic limit(i.e., for adparticle density inhomogene- t§,,= =0.5In(1+ J2)~+0.4407. The points correspond to
ities varying slowly in space and timand only when the the first-order phase transitions between disordered and AFM
adparticle jump frequency is determined by E§). The ap- ordered phases.

proximation is also invalid in the critical points of the sys- It is easy to show from simple energy arguments that for
tem, where the critical length diverges, i.€-> 0. strong enough magnetic fielth/p|>6 the ground state is
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ferromagnetic: all spins are up fdr>0 and down forh  approach, one usually employs periodic boundary condi-
<0. The AFM ordering is possible for finite temperatures intions. It is assumed that the whole lattice is given by the
the weak magnetic fields 6<h/|p|<6. In order to explain  periodic continuation of a small cluster of blocks. In the
clearly the AFM ordering recall that a triangular lattice may present work, we consider mostly AFM interaction between
be regarded as composed of three equivalent triangular subpins (in lattice-gas terminology the interaction represents
lattices as shown in Fig. 1. There are two AFM orderedrepulsion between adjacent adpartitle this case, the
phases: one fon>0 and other foh<0. Any AFM ordered = AFM ordering is described by three sublattices with different
phase corresponds to the threefold degenerate ground stategnetization and therefore there must be at least three
with all spins of any two sublattices aligned along the direc-blocks in the cluster. For this case, the following equation
tion of the external magnetic fieldand all spins of the third gives relation between renormalized and original Hamilto-
sublattice aligned in the opposite directidri |,T/7,17T7 nians:
(h>0) and||1,17],7l] (h<0). The FM ordered struc-
tures will be denoted as| | for h<0 and{171 for h>0. h1(S;+S;+S3) +3p1(S,S,+ $,53+5,S;) +61,5,5,S;

In the RSRG method developed by Niemeyer and van _
Leeuweri* and Nauenberg and Nienhiiis3® the whole lat- T3Lg=2(51,%,%), 20
tice is divided into blocksor cellg of L sites®’ A block spin ~ where
S, is assigned to each block. All blocks t;&ether must form a
triangular lattice with the lattice constalLa. The RSRG _
transformation reduces the number of independent variables 2(51:%2,5) =n % PSs)eH(s)]. (2D

from N site spins td\/L block spins. The transformation can o ) ) )
be described by Here the summation is carried out over all possible configu-

rations of spins in a cluster which correspond to definite
values of the block spin$§, ;3. hy,k;,t; are the renormal-
exdH(S)+g]= % P(Ss)exdH(s)], (16 ized parameters of the Hamiltonian. The solution of &)
has the following form:
where H(S) is the renormalized Hamiltonian of the block
spin systemg is the “empty set” term, and?(S,s) is the h1=%[Z(+++)+Z(H,)—ZH,,)—Z(,,,)],
weighting factor with the properties
P1=24 [Z(+++)~ Z(+ 4y~ Z+—yFt Z—_ ],
= =
P(S,5)=0 and % P(S,s)=1. (17) b= B [Z sy 3201y 32— Z ],
We note that two values of the block sp8,==*1 corre- 1
sponds to 2 site spin configurationésinceL spins are com- g= ﬁ[z(+++)+3z(++,)+3z(+,,)+z(,,,)],
bined to form a block Using the weighting factor one can 22)
distribute the configurations into the domains, corresponding
to definite values of the block spin. For blocks with oddwith Z (.. +\=Z($;=*1S,=*1S;=+1).
number of spinsS, is usually determined by the so-called ~As was shown by Nauenberg and Nienhtlighe free
“majority rule”: 3 energy for any value of interaction parameters can be evalu-
ated in the series of sequential RSRG transformations of the
original Hamiltonian,

L
Sa:Sgr( '21 Si) ) (18)

0

where F=keT 2, L™"g(Nr,Prn,tm)- (23
Sgr(x)= +1, ifx>0 (19) Hereh,,,pm.tm are the parameters of teth RSRG trans-
-1, ifx<0. formation; hg=h,py=p,to=t.

The most important property of any RSRG transformation
the existence of fixed unstable points of the renormalized
ystem, Eqs(22). The fixed points are determined by the
conditionsh;=h,p;=p,t;=t. The unstable fixed points of
the system correspond to the critical points of the Hamil-
rfonian, Eq.(14). The flow of the interaction parameters of
€the Hamiltonian in the vicinities of the critical points is de-

For this case, the weighting factor assigns weights 1 or 0 tey
the site spin configurations depending on the sign of the sum.
of all site spins entering in the block.

For evenlL, configurations with zero sum of site spins can
be distributed between domains by using an arbitrary way. |
any case one obvious condition should be fulfilled: if the sit

spin conflguratlo_n{sll,sz, - S} Is assigned t? a b.|OCk termined by the matrix of the linearized RSRG transforma-
spin S, with weighting factorP, then the configuration . .
{—S1,—Sy, ...,—S_} is assigned to the-S, domain with tion T:
the sameP. 3

In order to carry out the summation in EGL6) some R :2 To(r—ry) (24)
approximations must be used. In the framework of the RSRG o Tle ey TR Heh
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WhereF:{h,p,t} is the vector in the space of the interaction SyStemS. In this approach, sublattices are divided into blocks
parameters, describing the system in its initial staﬁa of equal form and size but every block contains sites from a

