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Effective action of a compressible quantum Hall state edge: Application to tunneling
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The electrodynamical response of the edge of a compressible quantum Hall system affects tunneling into the
edge. Using composite Fermi liquid theory, we derive an effective action for the edge modes interacting with
tunneling charge. This action generalizes the chiral Luttinger liquid theory of the quantum Hall edge to
compressible systems in which transport is characterized by a finite Hall angle. In addition to the standard
terms, the action contains a dissipative term. The tunneling exponent is calculated as a function of the filling
fraction for several models, including screened and unscreened long-range Coulomb interaction, as well as a
short-range interaction. We find that tunneling exponents are robust and to a large extent insensitive to the
particular model. We discuss recent tunneling measurements in overgrown cleaved edge systems, and demon-
strate that the profile of charge density near the edge is very sensitive to the parameters of the system. In
general, the density is nonmonotonic, and can deviate from the bulk value by up to 30%. Implications for the
correspondence to chiral Luttinger edge theories are discussed.
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I. INTRODUCTION

A. Background and recent work

The edge of a quantum Hall~QH! system attracts a lot o
interest because it provides an example of a one-dimensi
non-Fermi-liquid. The theoretical picture of the QH ed
was first developed for odd-denominator Landau-level filli
fractionsn that correspond to incompressible QH states.1 It
involves one or several interacting chiral Luttinger liqu
modes. The most prominent feature of the Luttinger liquid
the power law character of the Green’s function.

A powerlike Green’s function leads to a power law in t
tunneling-current–voltage dependence:I;Va. The tunnel-
ing exponenta has been extensively studied theoretically
the principal filling fractions of Laughlin and Jai
hierarchies.1,2 For Laughlin states withn51/(2k11) the
edge is described by one chiral mode and a tunneling cur
I;V2k11 is predicted.1 Theories of the edge withn
Þ1/(2k11) involve more than one mode. In the multimod
case the results are qualitatively different for modes going
in one direction and modes going in opposite directions.

For comoving edge modes, the tunneling exponent is u
versal and does not depend on the character of interac
between the modes. For example, this is the case at the
filling fractions n5n/(np11) with positive integern and
evenp, where Wen1 finds I;Vp11. On the other hand, fo
the edge described by modes going in opposite directio
the tunneling exponent depends on the interaction stren
In this case, it is also important to take into account
effects of disorder.2 The point is that relaxation between th
modes due to scattering by disorder mixes the modes, an
sufficiently high disorder effectively forms a single charg
mode with universal tunneling exponent. For example,
the Jain fractionsn/(np11) with n,0 and evenp.0,
Kane, Fisher, and Polchinski2 found I;Vp1122/unu.
0163-1829/2001/64~7!/075322~22!/$20.00 64 0753
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Tunneling experiments probing the physics of the Q
edges were first attempted using conventional split g
devices,3 after which a new generation of two-dimension
~2D! systems was developed by using the cleaved edge o
growth technique.4 In these structures it is possible to stud
tunneling into the edge of a 2D electron gas~2DEG! from a
3D doped region. In this system one can create a 2DEG w
a very sharp edge, with residual roughness of an ato
scale. The high quality of the cleaved edge system perm
one to explore tunneling in both incompressible and co
pressible QH states.5,6

In the first experiment,5 for n51/3 it was found that the
tunneling conductivity is non-Ohmic,I;Va, with the expo-
nenta.2.7, quite close to the theoretical predictiona53.
After that, it was observed6 that the power lawI;Va holds
for both incompressible and compressible QH densities
the range 0.25,n,1. The exponenta was found to be rea-
sonably accurately given by a simple formula:a51/n. In-
terestingly, this dependence does not agree with the pre
tions of chiral Luttinger models, except for a special po
n51/3. Moreover, it was quite surprising that the power la
is equally well obeyed by both compressible and inco
pressible values ofn.

