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Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force
microscope using the frequency modulation technique
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The measurement principle of dynamic-force microscopy using the frequency-modykirdetection
scheme is investigated by analytical as well as numerical approaches. As the detection method is based on the
properties of a self-driven oscillator, we discuss the main differences from an externally driven oscillator. We
then derive an analytical expression, which clarifies how the measured quantities of the FM technique, the
frequency shift, and the gain factéor “excitation amplitude’) are influenced by the tim&phase”) shift.
Introducing a very general tip-sample force law, we show that the frequency shift is determined by the mean
tip-sample force whereas the gain factor is directly related to dissipative processes like hysteresis or viscous
damping.
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I. INTRODUCTION Il. DRIVEN AND SELF-DRIVEN CANTILEVERS IN
DYNAMIC ATOMIC-FORCE MICROSCOPY

Since the design of the first atomic-force microscope Atomic-force microscopes using detection schemes work-
(AFM) by Binnig, Quate, and Gerber in 198@his micros-  ing with a vibrating cantileve(*dynamic” modes of opera-
copy method has been established as a standard tool in sion) are often based on an experimental setup where the
face physics. Nonetheless, it took several years until the imcantilever is driven by an external oscillator with a fixed
aging of single-point defects, i.e., “true” atomic resolution, €xcitation frequency, if they are run under ambient condi-
was achieved using dynamic force microscof@FmM),  tons. The equation of motion of the cantilever is then given
which is often also termed as noncontact atomic-force miPy the differential equation of a driven damped oscillator

croscopy (NC-AFM).22 Since then, the field of DFM/NC-  With the (nonlineay tip-sample forceF s (Refs. 5-13,
AFM has been growing rapidly, and true atomic resolution ’
has been obtained on many different types of surfaces in- mz(1)+
cluding conductors, semiconductors, and insulators.

Parallel to the experimental progress, theoretical studies
were performed in order to analyze the information that can
be extracted from DFM experiments. Much of this effort external excitation (1)
focused on the description of setups basedeaternally
driven oscillators, which have been widely investigated bywherez(t) is the position of the tip at the timg c,, m, Q,
numerical as well as analytical approacliese, e.g., Refs. andf,=(c,/m)/(2) are the spring constant, the effective
5-13. However, since high-resolution experiments needmass, the quality factor, and the eigenfrequency of the can-
clean sample surfaces, they are usually performed in ultrailever, respectively. The external excitation of the cantilever
high vacuum(UHV). Consequently, most DFM’s use the fre- with the excitation amplitudey at a fixed frequency is
quency modulatioiiFM) detection scheme introduced by Al- described by the term on the right side of Eg).
brecht et al,** which is much better suited for vacuum  The solutions of this nonlinear equation of motion are
conditions, but is based on the excitation principle ofe#f-  0scillations, which have been examined for a long time and
drivenoscillator. The specific properties of such an oscillatormight be quite Com_p'e§<-9 In dynamic force microscopy,
have only been analyzed by numerical simulations up idrowever, one is mainly _mtgrested in steady-state solutlon_s,
now.15-17 where the cantilever oscillations are nearly sinusoidal. In this

Therefore, it is the aim of this work to study the specific case, the oscillation frequency is given by the external fre-

features of experimental setups based on the FM detectiog]uencyfd’ and the solution of Eq(1) is given by

scheme. To begin with, we describe the differences between

an externally driven and a self-driven cantilever in Sec. Il. z(t>0)=A(fg,ag)cog27ft+ ¢o(fg,a9)], (2
General aspects of a self-driven cantilever without any tip-

sample interaction force are discussed in Sec. lll to clarifywhere the oscillation amplitude and the phase shift are func-
the basic properties of this driving method. Finally, consertions of the excitation frequency and the excitation ampli-
vative and dissipative tip-sample forces are considered itude. The explicit form of these functions depends on the
Sec. IV to show how experimental results obtained with thetip-sample interaction forc& .2 Thus, different detection
FM technique can be interpreted. schemes, which use either the oscillation amplitAdar the

'2Tf0m

z(t)+c,z(f)