—{h;,py.ty} is the vector describing the system after theSingle sublattice on_ly. The cIuster of three interpenetrating
blocks from three different sublattices has aldo dtes but
the value of any block spin is determined by the spins of a
definite sublattice. This RSRG transformations are denoted
as L X3S (sublattice transformations These interpenetrat-
. (250  ing blocks have star or snowflake structures and uniform
r=rg composition. It is also possible to build blocks which are
neither separate cells nor pure sublattice blocks. These
The eigenvalues of the matrix; (which are assumed to pjocks contains sites from different sublattices and partially
be real and positiveare usually written as interpenetrate each other. In general, they have compositions
N (26) where most_ of the sites belong tq one sublattice with some
' ' mixture of sites from other sublattices.
The relevant y;>0) eigenvalues control the critical behav- ~ An extensive analysis have been performed to single out
ior of the thermodynamic quantities. The Hamiltonian Eq.the best RSRG transformation. In this work, we have inves-
(14) contains a even terrfpair spin interactiopn which is  tigated 27 different transformations with block size varying
invariant under a flip of all spins, and odd terttmsagnetic  from 3 to 13 lattice sites, shown in Fig. 1. We have used
field and three-spin interactiorwhich change signs under a finite lattices consisting of three block sites with periodic
spin flip. The eigenvalues are also divided in even and od@oundary conditionglattices are built by periodic continua-
classes, coupled to the corresponding interaction parametetfon of clusters of & site spins or three block sites
In the FM critical point all RSRG transformations have one We shall discuss first some genera| properties of the
even, so-called temperaturelike relevant eigenvalith ex-  RSRG transformations. Usually all cell RSRG< 3 trans-
ponentyr), and odd, fieldlike(with exponenty,) and one  formations have only one fixed point in the FM region. The
irrelevant(with exponenty;<0). The relations of the ther- cyjical value of the interaction parametgr, approaches
modynamic critical exponents and the two exponggtand g6y o the exact valup* if the number of the spins in the

yn are given by the following set of equatioffs: block is increased. However, the accuracy of the RSRG
_ -1 i transformation depends considerably not only on the block
a=2(1=yr), B=(2=ynlyr, sizeL, but also on both the symmetry of the block and the
—2(yn—1)/ S=v. /(29— composition of sites in the block, i.e., how many sites from
7=2(¥n yr.  0=Yn/(2=Yn). different sublattices are considered in the block. Indeed, the
. . . block size, its symmetry and composition are not indepen-
Herea, B, v, andé characterize the singular behavior of . . . -
the specific heat, spontaneous magnetization, magnetic su%?m variables. However, it is hard to estimate d_e_f|n|tely the
influence of the block symmetry and its composition on the

ceptibility, and the response to an external magnetic field ritical properties but in some cases it is possible to build
respectively. The exact values of these critical exponents ar(f-:'I prop . ) poss
blocks with the same size and different symmetries and com-

well known: =0, B=1/8, y=7/4, andé=15. The values L . s
correspond to the following exact ones of the RSRG eXloo_posmons. Actually, there is a strong dependence of the criti-

nents:;yr=1 andy,=15/8. We have also calculated the en- ?na;tl?argfm(?]fr;ggkgh%géosd;gf n]gos::;)r:hHg\r/;/::f rr'oﬁze Istyirg-
tropy S; and internal energy. in the FM critical point for y play P '

all RSRG transformations. The best estimates for these thel{gterestmg to investigate the cha_n_ges of the critical proper-
: . . . ies upon varying the site composition of the blocks. One can
modynamic functions are obtained from the high-

temperature serié% con_sider, for example, the sequence of the RSRG transfor-
mations withL =7 (blocks 8-17). All these RSRG transfor-
~ ~_ mations use clusters with the same number of sites from all
=0330285, Uc=—05493ksT. @7 three sublattices (%3) but these sites are distributed be-
Comparing the computed valuesf, vy, andyt with the  tween blocks in different proportions. The RSRG transfor-
exact values, one obtains a valuable measure for the preairations with blocks having mixture composition of sites
sion of the RSRG transformation. from all three sublatticetblocks 8 and 9) do not exhibit the
We can distinguish two possible ways of dividing the lat- AFM and BW critical points, but present the best critical
tice into blocks. The whole lattice can be divided into poly- parameters in the FM region as compared with the other
gons(blocks of equal form and size in such a way that they blocks in the sequence. Block 8 with perfect hexagon sym-
do not penetrate each other. Therefore those blocks mustetry gives slightly better critical values as compared with
form a triangular lattice with lattice constagit.a. In the first ~ the asymmetrical pentagon block 9. Blocks 10 and 11 have
case, every block contains sites from different sublatticessites from two sublattices only. The composition and sym-
Such type of blocks is used in the so-caltdl RSRG trans- metry of the blocks are the same. They have decreased ac-
formationsand they are denoted &s< 3. Another alternative curacye=16% and do not describe the AFM ordering. The
method was suggested by Schick, Walker, and Wtrttsor BW critical points are also absent. Blocks 12 and 13 have
investigating the AFM properties of a triangular Ising spin almost uniform composition with only one site from another

RSRG transformation an@ is the critical point vector. The
elements of the matrist have the following form:

