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Effective action of a compressible quantum Hall state edge: Application to tunneling
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The electrodynamical response of the edge of a compressible quantum Hall system affects tunneling into the
edge. Using composite Fermi liquid theory, we derive an effective action for the edge modes interacting with
tunneling charge. This action generalizes the chiral Luttinger liquid theory of the quantum Hall edge to
compressible systems in which transport is characterized by a finite Hall angle. In addition to the standard
terms, the action contains a dissipative term. The tunneling exponent is calculated as a function of the filling
fraction for several models, including screened and unscreened long-range Coulomb interaction, as well as a
short-range interaction. We find that tunneling exponents are robust and to a large extent insensitive to the
particular model. We discuss recent tunneling measurements in overgrown cleaved edge systems, and demon-
strate that the profile of charge density near the edge is very sensitive to the parameters of the system. In
general, the density is nonmonotonic, and can deviate from the bulk value by up to 30%. Implications for the
correspondence to chiral Luttinger edge theories are discussed.
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I. INTRODUCTION Tunneling experiments probing the physics of the QH
edges were first attempted using conventional split gate
devices’ after which a new generation of two-dimensional
The edge of a quantum H&IQH) system attracts a lot of (2D) systems was developed by using the cleaved edge over-
interest because it provides an example of a one-dimensiongtowth techniqué.In these structures it is possible to study
non-Fermi-liquid. The theoretical picture of the QH edgetunneling into the edge of a 2D electron ga®EG) from a
was first developed for odd-denominator Landau-level filling3D doped region. In this system one can create a 2DEG with
fractions v that correspond to incompressible QH statés. a very sharp edge, with residual roughness of an atomic
involves one or several interacting chiral Luttinger liquid scale. The high quality of the cleaved edge system permits
modes. The most prominent feature of the Luttinger liquid isone to explore tunneling in both incompressible and com-
the power law character of the Green’s function. pressible QH state¥®
A powerlike Green’s function leads to a power law in the  In the first experiment,for v=1/3 it was found that the
tunneling-current—voltage dependende:V®. The tunnel- tunneling conductivity is non-Ohmid¢,~V*¢, with the expo-
ing exponenix has been extensively studied theoretically fornenta=2.7, quite close to the theoretical predictiar 3.
the principal filling fractions of Laughlin and Jain After that, it was observédhat the power law ~V® holds
hierarchies:? For Laughlin states withv=1/(2k+1) the for both incompressible and compressible QH densities in
edge is described by one chiral mode and a tunneling curretthe range 0.25 v<<1. The exponen& was found to be rea-
| ~V?*1 is predicted. Theories of the edge withv  sonably accurately given by a simple formuta=1/v. In-
#1/(2k+ 1) involve more than one mode. In the multimode terestingly, this dependence does not agree with the predic-
case the results are qualitatively different for modes going altions of chiral Luttinger models, except for a special point
in one direction and modes going in opposite directions. v=1/3. Moreover, it was quite surprising that the power law
For comoving edge modes, the tunneling exponent is uniis equally well obeyed by both compressible and incom-
versal and does not depend on the character of interactiqoressible values of.
between the modes. For example, this is the case at the Jain These findings prompted interest in the problem of tun-
filling fractions v=n/(np+1) with positive integem and  neling into the edge of a compressible QH system. A good
evenp, where Weh finds | ~VP*1. On the other hand, for description of the compressible QH states is provided by the
the edge described by modes going in opposite directiong;omposite fermion theory. This thedris constructed av
the tunneling exponent depends on the interaction strength=1/2 and other rationab with even denominator, and is
In this case, it is also important to take into account theused to map the problem of the fractional QH effect onto the
effects of disordef.The point is that relaxation between the integer QH problem for new quasiparticles, composite fermi-
modes due to scattering by disorder mixes the modes, and ahs interacting via a statistical Chern-Simons gauge field. In
sufficiently high disorder effectively forms a single chargedthe composite fermion picture, an electron is described as a
mode with universal tunneling exponent. For example, forfermion carrying vorticity represented by a quantized gauge
the Jain fractionsn/(np+1) with n<0 and evenp>0, field vortex. For densities close to the half-filled Landau
Kane, Fisher, and Polchingkiound | ~\/P*+1~2nl, level the vortex hap=2 flux quanta. The theory of com-

A. Background and recent work
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posite fermions wittp=2 describes the interval of densities not clear why the density of localized states should be
1/3<v<1. At smaller densities 1/ v<<1/3 composite fer- peaked at the Fermi energy in the actual samples. An appar-
mions withp=4 are used, etc. ently similar idea was developed earlier by Pruisie¢rl !

The theory of tunneling into a compressible QH eflge, using quite elaborate methods which we have not been able
which uses composite fermions to describe the QH systemg follow in detail.
predicts the power law~V*“, with @ being a continuous  Also, a theory using composite fermions was proposed by

function of v: Lee and Wetf in which both chargededge plasmonand
5 neutral (quasiparticle modes are included. It was assumed,
a:1+e_(p _|p(0)|) 1) however, that the velocity of the charged mode is much
h oy Iy e larger than the neutral mode velocity. In this case, there ex-

ists an intermediate energy regime in which only the charge
mode dynamics is important, while the neutral mode re-
sponse can be ignored. In this energy domain one obtains
. . a=1/v. It should be pointed out, however, that the ratio of
—P®on, wheren is the electron density. The resull) de- the charged and neutral mode velocities is of order of/tg,

scnbe; the SySte”".' in the !'rm&xﬁo' The dependence @f wherew is the distance from the edge to the doped region
on 1/v is monotonic, and is characterized by plateaus in the

intervals 2< 1/v<3, 4<1/v<5, etc.(see Fig. 2 below The andr is the screening radius. Optimistically, the ratidr g

plateaus are connected by straight lines with slope 2. Th&2" be as large as 10, Whi_Ch Is S_ti” not enough to explain th_e
cusplike singularities predicted in the dependende) at power law demonstrated in a wide range of 2.5 decades in

v=1/2, 1/4, etc., are somewhat smeared whepis finite € bias voltage. _ o
[see Eq.(69) and Fig. 2. Another approach trying to rationalize the measured tun-

Interestingly, these results match exactly the prediction§€ling exponeni~1/v was proposed by Khveshchenkb.
of the chiral Luttinger liquid theory for the Jain series of This theory is based on composite fermions and is similar in
incompressible states. Although formally this theory lacksits assumptions to Ref. 8 and to the present work. However,
continuity in the filling fraction, starting from a new set of the calculated tunneling exponent isvlip to a frequency
edge modes for each given filling fraction, the exponentglependent logarithmic correction small @, /p,,. We be-
a(v) obtained by Wen forv=n/(pn+1) and by Kane, lieve that this is due to an inconsistency of the analysis ig-
Fisher, and Polchinski for=n/(pn—1) fall on the continu- noring important effects accounting for dynamics of free
ous curve(1) found in the composite fermion calculation. composite fermions. One can see that by comparing(Bq.
The exponents of Wen fall on the plateaus, while those obf Ref. 15 with our Eq.(24), and noting that the term de-
Kaneet al. fall on the straight lines connecting the plateaus.scribing the free composite fermion response is missing in

However, the disagreement with the experimentally mearef. 15.
sureda(v) requires an explanation. Recently, a number of |n addition to this controversy, the theory by Lopez and
theories were proposed trying to resolve this issue. In ongradkin'® seems to abandon the entire theoretical picture of
approach,o described by Conti andl V|gn%1I_d:|a_n and  the multimode QH edges proposed in Refs. 1 and 2 for the
Thouless,” and Zilicke and MacDonald; tunneling is stud- incompressible Jain fractions. Unlike Ref. 14, the authors of
HRef. 16 do not use a microscopic mechanism for eliminating

dally i d F h 4 treat t the desired I%he neutral propagating edge modes. The construction pro-
essentially ighored. From such a treatment the desired re ?)bsed in Ref. 16 involves only one charged mode plus two
tion a=1/v emerges readily, as we will discuss in detalil

below in Sec. | B and at the end of Sec. IIl. However, thiSauxmary Klein factors which do not constitute additional

approach ignores the contribution to the electron Greenﬁg)paga;mg degreez ct:f f:ﬁedom. Intt_hat, Ithe aptproa;h I(ij Eef'
function of the quasiparticles in the QH state, and thus it is i can be compared fo the conventional quantum Hall edge

contradiction with the presently existing microscopic picturetmaor'eé’2 in which the velocity of neutral modes is exactly
of the QH effect. zero. If_ true, this Wo_uld lead to tha_=1/v dependence at
Another line of thought, developed by Alekseatval,'2is arbitrarily low energies. However, it is presently unclear
that the experimental system is not what it is assumed to bavhether the picture of the neutral mode with zero velocity
In particular, it is proposed that instead of a clean edge théan be justified microscopically.
real system contains many localized states in sufficient prox- What complicates the controversy even further is the re-
imity to the edge. Then, if one assumes that the tunnelingently presented evidence of a plateaulike feature exhibited
rate bottleneck corresponds to tunneling from the doped reby «(v) in some cleaved edge samptésThe value ofv
gion into a localized state, and that the density of localizechear which the dependeneg v) flattens out is, however,
states is sharply peaked about the Fermi energy, one finds tlgeiite close to 1/3, whereas the expected plateau interval is
desired resuliv=1/v. The reason is that in the problem in- 2<»~1<3. This discrepancy may be explained by solution
volving a localized state no conversion of an electron into aof the electrostatic problem near the edgee Sec. V below
quasiparticle is required, and the only effect to be considerednd Ref. 17, which shows that in a wide region adjacent to
is a shakeup of the edge plasmon mode, an effect equivaletiie edge the density exceeds the bulk value by about 20—
to the x-ray edge problem in the Fermi liquid. However, it is 30 %. Because of this behavior of the density profile, the

Wherepxyz(h/ez)fl is the Hall resistance of the 2DEG
andp()= (h/e?)(v~*—p) is the Hall resistance of compos-
ite fermions moving in an effective magnetic fieBLz=B
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feature ina(v) observed near,,=1/3 may correspond to derive an effectiveD =1 action that describes the dynamics
somewnhat higher density near the edge, witsomewhere N terms of the variables at the edge. This action is basically
between 1/3 and 1/2. of chiral Luttinger form, with an extra “dissipative” term
One other complication is that the analysis of the electrohonlocal in space and time, which takes into account the
static problem shows that the density profile near the edggffects of charge relaxation in the bulk. TRe=2—D=1
can be nonmonotonic and, in general, depends quite sendgduction for thg problem with short-range CF interaction
tively on the system parameters. This observation can makgan be handled in an elementary way and leads to a simple

the relation with theories assuming constant filling factor®/gebraic expression for the tunneling exponent in terms of

