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Measurement of conservative and dissipative tip-sample interaction forces with a dynamic forc
microscope using the frequency modulation technique
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The measurement principle of dynamic-force microscopy using the frequency-modulation~FM! detection
scheme is investigated by analytical as well as numerical approaches. As the detection method is based on the
properties of a self-driven oscillator, we discuss the main differences from an externally driven oscillator. We
then derive an analytical expression, which clarifies how the measured quantities of the FM technique, the
frequency shift, and the gain factor~or ‘‘excitation amplitude’’! are influenced by the time~‘‘phase’’! shift.
Introducing a very general tip-sample force law, we show that the frequency shift is determined by the mean
tip-sample force whereas the gain factor is directly related to dissipative processes like hysteresis or viscous
damping.
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I. INTRODUCTION

Since the design of the first atomic-force microsco
~AFM! by Binnig, Quate, and Gerber in 1986,1 this micros-
copy method has been established as a standard tool in
face physics. Nonetheless, it took several years until the
aging of single-point defects, i.e., ‘‘true’’ atomic resolutio
was achieved using dynamic force microscopy~DFM!,
which is often also termed as noncontact atomic-force
croscopy~NC-AFM!.2,3 Since then, the field of DFM/NC-
AFM has been growing rapidly, and true atomic resoluti
has been obtained on many different types of surfaces
cluding conductors, semiconductors, and insulators.4

Parallel to the experimental progress, theoretical stud
were performed in order to analyze the information that c
be extracted from DFM experiments. Much of this effo
focused on the description of setups based onexternally
driven oscillators, which have been widely investigated
numerical as well as analytical approaches~see, e.g., Refs
5–13!. However, since high-resolution experiments ne
clean sample surfaces, they are usually performed in u
high vacuum~UHV!. Consequently, most DFM’s use the fr
quency modulation~FM! detection scheme introduced by A
brecht et al.,14 which is much better suited for vacuum
conditions, but is based on the excitation principle of aself-
drivenoscillator. The specific properties of such an oscilla
have only been analyzed by numerical simulations up
now.15–17

Therefore, it is the aim of this work to study the speci
features of experimental setups based on the FM detec
scheme. To begin with, we describe the differences betw
an externally driven and a self-driven cantilever in Sec.
General aspects of a self-driven cantilever without any
sample interaction force are discussed in Sec. III to cla
the basic properties of this driving method. Finally, cons
vative and dissipative tip-sample forces are considered
Sec. IV to show how experimental results obtained with
FM technique can be interpreted.
0163-1829/2001/64~7!/075402~6!/$20.00 64 0754
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II. DRIVEN AND SELF-DRIVEN CANTILEVERS IN
DYNAMIC ATOMIC-FORCE MICROSCOPY

Atomic-force microscopes using detection schemes wo
ing with a vibrating cantilever~‘‘dynamic’’ modes of opera-
tion! are often based on an experimental setup where
cantilever is driven by an external oscillator with a fixe
excitation frequency, if they are run under ambient con
tions. The equation of motion of the cantilever is then giv
by the differential equation of a driven damped oscilla
with the ~nonlinear! tip-sample forceF ts ~Refs. 5–13!,

~1!

wherez(t) is the position of the tip at the timet; cz , m, Q,
and f 05A(cz /m)/(2p) are the spring constant, the effectiv
mass, the quality factor, and the eigenfrequency of the c
tilever, respectively. The external excitation of the cantilev
with the excitation amplitudead at a fixed frequencyf d is
described by the term on the right side of Eq.~1!.