:Fts[z(t)’é(t)] +ad ¢z COS(27del),
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frequency shift gain factor time shift The phase shift between the excitation signal and cantilever
T T l deflection is adjusted by a phag® time) shifter to a value
amplifier |_[phase corresponding te=90°, since this ensures an oscillation near
FM detector with AGC [ | shifter resonancésee Sec. I)l. Two different modes have been es-

tablished for use with the FM detection: Thmnstant-
amplitude modewhere the oscillation amplitude is kept at a
constant value by the AG#, and the constant-excitation
mode!® where the excitation amplitude is kept constant. In

sensor

\ s this article, however, we focus on the original constant-
¢“§ amplitude mode.
oscillation ° With such an experimental setup, the corresponding equa-
amplitude 24 = tion of motion of an AFM with FM technique driven in the
constant amplitude mode is different from Edy). It is now
i a differential equation with a time def&y*’t,,
nearest distance D
. 2afom.
sample mz(t)+ 0 z(t)+c,z(t)
FIG. 1. The schematic setup of a dynamic-force microscope =F[z(1),z(t)]+g c.z(t—t,).
operated in UHV using the frequency-modulation technique N &)
(constant-amplitude modléntroduced by Albrechet al'* A sig- driving
nificant feature of this setup is the positive feedback of the self-
driven cantilever(see text The term on the right side of this equation differs from the

external driving term in Eq.1) and describes the active feed-

phase shiftp for distance control, have been established fOIb.aCk Of. the system by _t_he amplification of the dlsplace_ment
signal, i.e., the tip positiom measured at the retarded time

dyna_lmlc agomlc—force microscopes with an externally drlvent_ t, by the gain factop,
cantilever!

. . Due to the obvious difference in the equations of motion
14
Howe\_/er, as it has been pointed out by Albreebal, . of the driven and the self-driven oscillator, it is quite clear

ver has a principle limitation of the sensitivity if it is run in hat both have different features that have to be taken into
P P y account for the analysis of experimental data. To give insight

ultra-high vacuum. Due to the hig@ values of AFM canti- . . . ! g

; - into the properties of a self-driven oscillator, we discuss the
levers in URY Q~10 000-100 QOO)' the response (.)f the solutions of Eq(3) with and without tip-sample force in the
system during data acquisition is very slow, restricting the,

bandwith of the experimental setup. following sections.

This problem does not exist for the frequency modulation
techniquet® where the sensitivity of the microscope in- lll. SELF-DRIVEN CANTILEVER = WITHOUT TIP-SAMPLE
creases with th@ value of the cantilever. Consequently, this INTERACTION FORCE
detection scheme is commonly used for dynamic-force mi-
croscopes working in UHV. As mentioned in the Introduc-
tion, most NC-AFM/DFM experiments with high resolution ; hi h ) le f
must be done under well-defined conditions in ultrahighs_ur ace. In this case, there are no tip-sample ordes (
vacuum. In fact, “true” atomic resolution has been obtainedzo) and Eq.(3) simplifies to
up to now only on clean surfaces in UHV using dynamic
modes, where the tip is believed to vibrate without touching mfom
the sample surfacé'noncontact” AFM). Thus, we will in- Q
vestigate the FM detection scheme in the following.

The key feature of FM detection is the positive feedbackFor the analysis of experiments, we are only interested in
which ensures that the cantilever oscillates always at its res@gteady-state solutions for0, where the cantilever oscilla-
nance frequency. The reason for this behavior is that théions are sinusoidal and the amplitude is constant. Therefore,
cantilever serves as the frequency-determining element. Thwe make the ansatz
is in contrast to an externally driven cantilever: Such a can-

To study the basic behavior of a self-driven oscillator we
assume that the cantilever vibrates far away from the sample

mz(t)+ 2 z(t)+c,z(t) =g c, z(t—ty). (4

tilever oscillates in steady state with its excitation frequency, z(t>0)=Acoq 27 ft), 5)
which is not necessarily its resonance frequepsse Eq.
2)]. introduce it into Eq(4), and finally get a set of two coupled