P . . Ohmic and Hall conductivities.
somewhat indirect. At present, the matter is obviously far . .
P y Then, in Sec. IV we repeat the analysis for the problem

from being resolved, and more experimental and theoreticavlvith lona-ranae Coulomb interaction. In this case Me 2
studies are needed to clarify the situation. With this in mind, ong-range .ou ; ) !
—D=1 reduction procedure involves solving a boundary

in this article we present an alternative derivation of the e alue problem for dynamical screening near the edge. We

sults thz_alned in Ref. 8 demonstra’_ung th_elr robust_ness anfonsider three different models, describing the problems with
e_stabhshmg_ a more direct connection with the chiral I‘Ut'unscreened Coulomb interaction and also taking into account
tinger theories of the QH edge. . screening due to image charges induced in the doped over-
The bgs|s of our analysis will be the theory of compositeyrq\yn region. (This screening has the peculiarity that the
fermions. We assume that noninteracting composite fermi-screened interaction remains long ranged, because the image
ons are characterized kpf and p{3) which may depend, charges are located not above the 2DEG, but on the side of
e.g., on the filling fraction. The measured resistivities arehe 2DEG edgé.Two of these boundary value problems can
thenp,,= pi?,)Jr ph/e? andp,,=p'?, wherep is the number  be solved by elementary methods using Fourier transform,
of flux quanta attached to an electrop<£2 for 1/3<»  and one leads to an integral equation of Wiener-Hopf type. In
<1). The tunneling current is expressed in a standard way iall three cases, we use the effectbe=1 action to compute
terms of the electron Green’s function. We derive the relatiorthe tunneling current, and derive an expression for the tun-
between Green'’s functions of an electron and of a compositgeling exponentx.
fermion, and compute the former using a “factorization ap- In the case of unscreened interaction the tunneling expo-
proximation.” In this analysis the effects of shaking up slow nent« turns out to be somewhat frequency dependent, hav-
electromagnetic and Chern-Simons gauge field modes aifg a contribution proportional tp,,In w, which corresponds
separated out. As a result, the tunneling current is expressed a slight deviation from the power law. However, in the
in terms of electromagnetic response functions and the nunmost realistic of the three models accounting for screening
ber of flux quantap. The theory predicts a power laW by the doped region, we find a nearly perfect power law.
~V* with a continuous dependence of the tunneling expoOtherwise, the results for the three models with long-range
nent a on the filling fraction. As far as tunneling into the interaction, screened and unscreened, and for the short-range
edge is concerned, there is no qualitative difference betweenteraction model, give essentially the same dependence of
compressible and incompressible states. The “Luttingerthe tunneling exponent gm,,, and thus all agree. The agree-
liquid-like” behavior in the edge tunneling emerges when thement of the results for different kinds of interaction implies
Hall angle is close tar/2, for both compressible and incom- that they are robust.
pressible electron systems. In the calculations described above, we characterize the
The paper is organized in the following way. In Sec. | B system by a resistivity tensor that is independent of wave
we review the approach of Ref. 8 based on a semiclassicakctor and frequency. In particular, this assumption implies
phase factor analysis of the Green’s function. This is donehat we are restricted to tunneling at voltages and tempera-
with the purpose of motivating and providing connectiontures small compared to the scattering rate of the composite
with the subsequent discussion of the effective action formalfermions. At energies above the scattering frequency, but be-
ism. In Sec. Il we begin laying out the basic approach of thdow the Fermi energy, one is in a different regiftiee “clean
present theory of tunneling. At low energy, the most impor-regime”) where ballistic dynamics should be used for the
tant effect is the shakeup of long-wavelength modes correcomposite fermions. This regime may be of considerable
sponding to spreading of the tunneling charge. To describe ifpractical interest because the samples used for the tunneling
one can use a semiclassical method, which provides a simptaeasurements are of very high mobility, and are presumably
and universal picture of tunnelif§.We then construct an quite clean even near the edge. Even for electron energies
effective action inD=2 written in terms of composite fer- below the CF scattering frequency, however, one should re-
mion density and current, as well as the Chern-Simons gaugally check that contributions from wave vectors larger than
field. Section Il ends by proving an important identity for the inverse mean free path can safely be ignored.
this action which is used in the following part of the paper. A proper treatment of the ballistic region requires the use
In this paper we focus on the relatively simple “dirty of nonlocal electromagnetic response functions, and is con-
composite fermion{CF) case, corresponding to composite siderably more difficult than the models discussed in the
fermions scattered by the disorder, and described by finitpresent paper. In the Appendix below we investigate a sim-
Ohmic conductivity. In Sec. Il we consider the problem with plified model for the nonlocal conductivity, which serves to
short-range interaction between composite fermions. In thélustrate some of the salient features of the problem. The
D=2 action we integrate over the variables in the bulk andsimplified model is not adequate, however, to answer unam-
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biguously the fundamental theoretical question: whether The effective actionl.qa,] is the random-phase ap-
low-energy degrees of freedom at short length scales caproximation(RPA) action derived in Ref. 7. Below we will
significantly alter the tunneling exponent at low electrononly need.4 up to quadratic order:
energies.

In order to better address this problem, we have also un- _ 1, N 430 1B
dertaken a numerical solution of the charge spreading prob- Lea,]= EJ 3,(X) D, (X,x")a,(x")d"xd"x S
lem with a proper representation of the nonlocal conductiv- . . )
ity. Preliminary results suggest that the tunneling exponent¥/here the ccfrrelator of gauge field fluctuatiohg,(x,x")
will not be changed by a large amount from the results ob={a.(X)a,(x")) for the CF system in the absence of long-
tained in the present paprbut further work is necessary fange interaction in the RPA approximatics given by
here. :

One should also reca]l tha}t in the Iimit_of very low tem- Dﬁyl(k)=lc,w(k)+ I kxf,m- (4)
peratures and frequencies, in compressible states, one ex- 4
pects that ther_e will be interaction corrections to the res'St'V'HereIC ,=(i.i.) is the free fermion current correlatéef.
ity itself which depend logarithmically on energy. oy o

: o - . Ref. 7 and Sec. Il below
Therefore, in principle, at sufficiently low energies, the | iclassical L f
renormalized value op,, will become comparable to the We —employ  a _semiciassica ap_pr_OX|mat|on or
XX Gy (t1,t5,a,). To motivate it, think of an injected electron

value ofp,y and our entire analysis may cease to be VaIIOI'which rapidly binds flux quanta and turns into a composite

However, the energy range Where.thls.; would oceur 1s tocfermion. The latter moves in the gauge fielg and picks up
small to be of experimental interest in high-mobility samples,

where the bare value of,, is small. the phase

_ ” " - free 2
B. The semiclassical phase method d)[a“] J,wa (r’t)J# (r,drdt, ®)

« Th_e tunr_\ellng expener(tl) was derived in Ref. 8 using a where | ™¢(r t) is the current describing spreading foée
semiclassical phase” approach. Here we restate the deriva- “ : . ) ) )
tion of Eq.(1) emphasizing the connection with the effective composite fermion density. Semiclassicallyap(r,t), one
action method being used in the main part of this article. writes

One advantage of the semiclassical phase method em- _ idla,]~(0
ployed in Ref. 89is that it does not reuni)re subtraction of Gu(ty t2,a,) =€ 3IGOtyy), ®
counterterms likeS— Sy Used in the following sections. A WhereG(O)(tlz)ztl‘zl is the composite fermion Green'’s func-
suspicious reader may think of this subtraction asdrhoc  tjon in the absence of the slow gauge field. Note that fast
procedure motivated only on physical grounds. Although weéfjuctuations ofa,, are included irG()(t) through renormal-
justify the counterterm subtraction carefully and rigorouslyization of Fermi-liquid parameters.
below in Sec. Il C, it will perhaps be useful for the reader to et us remind the reader that the electron Green’s func-
see the same result derived by an alternative method. tion in the composite fermion theory has an additional phase

It should be mentioned that the phase method, althoughycior exii [2a,(t')dt' ] introduced by Kim and Wef® which
more appealing intuitively, is more difficult in use, especially 1 , - :

in problems with the boundary, like the edge tunneling prob_accounts for the gauge f|eld_ of a solenoid |_nserted |nto.the
lem. Because of that our use of it here is limited to theSYStem upon the transformation of the tunneling electron into

simplest case when the interaction is solely due to the Cherrf COMPOsite fermion. This phase factor has been discussed in

Simons gauge field, and there is no long-range Coulomb in"€ context of the problem of tunneling into the bulk. By

teraction. The short-range interaction is assumed to be takefi'tué of gauge invariance of the electron Green's function
into account by the composite fermion transformation. under gauge transformations of the Chern-Simons field, one

We start with the tunneling electron Green’s function in €@n €liminate the phase factor using the Weil gaage 0.
imaginary time. One can formally write it as an average ovelb€cause of that, seemingly different approaches to the bulk

the fluctuations of the gauge field: tunneling problem, some emphasizing the phase
others ignoring it*'8 are essentially equivalent. Below we
are going to use thay=0 gauge, which permits us to drop
G (t :Z_lj D Goor(ty b, ~Lerlay] the solenoid phas_e factor from the start.
m(t12) {8} Crr (11 12,8, )€ e Now, we substitute the Green’s function in the phase ap-
proximation(6) into Eq.(2) and average over fluctuations of
t=t,—t; 2 using the actior(3). This gives
. . . . . Grr(t):G(O)(t)e_s (7)
This exact expression emphasizes the order of integration
over fermionic fields and the gauge field,. Here where
Gy /(t1,t5,a,) is the electron Green’s function for a given 1
configuration of the gauge field,(r,t). For evaluating the _ _j 3y 3y : free; i free; o r ,
tunneling current, we will neet,, /(t;,) forr=r’. S 2 XA, O], ) (XX ®

14
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It is convenient to rewrite the expone®hereafter called the 277p
“action” as follows: S=-2, —
i ~
S=-— EJ d3xj " (x) Ak (x) 9 J d?r[D,V ") ]€gl D s V prny(1)]

(15
wherea, (x) =i [D,,(x,x')j*(x")d*" is the actual gauge ,
field produced by the moving charge. The representg@on B _2 e
follows directly from the ladder structure of the RPA re- 2h
sponse functions.
From now on we adopt tha,=0 gauge, in which the X[DO(p—p@)D],p[V g y(r)] (16)
relation betweera andj takes the form

er[V nfree(r)]

eZ
- f > D
=2 5o @IV (kDO kD)

~ 477p|
a, k= ZX],k, 1€, Ja(r,t)= 477ka zXj(rt")dt’.
X[V gny(r) (17)
10 [Vg ]
o . e’k f
With this, the actiorS finally becomes =—> ha d?r[n™(r)VDVn,(r)
2 _ A (0)y7 free
=3 Zp(f 20 (1) c2r ) (11 n,(nVD©vn] (18

ezK
— 2 free
Note that we are working at=0, and the sum over Mat- - % 2hw dir[n=y(n)(= 0+ VDV)n,(r)

subara frequencies should actually be interpreted as
fdw/27. From the form(11) we proceed to evaluatg —nw(r)(—w+VI5(°)V)nf£ej] (19

The current§™(r) andj,(r) are found from the diffu-
sion and continuity equations,

—E Sho jdzr[n”ee 13u(N+I-(NNy(N] (20
j=—DVn, (0—VDV)n=J,(r);

82K
12 =3 oro| Ol -nfE 0L @D
jfree: _ ﬁ(O)V r]free7 (w_ Vb(O)V)nfree:Jw(r), ® @
oty oty <(2) o In the above equations, the tens@sand D(® are under-
where J,(r) =e(e1—e'*2) 571 —1g). The diffusivity  sio04 to be always evaluated at frequengy not — . In

and resistivity tensors obey the Einstein relation going from Eq.(17) to Eq. (18) we were able to discard the
boundary term because the currents normal to the boundary
Daﬂ Kpﬂ',B’ (D(O)) = K;,(O) (13)  are vanishing, as described below. The f@@t) will now be

used for computing the action.
where « is the compressibility of free composite fermions.  The densityn,(r) is found by solving the diffusion equa-
(Here, “free” indicates the absence of long-range interactiontion in the half planey>0, with the boundary conditiop,
whereas the short-range interaction is assumed to be present— Dyydyn—Dy,dxn=0 at y=0. In Fourier components

and to give rise to the composite Fermi-liquid physics. ~ N(X,y)= Ekelkxnk(y) this becomes
The resistivity tensorg andp(® are related by the com- s T,
posite fermion rulé (a5 +a9)ne(y) =e(e'“1—e'2) 5(y —Yo),
A Dyyaynk(y)yﬂoz - iDyxknk(O)a (22)
Pap= Pa;§+477p—6a5 (14 where q=(k?*+ w/D,) Y2 After solving this elementary
boundary value problem we take the ligig— 0 and have
We remark that, in our notation, the diagonal tensor elements e(ei@t— glotz)
of the imaginary time conductivities, resistivities, and diffu- N, k(y)= me*qy. (23
XX

sivities have a sgw dependence om—see Secs. Il and 11l
for details. Consequently, we may writw)=—-D"(-w)  The expression fom™® is similar, up to changingD;;

andn,(r)=—n_,(r). to D).
Using these relations, one can simplify the expression for By inserting n and n™® thus found into Eq.(21) one
the action as follows: obtains
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e? |efeti—glotz|2 tivity is small, the spreading over a large distance takes a

S long time, and thus the action estimated as the collective

2h uk @ barrier height times the relaxation time is much larger
1 1 ) thant.
- - . (24 This argument fully applies to a composite fermion sys-
T HioyK Uig)q(o)"‘iffﬁ)k tem consisting of quasiparticles interacting via Coulomb as

ell as Chern-Simons fields. The tunneling consists of an

nstant process of adding one electron to the system and of
its subsequent slow reaction. The second, cooperative step
involving Chern-Simons and Coulomb field relaxation con-
trols the tunneling rate, while the first, single-particle step
. . occurs instantly and contributes only to the prefactor in the
a_ndw, Isa smooth fl_,lnct|on o:frxy: whereas the Seco”‘_j term tunneling curre);lt. Since for small bigs the relgxation process
gives rise to a cusp in the tunneling exponentgf=0, ie..  occirs on a large scale, one may describe it using the semi-
at v=1/2. Indeed, the first and the second terms of @4)  ¢|5ssjcal approach. However, the fact that the tunneling par-

correspond to the first and the second terms in @j.re- e obeys Fermi statistics is also important, and this will be
spectively. This means that the plateau in the tunneling eXp,cjuded finally, in our analysis.

ponent for 1/3Xv<1/2 arises due to the second term. Itis |4 what follows we treat the system motion under the
explicitin Eq.(24) that it is the second term that accounts for ¢gjjective barrier semiclassically as classical Coulomb and
the free composite fermion dynamics, and so the cusp at chern-Simons electrodynamics in imaginary time, find an
= 1/2 should be understood as a signature of the composi§stanton solution, and derive an expression for the tunneling

Note that this is precisely the expression for the action foun
in Ref. 8. Upon evaluating the integrals okeandw it gives
the result(1) in the limit oy,— 0 and a more general result
(2) for finite oyy.