These findings prompted interest in the problem of tu
neling into the edge of a compressible QH system. A go
description of the compressible QH states is provided by
composite fermion theory. This theory7 is constructed atn
51/2 and other rationaln with even denominator, and i
used to map the problem of the fractional QH effect onto
integer QH problem for new quasiparticles, composite ferm
ons interacting via a statistical Chern-Simons gauge field
the composite fermion picture, an electron is described a
fermion carrying vorticity represented by a quantized gau
field vortex. For densities close to the half-filled Land
level the vortex hasp52 flux quanta. The theory of com
©2001 The American Physical Society22-1
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posite fermions withp52 describes the interval of densitie
1/3,n,1. At smaller densities 1/5,n,1/3 composite fer-
mions withp54 are used, etc.

The theory of tunneling into a compressible QH edg8

which uses composite fermions to describe the QH syst
predicts the power lawI;Va, with a being a continuous
function of n:

a511
e2

h
~rxy2urxy

(0)u!, ~1!

where rxy5(h/e2)n21 is the Hall resistance of the 2DEG
andrxy

(0)5(h/e2)(n212p) is the Hall resistance of compos
ite fermions moving in an effective magnetic fieldBeff5B
2pF0n, wheren is the electron density. The result~1! de-
scribes the system in the limitrxx→0. The dependence ofa
on 1/n is monotonic, and is characterized by plateaus in
intervals 2,1/n,3, 4,1/n,5, etc.~see Fig. 2 below!. The
plateaus are connected by straight lines with slope 2.
cusplike singularities predicted in the dependencea(n) at
n51/2, 1/4, etc., are somewhat smeared whenrxx is finite
@see Eq.~69! and Fig. 2#.

Interestingly, these results match exactly the predicti
of the chiral Luttinger liquid theory for the Jain series
incompressible states. Although formally this theory lac
continuity in the filling fraction, starting from a new set o
edge modes for each given filling fraction, the expone
a(n) obtained by Wen forn5n/(pn11) and by Kane,
Fisher, and Polchinski forn5n/(pn21) fall on the continu-
ous curve~1! found in the composite fermion calculation
The exponents of Wen fall on the plateaus, while those
Kaneet al. fall on the straight lines connecting the plateau

However, the disagreement with the experimentally m
sureda(n) requires an explanation. Recently, a number
theories were proposed trying to resolve this issue. In
approach, described by Conti and Vignale,9 Han and
Thouless,10 and Zülicke and MacDonald,11 tunneling is stud-
ied by using a hydrodynamical theory of a compressible
edge, in which the nature of the underlying quasiparticle
essentially ignored. From such a treatment the desired r
tion a51/n emerges readily, as we will discuss in det
below in Sec. I B and at the end of Sec. III. However, th
approach ignores the contribution to the electron Gree
function of the quasiparticles in the QH state, and thus it is
contradiction with the presently existing microscopic pictu
of the QH effect.

Another line of thought, developed by Alekseevet al.,12 is
that the experimental system is not what it is assumed to
In particular, it is proposed that instead of a clean edge
real system contains many localized states in sufficient p
imity to the edge. Then, if one assumes that the tunne
rate bottleneck corresponds to tunneling from the doped
gion into a localized state, and that the density of localiz
states is sharply peaked about the Fermi energy, one find
desired resulta51/n. The reason is that in the problem in
volving a localized state no conversion of an electron int
quasiparticle is required, and the only effect to be conside
is a shakeup of the edge plasmon mode, an effect equiva
to the x-ray edge problem in the Fermi liquid. However, it
07532
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not clear why the density of localized states should
peaked at the Fermi energy in the actual samples. An ap
ently similar idea was developed earlier by Pruiskenet al.13

using quite elaborate methods which we have not been
to follow in detail.

Also, a theory using composite fermions was proposed
Lee and Wen14 in which both charged~edge plasmon! and
neutral~quasiparticle! modes are included. It was assume
however, that the velocity of the charged mode is mu
larger than the neutral mode velocity. In this case, there
ists an intermediate energy regime in which only the cha
mode dynamics is important, while the neutral mode
sponse can be ignored. In this energy domain one obt
a51/n. It should be pointed out, however, that the ratio
the charged and neutral mode velocities is of order of lnw/rs,
wherew is the distance from the edge to the doped reg
and r s is the screening radius. Optimistically, the ratiow/r s

can be as large as 10, which is still not enough to explain
power law demonstrated in a wide range of 2.5 decade
the bias voltage.