ariq

T..: —
: &rJ

J
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sublattice. The accuracy is about 20% but they describe the 35 —— ——
AFM ordering. The BW critical points are absent as well.
We use the cell RSRG transformationx 8 and 1% 3
(blocks 5 and 17 in Fig. 1, respectivelfor describing the 25 ] * ]
critical behavior in the FM region. The accuracy of the ]
RSRG transformation is about 0.52 and 6%, respectively..s 207 . % ]
N ]
They also have rather good values of the exponepts I |
=1.85 and 1.78 ang;=0.91 and 0.90, respectively. The ¢y ] ' o
sublattice RSRG transformations®43S (blocks 25, 26, and wl ®
27) and 12<3S (block 22) having pure composition have ]
been used for the AFM region and three-particle interaction. 5 .
In order to describe the critical behavior for systems with ]
pair repulsive and three-particle interactions, one must use 0 I o s
sublattice RSRG X 3S transformations. However, they give L
_rath_er poor results for the FM pair mteraCt!on'Ong'S situation FIG. 2. The relative error in determining the critical value of the
is different for honeycomb and square lattic88>*’In fact, pair interaction parametésolid circles denote the results for cell
in the latter cases, the cell RSRG<2 transformations de-  transformations and full stars correspond to sublattice transforma-
scribe almost equally good both the FM and AFM critical tions) and the three-particle interaction parametggen starsas a
behavior of lattice-gas systems. The critical properties of théunction of the block size..
sublattice transformations in the BW critical points do not
depend on the sign of the three-particle interaction. The abtions give values of zero entromy with a rather good ac-
solute critical values of the interaction paramdtare equal curacy but the cell transformations give increased values for
for positive and negative signs. It seems that for the sublatthis quantity.
tice RSRG transformations the block symmetry has minor In order to illustrate the influence of both symmetry and
effect. Thus pure blocks, which contain sites from a singlecomposition of the blocks on the accuracy of the results as
sublattice only(for instance, blocks 14, 15, 16, and 17 in the discussed in the precedent paragraphs, in Fig. 2 we have
sequence of the RSRG transformations Witk 7, Fig. 1) plotted the relative error in determining the critical value of
have the lowest accuracy for the FM critical values but theli) the pair interaction parametésolid circles denote the
best AFM critical parameters in the sequence and describeesults for cell transformations and full stars correspond to
the BW phase transitions. It should be noted that for thesublattice transformatiopsnd(ii) the three-particle interac-
sublattice 3< 3S transformations the symmetry of the blocks tion parametefopen starsas a function of the block size.
does not play a decisive role. The RSRG transformationd he critical parameters for different RSRG transformations
with different blocks but the same size have the same criticare compiled in Table 1.
properties. Similar behavior is observed also for other series
of blocks withL =13. IV. SIMULATIONAL DETAILS
In summary, the accuracy of RSRG transformations in the ) ) -
FM domain decreases as one decreases the admixture of sites A- The Monte Carlo simulation of surface diffusion
from different sublattices in the block, but the critical prop-  The Monte Carlo technique is one of the most reliable
erties of the transformation in the AFM and three-particlemethods which is used widely to study complex phenomena,
region improves markedly when the composition of theespecially when analytical approaches are not available or
blocks became more uniform. As a consequence, theLcell work badly. In our Monte Carlo algorithm, the system rep-
X3 RSRG transformations describe the ferromagnetic beresented by the Hamiltonian E¢Q) is realized by a two-
havior with rather good accuracy, but work badly in the AFM dimensional array oM X M sites with triangular symmetry
region and completely fail to describe the BW phase transiand periodic boundary conditions. We assume that all ad-
tions. In the case of square and honeycomb lattices the cedorption sites are separated by wells of the periodic potential.
Lx2 RSRG transformations work with good and compa- |nitial lattice-gas configuration are generated by throwing
rable accuracy in the FM and AFM regions. It should begMm? particles at random on the surface. The jump algorithm
noted that thé. X 2 transformations with evelnusually have  can be summarized as follows: First, an initial sitef the
not critical point in the AFM region. Therefore, for the caseswhole lattice is picked at random, if filled, an adjacent final
of square and honeycomb lattices, it is possible to choossite j is randomly selected. If this destination is vacant, a
some definite cell RSRG transformatidnx2 which de-  jump can occur with a probability given by
scribes the thermodynamical properties in the FM and AFM
regions with rather good accuracy. For the triangular Ising Pij exp(— BAE;)), (29)
system, the best results are found whether we use the cell
RSRG transformations for describing the critical behavior inwhere AE;; denote the activation energy for such jump and
the FM domain and sublattice RSRG transformations 13an be calculated as the energy difference between saddle-
X 3S (flakes 25, 26, and 27 in Fig.) Tor the repulsive and point energy(describing the wells which need to be over-
three-particle interactions. Almost all sublattice transforma-come by diffusion adparticlésand the energy of the initial

* %
b 2
b 4
*
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TABLE I. Compilation of critical values for the different clusters studied in the present work. The first column shows the number of the
block in Fig. 1 and the second one the corresponding RSRG transformations. Composition of the blocks is shown in the thirg column.
€(%), y1 2 zare the critical values of the spin pair interaction paramgteelative error, and exponents in the FM critical point, respectively.

S. andU,, are the values of the entropy and internal energy in the FM critical primind (%) are the critical value of the three-particle
interaction parametdrand relative error, respectively, in the BW critical poirgg, a;,, 6. are the entropy of the ground state, the slope of
the phase boundary &t=6|p|, and the minimum coverage at which the triangular lattice gas has the AFM ordering, respeclively (
=0). |Pminl is the minimum value of the pair interaction energy when the system has the AFM orde#ifg.(

No Cluster Pe € Y123 Sc/kg  —Ug/kgT te € So ap 0, [Pminl

1 3X3 1:1:1 0.243 114 1.76, 0.9, -1.2 0.439 0.378 a 0299 P

2 3X3S 3:0.0 0.185 32.7 1.45,0.6,-1.1 0.612 0.124 +0.741 68.2 0.324 0.909 0.250 0.711

3 3X3S 3:0.0 0.185 32.7 1.45,0.6,-1.1 0.612 0.124 +0.741 68.2 0.324 0.909 0.250 0.711

4 4X3 3:1:.0 0.231 15.8 1.69,0.8,-1.1 0.612 0.124 a 0.327 P

5 4X3 2:1:1  0.273 0.52 1.85,0.9,-1.0 0.337 0.541 a 0.333 P

6 4X3S 4:0.0 0.203 26.3 1.62,0.4,-0.7 0.593 0.204 a 0.358 P

7 4X3S 4:0.0 0.198 27.8 1.62,0.4,-0.8 0.596 0.194 a 0.374 P

8 7X3 3:3:1 0.255 7.4 1.80,0.9,-0.9 0.411 0.428 a 0322 P

9 7X3 3:2:2 0.251 8.7 1.77,0.9,-1.0 0.426 0.406 a 0.318 P
10 7X3 4:3:0 0.231 15.8 1.66,0.8,-1.2 0.501 0.299 a 0324 P

11 7X3 4:3:0 0.232 155 1.67,0.8,-1.4 0.499 0.302 a 0325 P
12 7X3 6:1:0 0.220 20.0 1.59,0.7,-1.3 0.538 0.245 a 0.325 1.642 0.315 0.860
13 7X3 6:1:0 0.220 20.0 1.59,0.7,-1.3 0.538 0.245 a 0.325 1.642 0.315 0.860
14 7X3S 7:0.0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 +0.558 26.7 0.325 1.312 0.293 0.801
15 7X3S 7:0.0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 +=0.558 26.7 0.325 1.312 0.293 0.801
16 7X3S 7:0.0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 +=0.558 26.7 0.325 1.312 0.293 0.801
17 7X3S 7:0.0 0.197 28.3 1.43,0.6,-1.2 0.595 0.162 +=0.558 26.7 0.325 1.312 0.293 0.801
18 9x 3 3:3:3 0.255 7.3 1.78,0.9,-0.9 0.415 0.425 a 0320 P
19 9x3S 9:0.0 0.200 27.1 1.43,0.6,-1.2 0.589 0.174 +0.533 209 0.326 1.757 0.319 0.851
20 99X 3 9:0:0 0.202 26.6 1.43,0.5,-1.2 0.585 0.180 *+0.529 20.0 0.326 1.459 0.305 0.818
21 123 4:4:4 0.257 6.6 1.79,0.9,-0.9 0.410 0.433 a 0319 P
22 12x3S 12:0:.0 0.203 26.0 1.43,05,-1.1 0.586 0.185 *+0.500 13,5 0.325 1.372 0.299 0.771
23 13x 3 7:3:3 0.257 6.3 1.79,0.9,-0.8 0.407 0.439 a 0.324 P
24 13x 3 6:6:1 0.251 8.5 1.75,0.9,-0.9 0.434 0.400 a 0324 P
25 13x3S 13:0:0 0.205 25.3 1.42,05,-1.2 0.580 0.191 *+0.498 13.0 0.324 1.366 0.298 0.784
26 13x3S 13:0:0 0.205 25.3 1.42,05,-1.2 0.580 0.191 *+0.498 13.0 0.324 1.37 0.298 0.784
27 13x3S 13:0:0 0.205 25.3 1.42,0.5,-1.2 0.580 0.191 =*0.498 13.0 0.324 1.37 0.298 0.784