A schematic setup of a DFM using the FM technique istrigonometric equations,
shown in Fig. 1. The movement of the cantilever is measured

with a displacement sensor. This signal is then fed into an f2—f2
amplifier possessing an automatic gain contAsC) and is gcos2wfty)= ——, (6a)
subsequently used to excite the piezo driving the cantilever. fa

075402-2



MEASUREMENT OF CONSERVATIVE AND DISSIPATIE . . . PHYSICAL REVIEW B 64 075402

1 3— . . — 0.002
gsin2mfty)=— = —. (6b) NN AN

Qfo T N Ho.001
Since the amplitudé\ is held constant by the AGC and the % '
time delayt, is a constant value set by the phase shifter, Eq. B O 0
(6) must be solved for the oscillation frequentyand the § -r < 0,001
gain factorg. However, before analyzing the general solution g -2 ’

& I

we examine the behavior of the system at resonance.

In this case, the trigonometric equatiof® can be sim-
plified and decoupled with the assumption that the time shift
tg is set to a value corresponding to

-4

]
—_
[=3N]
O\ 2

absolute error [%]

I ‘\v/ ]
1 : 0
where To=1/f, is the period of oscillation of the free and 70 80 90 100 110

undamped cantilever. For these valuesgfthe solution of phase shift
Eq. (6) is given by

_ 1 3 5
tO_ZTO’ 4‘T0, ZT(),...,
o2l (7)

=90° =270° =450°

Nk
1.04\ /j
/

gain factor Igl [10
5
[

FIG. 2. The shift of the frequenci e, and the gain factog

f="f,, (8a) without a tip-sample force as a function of the phase shift, i.e., the
time delaytg, ty for the parametersiy=150 kHz,c,=40 N/m,A
lg|=1/Q. (8b) =100 A, andQ=10000. The solid lines and the symbols mark the

) ) . . solution of Eq.(9) and the numerical simulation of the whole sys-
These simple calculations demonstrate the interesting andm respectively. The left axis represents the shift of the frequency

very specific behavior of a self-driven oscillator with ang the gain factor from the resonance values at 90°; the right axis
velocity-dependent damping: The cantilever oscillates eXshows the corresponding error.

actly with its eigenfrequency, and the gain factog de-
pends only on th& value of the cantilever if the time delay fined, therefore we plot only its absolute vallgl.) The

is set to a value given by Eq7). Consequently, we define percental deviation from the optimal value at 90° is shown
that the system is in resonance, if E@) is fulfilled. on the right axis. The corresponding values obtained from a

In a real experiment, the tim@r phasg shift between the numerical simulation of the whole system are marked by
excitation and the cantilever oscillations might be S|ight|ysymbols_ The excellent agreement between the simulation
detuned. Consequently, it is necessary to examine the impaghd the analytical solution demonstrates the reliability of
of this effect on the oscillation frequenéyand the gain fac-  both approaches to solve E@).
tor g. We do this in two different ways. First, we present an  Figure 2 and the analysis of E(®) demonstrate that the
approximategbut handy analytical solution of Eq(6), which  frequency error caused by an improper adjustmentqof
might be valuable for experimentalists to calculate the errorghanges nearly linearly with the time delay and is quite
caused by a detuned time shtff. Then we compare this small. Even for a large detuning of 20° the error is smaller
result with the numerical simulation of the experimentalthan 0.002%. The change in the gain factor is much larger
setup based on the numerical solution of E3).(Refs. 15— than the frequency error: A detuning of 10° (20°) leads to an
17). error of about 2%46%). The absolute value of the gain fac-