Another approach trying to rationalize the measured t
neling exponenta;1/n was proposed by Khveshchenko.15

This theory is based on composite fermions and is simila
its assumptions to Ref. 8 and to the present work. Howe
the calculated tunneling exponent is 1/n up to a frequency
dependent logarithmic correction small inrxx /rxy . We be-
lieve that this is due to an inconsistency of the analysis
noring important effects accounting for dynamics of fr
composite fermions. One can see that by comparing Eq.~7!
of Ref. 15 with our Eq.~24!, and noting that the term de
scribing the free composite fermion response is missing
Ref. 15.

In addition to this controversy, the theory by Lopez a
Fradkin16 seems to abandon the entire theoretical picture
the multimode QH edges proposed in Refs. 1 and 2 for
incompressible Jain fractions. Unlike Ref. 14, the authors
Ref. 16 do not use a microscopic mechanism for eliminat
the neutral propagating edge modes. The construction
posed in Ref. 16 involves only one charged mode plus t
auxiliary Klein factors which do not constitute addition
propagating degrees of freedom. In that, the approach of
16 can be compared to the conventional quantum Hall e
theories1,2 in which the velocity of neutral modes is exact
zero. If true, this would lead to thea51/n dependence a
arbitrarily low energies. However, it is presently uncle
whether the picture of the neutral mode with zero veloc
can be justified microscopically.

What complicates the controversy even further is the
cently presented evidence of a plateaulike feature exhib
by a(n) in some cleaved edge samples.17 The value ofn
near which the dependencea(n) flattens out is, however
quite close to 1/3, whereas the expected plateau interva
2,n21,3. This discrepancy may be explained by soluti
of the electrostatic problem near the edge~see Sec. V below
and Ref. 17!, which shows that in a wide region adjacent
the edge the density exceeds the bulk value by about
30 %. Because of this behavior of the density profile,
2-2
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EFFECTIVE ACTION OF A COMPRESSIBLE QUANTUM . . . PHYSICAL REVIEW B64 075322
feature ina(n) observed nearnbulk51/3 may correspond to
somewhat higher density near the edge, withn somewhere
between 1/3 and 1/2.

One other complication is that the analysis of the elec
static problem shows that the density profile near the e
can be nonmonotonic and, in general, depends quite se
tively on the system parameters. This observation can m
the relation with theories assuming constant filling fac
somewhat indirect. At present, the matter is obviously
from being resolved, and more experimental and theoret
studies are needed to clarify the situation. With this in mi
in this article we present an alternative derivation of the
sults obtained in Ref. 8, demonstrating their robustness
establishing a more direct connection with the chiral L
tinger theories of the QH edge.

The basis of our analysis will be the theory of compos
fermions.7 We assume that noninteracting composite ferm
ons are characterized byrxx

(0) and rxy
(0) which may depend,

e.g., on the filling fraction. The measured resistivities
thenrxy5rxy

(0)1ph/e2 andrxx5rxx
(0) , wherep is the number

of flux quanta attached to an electron (p52 for 1/3,n
,1). The tunneling current is expressed in a standard wa
terms of the electron Green’s function. We derive the relat
between Green’s functions of an electron and of a compo
fermion, and compute the former using a ‘‘factorization a
proximation.’’ In this analysis the effects of shaking up slo
electromagnetic and Chern-Simons gauge field modes
separated out. As a result, the tunneling current is expre
in terms of electromagnetic response functions and the n
ber of flux quantap. The theory predicts a power lawI
;Va with a continuous dependence of the tunneling ex
nent a on the filling fraction. As far as tunneling into th
edge is concerned, there is no qualitative difference betw
compressible and incompressible states. The ‘‘Lutting
liquid-like’’ behavior in the edge tunneling emerges when t
Hall angle is close top/2, for both compressible and incom
pressible electron systems.