Note that the first term in Eq24), after integration ovek

fermion physics. . _ rate in terms of instanton action. For that we generalize to
Let us mention, that the expressi(it#) for the action can  the composite fermion system the semiclassical effective ac-
be rewritten as tion theory introduced elsewhet.
S ¢ S E ! ! J). (25
=5 — ~— = . B. Constructing the effective action
2h 5 0\ |0-VDV »-VDOV ?

The effective action can be written in terms of composite
This formula can be taken as a hint that the problem offermion charge and current densitieér,t) andj(r,t), as
calculating the semiclassical action can be significantly simwell as the Chern-Simons gauge fieigl. The total action is
plified by a wise choice of the effective action and of a
compensating counterterm. This is exactly what our strategy
will be in the rest of the paper. Stotal= Scrt Scst Scontt Shee.- (26)

Il. EFFECTIVE ACTION IN D=2 In this section we motivate, define, and discuss different
parts of the actiori26) for our system.

Below we focus on the case of diffusive CF transport

Below we focus on the effect on tunneling arising due totaking place in the presence of disorder. Because the electri-
relaxation of collective electrodynamical modes. Semiclassieal conductivity is local in this case on scales larger than the
cal theory can be used to describe it, assuming that the timewean free path, this problem is simpler than that of ballistic
and distances controlling the tunneling rate are large. CF dynamics.

The adequacy of the semiclassical approach can be under- The assumption underlying our analysis is that the main
stood as follows. Tunneling in a strongly correlated systentontribution to the action of the tunneling charge arises from
involves motion of a large number of electrons: While only large spatial and time scales, and thus local deviation from
one electron is actually transferred across the barrier, mangquilibrium is small. Therefore, one can expand the action in
other electrons are moving in a correlated fashion to accompowers of charge and current densitiegr,t) andj(r,t),
modate the new electron. This collective effect becomes proand keep only the terms up to quadratic.
gressively more important as the bias decreases. At a small The contributionSc¢(n,]j) is defined to correctly repro-
bias V, the single-particle barrier traversal time is muchduce the equations of motion of composite fermions decou-
shorter than the relaxation time-7/eV in the electron lig-  pled from the gauge field, but interacting via the Coulomb
uid. Therefore, while one electron is traversing the barriepotential.[To be more precise, since composite fermions de-
other electrons essentially do not move. Thus instantly acribe interacting electrons in a magnetic field, the short-
large electrostatic potential is formed. The jump in electro-range part of the Coulomb interaction is included in the defi-
static energy by an amount much bigger than the leisls nition of n andj of composite fermions, so only the residual
means that right after the one-electron transfer we find théong-range part of the Coulomb interaction enters the action
system in a classically forbidden state undecdlective  Scg(n,j).] We considerScg(n,j) of a quadratic form con-
Coulomb barrier. In order to accomplish tunneling, thestructed using CF response functions. One can see that the
charge has to spread over a large area until the potential eéquirement of matching the CF equations of motion is not
the charge fluctuation is reduced bel@V. If the conduc- entirely sufficient to determine the action, e.g., because it

A. Qualitative discussion
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leaves freedom of rescaling the whole action or even its difwhereaso,,(i w) = oy, has no discontinuity. The same ap-

ferent parts corresponding to different normal modes of thelies to the components of the diffusivity tenddy, z(w).

problem. The coupling of composite fermion charge and current to
The exact form of the action can be determined in thethe statistical gauge field, (r,t) is described by the Chern-

following way® The action used to study the dynamics in Simons action in a standard way:

imaginary time is precisely the one that appears in the quan-

tum partition function. The latter action expanded up to qua- Seeei | at[ a2

dratic terms in the charge and current density must yield the cs~! r 47p

correct Nyquist spectrum of equilibrium current fluctuations: (3D

nag+j-a+ e*"™a,d,a, |.

w _ Here p is an even integer corresponding to the number of
((95.09% 0.~ ) = 0upl @l + 0uarDpplurder . (27 g guanta in the construction of composite fermions.

The charge and current densities entering Eg8) and

1) are not independent. They may satisfy a continuity
quation. For the tunneling problem we employ

Hereg(r)=j(r)+DVn(r) is the so-called external current. 3
In this article we are interested in the hydrodynamical regime,
of small frequencyw and momentuny, in which case the
conductivity and diffusivity tensors,; andD,; satisfy the N+ Vj=J(rt) 32
Einstein relationo=e?«xD, wherexy=dn/du=m* /2742 '
is the free CF compressibility. Generally, bathand D are
functions ofw andq.

Below we assume the isotropic conductivity tensor cha
acterized byr,, andao,, . Also, to make the expressions less
heavy, we often use the units=e=1 in intermediate steps
of calculation, and recovef ande in the final results.

The requirement of matching equilibrium current fluctua- Scont:if [n(r,t)+Vj(r,t)=J(r,t)]®(r,t)d?r dt
tions is essentially equivalent to the fluctuation-dissipation

where the sourcel(r,t)=ed(r—rg)[ s(t—ty)—o(t—t,)]
describes adding a composite fermion at the timeat the
rpoint ry and subsequently removing it at the tirheat the
same point. To handle this constraint, one has to put in the
action(26) the term

theorem. The action in imaginary time reads (33
with the Lagrange multiplier functio®(r,t).
1 o 2w . By Finally, to complete the action, one has to ensure proper
ScF=3 20): f f drdr'TgZ L (DK (@1, 1) gy (r") boundary conditions. We choose the coordinates so that the
2DEG occupies the half plang>0, so that the half-plane
+U(r—=r")n_, (r)n,(r")] (28)  edge coincides with th& axis. The boundary conditions at

the edge arise from the requirement that normal current at the
whereU(r—r") is the electron-electron interaction, and the edge vanishes:

kernelK (w,r,r’) is related to the current-current correlator

1 « B The corresponding part of the action is constructed by using
(Ko g)ap={G0,q8 iw,—q)) another Lagrange multiplier:

=oid(@) o+ ol (@)D (0)d. b . (29
Sb_c_=iJ de dtjy(x,y=01) (x,1). (35
Here 0(®(w) and D(®(w) are functions of the Matsubara
frequencyw obtained from the real frequency functions by Besides ensuring proper boundary conditionsyatO, the

the usual analytic continuation. The supersctipthere and term(35) is needed to make the total action gauge invariant

below indicates that the response functian® and D© with respect to gauge transformations of the Chern-Simons

correspond to the free CF theory, in the absence of couplin§eld - , .
to the Chern-Simons field and interactior(r;—r»). As remarked in Sec. | B above, we do not need to include

It is appropriate to recall here the general properties of thd the effective action a term expressing the effect of the
Matsubara conductivity, 5(e). By the symmetry of kinetic solenoid that appears in the .system.upon.the transf_ormatlon
coefficients, the dielectric function is an even function of ©f the electron into a composite fermion. Since we will work
Matsubara frequencye,g(iw) =€z (—iw) (see Ref. 22 N _thte fj‘o=,0 gauge, the . string phase factor
Relating it to conductivity by e, p(w)=8,5 EXHIf ao(t')dt'] of Kim and Wer® is absent.
+4mo,p(w)/iw, one obtains that the longitudineDhmic) As a validity check of the actiori26) let us derive the
conductivity is an odd function ob, while the Hall partis  dynamical equations. They are obtained by taking the varia-
an even function of». This means that the constant conduc-tion of the action(26) with respect to all variables excluding
tivity case actually corresponds to a discontinuityig(w)  the Lagrange multiplie(r,t). The resulting equations are
at w=0 of the standard form:

oI )= 0yy SN, (30) p@j=Ecs—VUn, (36)
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point of the action describing noninteracting composite fer-
5——Egs=e"P}’, (37 mions decoupled from the gauge field. Thus the functions
Niee @Nd j5ee CaN be found by solving Eq$36)—(38) with
~ U(r—r")=ko'8(r—r") and no Ecs and Bes. Supple-
TBcsszﬁ] (39) mented with the continuity equation that is present in the
effective action(26) as a constraint, the equations fof..
where Ecs=Vag+a and Bes=V xa are Chern-Simons andj e take the forms
electric and magnetic fields. The effective interactlonis ~
defined as jired T @)= —DOVng (1, 0),

(44)

U(r—r’)=U(r—r’)+Kié(r—r’), (39) wﬂfree(l‘,w)+ijree(l‘,w)=J(r,w).
0 The boundary condition for the systdd¥) is the absence of
whereU(r—r') is the electron-electron interaction arg normal current e aty=0.
=m, /2m/? is the compressibility of free composite fermi-  The result(43) is formulated and established below for
ons. BothU and p(® in Eq. (36) in general act as nonlocal local resistivity, because in this case the proof is more
operators. The boundary conditigp=0, according to Eq. straightforward. Itis possible, however, to generalize it to the
(37), requires that the tangential Chern-Simons electric fieldcase of nonlocal resistivitpfyog(r,r’). This requires more
vanishes at the boundarg;=0. general arguments which will be discussed at the end of this
Also, it is straightforward to check that eliminating the section.

Chern-Simons field leads to Ohm’s law with a corrected re- T0 prove the identity(43), we write the expressio(29)
sistivity tensor: for the kerneIR;l using gradients:

pi==V(Un). (40 (KoY =B+ (0 V D'V, (45)

Here -
where the operator convention is thet, acts to the right,

0 -1 @) whereasV, acts to the left. It is useful to introduce the
1 0 distinction betweerV andV and to keep track of it later, so

that we are able to invert the kerri¢],* and to evaluate the
expression in the first term of the acti¢®8) before doing
the integral over the half plane. In this way we can properly
handle boundary terms.
Inverting Eq.(45) and using the Einstein relation between
The nonlocal current-current term in E(28) makes a D,z ando,z together with the relation between conductivity
calculation for the problem in the half playe>0 long and 0,4 and resistivityp,z, one obtains
not too transparent. To circumvent this algebraic difficulty,
we derive an identity for the actio(28) that allows us to Pap = 1 .
replace it by an equivalent action with a local current-current Kep=— " Vo————=2=V;. (46)
term. w kow(w+VDV)
To that end, we introduce another CF action:

A~ A ph
=504 7
p=p e2

is the measured resistivity tensor. Note that the Chern
Simons interaction changes,, while p,, remains intact.

C. The fundamental identity

Consider the first term in the actid@8):

1 J 1
ot= — d2rd?r’| =% (npQr,r)jl(r’ ., 1,
F 2§ o - olDPap(h L) 0% Kapdo=— 0" wPap &
+U<r—r'>nw<r>nw(r'>}. (42)
-(V.g_,)————=—==(V-g,). (4
(V-g )Kow(w+VDv)( g.). (47)

where w is the Matsubara frequency. Herg{))(r,r")

:pgogg(r_r') is the resistivity tensor and) is defined by —Below we perform some manipulations with the expression

Eq. (39). (47), refraining from integrating over until the very end,
by the following fundamental identity: dients and boundary terms.