The solutions of this nonlinear equation of motion a
oscillations, which have been examined for a long time a
might be quite complex.8,9 In dynamic force microscopy
however, one is mainly interested in steady-state solutio
where the cantilever oscillations are nearly sinusoidal. In t
case, the oscillation frequency is given by the external f
quencyf d , and the solution of Eq.~1! is given by

z~ t@0!>A~ f d ,ad!cos@2p f dt1f0~ f d ,ad!#, ~2!

where the oscillation amplitude and the phase shift are fu
tions of the excitation frequency and the excitation amp
tude. The explicit form of these functions depends on
tip-sample interaction forceF ts.8 Thus, different detection
schemes, which use either the oscillation amplitudeA or the
©2001 The American Physical Society02-1
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phase shiftf for distance control, have been established
dynamic atomic-force microscopes with an externally driv
cantilever.18

However, as it has been pointed out by Albrechtet al.,14

an experimental setup based on an externally driven can
ver has a principle limitation of the sensitivity if it is run i
ultra-high vacuum. Due to the highQ values of AFM canti-
levers in UHV (Q'10 0002100 000), the response of th
system during data acquisition is very slow, restricting
bandwith of the experimental setup.

This problem does not exist for the frequency modulat
technique,14 where the sensitivity of the microscope in
creases with theQ value of the cantilever. Consequently, th
detection scheme is commonly used for dynamic-force
croscopes working in UHV. As mentioned in the Introdu
tion, most NC-AFM/DFM experiments with high resolutio
must be done under well-defined conditions in ultrah
vacuum. In fact, ‘‘true’’ atomic resolution has been obtain
up to now only on clean surfaces in UHV using dynam
modes, where the tip is believed to vibrate without touch
the sample surface~‘‘noncontact’’ AFM!. Thus, we will in-
vestigate the FM detection scheme in the following.

The key feature of FM detection is the positive feedba
which ensures that the cantilever oscillates always at its r
nance frequency. The reason for this behavior is that
cantilever serves as the frequency-determining element.
is in contrast to an externally driven cantilever: Such a c
tilever oscillates in steady state with its excitation frequen
which is not necessarily its resonance frequency@see Eq.
~2!#.

A schematic setup of a DFM using the FM technique
shown in Fig. 1. The movement of the cantilever is measu
with a displacement sensor. This signal is then fed into
amplifier possessing an automatic gain control~AGC! and is
subsequently used to excite the piezo driving the cantile

FIG. 1. The schematic setup of a dynamic-force microsc
operated in UHV using the frequency-modulation techniq
~constant-amplitude mode! introduced by Albrechtet al.14 A sig-
nificant feature of this setup is the positive feedback of the s
driven cantilever~see text!.
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The phase shift between the excitation signal and cantile
deflection is adjusted by a phase~or time! shifter to a value
corresponding to'90°, since this ensures an oscillation ne
resonance~see Sec. III!. Two different modes have been e
tablished for use with the FM detection: Theconstant-
amplitude mode, where the oscillation amplitude is kept at
constant value by the AGC,14 and theconstant-excitation
mode,19 where the excitation amplitude is kept constant.
this article, however, we focus on the original consta
amplitude mode.

With such an experimental setup, the corresponding eq
tion of motion of an AFM with FM technique driven in th
constant amplitude mode is different from Eq.~1!. It is now
a differential equation with a time delay15–17 t0,

~3!

The term on the right side of this equation differs from t
external driving term in Eq.~1! and describes the active feed
back of the system by the amplification of the displacem
signal, i.e., the tip positionz measured at the retarded tim
t2t0 by the gain factorg.

Due to the obvious difference in the equations of moti
of the driven and the self-driven oscillator, it is quite cle
that both have different features that have to be taken
account for the analysis of experimental data. To give insi
into the properties of a self-driven oscillator, we discuss
solutions of Eq.~3! with and without tip-sample force in the
following sections.

III. SELF-DRIVEN CANTILEVER WITHOUT TIP-SAMPLE
INTERACTION FORCE

To study the basic behavior of a self-driven oscillator w
assume that the cantilever vibrates far away from the sam
surface. In this case, there are no tip-sample forcesF ts
[0) and Eq.~3! simplifies to

mz̈~ t !1
2p f 0m

Q
ż~ t !1cz z~ t !5g cz z~ t2t0!. ~4!