The paper is organized in the following way. In Sec. I
we review the approach of Ref. 8 based on a semiclass
phase factor analysis of the Green’s function. This is do
with the purpose of motivating and providing connecti
with the subsequent discussion of the effective action form
ism. In Sec. II we begin laying out the basic approach of
present theory of tunneling. At low energy, the most imp
tant effect is the shakeup of long-wavelength modes co
sponding to spreading of the tunneling charge. To describ
one can use a semiclassical method, which provides a sim
and universal picture of tunneling.18 We then construct an
effective action inD52 written in terms of composite fer
mion density and current, as well as the Chern-Simons ga
field. Section II ends by proving an important identity f
this action which is used in the following part of the pape

In this paper we focus on the relatively simple ‘‘dirt
composite fermion’’~CF! case, corresponding to composi
fermions scattered by the disorder, and described by fi
Ohmic conductivity. In Sec. III we consider the problem wi
short-range interaction between composite fermions. In
D52 action we integrate over the variables in the bulk a
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derive an effectiveD51 action that describes the dynami
in terms of the variables at the edge. This action is basic
of chiral Luttinger form, with an extra ‘‘dissipative’’ term
nonlocal in space and time, which takes into account
effects of charge relaxation in the bulk. TheD52→D51
reduction for the problem with short-range CF interacti
can be handled in an elementary way and leads to a sim
algebraic expression for the tunneling exponent in terms
Ohmic and Hall conductivities.

Then, in Sec. IV we repeat the analysis for the probl
with long-range Coulomb interaction. In this case theD52
→D51 reduction procedure involves solving a bounda
value problem for dynamical screening near the edge.
consider three different models, describing the problems w
unscreened Coulomb interaction and also taking into acco
screening due to image charges induced in the doped o
grown region.~This screening has the peculiarity that th
screened interaction remains long ranged, because the im
charges are located not above the 2DEG, but on the sid
the 2DEG edge.! Two of these boundary value problems c
be solved by elementary methods using Fourier transfo
and one leads to an integral equation of Wiener-Hopf type
all three cases, we use the effectiveD51 action to compute
the tunneling current, and derive an expression for the t
neling exponenta.

In the case of unscreened interaction the tunneling ex
nenta turns out to be somewhat frequency dependent, h
ing a contribution proportional torxxln v, which corresponds
to a slight deviation from the power law. However, in th
most realistic of the three models accounting for screen
by the doped region, we find a nearly perfect power la
Otherwise, the results for the three models with long-ran
interaction, screened and unscreened, and for the short-r
interaction model, give essentially the same dependenc
the tunneling exponent onrxy , and thus all agree. The agre
ment of the results for different kinds of interaction implie
that they are robust.

In the calculations described above, we characterize
system by a resistivity tensor that is independent of wa
vector and frequency. In particular, this assumption impl
that we are restricted to tunneling at voltages and temp
tures small compared to the scattering rate of the compo
fermions. At energies above the scattering frequency, but
low the Fermi energy, one is in a different regime~the ‘‘clean
regime’’! where ballistic dynamics should be used for t
composite fermions. This regime may be of considera
practical interest because the samples used for the tunn
measurements are of very high mobility, and are presuma
quite clean even near the edge. Even for electron ener
below the CF scattering frequency, however, one should
ally check that contributions from wave vectors larger th
the inverse mean free path can safely be ignored.

A proper treatment of the ballistic region requires the u
of nonlocal electromagnetic response functions, and is c
siderably more difficult than the models discussed in
present paper. In the Appendix below we investigate a s
plified model for the nonlocal conductivity, which serves
illustrate some of the salient features of the problem. T
simplified model is not adequate, however, to answer un
2-3
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biguously the fundamental theoretical question: whet
low-energy degrees of freedom at short length scales
significantly alter the tunneling exponent at low electr
energies.