8Baxter-Wu transition is absent.
PAFM critical ordering is absent.

site &;, the latter being influenced by the nearest-neighbofor the different quantities, runs of up tox510° for up to

interactions as already mentioned: 128 different initial configurations were performed.
The chemical diffusion coefficienD. which is a many
particle diffusion coefficient, has been determined via two
AEj=esp~ 8i+¢; ”i”j)- (29 gifferent methods, namely the fluctuation method and the

Kubo-Green method. In essence, the fluctuation method

One Monte Carlo stepMCS) corresponds td? interroga- Measures the particle number autocorrelation function
tions in random order of lattice sites. fn(t)/f,(0) for a small probe region embedded in the whole

A large number of initial MCS’s were performed before two-dimensional lattice. For the autocorrelation function, we
any quantity is calculated in order to establish a desired temcan write
peratureT and to reach the thermodynamic equilibrium. As
in Refs. 25 and 43 the approach to equilibrium is monitored fa(t)  (SNp(t)SNp(0))
by following the total energy and is assumed to occur when f,(0) (5N2) '
this quantity fluctuates about an average value. The {ime P
units of MCS’9 needed for equilibration depends on the lat-Here, N, is the number of adparticles in the probe area.
tice size, temperature, and coverage. Typically,<218° Details of this methods are presented in Refs. 44 and 45. The
MCS’s are required to establish equilibrium in lattices con-ratio f,(t)/f,(0) is then compared with the theoretical
taining up to 36< 36 sites. In order to obtain accurate valuescurve®*’ yielding D.,. Thus this method is a computer

(30
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simulation of the field emission fluctuation method used ex+the grand canonical ensembie T, and the generalized vol-

The second method for determining the chemical diffu-gtgrs.

sion coefficient is based on the Kubo-Green equation, which The grand partition functiorE (x,T,V) of interacting

we write here as particles within the volumé#/ is
a[,u/kBT]> “ exp(Nu/KgT) u(xM)
KG:(— 3 (3D = T.V)= $J GX%— )dXN
dlné (1, T.V) NE:1 NI ASN v keT ’
HereD; is the jump diffusion coefficient given By (36)

whereN denotes the number of particles withihU the total
interaction energy oN particles with coordinates specified
by the setxN={x,, ...x\}. A represents the thermal wave
length of the particle according to

D;=lim (32

t—oo

1 N R ) 2
m<(2 (Ri<t>—Ri<0>)) > :

i=1

The jump diffusion coefficientsometimes also referred to as

kinetic factoy is also a many particle diffusion coefficient. A:< h? Y2 37)
The thermodynamic factor of E@31) is obtained in ei- 2mikgT)
ther one of its two equivalent forms, with m being the mass of the adsorbed particle. It must be
o[ wlkeT] ((8N)2)] 2 noted that, in Eq(5), the grand partition function has been
( = } , (33)  written in terms of site occupation numbefs;} while we
Jin o T (N) have used in Eq.36) a second representation considering the

oordinates of states specified by the g&&{x,, ...x\}.

either via the differentiation of adsorption isotherms obtainedé)bviousl both representations describe the same physical
in the grand canonical ensemble or via the normalized mean- Y, P phy

square fluctuationg(SsN)?)/(N) obtained in the canonical system. -hl,—he p'robab|l|ty of finding the system in a state speci-
fied by x" is given by

ensemble.
We have also measured the tracer surface diffusion coef- Ny UV
ficient D, by following the noncorrelated random walk of ex;{ﬁ)e ;{— T )
N= #M? tagged particlesD, is defined through the general- P(xN)= B B _ (39)
ized definition NIEA3N
1 . R Following the Metropolis schenfé the transition probability
D= lim |5 (IRt~ R(0)[%)|, (34 from a statex to a new state\' is defined by
t—ow
NI
whered is the Euclidean gimensioﬁn the case of surface W(XNHXN’):min| 1,P(XN )]. (39)
diffusiond=2); the vectoiR(t) determines the position of a P(x™)

tagged particle at time, and (R(t)—R(0))” is its mean- Equation(39) satisfies the principle of microscopic revers-

square displacement, which is expressed in units of the lagpility.

tice constant. The tracer diffusion coefficient is a single— In adsorption_desorption equi”brium’ there are two el-

particle diffusion coefficient. However, in the course of ementary ways to perform a change of the system stite,

Monte Carlo simulations it is quite useful to average over allthe adsorption of one particle on the surfa@elding one

N particles according to particle into the adsorbed phase volumMg and(ii) the de-
sorption of one particle from the adsorbed phéasenoving

1 & one particle from the volum¥). The corresponding transi
_ 3 3 2 : -
D= I'”;‘c 2dNt ;1 (IR =Ri(0)[%) . (39 tion probabilities are
* U XN+1 —U XN
As in previous studie$,® the various diffusion coeffi-  W(xN—xN*1)=min 1,Nzle ;{— ( k)T ) }
B

cients are normalized with respecty,, the chemical dif-
fusion coefficient of Langmuir gas.
U™ H—-U(x")
B. Monte Carlo simulations of adsorption-desorption processes kgT

in the grand canonical ensemble (40

N
W(xN—xN"1) = min[ 1,—ex;{ -
p*

Adsorption-desorption processes on a triangular latticerespectively. Here@* =pV/kgT andp is the gas pressure. In
gas surface oM? adsorption sites are simulated in contactorder to obtain Eqgs.40), it has been considered that
with an ideal gas phase of particles at temperafuir@he  exp(u/ksT)=pVA3/kgT for an ideal gas phase.
particles are characterized by their chemical poteptialhe The adsorption-desorption algorithm in the grand canoni-
surface as well as the adsorbent are inert upon adsorption. ral ensemble consists of the following steps:
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(i) Set the value op* (or u) and temperatur@. o4 .