If the time delay is not given by the special values of Eq.tor, however, minimizes if the system is in resonance and
(7), the system is out of resonance and the oscillation freyaries parabolically with, if the system is out of resonance.
quency shifts from the eigenfrequency of the cantilever byrherefore, it is straightforward to determine the optimal val-
Afep=f—f,. The gain factor differs also from the value yes fort, in an experiment. If the cantilever is far away from
given by Eq.(8b). The general behavior of the system can inthe sample surfacé.e., zero tip-sample forgethe optimal
this case be analyzed by the following approximate solutioryalue for the time delay can easily be found by a minimiza-
of Eg. (6): Since the frequency error is quite smalifle;  tion of the gain factor as a function 6f.
<fg) for a small detuning ofy, it can be shown that

o IV. SELF-DRIVEN CANTILEVER WITH TIP-SAMPLE
Af g~ ECot( 2t ote), (93 INTERACTION FORCE
It is the main purpose of an atomic-force microscope to
1 1 measure tip-sample interaction forces. Consequently, it is el-
lgl~ 6 m- (9b) ementary to analyze the influence of the tip-sample interac-

tion on the resonance frequency and the gain factor. This can
These two functions are plotted in Fig. 2 for typical pa- be done either by numerical simulatidfis'” or by the analy-
rameters by solid lines. The left axis of the graph representsis of the equation of motio(8). For both approaches it can
the values of the frequency error and the gain fa¢feor our ~ be assumed that the tip-sample interaction fo_rce is a function
purposes, the sign of the gain factor can be arbitrarily deof the actual tip positiore(t) and its velocityz(t) (=F
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==Ft5[z(t),2(t)]). The exact form of this function, however,
depends on many different parameters such as the material
properties of tip and sample, the shape of the tip, the bias
voltage, etc.

For such a force, the equation of motion E8). can again
be solved with the ansatz E¢p). Then, the obtained equa-
tion is simplified in the following way? After a multiplica-
tion with cos(2rft), the equation is integrated over one pe-
riod of oscillation t=[0,1f]. The same procedure is
repeated after a multiplication with sing2t). The result is a
set of two coupled trigonometric equations,

f2—f2
gcog2wfty) =

8

2f [

~ac), Fdav.zv]cog2aft dt

(10a
1f
Q fo
2f (1
~Ac)o

gsin(2nfty) =

Fd z(1),z(t)]sin(27ft) dt.

(10b)

These equations may be solved numerically to determine the
exact dependency of the tip-sample interaction fd¥geand

the time delayty on the oscillation frequencyand the gain
factor g.

The detailed analysis, however, demonstrates that the re-
sults of a DFM experiment are mainly determined by the
tip-sample force and only slightly by the time delay. This can
be shown by an approximation of Ed.0), which is based on
the assumption that condition E@) is fulfilled. In this case,
the time delay is set to an optimal value by the experimen-
talist before an approach of the tip towards the sample sur-
face (see Sec. Il Since the frequency shifts caused by the
tip-sample interaction are usually quite small, the system is
also nearly in resonance during the measurement of tip-
sample forces. Therefore, it can be assumed that edk)2
~0 and sin(Zrftg)~=*1.

With this assumption the two coupled equati¢hB8a and
(10b) can be decoupled and we obtain

f% 1/fq .
AfE_ACZJ’ Fd z(t),z(t)Jcog 27 fot) dt, (11a

-100 L i L 1 N 1 L i

_4]

gain factor Igl [10

tip—sample force [NN]
[=]

frequency shift Af [Hz]
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FIG. 3. (&) The tip-sample force between an adatom of the

0 Si(111)(5%X5) surface after Péreet al. (Ref. 23. (b) The fre-
qguency shift caused by the tip-sample force show(ainThe solid

_ 1 2f0 1/f0 . .
9=+ ac ), Fd2v.20]sin2mfet) dt
(11b

line is the result of Eq(11a. The symbols represent the numerical
simulations calculated with different time delays The parameters
are the same as in Fig. =150 kHz,c,= 40 N/m,A=100 A, and
Q=10000.(c) The gain factor corresponding to the results shown
in (b). Since the used tip-sample force is purely conservative, the

Since we did not make any assumption about the specifigolution of Eq.(11b) is a constant valuég|=1/Q=10"* (solid

force law describing the tip-sample interactiéry, these

line). The comparison with the numerical simulations for different

equations are valid for every type of interaction as long asime delayst, (symbol3 shows that the precision of this approxi-
the resulting cantilever oscillations are nearly sinusoidal. Inmated formula is better than 3%.
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this context, it is interesting to note that E4.1g coincides For the application of these force laws to E@kl) it is
with the well-known result of Refs. 21 and 22 K is a  convenient to use the transformatiaft) := A cos(2+ft) for
conservative force. the simplification of the integrals on the right side of these