In order to better address this problem, we have also
dertaken a numerical solution of the charge spreading p
lem with a proper representation of the nonlocal conduc
ity. Preliminary results suggest that the tunneling expone
will not be changed by a large amount from the results
tained in the present paper,19 but further work is necessar
here.

One should also recall that in the limit of very low tem
peratures and frequencies, in compressible states, one
pects that there will be interaction corrections to the resis
ity itself which depend logarithmically on energy7

Therefore, in principle, at sufficiently low energies, th
renormalized value ofrxx will become comparable to th
value of rxy and our entire analysis may cease to be va
However, the energy range where this would occur is
small to be of experimental interest in high-mobility samp
where the bare value ofrxx is small.

B. The semiclassical phase method

The tunneling exponent~1! was derived in Ref. 8 using a
‘‘semiclassical phase’’ approach. Here we restate the der
tion of Eq.~1! emphasizing the connection with the effecti
action method being used in the main part of this article.

One advantage of the semiclassical phase method
ployed in Ref. 8 is that it does not require subtraction
counterterms likeS2Sfree used in the following sections. A
suspicious reader may think of this subtraction as anad hoc
procedure motivated only on physical grounds. Although
justify the counterterm subtraction carefully and rigorou
below in Sec. II C, it will perhaps be useful for the reader
see the same result derived by an alternative method.

It should be mentioned that the phase method, altho
more appealing intuitively, is more difficult in use, especia
in problems with the boundary, like the edge tunneling pro
lem. Because of that our use of it here is limited to t
simplest case when the interaction is solely due to the Ch
Simons gauge field, and there is no long-range Coulomb
teraction. The short-range interaction is assumed to be ta
into account by the composite fermion transformation.

We start with the tunneling electron Green’s function
imaginary time. One can formally write it as an average o
the fluctuations of the gauge field:

Grr 8~ t12!5Z 21E D$am%Grr 8~ t1 ,t2 ,am!e2Leff[am] ,

t125t22t1 . ~2!

This exact expression emphasizes the order of integra
over fermionic fields and the gauge fieldam . Here
Grr 8(t1 ,t2 ,am) is the electron Green’s function for a give
configuration of the gauge fieldam(r ,t). For evaluating the
tunneling current, we will needGrr 8(t12) for r5r 8.
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The effective actionLeff@am# is the random-phase ap
proximation~RPA! action derived in Ref. 7. Below we wil
only needLeff up to quadratic order:

Leff@am#5
1

2E am~x!D mn
21~x,x8!an~x8!d3xd3x8 ~3!

where the correlator of gauge field fluctuationsDmn(x,x8)
5^am(x)an(x8)& for the CF system in the absence of lon
range interaction in the RPA approximation7 is given by

D mn
21~k!5Kmn~k!1

i

4pp
klemnl . ~4!

HereKmn5^ j m j n& is the free fermion current correlator~cf.
Ref. 7 and Sec. II below!.

We employ a semiclassical approximation f
Grr (t1 ,t2 ,am). To motivate it, think of an injected electro
which rapidly bindsp flux quanta and turns into a composi
fermion. The latter moves in the gauge fieldam and picks up
the phase

f@am#5E
2`

`

am~r ,t ! j m
free~r ,t !d2rdt, ~5!

where j m
free(r ,t) is the current describing spreading offree

composite fermion density. Semiclassically inam(r ,t), one
writes

Grr ~ t1 ,t2 ,am!5eif[am]G(0)~ t12!, ~6!

whereG(0)(t12).t12
21 is the composite fermion Green’s func

tion in the absence of the slow gauge field. Note that f
fluctuations ofam are included inG(0)(t) through renormal-
ization of Fermi-liquid parameters.