Now we substitute
SCF(nyj):Slglg(nvj)_slglg(nfreevjfrep)v (43

wheren(r,t) andj(r,t) arearbitrary functions satisfying the
continuity equation(32) and the boundary conditio(B4), in the first term of the right-hand sid®&HS) of Eq. (47), and
whereasns (r,t) and jgedr,t) correspond to the saddle find

gZ=j“+D"‘B(w)VBn (48
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L past = —1%apift —— [V (Vo)
59 0Pap%o= 1 Pap) KO—w[J N (V,n)j«]

1 cn -
+—n(VDV)n.

Kow

(49

To transform the second term of the RHS of E47), we
substitute

V.g=V:j+on—(0+VDV)n (50)
and obtain
—(V-g_, ——(V-g,
(V-9 )Kow(w+VDV)( %)
1
=— ——=J+ (Jn+nJd)
kow(w+VDV) Kow
———n(w+VDV)n, (51)

whereJ=V:j+ wn.
Finally, we add the expressiort49) and (51), and com-

bine the last term in Eq49) together with the second and

third terms of Eq(51). After doing this we find the resulting
expression

1 ] 1, 1
= [ gl P+ P —————J
w Ko Kkow(w+VDYV)

(52

1 o o
+Ko_wV“(J n+nj%).

Upon integrating this expression overand multiplying by

PHYSICAL REVIEW B4 075322
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FIG. 1. Resummation of the RPA diagram series for self-energy
for diffusive electrons. The black wavy and broken lines represent
dynamically screened interactions and bare unscreened Coulomb
interactions, respectively. The bubbles and triangles represent diffu-
sive polarization operators and vertex parts. The two wavy lines on
the RHS are defined in E@53).

1 U(k)
(w+Dk?)2 1+1II(k,w)U (k)

1 1 1

o\ DK+ w/[1+kU(K)] DK+ w)’
(53

as the difference between the propagator of an auxiliary in-
teraction and the diffusive vertex part, multiplied by *.
These two contributions are shown in Fig. 1 by the wavy red
and wavy green lines, respectively.

The self-energy diagram in Fig. 1 corresponds to interac-
tion via a dynamically screened Coulomb potential, i.e., to a
shakeup of a dissipative plasmon. This effect is described by
the hydrodynamical effective action introduced above in Sec.
Il, and so it is to be expected that the expression in the RHS
of Eq. (53 corresponds directly to the differencs'™
— 8¢ in Eq. (43).

On can rewrite the formulé3) in a quite general opera-
tor form, generalizing it for any interactiod , polarization
operatorlI(w), and vertex parV/(w), satisfying the Ward
identity IT(w) = xo[ 1— wV(w)]. For that, one represents the
vertex part in the formV(w)= (A + )%, and writes

1/2, the first two terms give corresponding terms of the ac-

tion (42), the third term givesS"gﬁ(nfree,jfreg appearing in

V(0)[1+UT(w)] *0V(0)

Eqg. (43), and the last term vanishes due to the boundary

condition (34), thus proving the identity43).
Having given a formal proof of the identit{43), let us
now point out the relation of Eq43) to the structure of RPA

1 1 1
= —| =< = = 1_,\ . (54)
O\ N+ o(ltkU) " ANo

diagrams in the perturbation theory for Green’s functions inThe formula(54) can be proved straightforwardly by ex-
the presence of disorder. To simplify the discussion, let upanding the fractions in operator geometric series, and sub-
ignore the CS gauge field, and consider the problem of elesequent resummation.

trons coupled only by Coulomb interaction. In this case, the One can view the formula&3) and(54) as a motivation
RPA self-energy?, can be represented graphically, as shownfor the identity (43). More importantly, the relation to RPA

in Fig. 1. In theD=2 problem the bare unscreened interac-diagrams, explicit in Eqs(53) and (54), demonstrates the
tion, represented in the figure by a thin broken line, isgeneral character of the identit43), which is not evident
U(k)=2me?/e|k|. The diffusive polarization operator is from the way it is justified above. Comparing to E¢S3)
I1(k,») = koDk?/(w+Dk?), and the diffusive vertex partis and(54) makes it clear that the identit@3) is robust under
1/(w+Dk?). One can verify, by performing a resummation, changes in the geometry of the system, alterations of the
that the dynamically screened interaction, shown in Fig. 1 byooundary conditions, and addition of more complicated in-

a thick black line, can be represented as follows:

teractions such as the CS gauge fields.
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The analog of Eqe53) and(54), and thus of the identity 1
(43), holds even for ballistic Fermi-liquid dynamics. In this S=2 f dzr(Ewaaﬁ(w)vaduw(r)vﬂ(bw(r)
case, according to the microscopic theory of Fermi liquids,
1= kok- v/(k-v—w) andV=1/(w—k-V), and the operators 2
act on the particle-hole distributions on the Fermi surface. + —~<I>_ﬂ,(r)<I>a,(r)> +i | dx dtd(x,y=0,)I(x,t).
For a Fermi liquid, the formuld54) holds withA = —k-v. 2U

(57)
Ill. THE D=1 ACTION FOR SHORT-RANGE In handling the source terrd we assume that the poing
INTERACTION =(Xp,Yo) at which charge is injected is very close to the

boundary, i.e.yo— 0, and thus the source in EGR7) can be
effectively placed at the edgd(x,t)=ed(x—Xg)[ 6(t—t;)
In this section we consider the simplest model of short— 5(t—t,)].
range interactiond(r—r’)=U4(r—r"), and diffusive CF Finally, we integrate out the bulk value df(r,t). From
transport described by, s(r,r')=p,zo(r—r’). Eq. (57) the equation fod aty>0 is
We shall start with the actio,, given by Eq.(26) in
the half plane and derive an effectiiie=1 problem by in- )
tegrating out the dynamics in the bulk, and keeping only the T @) V2D (1) += D, (r)=0. (58
variables at the edge. Since the acti@8) is quadratic, the U
integration can easily be performed by the saddle poinit js convenient to use the Fourier transformdf,(r) with

method. _ _ respect to variable only:
From now on we replace the CF actiB) by the action

(42) with a local current-current term. The virtue of doing

A. Integrating out variables in the bulk

this is that the actiott42) is much easier to handle, whereas ‘Dw(X'Y):; D, (y)e". (59
the identity(43) allows us to go back to the physically mean-
ingful action (28) at the very end. Note that Fourier transform ig is not suitable because we

First, it is convenient to integrate out the Chern-Simonsare dealing with the boundary value problem in §e0
gauge fielda,, , both in the bulk and at the edge. We do it by domain.
fixing the gaugeao 0. Upon integration ovea, the CF Then the solution to Eq58) is straightforward:
resistivity tensopalg turns into the electron re5|st|vny tensor

(41): pyy= p(0)+ ph/e?, p= pXX . The action acquires the _ M@Ky 2 2 |l
form 6 L& s with Puiy)= P i(y=0)e 4, k) =K+
(60)
1 : u After substituting Eq.(60) into (57), one obtains eD=1
SZ% fdzr(ZJa,—wpaB(w)Jﬁ,w—i_gn—a)(r)nw(r) action: g q( ) ( 7)
+ Seontt Spc.- (55) 1 _
o The 5= Slowlelao.K)+i0okld o, bux
Then we integrate out andj in the bulk, keeping fixed the
normal currenfj, at the edge. The result is I —w,~K) b, k. (61)

where we put Eq(61) in the Luttinger liquid theory form in

1 terms of the boundary fieléh(x,t) =d(x,y=0,t) introduced
s=> dzf(zw%ﬁ(w)va@w(f)Vﬁ‘bw(f) above as a Lagrange multiplier.
© This effective action represents a generalization of the
w2 chiral Luttinger theory of edge modes to the compressible
+—=D_ (1D (r)+iD(r,t)I(r,1) problem with finiteo,,. Because of the relation betwegn
2 and w, the dissipative term in the actig6l) is nonlocal in
the time representation. In the incompressible lirait,
+if dx d{ D (x,y=01)— $(x,1)1jy(X,y=01). —0, we recover the standard chiral Luttinger action:
(56) S= '—Vf Oucb dyb dX dt+ij I pdxdt (62
4or) X7 '
Hereo(w)=p Y(w) is the electron conductivity tensor. The | the above derivation we ignored effects of the boundary
frequency dependence of w) is the same as that of{ w): compressibility. Taken into account, these effects lead to an
Tux(©) = 0y SON, Tyy(w) =0y, etc. additional term of the formf(d;¢)2dxdt which does not
The next step is to integrate ovg(y=0), which gives affect the long-time dynamics and drops from the final an-
O (x,y=0;)=¢(x,t). Hence, the action is swer for the instanton action derived below.
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B. Instanton action 1 |J(w)|2
S

The source term in the actigél) describes coupling of (66

the tunneling charge to the field(x,t). Thus, the electron o ] ) ~ 1
creation operator can be written asyf(x,t)  The substitutiork=Ky sinh X with ko= (|@|/ o)™ sim-
= yL(x,1) 4D whereyl(x,t) is the operator of a com- Plifies integration ovek:

posite fermion, ane is the electron charge. Let us point out 1 13(w)|? [ (€°+1)dx

the resemblance of the exponenti#i?*! to the standard S=-> , (67)
one-dimensional Luttinger liquid expression. 45 ol o€+ o*

Tunneling is related to the electron Green'’s function. Towherea:crxeriax . The integral(67) is taken in the do-
find the tunneling rate, we evaluate the equal point Green's,ain _Xmax<x<xr:aX1 and gives an ultraviolet logarithmi-
function G(7) =(#(041) #'(0t2)) ¢, -+, of an electron. Us- cally divergent answer which we cut &= KoXimax:
ing the above relation ofy and ¢, we write the electron

T2 £ [ol(0pdTiogksgne)

Green’s function in terms of the CF operators and then make do 5| Pxx 4kﬁ1aanXU 1
a factorization approximation S= mw(‘”” 8772'” [o] + mpxyaH :
68
(W01 91 (012)) = (Yo Ot1) Y OL,)) _ _ _ - 9
Note that this expression does not vanish even in the absence
><<ex;{if Jx,0) b(x,1)dxdt > of |nteraF:t|on W-Ith the Chern-S|rI10nsif1|eId .an-d glectron—
electron interaction, whep=0 andU =k, ~. This indicates

(63 that part of the answer represents the contribution of nonin-

teracting composite fermions and must be subtracted off.

where the first and the second averages on the right-hanghis syptraction happens automatically because of the iden-
side are taken over the fermionic ground state and over ﬂucﬂty (43), which confirms that the correct action is indeed
tuations of the electric and CS gauge fields, respectiverS_Sree_

This approximation holds because the dynamics of the in- §no"can see that the countertein, is indeed related to

jected quasiparticle and of the collective charge relaxation, . effect of free composite fermions. The physical origin of

mode are decoupled in space and time. The CF quasiparticlgs, jiraviolet divergence &, is that for free fermions the
and edge magnetoplasmons differ both in the rate of penetraa oy ation is fast and involves large momektak, . On the

tion into the 2DEG bulk and in the velocity of motion along e hang, the contribution resulting from the interaction
the edge(cf. the discussion in Sec. 1)B should not diverge at large momenta.
Thus the imaginary time Green’s function can be written To find S—Syee, We subtract from Eq(68) the same ex-
ree: ¢

as pression withp=0 andU =k, *. Integrating the difference
) over w, we getS— Sqee= (a—1)Int/ty, wherety is a micro-
G(7)=GcH(7) exr{ [ f J(X,t)¢>(X-t)dth) scopic time of the order of the scattering time, ani$ given
by
= GCF( T)e*[s(f)fsfree(f)], (64) )
e
where G 7) is the Green’s function of a free composite a=1+ ﬁ[ Onpxy— H(HO)P(X(;)]
fermion injected and later removed at a point of the bound-
ary. In the last term of Eq(64) we used the identity43) e%pyy 0)
relating the average oveb(x,t) in (exp(/I(x.t)p(x,t)dxd)) L1+ kU)o ], (69)

to the action(61). - ) )

According to the CS Fermi-liquid theory, in the effective Where 6y =tan “p,y/py, is the Hall angle U is the short-
composite fermion mass approximatid®er(7) = 1/7. This ~ range interaction, ando=m, /274 is the free CF com-
essentially free fermion result holds even though the gauggressibility. The behavior o& as a function ofp,y is dis-
field fluctuations give rise to infrared-divergent logarithmic Played in Fig. 2. _
correctiond?® to the effective masm, , because these cor- ~ T0 Verify that « is the tunneling current exponent, we
rections are canceled by corrections to the residd the ~ Write the electron Green’s function &84), where the free
Green’s function. composite fermion Green’s function Gee(t)~t~1. There-

The tunneling current is obtained froB( 7) in a standard ~fore, the Green’s function i&(t)~t"“. One can compute
way. One has to continud(7) from imaginary to real time, the tunneling current from Eq(65), and obtain the power

and to do the integral over time: law 1(V)~V*. The expressioni69) shows that the shakeup
effects suppress tunneling in a uniform fashion for the filling
o egleVt factorsv both on and off the quantum Hall plateaus. Thé
I(V)~Imfo G(1) t dt. (65) curve is given by a power law with the exponent depending

smoothly on the filling factor, via the resistivitigs,, and
Now, we evaluate exp([JI(x,t)p(x,t)dxd)) using thelocal pxy, and effective interactioroU.
action (61). By a Gaussian integration, the resultdsS, One can compare this result with the chiral Luttinger lig-
where uid theories of tunneling into the edge of an incompressible
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the identity(43), these contributions arise from the local ac-
tion S, and the counterterrsie®, respectively. It is easy to
see that there is a direct correspondence between our action
Sie @and the hydrodynamical actions**®*In our ap-
proach, the role of the countertei§f" is to ensure that the
Green’s function of free composite fermions agrees with
Fermi statistics. From that point of view, the plateaulike

: : : : : structure ina(v) is a manifestation of the role of composite

0 | fermions as underlying quasiparticles of the QH state.