For the analysis of experiments, we are only interested
steady-state solutions fort@0, where the cantilever oscilla
tions are sinusoidal and the amplitude is constant. Theref
we make the ansatz

z~ t@0!5A cos~2p f t !, ~5!

introduce it into Eq.~4!, and finally get a set of two couple
trigonometric equations,

g cos~2p f t0!5
f 0

22 f 2

f 0
2

, ~6a!

e
e

f-
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g sin~2p f t0!52
1

Q

f

f 0
. ~6b!

Since the amplitudeA is held constant by the AGC and th
time delayt0 is a constant value set by the phase shifter,
~6! must be solved for the oscillation frequencyf and the
gain factorg. However, before analyzing the general soluti
we examine the behavior of the system at resonance.

In this case, the trigonometric equations~6! can be sim-
plified and decoupled with the assumption that the time s
t0 is set to a value corresponding to

~7!

whereT051/f 0 is the period of oscillation of the free an
undamped cantilever. For these values oft0, the solution of
Eq. ~6! is given by

f 5 f 0 , ~8a!

ugu51/Q. ~8b!

These simple calculations demonstrate the interesting
very specific behavior of a self-driven oscillator wi
velocity-dependent damping: The cantilever oscillates
actly with its eigenfrequencyf 0 and the gain factorg de-
pends only on theQ value of the cantilever if the time dela
is set to a value given by Eq.~7!. Consequently, we defin
that the system is in resonance, if Eq.~7! is fulfilled.

In a real experiment, the time~or phase! shift between the
excitation and the cantilever oscillations might be sligh
detuned. Consequently, it is necessary to examine the im
of this effect on the oscillation frequencyf and the gain fac-
tor g. We do this in two different ways. First, we present
approximate~but handy! analytical solution of Eq.~6!, which
might be valuable for experimentalists to calculate the err
caused by a detuned time shiftt0. Then we compare this
result with the numerical simulation of the experimen
setup based on the numerical solution of Eq.~3! ~Refs. 15–
17!.

If the time delay is not given by the special values of E
~7!, the system is out of resonance and the oscillation
quency shifts from the eigenfrequency of the cantilever
D f errª f 2 f 0. The gain factor differs also from the valu
given by Eq.~8b!. The general behavior of the system can
this case be analyzed by the following approximate solut
of Eq. ~6!: Since the frequency error is quite small (D f err
! f 0) for a small detuning oft0, it can be shown that

D f err'
f 0

2Q
cot~2p f 0t0!, ~9a!

ugu'
1

Q

1

sin~2p f 0t0!
. ~9b!

These two functions are plotted in Fig. 2 for typical p
rameters by solid lines. The left axis of the graph represe
the values of the frequency error and the gain factor.~For our
purposes, the sign of the gain factor can be arbitrarily
07540
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fined, therefore we plot only its absolute valueugu.! The
percental deviation from the optimal value at 90° is sho
on the right axis. The corresponding values obtained from
numerical simulation of the whole system are marked
symbols. The excellent agreement between the simula
and the analytical solution demonstrates the reliability
both approaches to solve Eq.~4!.

Figure 2 and the analysis of Eq.~9! demonstrate that the
frequency error caused by an improper adjustment oft0
changes nearly linearly with the time delay and is qu
small. Even for a large detuning of 20° the error is smal
than 0.002 %. The change in the gain factor is much lar
than the frequency error: A detuning of 10° (20°) leads to
error of about 2%~6%!. The absolute value of the gain fac
tor, however, minimizes if the system is in resonance a
varies parabolically witht0 if the system is out of resonance
Therefore, it is straightforward to determine the optimal v
ues fort0 in an experiment. If the cantilever is far away fro
the sample surface~i.e., zero tip-sample force!, the optimal
value for the time delay can easily be found by a minimiz
tion of the gain factor as a function oft0.