(i) Set an initial stateXN by adsorbingN molecules onto | Disorder
the lattice ofM? adsorption sites with energies already as-
signed.

(iii) Choose randomly one of thd? sites, and generate a %
random numbeg e[ 0,1] —°
« if the site is empty then adsorb a particlegis W(xN -

_>XN+1), e

« if the site is occupied then desorb the particleéif
<W(xN—xN"1.

One Monte Carlo stepMCS) corresponds td1? repeti-

il

AF ordered phase

tions of step(iii). Before sampling the quantities of interest, 0.0 : : : : :
thermodynamic equilibrium has to be established, and this -6 4 h/ |p| 2 0
requires usually a few hundred MCS'’s. However, at low tem- ——————————
peratures and in case of ordering up #dl0® MCS’s are 1.0 1 (b)'
.- . - . ] n
performed for equilibration. The quantities of interest are ] . ]
obtained by averaging ovev’~10* successive configura- ] n ®»  Disorder .
tions separated from each other bl ~10° MCS’s. e A n - 1
ot | 00800e ]
00000
-~ 054 "™ 008008 n i
V. RESULTS AND DISCUSSIONS ~ 000000
1 008000
Using the most accurate sublattice RSRG transformation, 1 000800 .
we have investigated repulsively interacting adparticles on a 1 .
triangular lattice. We have calculated the temperature and 1 AF ordered phase T
coverage dependence of thermodynamics quantities of inter- 0.0 +——=2———r+—"1 T
est. In order to demonstrate the accuracy of the RSRG re- 025 030 035 040 045 050
sults, we have compared the corresponding findings with MC Surface coverage 0

simulation data.

As it was already mentioned, in the present paper, we will  FiG. 3. Phase diagram fdg) antiferromagnetic Ising spin sys-
only consider the influence of repulsive pair interactions onem on a triangular lattice an) lattice gas with lateral repulsion
both the phase diagram and the thermodynamic quantitieetween adparticles on a triangular lattice.

i.e., >0 andy=0. In future works we will show how such

behaviors are modified due to the presence of either attrac-

tive or three-particle interactions. hlpl~6-an/lpl. a=In[(11+515)/2)/2~1.20.
We will start with the phase diagram of the triangular

antiferromagnet. The global phase diagram is a very complexhe 13x3S RSRG transformations give,=1.366 in a
surface in three-dimensional space of the Hamiltonian intergood agreement with the exact value. The relation between
action parametersh(p,t). It has been previously investi- critical magnetic field and pair interaction parameléjp|
gated by Schick, Walker, and Worfis** They used %3S =6 at zero temperature is determined only by the coordi-
RSRG transformatioriblock 1 in Fig. 3. We are interested nate number of the lattice(z= 6 in our casg and all RSRG
mainly in calculating thermodynamic properties of the latticetransformations yield the exact relation without any error.
gas and a complete understanding of the peculiarities of the The phase diagram was also investigated by the transfer-
phase diagram is a very important help in the description ofatrix method® and MC simulations! The results of the
coverage dependence of the thermodynamical quantities cghyestigations agree quite well with the phase diagram
culated for different temperatures. shown in Fig. 3a).

The (/[p|, T/T.__) phase diagram of the spin Ising sys-  The same phase diagram for the lattice-gas system is
tem in the AFM domain consists of two symmetrical aroundshown in Fig. 8b). All sublattice RSRG transformations give
h=0 curves(for t=0), one of them is shown in Fig.(&. very similar phase diagrams for the Ising spin system in the
HereT, _ is the maximal temperature, when the AFM or- dimensionless coordinate axdﬂ|(p|,T/TCma), but the same

dering is still possiblgfor t=0). The curves determine the phase diagrams are rather different when are plotted for the
regions of existence for the AFM ordered phases. The criticalattice-gas systemHQT/TCma). Here, we show the phase dia-

line falls toT=0 ath/|p|=0,%6 in exact agreement with an gram obtained by using the ¥8S RSRG transformation.
analytical investigation of the AFM triangular Ising spin sys-  The critical value of the surface coveragge~0.298, cor-

tem ground stat&: responding to the critical value of the magnetic fieldp|
The slope of the critical line at zero temperatuné|p| = —6 slightly differs from the exact value

=6,T=0, is known exactly and can be also used to check
the accuracy of the RSRG transformation. One expects the
following linear relationship near this poift: 0* =(5— \/5)/10~0.276 39,
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1.0

Surface coverage, 6
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< >
In<y,
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FIG. 4. Adsorption isotherms: surface coverages reduced
chemical potentialu/kgT for several different temperatures ex-
pressed in units oK=KkgT|/¢,, as indicated. Solid lines are ob-
tained by the RSRG method, symbols denote MC data. The critical
value iskgT./|¢|=0.910 24.