IV. MODELS WITH A LONG-RANGE INTERACTION

FIG. 2. The tunneling exponent for the mod&9) with

short-range interactionU(r—r’)=Ud&(r—r’), where k=«

=m, [2mh?. We assumed above that the interaction has a short range.
é)ue to the long-range character of the Coulomb interaction,
electromagnetic modes in a real system are very different
from those considered in Sec. lll. Hence the effect of
shakeup of these modes on tunneling is also somewhat dif-
; : . : ferent. In this section we extend the method outlined above
<1/4, etc., interpolated by straight lines with the slope 2. A’[,[0 the problem with Coulomb interaction, and consider sev-

trgi Tg'gp?r:g'E'nt?.;rzit:fms.gjhnééggs _1% ;V:e rt?fsovsrbtshti £ral situations describing screening of the interaction in the
u u 2' g(o) qui ~Orles. tis, SUDSHIt overgrown cleaved edge system, as well as the unscreened
pxy=(p+1/)h/es, p =h/né€? in the expressior{l), and

1t ann) s . : Coulomb interactio?
getl~V , which agre\:/sz with the universal tun- 4/ the Jong-range interaction, the method of deriving the
neling exponents predicted by Weand by Kane, Fisher, gfactive action for the edge outlined in Sec. Ill can be fol-

and Polchinslé for Jain filling factors with positive and lowed without any change up to E€G6), which in this case

A. The action for the edge mode

QH state. For that, one has to consider the limit of a larg
Hall angle: 6= 6{")=7/2. In this casep,—0 and the ex-
ponent(69) acquires the form(1) corresponding to a stair-
case with plateaus in the intervals #/3<1/2, 1/5<v

negativen. . takes the form
It is interesting that the tunneling expondtj has cusp-
like singularities near the compressible ratiomalwith even 1

> 2[00 5(0)V D, (1)V 5P (1)

denominator,y=1/2, 1/4, etc. The origin of this effectisa S= 5
w y>0

gualitative change in the structure of the edge modes near
these filling factors. In particular, let us discuss the vicinity Hid(r,0)I(r,0)]
of v=1/2, where the quantum Hall state can be described as
a Fermi liquid of composite fermions carrying=2 flux 1 , ~ , ,
quanta each, and exposed to “residual” magnetic fiéR ts ; J J d?rd?r’ w?®_ (N0 H(r,r )@, (r")
=(2—v~1). At v<1/2 the residual field direction coincides
with the total field, and all edge modes propagate in the same ,
direction. On the other hand, at-1/2, the structure of the +'j dx d{P(x,y=01)—=o(x,D]1x(x.1), (70)
edge is qualitatively different, consisting of modes going in
opposite directions. This effect makes 1/2 a singular den-  whereU ~X(r,r’) is the inverse of the interaction kernel, and
sity from the point of view of the tunneling exponent. the notation
The singularities av=1/p are smeared in the presence of
scattering by disorder, i.e., at finiie,. Interestingly, the X0 =jy(x,y,0)]y=0 (71
deviation from the staircase described by the expresdipn
due to effects of ﬁnite)xx can be either positive or negative, is introduced. It will be convenient now, instead of integrat-
depending on the interaction strengiflJ (see Fig. 2 Inthe  ing over jy(x,y=0t) as we did above, to keep it as a
absence of interaction, &1=0, the tunneling exponeny ~ dynamical field.
<a(py,=0). On the other hand, at large interactiom, Let us note that in the interaction term in EJ0) the
>a(py=0). integral overr andr’ goes over the whole plane, not just
It is instructive to compare the resungg) and (1) with over the half plan@f>0 as in Sec. lll. The reason is Simple
the exponent a=1/v found using hydrodynamical to understand by writing the relation betweénandn:
approaches1%14in which the edge dynamics is modeled
as a charged fluid, without any additional inner quasiparticle _ ~ , I 42
degrees of freedom. Our expressia6$) and (1) have the wb(r)= j />OU(r,r In(rd, ('3
form of a difference of two contributions, the first of which is _
essentially 1 with small corrections due to finite,,. The and observing that for long-rande the field ®(r)#0 for
second contribution is expressed in terms of the respondgothy>0 andy<0.
functions of free composite fermions, and it is this term that To proceed with deriving the effectivi® =1 action, we
leads to nonanalyticity and plateaus difv). According to  decompose the conductivity tensor into the diagonal and off
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diagonal partsg ,5(®) = 0,,SGNW 8,5+ 0yy€ 5. The off di- We postpone the discussion of the probled?)
agonal conductivity term in Eq(70) is a full derivative and proceed with deriving the effectiv®=1 action.
because The integration over ® (r) simply adds the term
35k ol @] TTQ (K, @) X k- wXk o tO the actionS;p given by
6aﬁva¢—w(r)vﬁq)m(r)=Va[EuzB(I)—w(r)Vﬁq)a)(r)] Eq (75)
(73 Finally, we integrate over the fielg(x,t), and obtain the

. . . total action in terms of the boundary fielb( x,t):
As a consequence, this term is converted into the boundary y fiel(x.t)

term expressed in terms df,_,(X,t) = ¢(x,t), and the total 1 _
action can be written as 3:2( E[Uxx|w|Q(ka)+|nywk]¢fk,fw¢k,w

Stotal= S2pt S1p, (74) +d k- wdkw- (79
where This action, in which the functio®(w,k) has to be found

by solving the problem77), represents the analog of the
action (61) derived in Sec. Il for short-range interaction.

Using this action for calculating the Green’s function goes

in complete parallel with Sec. lll. The resulting Green’s
dtdx (75  function is G(T)ze*SIGE;OF)(T), WhereGE;OF)_(r)zr*l is the
free CF Green'’s function. The saddle point actigrby vir-
tue of the identity(43), can be written asS=S'""°—S{%.,

1
‘S‘lD:i f (ngyax(ﬁ* (X!t)at(ﬁ(xat) + ¢(X,t)J(X,t)

+ [CDy=0(X,t) - ¢(X,t)]X(X,t)

and where S'°¢ and S'f?ge are found by taking an appropriate
1 saddle point of Eq(79). The result is conveniently expressed
SZDZE 2 ( Jy>0|w|gxxvaq)w(r)vaq>w(r)d2r in terms of a “spectral weight’A(w):
()= 1 Jw 24 dw
+J f wztl)w(r)U1(r,r’)(1)w(r’)d2rd2r’>. (1)="7exp - 0 [3()] (w)477h|w| ’
(76) J(w)=e(l—e'*7). (80)

We included the source terdin S;p by placing it at the Here A(w) is defined as
boundary y=0 and accordingly added the term

i p(x,1)JI(x,1) to Eqg.(75), simultaneously removing the term % 1
i®,(r)J-,(r) from Eq.(76). ' _ Alw)= | ToQlkw) Fiogk
Now, one can integrate over the fiel® ,(r). This
amounts to taking the saddle point 8f;, i.e., to solving 1 dk
the problem — —, (81)
0;3)Q<°>(k,w)+ia;‘yk) G

_ 2 .
| 0] TP (1) +on(r) =ixo(x)o(y), whereQ(k, ) is defined by Eq(78), andQ(®(k, w) is de-

7" termined from Eq.77) for U(r,r')=xy*8(r—r’), which
w®(r)= f U(r,r)n(r")d?r’ corresponds to noninteracting composite fermions. While de-
y=>0 riving Eq. (81), we replacedr,,wk by 0| w|k in the action
(79), which does not change the integral in Eg1) because

in the domainy>0 with the boundary conditiod,®,_, 2 sign change ol can be accommodated by a sign change

=0 which corresponds to the absence of current normal tO
the edge. This problem describes the response of the charges_~ . .
in the conducting half plane to the external charge source The relat_|on betW(_aen the tL_mneImg exponenand the
Xo(X)8(y). The solution of this problem taken at the bound-SpeCtraI we|ghb4(hw) IS mo]:sthsmple whgnﬁt dogs nqt de-
ary y=0 can be written as some linear operator applied t end onw, as |n_t € case or's ortrange interaction discussed
the sourcey,(x). In terms of Fourier components one has In Sec. lil. In this case, simply=A-+1. A frequency de-
pendentA(w) can be interpreted as an energy dependent
i tunneling exponent

| @] o

(I)yZO(kvw):Qil(k!w) ’ (78)

a(w)=A(w)+1. (82
which defines the functio®(k,w) playing the key role in  This interpretation is meaningful only if the dependence of
what follows. Interestingly, there is no dependence in thed is sufficiently weak. This will turn out to be precisely the
problem(77) on o, whatsoever, because the correspondingcase below, for the problem of long-range Coulomb interac-

part of the action is a boundary term, and thus it belongs tdion, in which A(w) varies withw not faster than logarith-
the boundary actiofi75). mically.
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In what follows we consider the probler(r7), find
Q(k,w), and evaluate the spectral weigBtl).

B. Solving for Q(w,k)

The problem(77) that has to be considered in order to

find Q(w,k) involves a long range kern&(r,r’) and, in

general, requires solving an integral equation. This equation
is defined in the half plang>0, and thus cannot be treated

PHYSICAL REVIEW B 64 075322

jump aty=0. The value of the jumpb(y=+0)—-®(y
=—-0)=—Al|w|o,y, and thus the boundary valugb(y
=+0)=FA20|0y.

The formal solution of Eq(86) can be written in Fourier
components:

UK)[igA+ix.(k,q)]
|o|[ o]+ oxnk?U(k)]

d (k)= (87

by simple tools. Generally speaking, one has to treat it by thgvherek = (k,q), and

Wiener-Hopf method.

However, there are special cases corresponding to inter-

action screened by a mirror image in the regipd0 that

can be handled by the Fourier transformation. Below we

consider three models:

2 2

~ e
modelV—-V': U(r,r')=

e|r—r’|_e|r—r”|

1
+—48(r—r'); (83
Ko
- e? e?
modelV+V': U(r,r')=
elr—r'| €r—r"
+—48(r—r'); (84)
Ko
_ 2 1
modelVy: U(r—r’")= +—5(r—r’). (85
elr—r'| ko

Here the point” is a mirror image of ' with respect to the
edgey=0:r'=(x",y"), r"'=(x",—-y’).

We start with the modeV —V’ because it is simpler, and
also because it directly corresponds to the overgrown cleaved

edge system where screening of the tyg® occurs due to

2mre?

—_—t+ —.
E(q2+ k2)1/2 Ko

The constanA is determined from the boundary condition:

U(k)= (88)

dq_

- |w|0'xxiq E_

2P, (y—0)= J iq(cl)w(k)
(89

where the second term in the integral is inserted to cancel the
jump of ® aty=0.