Let us remind the reader that the electron Green’s fu
tion in the composite fermion theory has an additional ph
factor exp@i*t1

t2a0(t8)dt8# introduced by Kim and Wen,20 which

accounts for the gauge field of a solenoid inserted into
system upon the transformation of the tunneling electron i
a composite fermion. This phase factor has been discusse
the context of the problem of tunneling into the bulk. B
virtue of gauge invariance of the electron Green’s funct
under gauge transformations of the Chern-Simons field,
can eliminate the phase factor using the Weil gaugea050.
Because of that, seemingly different approaches to the b
tunneling problem, some emphasizing the phase factor20 and
others ignoring it,21,18 are essentially equivalent. Below w
are going to use thea050 gauge, which permits us to dro
the solenoid phase factor from the start.

Now, we substitute the Green’s function in the phase
proximation~6! into Eq.~2! and average over fluctuations o
am using the action~3!. This gives

Grr ~ t !5G(0)~ t !e2S ~7!

where

S5
1

2E d3xd3x8 j m
free~x! j n

free~x8!Dmn~x,x8!. ~8!
2-4
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It is convenient to rewrite the exponentShereafter called the
‘‘action’’ as follows:

S52
i

2E d3x jm
free~x!ãm~x! ~9!

whereãm(x)5 i *Dmn(x,x8) j m
free(x8)d3x8 is the actual gauge

field produced by the moving charge. The representation~9!
follows directly from the ladder structure of the RPA r
sponse functions.

From now on we adopt thea050 gauge, in which the
relation betweenã and j takes the form

ãv,k5
4ppi

v
ẑ3 jv,k , i.e., ã~r ,t !54ppE

2`

t

ẑ3 j ~r ,t8!dt8.

~10!

With this, the actionS finally becomes

S5(
v

2pp

v
S E j2v

free~r !3 jv~r !d2r D . ~11!

Note that we are working atT50, and the sum over Mat
subara frequencies should actually be interpreted
*dv/2p. From the form~11! we proceed to evaluateS.

The currentsjv
free(r ) and jv(r ) are found from the diffu-

sion and continuity equations,

j52D̂“n, ~v2“D̂“ !n5Jv~r !;
~12!

j free52D̂ (0)
“nfree, ~v2“D̂ (0)

“ !nfree5Jv~r !,

where Jv(r )5e(eivt12eivt2)d (2)(r2r0). The diffusivity
and resistivity tensors obey the Einstein relation

D̂ab
215kr̂ab , ~D̂ (0)!ab

215kr̂ab
(0) ~13!

wherek is the compressibility of free composite fermion
~Here, ‘‘free’’ indicates the absence of long-range interacti
whereas the short-range interaction is assumed to be pre
and to give rise to the composite Fermi-liquid physics.!

The resistivity tensorsr andr (0) are related by the com
posite fermion rule7

rab5 r̂ab
(0)14pp

\

e2
eab . ~14!

We remark that, in our notation, the diagonal tensor eleme
of the imaginary time conductivities, resistivities, and diff
sivities have a sgnv dependence onv—see Secs. II and III
for details. Consequently, we may writeD̂(v)52D̂T(2v)
andnv(r )52n2v(r ).

Using these relations, one can simplify the expression
the action as follows:
07532
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S52(
v

2pp

v

3E d2r @Da8a
(0)

“a8n2v
free~r !#eab@Dbb8“b8nv~r !#

~15!

52(
v

e2

2hvE d2r @“an2v
free~r !#

3@D̂ (0)~ r̂2 r̂ (0)!D̂#ab@“bnv~r !# ~16!

52(
v

e2

2hvE d2r @“an2v
free~r !#~kD̂ (0)2kD̂ !ab

3@“bnv~r !# ~17!

52(
v

e2k

2hvE d2r @n2v
free~r !“D̂“nv~r !

2nv~r !“D̂ (0)
“n2v

free# ~18!

52(
v

e2k

2hvE d2r @n2v
free~r !~2v1“D̂“ !nv~r !

2nv~r !~2v1“D̂ (0)
“ !n2v

free# ~19!

5(
v

e2k

2hvE d2r @n2v
free~r !Jv~r !1J2v~r !nv~r !# ~20!

5(
v

e2k

2hvE d2rJ2v~r !@nv~r !2nv
free~r !#. ~21!