Thermodynamic factor

obtained for the hard hexagon modéllt should be noted

that the maximum of the critical temperature on the surface , , , .
. . . .- . d T d T d T d

coverage is slightly shifted from the stoichiometric valéie 0.0 0.2 0.4 0.6 0.8 1.0

=3 Te,,, = To(9~0.338). Surface coverage, 6

We have also calculated adsorption isotherms for repul-
sively interacting adparticles. The results, obtained by RSRG FIG. 5. (a) Isothermal susceptibility Iy and (b) thermody-
(solid lineg and MC(symbols methods, are shown in Fig. 4. namic factor versug for several temperatures expressed in units of
At high temperatures the isotherms are close to the LangmulfsT/|¢| as indicated. Solid lines are obtained by the RSRG method,
case (homogeneous lattice gas without lateral interagtion Symbols denote MC data.
i.e., O(u)=expB(ut+e)[1+expB(u+e)]. At low tempera-
tures, two broad plateaus occur aroufrd 5 and 6=5, re-  dynamically unfavorable. As the coverage is not equad to
spectively. These plateaus correspond to the AFM orderee- } or 9=%, there are fluctuations of the nonstoichiometric
phases of the Ising spin system. The coincidence betweesature that do not require additional energy for their exis-
RSRG and MC data is very good over the whole range otence and cannot be removed from the system by adparticle
temperatures and surface coverage. jumps. Thereforey increases whem deviates fromg= 3

The quantity being most sensitive to the phase transitionand 9=2. Upon decreasing the temperature, the coverage
is the second derivative of the free energy over the chemicajependence of+(6) has deep and narrow minima at these
potential °F/Ju?. This quantity is proportional to the iso- coverages but remains analytical. There are a good coinci-
thermal susceptibilityxr and represents the mean-squaredence between RSRG and MC data in the whole coverage
coverage fluctuationsor in magnetic language, the mean- range for different temperatures excluding the vicinities of
square fluctuations of the magnetization of the correspondinghe critical lines.
spin system The thermodynamic factor, entering the expression for the
chemical diffusion coefficient, is simply related to the iso-
thermal susceptibility by

2

J°F
u - ij

For high temperaturedangmuir casg the mean-square sur- A(Bu)ldIn 6=06lx7.

face coverage fluctuations are equal a@l— 6). For low

temperatures, the fluctuations exhibit maxima on the criticalThe coverage dependence of the thermodynamic factor is
line T.(#) [see the arrows in Fig.(8]. In this case, the plotted in Fig. %b). This quantity exhibits two peaks which
density fluctuations are strongly suppressed at the stoichi@are consequence of the plateaus shown by the adsorption
metric coveragesd=3 and = 3) due to the strong repul- isotherms. Upon decreasing the temperature, these peaks,
sion between the adparticles. Any density disturbafiee,  which correspond to the maxima of the AFM ordered struc-
the displacement of an adparticle from its stable position irtures, become more pronounced. It is interesting to note that,
the filled sublattice to any site of the empty sublaftiseb-  at the critical coverages, for each temperature considered be-
stantially increases the energy of the system and is thermdew the critical one, the thermodynamic factor presents weak
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1.0 L ( ) Pooo—0 1/3<6<1. (42
"
------ Langmuir case | These coverage dependences can be explained very easily.
g | . 2.00 ) The linear behavior at small coverage®<(1/3) is largely
B ost A 0.50 . due to the fact that at these coverages adparticles are able to
X 0.12 1 avoid contact with each other and thereféngn,) and also
] (ngnyn,) are negligibly small. Therefore at small coverages,
L every incoming particle adsorbed on the lattice removes six
1.0 I two-hole and six three-hole configurations. Thus the prob-
I (b): abilities of finding these configurations can be approximated
- N e Langmuir case - as 1-6X (number of particlesN,)/(number of bonds, R)
m% - n 2.00 : =1-26 and 1-6X N, /(number of triangles, R)=1—34.
0.5F A 0.50 ] At coverages 2/3 6>1/3 every additional adparticle has to
I 0.12 occupy empty lattice sites on other sublattices and thus de-
stroys only three two-hole configurations. All three-hole con-
I figurations have disappearedd 1/3. ThereforeP, can be
1.0 5 ] approximated as 133X (N,—N/3)/3N=2/3— 6 and Py
- (C) —0. When#=2/3 all two-hole configurations disappear and
= = 200 1 Poo—0.
O"Oo s i e 100 ] The four-hole correlation functioR oo, cannot be calcu-
1 4 050 | lated exactly using the expression for the free energy, Eq.
¥ 012 (23). We have approximated the four-hole correlation func-
1 tion by the following simple expression:
0.0 . ——
0.0 0.2 0.4 0.6 0.8 1.0 Poooo™ Pod Poo- (43)
Surface coverage 6 The coincidence with the data obtained by MC simulations is

?r)ather good. Only at very low temperature, the coverage de-
_ bendences of the four-hole correlation functiBggy have

tors (&) Poo, (b) Pooo, and (¢) Poooo for different temperatures o, discrepancies due to the approximative expression
expressed in units iz T/|¢| as indicated. Solid lines and symbols d for it luat Ei 6 clearlv sh Rat P
represent RSRG and MC results, respectively. The dotted curvegoco 0T IS evaluation. Figure & ciearly Snows 8:Pooo,
represent the Langmuir case, i.@gp=(1— 6)2 Poo=(1— 6)%, andPggqg are smooth functions of coverage even at the criti-
and Pogog= (1 — 6)*. cal points of the phase transition between ordered and disor-

dered lattice-gas phases.

minima which are a consequence of the AFM ordered phase. In the following, we shall focus on the temperature and

The coverage dependence in these critical points is nonan§2Verage dependences of the surface diffusion coefficients.
lytic s it is already mentioned, we will consider only those cases

: here adsorbed particles interact repulsively. Four different
In Figs. &a), (b), and(c) we show the coverage depen- WNEr€ . . ; :
dence f?)r tr?e )co(rr)elation( anctiorfsoo Pooo, and P(?ooo n':_ diffusional mechanisms will be considered according to Sec.

spectively. These quantities are needed for the evaluation (M‘i na_mel;;](i)_diffusioln of r.epri\éeFLy irge_ricﬁn.g %erfticl_e ne-
the chemical diffusion coefficierisee Eq(7)] and describe 9 ect!ng t € mte_rac'uons_ n P_e (:. =1): (i) iusion
the probability of finding two, three, and four emptn sites, considering SP mte_zracﬂonéul) blqckmg mechamsm_E{ IS
respectively. Again the solid lines represent RSRG resultga‘ncel(:"e| out and (iv) superblocking model. The different

while symbols denote MC data. The coincidence of RSRGchemical and jump diffusion coefficients can be evaluated in
and MC data is also very good At high temperatures th ach case using the four different expressions for the corre-

dependences are close to the mean-field resiigg= (1 ation factor Egs.(9), (8), (10), and (11), respectively. The
— 0)2,Poos=(1— 6)3 Pooos=(1— 6)* (dashed lines in, Figs coverage dependences of the tracer, jump, and chemical dif-