Substituting® from Eq. (87), evaluating the part of the
integral (89) containing x,(k,q) in the limit y,—0, and
simplifying the other part, one obtains

j*‘"(k"“ﬂ:—AJ || +oU (kK dg
a 2 |0l + o0 (k) (K +q?) 27
(90)

Now, note that the LHS of EQ.(90) is equal to
i[xwx(Y)dy=ix, k. the one-dimensional source density,
and the value ofb aty—0 is just given by—A/2|w| oy, as
discussed above. Hence, it follows from E§O) that

|o|+ o, U(K)K2  dq
||+ oy U (k) (K2+q?) 27

Q(w,k)=2 (91)

the charges induced in the doped region. One can transform the special case whdﬁ(k) is a constant, the resul91)

the problem(77) in the half planey>0 to a problem in the
full plane by extending the function®, n, and y to the
negative half planey<0 with a sign change®(x,—v)
=—-®(x,y), n(X,—y)=—n(x,y). Similarly, the source in
Eq. (77) must be extended so thgt, (X, —Y) = — x,(X,y). In

that, the sourcg ,(X,y) is assumed to be located not right at
the liney=0 but somewhat away from it, so that the depen-

dence ofy in Eq. (86) below ony is given by x,(X,y)
=Xo(X)[(y—yo) — (y+Yyp)] with a small y,>0. The
limit yo— O will be taken at the end.

Upon extending the problem to the whole plane the inter-
action (83) has to be replaced by the unscreened interaction

(85). Then the problent77) takes the form

(—| 0|0V 2+ 02U YD (N =A8"(Y) +ixu(X,Y),
(86)

whereU ! denotes the inverse of the operator with the ker-

nel (85).
The termA&’ (y) is inserted because the functidn,(r),

agrees with the expressi@60) for q(w,k) found in Sec. lll.

The integral overg in Eg. (91) for U of the form (85),
(88) can be evaluated exactly. We will only need the result
for small [k|<r !, wherer = e/27k, is the screening ra-
dius of the 2DEG. In this limit,

2k

Q(w,k):? +(1-ad)F(a)|, (92

|2

aln| —
rslk|

wherea= wel2moy,K, and

(1—a® Y2 arctan/a?—1 for a<1 93
= (a2—1)"Y2In(a+Ja?—1) for a>1. )
The expressioni93) has no singularity att=1. The behav-
ior of F(«a) as a function ofa is such that-(a<<1)= /2,
F(a>1)=a tIn2a, F(1)=1.

The next step is to substitute this expression in(BE) to
determine the spectral weightf( ) and the instanton action.
The resulting tunneling exponent(w)=A4(w)+1 has a

extended frony>0 toy<<0 with a sign change, must have a weak frequency dependence. This is demonstrated on Fig. 3,

075322-14



EFFECTIVE ACTION OF A COMPRESSIBLE QUANTUM ... PHYSICAL REVIEW B4 075322

35
34"
33l
32|
31|

(X/ 3]
29|
28|

compare the graph in Fig. 4 directly with the experimentally
measuredr. One can arguésee Sec. V belowthat the den-
sity near the edge exceedg, by 20—30 %. Taking this into
account, one has to rescale the slope of the experimentally
observed dependence=1/nvy,, and to compare the
curves in  Fig. 3 with the dependencea
1l =(1.2—1.3)oxye2/h. This agrees reasonably well with the
26l average slope of the curves in Fig. 3 in the interval d,,
W RS SIS UL E SN _ <4 studied experimentalfy*’
1 1 Of course, a more important issue is whether there are
plateaulike features in the experimental depender(eg. In

FIG. 3. The tunneling exponent(w)=.A(w)+1 for the mod-  the experimefita straight line is observed, without any sign
elsV—-V’, V+V’', andV, [see Eqgs.(83), (84), and (89)] at v of plateaus. More recently, however, it was found that some
=1/2 as a function of frequenay. The frequency is measured in Samples show signs of a plateau near1/3. Upon rescaling
units of wy= koe*. For the modeV -V’ the frequency dependence of the filling factor by 1.2—1.3, this corresponds iQqge
of a is much weaker than for the modéls- V' andV,. Note that  between 1/2 and 1/3, which is exactly where the middle of
even in the latter two cases the frequency dependence is quite wegtke plateau in Fig. 4 is located. However, the matter is clearly

logarithmic at most. not yet resolved, and more experimental studies would be
very welcome.
where « is plotted as a function of frequency for » There is one other type of interaction for which the prob-

=1/2. In the two other modelg84) and (85), discussed be- lem (77) in the half plane is tractable by Fourier transform. It
low, the frequency dependence @fw) is somewhat stron- corresponds to the model+ V' above, defined by Eq84).

ger. This is quite natural because in the modetV' the The interaction(84) describes the situation when image
interaction is to some extent screened by image charges, afiarges are of the same sign as the source charges. Despite
the results are expected to be closer to those for short-rand¥ing unphysical, this problem is still worth attention, be-
interaction, wherex(w) has no frequency dependence. Simi- c2use the solution is very simple and has behavior qualita-
lar difference between the effect of screened and unscreendifely different from the modeV/—V’. Physically, this prob-

interactions on tunneling is known for the diffusive zero-bias/€™ iS similar to the one of unscreened interaction which we
anomaly'®% discuss below.

The modelV—V' is closer to the experimental situation  Starting with the interactior(84), one can extend the
than other models studied in this paper, because it treats jfroblem to the full plane, now in a symmetric wai(x,
teraction as long ranged, and accounts for screening in the ¥) = ®(x,y), etc. Upon doing this the interactidB4) has
doped region. Thus, it is thé—V’ model that is interesting to become unscreened, of the folsfk) given by Eq.(85).
to compare to experimeff’ The tunneling exponent cal- Then the solution is straightforward in Fourier components:
culated above can be plotted versyg (see Fig. 4. Experi-

mentally, the parameter controlling occupation of the Landau 2iX 0k
levels is the magnetic field, and so the experimentally mea- q)w(k):| o Kot 020K (94)
sured a« are shown iR®7 as functions of vy @1 Tt T @

=B/®onzpeg. However, at large Hall angley,<pyy, and  This form automatically satisfies the boundary condition

away from incompressible denS|t|&52,pr/h is quite close d,®(y=0)=0, becauseb is an even function oy.

tov L _ _ _ _ The function Q(w,k) is found by evaluatingd at the
Also, it would be incorrect to ignore the difference be- houndaryy=0:

tween the 2DEG density in the bulk and near the edge, and to

QX k)—lf 9 ~ 2 R
= pa=120p, ] e PP+ K2+ |w|lonU(k) K @

6l1__p fl’l"P .......... i ——— (95)

whereF(«) is defined by Eq(93).

Again, we now substitute this expression in E§0) to
calculate the instanton action. The resulting tunneling expo-
"""" nent a(w)=A(w)+1 has a logarithmic frequency depen-

—= e : e dence, as shown in Fig. 3. The origin of this logarithmic
0 ; : : : | dependence can be traced to the zero-bias anomaly in a dif-
fusive conductof>'® On Fig. 5 we plota as a function of
pxy for several values of». One notes that the valuesin

FIG. 4. The tunneling exponent for the modét V' [see Eq.  Fig. 5 are somewnhat larger than those for the madelV'

(83)] corresponding to Coulomb interaction screened by the dopein Fig. 4. This is due to the “antiscreening” in the model
region in the overgrown edge system. V+V’" which enhances the effect of the long-range part of
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We will be solving Eq.(97) in the domainy>0 with kandw
being parameters. Hence, for simplicity, below we suppress
the dependence oé andk and used(y), U(y), etc.

It is convenient to integrate in E¢Q7) by parts using the
boundary conditiomy<1>(y—>0)y<y0=0, which gives

(=) | uly-y 00y )y + u(y)

pxys 5 =iYU(y—Yo)— d,U(y) P, (98)

where®,=®(y=0). The form(98) of the problem is most

FIG. 5. The tunneling exponent for the modét V' [Eqg. (84)] . - . .
corresponding to Coulomb interaction in the presence of an “anti-s’u'table for applying the Wiener-Hopf method to which we

screening” due to image charges in the doped region of the sam@oW propeed. . . i
sign as the source charges. The first step is to perform Fourier expansion ®fy)

with respect to the coordinate:
the interaction in the dynamics. Qualitatively, the behavior of
« for the modelV+V' is similar to that for the modeV/, _ iqy
discussed below. *) zq: ere() ©9

Since the integral in Eq98) is taken over’ >0, in order to

rewrite it in terms of®(gq) we decomposeb(y) as d(y)
Here we consider the mod#&l,, describing unscreened =@ _(y)+®_(y), nonzero fory>0 and y<0, respec-

Coulomb interaction(85), i.e., in the absence of image tively. One can assume thdt-(y) and ®_(y) decay aty

charges of any kind. The strategy will be to derive an integral_, + » gnd verify it later, when a solution is found. In terms

equation for®,, ,(y) and to deal with it using the Wiener- of ¢_ andd_, Eq.(97) becomes

Hopf method. Our approach is similar to that employed by

C. Wiener-Hopf problem for the model V,

Volkov and Mikhailov in a study of the edge w(@-(q)+P_(q)+(k2+g?)U(q)P-(q)
magnetoplasmorfS. o
We start with the probleni77) written in Fourier repre- =iu(q)(ye 'Yo—qd,). (100
sentation with respect ta. Nondimensionalized, the first ] ) ) o
equation of(77) reads Here the Fourier transformed interactiti(q) is given by
Eg. (88). In what follows we set/,=0.
(kz—35)‘I’w,k(Y)+,unw,k(Y):i}w,k5(y—yo)- (96) The functions®-(q) and ®_(q) have nice analytical

_ properties, namelyp _(q) is an analytic function ofj in the
whereu=|w|/oy andx= x/(|w| o). As in the above dis- upper complex half plane lop>0, and® - (q) is analytic in
cussion of the modeV/—V’, it is convenient to place the the lower half plane Ing<0. To make the discussion below
sourcey at a small distancg, from the edge, and take the more transparent, we denofe. (q) by ®_(q) and®_(q)
limit y,—0 later. by @, (g), where= indicate the half plane of analyticity in

Posing the correct boundary condition for E§6) re- 0.
quires a discussion. The absence of normal current at the Now, Eq.(100 can be written as
edge means that,®(y=0)=0. On the other hand, by inte-
grating Eq.(96) from the edge to the source, over the K(@)®_(q)+ P, (q)=R(q), (10D
small interval Gsy=<y,, from current conservation one ob- \yhere
tains dy®(y=Yo+0)y 0= —iXKk- Therefore, in the limit
Yo—0 the boundary condition is written ag®(y—0)
= —i}}w,k. This condition defines completely the boundary
value problem in the region of interegt>y,—0. However, _
without any loss of generality, it will be convenient to as- I ~
sume that near the very edge, fok@<y,, the normal de- R(a)= ;U(Q)(X_QCDO)' (103
rivative d,® vanishes. ' . _

Now, by performing convolution of Eq96) with U,(y) ~ The next step is to decompo$gq) into the ratio of two
= [ U(x,y)dx, remembering thah,(y<0)=0, and us- functions which are analytic in the upper and lower half
ing the second equation 677), we transform the problem to Planes, respectively,

1
K(g)=1+ ;(k2+qz)U(q), (102

_ X4(q)
X (q)’

fy,>0uk<y—y'><k2—aj)cbw,k(y’)dy'+w1>w,k<y> K(a) (104

=i XuxUk(Y—Y0). (97)  where
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X+(q) ! fm dd’ InK(q')|. (109
+ =exp —— —INn .
=4 217i -=q'—q¥i0 q

The asymptotic behavior oi.(q) at |g|>2wkyle is

X (@) =(a+ilk])/x,  X_(aq)=N/(gq—ilk]), where X
=VMKQ.
NOV\?, Eqg. (100 turns into
®.(q)  P_(q)
X (@) "X () L@ (108
where
_R(q)zi(}—q%)( 11 )
YOZ5 @~ e (X (@ X(@)
(107

Now we decomposél(q) into the sum of two functions
with appropriate analytical properties:

V(q)=V,(q)-V_(q),
(108

1 (= dd
Yo()=5—

- ——WV(q).
2’7T| —mq,—q:io (q)

The standard Wiener-Hopf reasonthghen leads to

O (=X (V¥ (q), P_(q)=—=X_A(DPV¥_(q).
(109

Fourier transform of Eq(109 gives ®(y) for y<0 andy
>0.