In the above equations, the tensorsD̂ and D̂ (0) are under-
stood to be always evaluated at frequencyv, not 2v. In
going from Eq.~17! to Eq. ~18! we were able to discard th
boundary term because the currents normal to the boun
are vanishing, as described below. The form~21! will now be
used for computing the action.

The densitynv(r ) is found by solving the diffusion equa
tion in the half planey.0, with the boundary conditionj y
52Dyy]yn2Dyx]xn50 at y50. In Fourier components
n(x,y)5(ke

ikxnk(y) this becomes

~]y
21q2!nk~y!5e~eivt12eivt2!d~y2y0!,

Dyy]ynk~y!y→052 iD yxknk~0!, ~22!

where q5(k21v/Dxx)
1/2. After solving this elementary

boundary value problem we take the limity0→0 and have

nv,k~y!5
e~eivt12eivt2!

Dxxq1 iD yxk
e2qy. ~23!

The expression fornfree is similar, up to changingDi j

to Di j
(0) .

By inserting n and nfree thus found into Eq.~21! one
obtains
2-5
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S5
e2

2h (
v,k

ueivt12eivt2u2

v

3S 1

sxxq1 isyxk
2

1

sxx
(0)q(0)1 isyx

(0)k
D . ~24!

Note that this is precisely the expression for the action fou
in Ref. 8. Upon evaluating the integrals overk andv it gives
the result~1! in the limit sxx→0 and a more general resu
~1! for finite sxx .

Note that the first term in Eq.~24!, after integration overk
andv, is a smooth function ofsxy , whereas the second term
gives rise to a cusp in the tunneling exponent atsxy

(0)50, i.e.,
at n51/2. Indeed, the first and the second terms of Eq.~24!
correspond to the first and the second terms in Eq.~1!, re-
spectively. This means that the plateau in the tunneling
ponent for 1/3,n,1/2 arises due to the second term. It
explicit in Eq.~24! that it is the second term that accounts f
the free composite fermion dynamics, and so the cuspn
51/2 should be understood as a signature of the compo
fermion physics.

Let us mention, that the expression~24! for the action can
be rewritten as

S5
e2

2h (
v

k

v K JU 1

v2“D̂“

2
1

v2“D̂ (0)
“

UJL . ~25!

This formula can be taken as a hint that the problem
calculating the semiclassical action can be significantly s
plified by a wise choice of the effective action and of
compensating counterterm. This is exactly what our strat
will be in the rest of the paper.

II. EFFECTIVE ACTION IN DÄ2

A. Qualitative discussion

Below we focus on the effect on tunneling arising due
relaxation of collective electrodynamical modes. Semicla
cal theory can be used to describe it, assuming that the ti
and distances controlling the tunneling rate are large.

The adequacy of the semiclassical approach can be un
stood as follows. Tunneling in a strongly correlated syst
involves motion of a large number of electrons: While on
one electron is actually transferred across the barrier, m
other electrons are moving in a correlated fashion to acc
modate the new electron. This collective effect becomes p
gressively more important as the bias decreases. At a s
bias V, the single-particle barrier traversal time is mu
shorter than the relaxation timet;\/eV in the electron liq-
uid. Therefore, while one electron is traversing the bar
other electrons essentially do not move. Thus instantl
large electrostatic potential is formed. The jump in elect
static energy by an amount much bigger than the biaseV
means that right after the one-electron transfer we find
system in a classically forbidden state under acollective
Coulomb barrier. In order to accomplish tunneling, t
charge has to spread over a large area until the potentia
the charge fluctuation is reduced beloweV. If the conduc-
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tivity is small, the spreading over a large distance take
long time, and thus the action estimated as the collec
barrier height times the relaxation timet is much larger
than\.

This argument fully applies to a composite fermion sy
tem consisting of quasiparticles interacting via Coulomb
well as Chern-Simons fields. The tunneling consists of
instant process of adding one electron to the system an
its subsequent slow reaction. The second, cooperative
involving Chern-Simons and Coulomb field relaxation co
trols the tunneling rate, while the first, single-particle st
occurs instantly and contributes only to the prefactor in
tunneling current. Since for small bias the relaxation proc
occurs on a large scale, one may describe it using the s
classical approach. However, the fact that the tunneling p
ticle obeys Fermi statistics is also important, and this will
included, finally, in our analysis.