6). It is seen clearly that low-temperature dependences of th%JSIOn coefficients for each model and for some representa-

correlation function Poy and Pggo have the following t'V?:i\;StlusvseOfrfcngggr‘;"ct)”trﬁea;i;hgi"s"”oénth':égséje‘rioé denen.
asymptotic linear behavior: , p Y g P

dence of the normalized tracer diffusion coefficient. Figures
7(a), 8(a), 9(a), and 1@a) show our Monte Carlo results for
D{/D, (diffusion neglecting the interactions in the )SP
D;F/D, (diffusion including the SP interactionsDP/D,
(blocking mechanism and be/Do (superblocking modgl
respectively. In all the cases considered, different values of

FIG. 6. Surface coverage dependences for the configuration fa

P0021—20, 0= 0$1/3,

Po=2/3—0, 1/3<0<2/3,

Poo—0, 2/3<6<1, temperature were considered and the curves are labeled ac-
cording to this parameter which is expressed in terms of the
Poor=1—-36, 0=<6<1/3, ratio K=kgT/¢. From a first inspection of Figs.(&, 8(a),
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FIG. 8. As in Fig. 6, for collective surface diffusion considering

FIG. 7. (@) Normalized tracer diffusion coefficiel®{/D,, (b) ) : ;
the effects of SP interactions according to E@.

normalized jump diffusion coefficie®Y/D,, and(c) chemical dif-
fusion coefficientD,/D,, as a function of surface coverage for . . . . .
different temperatures expressed in unitkgf |/ ¢, as indicated. similar to the one found on the square lattice, with the dif-
The adparticles follows the mechanism of jumps given by (. ference that here_the_re are tvv_o minima at Io_w temperature
(surface diffusion of repulsively interacting particles neglecting theinstéad of one. This difference is clearly explained due to the
interactions in the SPAs in previous studieéRefs. 25 and 48 the different shape of the phase diagrams in both cases. The
diffusion coefficients are normalized with respecitg, the chemi-  Presence of minima in the surface coverage dependence of

cal diffusion coefficient of the Langmuir gas. Dy can be analyzed according to

9(a), and 1Qa), it is intuitively obvious that the effect of D= f\( P)), (44)
repulsive interactions is markedly more pronounced at low ) _ S
temperatures. wheref is the tracer correlation factd?;>*V is the vacancy

In Fig. 78 we can see that at the highest temperaturéVailability factor? and(P;;) is the average jump probability
considered in the present work=2, the tracer diffusion 9\veén by Eq.(28). It has been demonstrated in the literature
coefficientD{/D,, decreases monotonically upon increasingthat the minimum oDy basically reflects minima of both the
the surface coverage. This behavior is completely similar 2verage jump probabilityP;;) and the correlation factdtin
to that observed for the Langmuir ca@®ninteracting lattice agreement with Refs. 25,29,55 and 56. For large values of
gas on a homogeneous laticevhich is to be expected as the vacancy avqllablllty fagtd«/ goes to zero and dominates
T— (noninteracting limit. The deviations from Langmuir the tracer diffusion coefficient a&—1. o
behavior becomes more pronounced upon decreasing the The first and _sec_:ond m_odels of jumps are very similar and
temperature when the influence of the repulsive interactiongiVe Only quantitatively different dependences for the tracer
force the system to a second-order phase transition. The pregiffusion coefficientD¢"/D,, also presents two well defined
ence of repulsive interactions between adsorbed particles ®inima at the critical lines which are certainly more pro-
expected to accelerate surface diffusion. At low coverag&ounced as compared wilhy, see Fig. &).

(where the adatoms are far apart on averdge accelerating The coverage dependence of the tracer diffusion coeffi-
effect of the repulsive interactions is much less pronouncegient in the case of blocking diffusion and superblocking
as compared with the behavior observed at large coveragmechanismDtb/D0 [Fig. 9@] and be/D0 [Fig. 1Q@)], re-
Upon decreasing the temperature below the critical one, thepectively, show also similar characteristics as compared to
tracer diffusion coefficient,Dy exhibits two pronounced that explained in the above paragraphsBgr. All the main
minima at the stoichiometric coverages. This behavior ideatures observed in Figs(af and 8a) at low temperatures
clearly attributed to the ordering present on the surface and igsre now emphasized due to the blocking mechanism in-
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FIG. 9. As in Fig. 6, for collective surface diffusion considering ~ FIG. 10. As in Fig. 6, for collective surface diffusion consider-
the “blocking mechanism” according to Eq&L0). ing the “superblocking mechanism” according to Eq$1).

creases considerably the diffusion activation energy. The eth€ jump diffusion coefficient represents the mobility of the
fect of blocking in surface diffusion at=1/3 can be easily Center of mass of the system. In Figgbj7 8(b), 9(b), and
understood. Due to both the ordered phase and the blockintfXP), lines represent RSRG calculations while symbols de-
mechanisms most of the jumps in this case are flip floppedi©te MC resul_ts. There is a good coincidence be_tween RSRG
which do not contribute to an increase in the mean-squar@nd MC data in the whole coverage range for different tem-
displacement of particles causing a very deep minimum iperatures excluding the coexistence region of the phase dia-
the tracer diffusion coefficierﬂ){’ [Fig. A@)]. At =3 two gram at very low temperatures. . e -
sublattices are filled completely, most of the particles are The dependences of the chemical Qn‘fu_smn coefficient on
immobile, diffusion is better described in terms of holes, and-°Verage and tﬁmperatusrg are shgwn In F'®"S§(C)’ o),
the same argument can be used to explain the second miri'd 1¢) for Dci/Do, Dp/Do, D/ Do and Dei/Do, re-
mum in D¢ . The minima inD? [Fig. 9@)] are clearly deeper spﬁctlvkt)etly: Indt?hese f'r?l:rr]es’ sollldtl_lnes frz%r)esir_}t RSRG re-
, . sults obtained through the evaluation o while sym-
compared to that shown by ti¥' [Fig. 7(a)] which are only ols denote MC data.

produced by the ordered structure on the surface. The super- In the limits of #—0 1- a iumping adparticle has none or
blocking mechanism only emphasizes the effects describe 'e s 010—0,%, ajumping agparticie has none o
above, Fig. 1(8). ive nn's, respectively. Therefore the limiting values of the