It is not difficult to find ¥ .(q) explicitly. For that, one
has to substitute Eq107) into the Cauchy integral in Eq.
(108), which gives

v (-~ dg’  i(x—qPo)
7Q)——ﬁ T >
»q'—q+i0 g°+k

;_;>
X_(q) Xy(a))’

and a similar equation fo¥ . (q). Now, we close the inte-
gration contour in Eq(110) in the upper or lower half plane,
depending on Wheth@K;1 or X_! is to be integrated, and
evaluate the integra{110) using residues. Having found
V¥ _(q), and then using Eq109 to go back tod _(q), we
obtain

X

(110

i(x—a®o) X_(q)
[OI8 =
@~z e "
1 x+ilkldg 1 x—ilkl®g
ikl +a X_(=ilk]) " ilkl—a X(i[k]) |
(111

Several remarks are in order about the reglitl).
First of all, let us verify thatd _(q) is analytic at Inqg

PHYSICAL REVIEW B4 075322

(117) that the residue for this pole is zero. From analyticity at
Img<0 it follows that®(y<0)=0, as it should be.

Next, let us verify that the boundary valde, is repro-
duced correctly. For that we expand Ed11) in inverse
powers ofq at |q|—o:

P _a b + 112

W= 2 (112
Since ®(y<0)=0, one simply hasb(y—+0)=a. To
evaluatea, only the first term of Eq(111) is important, be-
cause X_(q—=)=\/q+0(q~?), where A=k, and
thus the second term of E¢L11) does not contribute ta.
From the first term one obtaires= &, as expected.

After these consistency checks we can proceed with find-

ing the relation betweef® and’. Conservation of current
at the boundary=0 for the problem(96) implies d,®(y
—0)=—iy. On the other handy=3,®(y—0) in the ex-
pansion(112). By carrying out the expansion of the result
(111) up to the ordeq 2 to obtainb, and then setting up the
equation—iy=b, we have

~ 1

I x—ilkl®y  x+ilkl®g
X=X oNIK]

X[k X_(=ikD ]’
(113
where \ is the coefficient in the asymptotic expansion of

X_(g—) defined above. This equation can be rewritten in
the form

_ix Xo (i [k =X (—ilk])
O K] X (KD +X_(=ilK])
According to Eq.(78), the relation(114) definesQ(w,k) in
terms of X, (i|k|) andX_(—i|k|).
The expressions foX..(*+i|k|) can be simplified:

(114

X (*ilk)=exg = 1(w,K)], (115

where

1 (= d¢ 1
I(w,k)=;J0 §2+1In 1+;k2(§2+1)u(k\/§2T1) _
(116

Hereé=q/|k|, u=|wl|/o.. After putting Eq.(115) into Eq.
(114), one finally arrives at

Q(w,k) = |K|cothl (w,k). (117)

With this expression folQ(w,k) one can go back to the
effective action(79), and find the Green’s functio(B0) in
terms of the spectral weighd(w) given by Eq.(81).

The integral entering Eq(116) can easily be tabulated
numerically. The spectral weight(w) has a logarithmic fre-
quency dependence, as shown in Fig. 3, similar to that of the
modelV+V'. The behavior of the tunneling exponents a
function of p,,, shown in Fig. 6, is also close to that for the

<0. The expressiofil1l) has an apparent pole in the lower modelV+V'. One notes that the values afare somewhat

half plane atg=—i|k|. However, it is easy to see from Eq.

less than those for the modeéh- V' with similar parameters.
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7 energies in the doped region and in the 2DEG plus the con-

6 finement energy of the 2DEThe charge density of donors

sl o, is taken to be constant everywhereyatO up to the edge

: y=0. The potentialVy is much smaller than the barrier
o height, which is estimated as120 meV.

One can write down a simple analytic formula for the
2DEG density, using the electrostatic superposition principle,
according to which the effects on the 2DEG due to the do-

: : : nors, the top surface charge, and the doped region, can be
P 3 4 5 treated separately and then added.

e First, let us consider the charge induced by donors, when

FIG. 6. The tunneling exponent for the modé [Eq. (85)] the _top surfa_ce and the doped region are at the same (-_Jlectro—
corresponding to unscreened Coulomb interaction. Frequency Stafic potential as the 2DEG. We make an approximation
given in units ofwy= xqe®. >w_ , which allows us to move the top surface to infinity,

and thus to ignore it. Also, we assume that the distance to the
This is due to a relatively weaker effect of the long-rangedoped regiow,<w.., the separation of the donors from the
part of the interaction in the mod,. 2DEG. With the values fow, w., , andw, quoted above,
both approximations are reasonable. The resulting contribu-
tion to the 2DEG charge density is

V. COMPARISON TO THE EXPERIMENT

In this section we discuss some aspects of the overgrown
cleaved edge systenf:}” In our view, the most relevant is-
sue concerns the 2DEG density distribution near the edge.
One of the key features of cleaved edge systems is that théy describes the 2DEG density, constant and equat toat
produce structures with supposedly an atomically sharp cor¥>W. , and decreasing to 0 near the edge.
fining potential, and thus the 2DEG density profile near the The effect of the top surface potenthd}, in the absence
edge is expected to be reasonably smooth. This is importa®f donors, and with the 2DEG and the doped region at zero
in edge tunneling experiments, because the system must hagtectrostatic potential, can be evaluated as follows. In the
a well defined filling factor even very close to the edge.  approximatiorw,<w, the problem is equivalent to the stan-
dard electrostatic problem of a half-open slit, with one side
of the slit being at the potentidl with respect to the other
side and the end. The induced charge density in this problem
To estimate the importance of various factors controllingis

the density near the edge, below we consider a simplified

electrostatic Thomas-Fermi model, in which the 2DEG is 5 €eVs wy

modeled as an ideal charge fluid, and all effects of electron- oSBedy) = Zranhs . (119
; 2% X . W w

electron correlation and finite density of states are ignored,

except very close to the edge. In principle, this approxima-his contribution is constant and equal &¥y/4rw in the
tion is quite reliable at distances larger than the screeningic aty>w/, and decreases to zero near the edge.
lengthr ;= €/270, and so the results will be meaningful at  Eina|ly, the effect of potential difference between the
distances more than, from the edge. 2DEG and the doped region can be considered ignoring the
The electrostatic problem we consider involves the 2DEGop surface and the donors. The relevant spatial scale in this
densityn(x,y) in the half planey>0, top surface charge case isw,<w, ,w, and so the problem is reduced to that of
states that are at a distanee= 600 hm above the 2DE_G, a a ground half planérepresenting the 2DEGand a conduct-
layer of charged donors parallel to the 2DEG at a dlstancq)ng plane perpendicular to it, at a relative potentil, lo-

w.. =60 nm above the 2DEG plane, and also charges in thgateq a distancev, away from the ground half plane. The
three-dimensional doped region, which in our model occutharge density induced in the 2DEG is

pies the half spacg<—w,, wherew,=9 nm is the width

of the barrier together with the buffer region. The top sur- v 1

face, the 2DEG, and the doped region are assumed to be 0(2?6)56()’):_(1—' (120
equipotentials in the problem. For simplicity, we assume that 272 J(y+wp)?—wi

the 2DEG is grounded, and the bias voltage on the 3D doped

region is very small, so that the electrochemical potentials oft behaves as $/away from the edge, and as@/ near the
the two regions are essentially equal. Relative to the 2DEGedge. The square root divergence near the edge is an artifact
the electrostatic potential at the top surface V4  of the simplified model ignoring finite density of states of the
=—800 mV, and the electrostatic potential at the boundar2DEG. In a Thomas-Fermi model, the divergence would be
of the 3D doped region i¥4~20 mV. (The value ofVy  cut at a distance-rg from the edge.

reflects the chemical potential difference before the charge The resulting 2DEG charge density is a sum of three
redistributes itself. It is given by the difference of Fermi terms, ogu= osheat o akat 05aes. To eliminate the un-

20 y
oSBedy)= T+ar0tanvv_+' (118

A. Thomas-Fermi model
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FIG. 7. Density distribution in the 2DEG near the edge plotted

for six values of the potentialy of the doped regiortlisted from
top to botton). The top surface potentials=—800 mV and the
donor densityr , =

densityny, = 10'* cm™2. The geometrical parameters used are de

fined in the text.

physical singularity near the edge dued®’), we average
the densityoy, OVer intervals of length 2, and consider

y+rg
Troally )Y’ (121

S

oaly)= (21 |
The averaged densityfy,, is plotted in Fig. 7 for several
values of the doped region potentM);. The screening ra-
dius used in the averaging is taken toe20 nm.
One can see from Fig. 7 that the density with#200 nm
near the edge is quite sensitive to the potenfial Another

feature evident in Fig. 7 is that the density close to the ed
exceeds that in the bulk by 20-30%. The 2DEG densit

approaches the bulk value at distance400 nm from the

edge. Also, there is a peak in the density profile near the ver
edge, resulting from the(®) contribution averaged over the
length=r4. This peak makes the density profile nonmono-
tonic, with a minimum at=30-40 nm from the edge. Alto-
gether, the 2DEG density near the edge is smooth but not

perfectly uniform.

g

FIG. 8. Solid curves: The tunneling exponent in the composite
edge mode(122) is shown for three values of the ratdw of the

1.94x 101 cm~2 correspond to the 2DEG bulk distance between the outer and inner edges and the tunneling barrier

_width. For comparison, a theoretical curve for tie V' model is
shown, for py,=py,/10 and w=10"°k.e*. Dashed curves: The
straight linea= p,, corresponds to experime(Refs. 5, 6, and 17
and the linew=1.3p,, is obtained by correcting the filling factor by

the ratio of the densities near the edge and in the bulk.

factor using magnetotransport data. However, the filling fac-
tor relevant for tunneling is that near the edge. According to
the above, in the region 100-300 nm from the edge, the
density is at least 20—30 % higher than in the bulk. If one
assumes that this is the relevant distance scale for charge
relaxation at the temperatures and voltages employed in the
experiments, then the dependenge 1/vy,, observed if'’
translates intax~(1.2-1.3y.j. In actuality, the relevant

istance scale will depend on the filling factor and the clean-
ﬁness of the edge, as well as the energy of the tunneling
electron.

One notes that after accounting for the difference between
IXedgeand vpu the dependence(v) shifts closer to the the-
oretical curvegsee Fig. 3.