IV. SELF-DRIVEN CANTILEVER WITH TIP-SAMPLE
INTERACTION FORCE

It is the main purpose of an atomic-force microscope
measure tip-sample interaction forces. Consequently, it is
ementary to analyze the influence of the tip-sample inter
tion on the resonance frequency and the gain factor. This
be done either by numerical simulations15–17or by the analy-
sis of the equation of motion~3!. For both approaches it ca
be assumed that the tip-sample interaction force is a func
of the actual tip positionz(t) and its velocityż(t) „⇒F ts

FIG. 2. The shift of the frequencyD f err and the gain factorg
without a tip-sample force as a function of the phase shift, i.e.,
time delayt0 , t0 for the parameters:f 05150 kHz,cz540 N/m, A
5100 Å, andQ510 000. The solid lines and the symbols mark t
solution of Eq.~9! and the numerical simulation of the whole sy
tem, respectively. The left axis represents the shift of the freque
and the gain factor from the resonance values at 90°; the right
shows the corresponding error.
2-3
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ªF ts@z(t),ż(t)#…. The exact form of this function, howeve
depends on many different parameters such as the ma
properties of tip and sample, the shape of the tip, the b
voltage, etc.

For such a force, the equation of motion Eq.~3! can again
be solved with the ansatz Eq.~5!. Then, the obtained equa
tion is simplified in the following way:20 After a multiplica-
tion with cos(2pft), the equation is integrated over one p
riod of oscillation t5@0,1/f #. The same procedure i
repeated after a multiplication with sin(2pft). The result is a
set of two coupled trigonometric equations,

g cos~2p f t0!5
f 0

22 f 2

f 0
2

2
2 f

Acz
E

0

1/f

F ts@z~ t !,ż~ t !#cos~2p f t ! dt,

~10a!

g sin~2p f t0!52
1

Q

f

f 0

2
2 f

Acz
E

0

1/f

F ts@z~ t !,ż~ t !#sin~2p f t ! dt.

~10b!

These equations may be solved numerically to determine
exact dependency of the tip-sample interaction forceF ts and
the time delayt0 on the oscillation frequencyf and the gain
factor g.

The detailed analysis, however, demonstrates that the
sults of a DFM experiment are mainly determined by t
tip-sample force and only slightly by the time delay. This c
be shown by an approximation of Eq.~10!, which is based on
the assumption that condition Eq.~7! is fulfilled. In this case,
the time delay is set to an optimal value by the experim
talist before an approach of the tip towards the sample
face ~see Sec. III!. Since the frequency shifts caused by t
tip-sample interaction are usually quite small, the system
also nearly in resonance during the measurement of
sample forces. Therefore, it can be assumed that cos(2pft0)
'0 and sin(2pft0)'61.

With this assumption the two coupled equations~10a! and
~10b! can be decoupled and we obtain

D f >2
f 0

2

Acz
E

0

1/f 0
F ts@z~ t !,ż~ t !#cos~2p f 0t ! dt, ~11a!

ugu>
1

Q
1

2 f 0

Acz
E

0

1/f 0
F ts@z~ t !,ż~ t !#sin~2p f 0t ! dt.

~11b!

Since we did not make any assumption about the spe
force law describing the tip-sample interactionF ts, these
equations are valid for every type of interaction as long
the resulting cantilever oscillations are nearly sinusoidal
07540
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FIG. 3. ~a! The tip-sample force between an adatom of t
Si~111!(535) surface after Pere´z et al. ~Ref. 23!. ~b! The fre-
quency shift caused by the tip-sample force shown in~a!. The solid
line is the result of Eq.~11a!. The symbols represent the numeric
simulations calculated with different time delayst0. The parameters
are the same as in Fig. 2:f 05150 kHz,cz540 N/m,A5100 Å, and
Q510 000.~c! The gain factor corresponding to the results sho
in ~b!. Since the used tip-sample force is purely conservative,
solution of Eq. ~11b! is a constant valueugu51/Q51024 ~solid
line!. The comparison with the numerical simulations for differe
time delayst0 ~symbols! shows that the precision of this approx
mated formula is better than 3%.
2-4
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this context, it is interesting to note that Eq.~11a! coincides
with the well-known result of Refs. 21 and 22 ifF ts is a
conservative force.