Fro7m Figs. Tb), 8(b), 9(b), and 1@b) it can be concluded chemical diffusion coefficient for the four models of jumps

that the coverage dependence of the jump diffusion Coefﬁpon&dered are equal to

cients;D/D,, D37/D,, D/D,, andD3"D,, respectively,
does not present a qualitative different behavior as compared
with the already shown by the normalized tracer diffusion
coefficients[Figs. 1a), 8(a), 9(a), and 1@a)]. It is quite ob-
vious and expected that the tracer and the jump diffusion
coefficients behave in a strikingly similar way. In particular,
it is known that they are numerically equal if there are no
velocity-velocity cross correlation terft§However, it is in-
teresting to note that they represent different views of the
diffusive phenomenon. In fact, the tracer diffusion coefficient
describes the motion of tagged particles on the surface while
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The chemical diffusion coefficieri?®,, (DSP) goes to zero at  see Figs. &) and 10c), respectively. The main peculiarity of
6=1 due to the blockingsuperblocking effect. these dependences is the slowdown of the diffusion coeffi-
In the whole range of temperatures considered here, &ient to zero ap=1. The chemical diffusion coefficient has

low coverage IFD%SA(6)/D,] grows almost linearly with cov- the following coverage dependence fbclose to monolayer

eraged, as the mean number of nearest neighbors for anyOVerage:
jumping particles is also growing on average. It is interesting

to note that qualitatively the same behavior is visible at cov- D2 ec1— 6,
erages slightly below full coverage, where the diffusion co-
efficient is decreased whehapproaches saturation. At such
coverages the relaxation of density fluctuations proceeds via

the diffusion of holes. As a consequence, the diffusion coef- . o . b.sb
ficient grows with the density of holeg"=1— 6. The chemical diffusion coefficient® ;" go to zero até

Generally speaking, the first and second models ofjumpszl due to the blocking effect. A similar slowdown of the

are very similar and give only quantitatively different cover- chemical diffusion coefficient at coverages close to the
monolayer was observed experimentally for alkali- and

age dependences of the chemical diffusion coefficient. Ver)z/alkaline—earth adatom diffusion on @10 and Md110.5"
similar dependences had been obtained using the projectiorf,— ’

tor techni d neralized Darken 8N he chemical diffusion coefficient drops down for orders of

operalor technique and generalized Darken -equat magnitude in a narrow range below monolayer coverage.
where the effect of the lateral interaction at the SP with the It should be noted that the peculiarities arising due to the
sidenn's was also taken into account. , hase transitions in the system are completely determined by

As temperature is lowered, the density fluctuations growe hermodynamic factor and do not depend on the model of
and cause the reduction of the diffusion coefficient as the,,ng A model of jump determines the limiting values of the
surface coverage approaches to the critical line. In fact, at thit,sion coefficient at both zero and monolayer coverages
critical densities the diffusion coefficient exhibit minima, and the general critical behavior of the coverage dependence
corresponding to the maxima of the mean-square density very much influenced.
fluctuations. These minima are clearly visible for RSRG and 11,4 agreement between the RSRG results and MC data is
have begn also shown in the behavior of the thermodynamig,ihar good for the whole range of coverages and tempera-
factor, Fig. §b), by means of MC r_nodel_mgs_ee also _R?f- tures. Even for low temperature$ € T.) the discrepancies
2?])'Sﬁ‘t low temperatures the chem|calld|f.fu5|on.coeff|C|ents between the different methods are relatively small. However,
Depp” change rather abruptly at the stoichiometric coveragesy; yery low temperaturesT(<T,), there are some noticeable
see Figs. ) and 8&c), respectively. Two jumps of the dif- jeyiations between RSRG and MC resullts in the vicinities of
fusion activation energy at the stoichiometric coverages arge critical region.
obviou§ly relatgd to the formatlpn of completl_?ly O_CCUDIGd Summing up all results, one can conclude that the RSRG
sublattices, which changes clon5|der§1bly the migration of adyethod can be used successfully for investigations of Ising-
particles over surface. Fai<; adparticles migrate over tri- |ike systems. There is excellent coincidence between data
angulqr Iattlge. The diffusion actlvatlor) energy is equa.kto obtained by RSRG and MC methods in the whole coverage
and slightly influenced by the lateral interaction willv's.  regjon for different temperatures. Only in the close vicinities
As 6— 3 one of the three sublattices is filled. An AFM or- of the critical points for the divergent quantities proportional
dered phase(| |) emerges from the disordered state and theg the second derivatives of the free energy over its variables,

rest of adparticles, adsorbed on the other two sublattices, cafch as isothermal susceptibility, does the RSRG approach
be considered as adsorbed on a honeycomb lattice gas. Ayt give accurate results.

adparticle of the subsystem has thnmee’'s. Therefore the
jumps of these adparticles are the most probable and give the
main contribution to the surface diffusion. The diffusion ac-
tivation energy decreases by 3 ¢ for the second model of
jumps as twonn’s do not influence the activation enejgy We have investigated a number of RSRG transformations
For #= 3, adparticles migrate over effective honeycomb lat-on a triangular lattice with blocks of different size and sym-
tice with reduced depth of the potential minimegi=e metries. It has been shown that the precision of the method
—3¢. In fact, the coverage dependences of the diffusion coeepends strongly not only on the number of sites in the block
efficients for#> 3 are very similar to the corresponding de- but also on its symmetry and composition. In general the
pendences obtained for the honeycomb latticBhe forma- accuracy of the method increases with the number of sites in
tion of the AFM phase (1) is equivalent to the formation the block. The most accurate results have been obtained for
of the orderedc(2x2) structure on the honeycomb lattice the largest clusters (233, 12X 3S) which could be handled
and cause the same peculiarities on the dependences of the our computers.
chemical diffusion coefficient. Ab=2, two sublattices are Using the RSRG method we have explored the phase dia-
filled completely, most of the particles are immobile and dif-gram of a triangular lattice gas with repulsion between the
fusion is better described in terms of holes. adparticles. The critical parameters coincide rather well with
The block and superblock models give quite differentthe known values for these parameters. We have calculated
coverage dependences for the chemical diffusion coefficiengdsorption isotherms at different temperatures, the coverage

DSPx(1—6)2. (46)

VI. CONCLUSIONS
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