To demonstrate the reliability of these formulas we com-equations. We then find
pared them with numerical simulations of the system based
on Eq. (3) using a purely conservative tip-sample force as fo [AF_+F_ z
shown in Fig. 8a). It describes the short- and long-range LA 2 N — 72
interaction between an atomically sharp silicon tip and an
adatom of the $i11) (5x5) surface as calculated by Pere

dz 15
wAZc, (153

et al® The corresponding frequency shift is displayed in |g|gi+ JA (F_—F_)dz

Fig. 3(b). The solid line is calculated from Eql11g. The Q #A%c,)-A

symbols represent the results of numerical simulations if the .

system is in resonance (90°) and for detuned time delays 4fy (A —

(80°,100°). For resonance, the error of the approximation + _Azcz 7A71(Z)\/Az 22 dz. (15b)

Eqg. (119 is negligible. For a detuning of 10° it is smaller _ ]
than 5 Hz. The approximation for the gain factor is also quiteThis result demonstrates that the frequency shift depends

reasonabldsee Fig. &)]. The calculation with Eq(11b ~ ©only on theaverage of the tip-sample foratween forward
gives a constant valug| = 1/Q, which depends only on the and backward movement, butirsdependenof the dissipa-
quality factor of the cantilever, since the integral on the righttive force Eq.(14). In contrast, the gain factag is directly
side is zero for conservative tip-sample forces. The deviatiofielated to all energy-dissipation processes: The intrinsic
from the numerically obtained gain factor values can be neda@mping of the cantilever leads to a constant ter@. The
glected at resonance and it is smaller than 3% for a detuningecond term is given by an integral over the difference of the
of 10°. tip-sample force between forward and backward movement,
This example shows that a conservative tip-sample forcég., the hysteresis, whergas the third term is related to the
influences mainly the frequency shift but not the gain factorviscous damping mechanism.
which is nearly constant. All deviations displayed in Fig.
3(c) are small effects mainly caused by the detuning of the V. SUMMARY
time shift. However, experimental NC-AFM data obtained
with the FM detection scheme show typically much larger
variations of the gain factor towards the sample surféce.
Various authors suggested physical mecharfi$msd dissi-

In summary, we analyzed the measurement principle of
dynamic-force microscopy using the FM technique in the
constant-amplitude mode. It was found that due to the

: 25 o ; .. specific-excitation principle based on a self-driven oscillator,
pative force laws’**to explain this behavior. Even though it he cantilever oscillates exactly with its eigenfrequency for a

iSf b?YO”d the scope of this article to examine the physic ime delay corresponding to 90°. This is in contrast to the
sr|]gnf|f|cance of tﬂ_?se e&p;?]roachesf, we adoptf our elqua_tloTs df%nventional externally driven oscillator. As shown by ana-
the frequency shift and the gain factor to a force law inclu “lytical and numerical calculations, the necessary adjustment

N9 d|SS|pat|on. . of the time delay can easily be performed by the minimiza-
For this purpose, we assume the following force law t%ion of the gain factor

describe the tip-sample interaction Additionally, general analytic equations determining the
frequency shift and the gain factor for arbitrary tip-sample

Fio=Fin(2) +Faisd2,2), 12 forces could be derived, which are valid as long as the can-
where the first term depends only on the tip-sample positiotilever oscillations are nearly sinusoidal. With the assump-
and the actual movement direction of the tip tion of a force law describing the energy dissipation between

) tip and sample by hysteresis and/or viscous damping, we
F_(2), z=0 ‘forward” could finally show that the frequency shift is given by the
Fint(2):= (13)  mean tip-sample force whereas the gain factor is directly

F-(2), z>0 “backward," related to dissipative forces.

while the second term describes the energy dissipation due to
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