To demonstrate the reliability of these formulas we co
pared them with numerical simulations of the system ba
on Eq. ~3! using a purely conservative tip-sample force
shown in Fig. 3~a!. It describes the short- and long-rang
interaction between an atomically sharp silicon tip and
adatom of the Si~111! ~535! surface as calculated by Pere´z
et al.23 The corresponding frequency shift is displayed
Fig. 3~b!. The solid line is calculated from Eq.~11a!. The
symbols represent the results of numerical simulations if
system is in resonance (90°) and for detuned time de
(80°,100°). For resonance, the error of the approximat
Eq. ~11a! is negligible. For a detuning of 10° it is smalle
than 5 Hz. The approximation for the gain factor is also qu
reasonable@see Fig. 3~c!#. The calculation with Eq.~11b!
gives a constant valueugu51/Q, which depends only on the
quality factor of the cantilever, since the integral on the rig
side is zero for conservative tip-sample forces. The devia
from the numerically obtained gain factor values can be
glected at resonance and it is smaller than 3% for a detu
of 10°.

This example shows that a conservative tip-sample fo
influences mainly the frequency shift but not the gain fact
which is nearly constant. All deviations displayed in F
3~c! are small effects mainly caused by the detuning of
time shift. However, experimental NC-AFM data obtain
with the FM detection scheme show typically much larg
variations of the gain factor towards the sample surfac17

Various authors suggested physical mechanisms24 and dissi-
pative force laws17,25to explain this behavior. Even though
is beyond the scope of this article to examine the phys
significance of these approaches, we adopt our equation
the frequency shift and the gain factor to a force law inclu
ing dissipation.

For this purpose, we assume the following force law
describe the tip-sample interaction

F tsªF int~z!1Fdiss~z,ż!, ~12!

where the first term depends only on the tip-sample posi
and the actual movement direction of the tip

F int~z!ªH F→~z!, ż<0 ‘‘forward’’

F←~z!, ż.0 ‘‘backward,’ ’
~13!

while the second term describes the energy dissipation du
a viscous damping

Fdiss~z,ż!ªg1~z! ż, ~14!

where the damping coefficientg is a function of the actua
tip position.
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For the application of these force laws to Eqs.~11! it is
convenient to use the transformationz(t)ªA cos(2pf0t) for
the simplification of the integrals on the right side of the
equations. We then find

D f >2
f 0

pA2cz
E

2A

A F→1F←
2

z

AA22z2
dz, ~15a!

ugu>
1

Q
1

1

pA2cz
E

2A

A

~F→2F←! dz

1
4 f 0

A2cz
E

2A

A

g1~z!AA22z2 dz. ~15b!

This result demonstrates that the frequency shift depe
only on theaverage of the tip-sample forcebetween forward
and backward movement, but isindependentof the dissipa-
tive force Eq.~14!. In contrast, the gain factorg is directly
related to all energy-dissipation processes: The intrin
damping of the cantilever leads to a constant term 1/Q. The
second term is given by an integral over the difference of
tip-sample force between forward and backward movem
i.e., the hysteresis, whereas the third term is related to
viscous damping mechanism.

V. SUMMARY

In summary, we analyzed the measurement principle
dynamic-force microscopy using the FM technique in t
constant-amplitude mode. It was found that due to
specific-excitation principle based on a self-driven oscillat
the cantilever oscillates exactly with its eigenfrequency fo
time delay corresponding to 90°. This is in contrast to t
conventional externally driven oscillator. As shown by an
lytical and numerical calculations, the necessary adjustm
of the time delay can easily be performed by the minimiz
tion of the gain factor.

Additionally, general analytic equations determining t
frequency shift and the gain factor for arbitrary tip-samp
forces could be derived, which are valid as long as the c
tilever oscillations are nearly sinusoidal. With the assum
tion of a force law describing the energy dissipation betwe
tip and sample by hysteresis and/or viscous damping,
could finally show that the frequency shift is given by th
mean tip-sample force whereas the gain factor is dire
related to dissipative forces.
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