B. Two-mode model

Because the 2DEG density profile discussed above is sig-

It should be remarked that our simplified electrostaticnificantly nonmonotonic near the edge, it is possible that this

model is perhaps insufficient at distances smaller than or afay change the structure of the edge modes. More precisely,
the order ofr¢=20 nm. Thus the smallest scale features insuppose that the peak density near the edge is so high that
Fig. 7, such as the density peak near the edge, should like filling factor reaches'=1 within the region=30 nm
taken with caution. Moreover, we used the Thomas-Fermcorresponding to the peak displayed in Fig. 7. Then the edge
model, the screening radiug, etc., in the absence of mag- mode on the periphery will correspond t6=1 even when
netic field. It remains to be seen whether the results are pra»<1 away from the edge. In this case, in addition, there will
served in a more accurate treatment accounting for Landaalso be counterpropagating modes positioned on the inner
levels, finite 2DEG compressibility, and exchange effectsside of the incompressible=1 region. The number of these
On the other hand, on spatial scales larger tharthe results modes and their Hamiltonian will depend ansomewhat
obtained from a purely electrostatic model should be reliableaway from the edge. This type of composite structure of the
One issue that can be addressed using the electrostatcge was first proposed by MacDonald for tie 2/3 sys-
model is the calibration of density in the experimeAfThe  tem, based on a Hartree-Fock analySis.
tunneling exponentr is presented there as a function of In this model, the tunneling electron is injected into the
magnetic field, which is calibrated in terms of the bulk filling outerv=1 mode, because of higher overlap of the tunneling
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state with the mode closest to the edge. We assume that tloeiter edge is separated from the doped region by a barrier of
edge is so clean that we can neglect scattering between difhicknessw, and the inner and outer edge states are a dis-
ferent edge modes. Then, the inner modes will be importantancea apart. Then
only to the extent that tunneling charge couples with them by 5 5
Coulomb interaction, and shakes them up. In this scenario, (O)IZLe(l_e*ZWlkl) y_2me
after tunneling there is no statistics change of the injected "' ¢|k| T2 gk
particle, since it remains in the fermionic=1 edge state.
Therefore, one expects a smooth dependence of the tunneling
exponent orw, without any cusps or plateaus.
To estimate the shakeup effect due to Coulomb couplin ) o ) 0
to the inner modes, let us represent them by a single charggﬁ{e consider the limit of smak, where the interaction;;
mode. Thus the system can be described by two counteflo not depend ork: V{9=2w(2me?/¢), V§)=2(w+a)
propagating chiral modes: X(27€?l€), ViD=V =(2w—a)(2me?/¢).
In this model, the only parameter is the ratdw. The
1 . tunneling exponent is plotted in Fig. 8 as a functionpg
S=3 Ek ('wk(¢(l)¢(l)_g¢(2)¢(2)) =1 for several values of/w. On the same figure, %Ne
. show the experimental dependenceaofersusp,, rescaled
) by a factor 1.3 as discussed above.
¢, (122 The distinct feature of the composite edge model is the
absence of plateaus in the tunneling exponeft). How-
whereg=1-v andV;; is the coupling matrix, expressed in ever, note that in order for the tunneling exponerib fall in
terms of the interactiond/’ as follows: Vy;=V9,, Vv,, theright range, one has to assume unphysically small values
=gV2,, V,i=gV9,, V,,=g°V3,. The form of the action of the ratioa/w. Also, the theoretical curves for nonzero
(122 can easily be justified in the same way as in Sec. III. In@/W have curvature which is absent in the experimental
this case there is no issue of charge injection in the innefUrve. This curvature is even more significant at higher val-
mode, and so there are no complications related to counteteS ©f the parameter/w and is unlikely to disappear if one
terms, as in Eq(43). takes into account possible dependencefst on v. It is
It is straightforward to write down the Green's function @Pparent that this simplified two-mode model does not agree
by evaluating the saddle point of the quadratic actib@?).  With the experimental results on tunneling. Nevertheless, it

(1_efz(w+a)\k\),

2me?
0)_ 0)_ - -
V(lz)—V(Zl)—me a“"(l—e 2W|k|).

+ wZi 121 . Vi QP

The result reads illustrates the point that, if scattering between edge modes is
sufficiently small, a complicated edge structure can lead to

1 large changes in the observed tunneling exponent, which will

G(r)=exp( -— not be closely related to the bulk filling factor.
8w
) VI. SUMMARY
J’ (0?Vp—igwk)|J,|?dw dk
(0?V11+i0k)(02Vy—igwk) — 0V Vo) The problem of tunneling into the edge of a composite

123 fermion QH system is treated for long-range Coulomb inter-
(123 action between electrons, as well as for a short-range inter-

To evaluate the Green’s function, we assume that the coiction model. It is shown that in the case of diffusive CF
pling matrix V;; has nok dependence. This is true for the dynamics described by finitg,,, the tunneling exponent is
screened Coulomb interaction 722(1— e 22K)/¢|k| at controlled by the coupling of tunneling electron to the
alk|<1, wherea is the distance from the edge mode loca-Charged edge mode. The effective action for this mode is a
tion to the doped region. Hence the lengttis somewhat generalized chiral Luttinger action with a nonlocal dissipa-

larger than the barrier widttv,, . tive term. , _
In this case the integral ovércan be done by residues, The tunneling exponent is found to be a continuous and
and the result iS(7) =7 ¢, where monotonic function ofp,,, given, in the limitp,,—0, by

a=1+(%/h)(pey,—p$)]), wherepd) is the CF Hall resis-
0 tivity due to motion in the residual magnetic field. In order to
Vi gV, - -
a= ) (124  Verify the robustness of the results we consider several mod-
VIV +gVa,)2—4gVo,Vvo, els for the electron—electron interaction: the short-range and
Coulomb interaction, and, in the latter case, with and without
The dependence(v) in the interval 0<v<1 is smooth, electrostatic screening due to image charges in the doped
without singularities, as it should be in the case when thgegion.
effect of the fractional edge is purely a shakeup, not accom- The dependence af on pyy is characterized by plateau-
panied by injection of charge. like features, not observed in the experiments on cleaved
To estimate numerical values ef, we consider a model edge systems. We discuss the 2DEG density profile near the
in which the interactions)/i(jo) are given by the Coulomb cleaved edge, and propose that the discrepancy between
potential screened by the doped region. We assume that thieeory and experiment is possibly due to spatial variation of

075322-20



EFFECTIVE ACTION OF A COMPRESSIBLE QUANTUM ... PHYSICAL REVIEW B4 075322

the density near the edge and, in particular, to a nonmono- In evaluating Eq(66), it is convenient to combine contri-
tonic density profile, giving rise to a composite structure ofbutions from wave vectork and —k, and replace the sum
edge modes. over k by an integral over positive values &f If the fre-
quency o is sufficiently small, there will be two distinct
ACKNOWLEDGMENTS regions that can contribute significantly to the integral. The
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part by the MRSEC Program of the NSF under Grant No. 13(w)?

g
DMR 98-08941 and by NSF Grant No. DMR 99-81283. = R Xy
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APPENDIX: ESTIMATE FOR THE BALLISTIC REGIME The last factor in Eq(A2) is small fork<kg but becomes

of order unity fork~kg, whereo(k)~oy,. The contribu-

In the ballistic regime, for length scales smaller than thetion from this region to the integral could therefore make a
composite fermion mean free paththe conductivity tensor contribution of order unity to the tunneling exponemt
is nonlocal in space. Close to the edge, the CF conductivitHowever, this contribution may be largely or completely
ggg(r,r',w) depends on the distance from the edge, as weltanceled by the corresponding contributionSiQ,.
as on the separatian-r’. As a crude approximation, how- If we neglect the difference between the longitudinal and
ever, in order to estimate the contribution of the short-transverse conductivities at the finite wave vedtothen
distance response to the tunneling exponent, we shall ignore

the dependence on the distance from the edge and use, in- 1
ft_e?,d’mthe bulk CF conductivity, which depends only on R 0'|(k)+ia'xy]=pl(k) (A3)

~ Asdiscussed in Secs. Il and Il for a nonlocal conductiv-which is the longitudinal resistivity at wave vectirin cal-

ity we may still approximate the Green’s functi@(7) Us-  cylating Syee, USing the same assumptions, we obtain the

ing the factorization(64), but the actionsS(7) and Syed(7)  jdentical expression, because the longitudinal conductivity of

should be evaluated using the correct nonlocal conductivitythe composite fermions is the same as that of the electrons.
Instead of this, in our approximation, we use the fdi®6)  Thus the contribution to the tunneling exponent from short

for S, with the change that we replace the macroscopic congavelengths is canceled, in this approximation. We therefore

ductivity oy, by the quantityo(|k[), which is the wave- \ind up with the same value fae as was obtained in Sec.
vector dependent longitudinal conductivity for the bulk com-yj| ‘namely, a~3 atv=1/2, for a system where,, < Ty -

pressible Hall state. Specifically, at=1/2, according to Ref. It is not possible to say whether a similar cancellation
7, we have would occur in a proper analysis incorporating the nonlocal
o1(K)~ (28 7h ) (Kike) (A1) conductivity. If the cancellation does not occur, then the sur-

viving contribution from short wavelengths could give a con-
for | 1<k<kg, while o(k) reduces to the macroscopic tribution of order unity to the tunneling exponent, which
conductivity o, for k<<I ~1. We continue to approximate the would be independent of the mean free path in the limit
Hall conductivity in Eq.(66) by its macroscopic value,, . l<kgt.

1X.-G. Wen, Int. J. Mod. Phys. B, 1711(1992; Phys. Rev. Lett. "B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev4RB 7312

64, 2206 (1990; Phys. Rev. B43, 11 025(1991); 44, 5708 (1993.
(1991). 8A.V. Shytov, L.S. Levitov, and B.I. Halperin, Phys. Rev. L&,
2C.L. Kane, M.P.A. Fisher, and J. Polchinski, Phys. Rev. L. 141(1998.
4129(1994; C.L. Kane and M.P.A. Fisher, Phys. Rev5R, 13 9S. Conti and G. Vignale, J. Phys.: Condens. Maftéy L779
449 (1995. (1998.
3FE.P. Milliken, C.P. Umbach, and R.A. Webb, Solid State Com-1°J.H. Han and D.J. Thouless, Phys. Rev6®B 1926(1997); J. H.
mun. 97, 309 (1996. Han, ibid. 56, 15 806(1997.

4L.N. Pfeiffer, K.W. West, H.L. Stormer, J.P. Eisenstein, K.W. *U. Zilicke and A.H. MacDonald, Phys. Rev. &), 1837(1999.
Baldwin, D. Gershoni, and J. Spector, Appl. Phys. L&.1697 12A. Alekseev, V. Cheianov, A.P. Dmitriev, and V.Yu. Kachorovskii,

(1990. Pis’'ma Zh. Eksp. Teor. FiZZ2, 481 (2000 [JETP Lett.72, 333
SAM. Chang, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lét¥, (2000].

2538(1996); (unpublished 13A.M.M. Pruisken, B. Skoric, and M.A. Baranov, Phys. Re\v6®
5M. Grayson, D.C. Tsui, L.N. Pfeiffer, K.W. West, and A.M. 16 838(1999.

Chang, Phys. Rev. Let80, 1062(1998; (unpublishedl 1D.-H. Lee and X.-G. Wen, cond-mat/98091aMpublishesl

075322-21



L. S. LEVITOV, A. V. SHYTOV, AND B. |. HALPERIN

15p.V. Khveshchenko, Solid State Commufll, 501 (1999;
cond-mat/980627Qunpublishedl

18A. Lopez and E. Fradkin, Phys. Rev.3®, 15 323(1999.

17A.M. Chang, M.K. Wu, C.C. Chi, L.N. Pfeiffer, and K.W. West,
Phys. Rev. Lett86, 143(2000. ;

18| 3. Levitovand A.V. Shytov, Pis’ma zZh.K8p. Teor. Fiz60, 200
(1997 [ JETP Lett66, 214(1997]; in Correlated Fermions and
Transport in Mesoscopic Systeneslited by T. Martin, G. Mon-
tambaux, and J. Tra Than Va (Editions Frontieres, Paris,
1996, p. 513.

PHYSICAL REVIEW B 64 075322

ibid. 50, 17 917(1994).

24In Ref. 15, Khveshchenko carried out an approximate calculation
in which he considered, simultaneously, the effects of an un-
screened Coulomb interaction and a nonlocal CF conductivity
on the charge spreading action and 1h¥ curve for eV/#,
above the CF scattering frequency. We have not been able to
make a direct comparison of our results with his, however. We
note that Khveshchenko does not include a term in the action
that corresponds to the logarithm of the free fermion Green’s
function, nor does he subtract a term corresponding;tQ.

lg . . .
A.V. Shytov, Ph.D. thesis, L. D. Landau Institute for Theoretical 253 | . Altshuler, A.G. Aronov, and P.A. Lee, Phys. Rev. Lett,

Physics, Chernogolovka, 1999.

20y B. Kim and X.-G. Wen, Phys. Rev. B0, 8078(1994).

213, He, P.M. Platzman, and B.l. Halperin, Phys. Rev. | #41.777
(1993.

22| D. Landau and E.M. LifshitsStatistical Physics(Pergamon
Press, Oxford, 1982 Part I, Chap. XII, p. 389.

23B.L. Altshuler, L.B. loffe, and A.J. Millis, Phys. Rev. B0,
14 048(19949; Y.B. Kim, A. Furusaki, X.-G. Wen, and P.A. Lee,

1288(1980.

26\/A. Volkov and S.A. Mikhailov, Zh. &sp. Teor. Fiz.94, 217
(1988 [Sov. Phys. JETB7, 1639(1988].

27B. Noble, Methods Based on the Wiener-Hopf Techni¢Rerga-
mon Press, London, 1958

28A H. MacDonald, Phys. Rev. Letf4, 220(1990; M.D. Johnson
and A.H. MacDonaldjbid. 67, 2060(1991).

075322-22