In what follows we treat the system motion under t
collective barrier semiclassically as classical Coulomb a
Chern-Simons electrodynamics in imaginary time, find
instanton solution, and derive an expression for the tunne
rate in terms of instanton action. For that we generalize
the composite fermion system the semiclassical effective
tion theory introduced elsewhere.18

B. Constructing the effective action

The effective action can be written in terms of compos
fermion charge and current densitiesn(r ,t) and j (r ,t), as
well as the Chern-Simons gauge fieldam . The total action is

Stotal5SCF1SCS1Scont1Sb.c.. ~26!

In this section we motivate, define, and discuss differ
parts of the action~26! for our system.

Below we focus on the case of diffusive CF transp
taking place in the presence of disorder. Because the ele
cal conductivity is local in this case on scales larger than
mean free path, this problem is simpler than that of ballis
CF dynamics.

The assumption underlying our analysis is that the m
contribution to the action of the tunneling charge arises fr
large spatial and time scales, and thus local deviation fr
equilibrium is small. Therefore, one can expand the action
powers of charge and current densities,n(r ,t) and j (r ,t),
and keep only the terms up to quadratic.

The contributionSCF(n, j ) is defined to correctly repro
duce the equations of motion of composite fermions dec
pled from the gauge fieldam but interacting via the Coulomb
potential.@To be more precise, since composite fermions
scribe interacting electrons in a magnetic field, the sho
range part of the Coulomb interaction is included in the de
nition of n and j of composite fermions, so only the residu
long-range part of the Coulomb interaction enters the ac
SCF(n, j ).] We considerSCF(n, j ) of a quadratic form con-
structed using CF response functions. One can see tha
requirement of matching the CF equations of motion is
entirely sufficient to determine the action, e.g., becaus
2-6
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leaves freedom of rescaling the whole action or even its
ferent parts corresponding to different normal modes of
problem.

The exact form of the action can be determined in
following way.18 The action used to study the dynamics
imaginary time is precisely the one that appears in the qu
tum partition function. The latter action expanded up to q
dratic terms in the charge and current density must yield
correct Nyquist spectrum of equilibrium current fluctuation

^^gv,q
a g2v,2q

b &&5sabuvu1saa8Dbb8qa8qb8 . ~27!

Hereg(r )5 j (r )1D̂“n(r ) is the so-called external curren
In this article we are interested in the hydrodynamical regi
of small frequencyv and momentumq, in which case the
conductivity and diffusivity tensorssab andDab satisfy the
Einstein relationŝ5e2k0D̂, wherek05dn/dm5m* /2p\2

is the free CF compressibility. Generally, bothŝ and D̂ are
functions ofv andq.

Below we assume the isotropic conductivity tensor ch
acterized bysxx andsxy . Also, to make the expressions le
heavy, we often use the units\5e51 in intermediate steps
of calculation, and recover\ ande in the final results.

The requirement of matching equilibrium current fluctu
tions is essentially equivalent to the fluctuation-dissipat
theorem. The action in imaginary time reads

SCF5
1

2 (
v

E E d2rd2r 8@g2v
a ~r !K̂ab~v,r ,r 8!gv

b~r 8!

1U~r2r 8!n2v~r !nv~r 8!# ~28!

whereU(r2r 8) is the electron-electron interaction, and t
kernel K̂(v,r ,r 8) is related to the current-current correlat
~27!,

~Kv,q
21 !ab5^^giv,q

a g2 iv,2q
b &&

5sab
(0)~v!v1saa8

(0)
~v!Dbb8

(0)
~v!qa8qb8 . ~29!

Here ŝ (0)(v) and D̂ (0)(v) are functions of the Matsubar
frequencyv obtained from the real frequency functions b
the usual analytic continuation. The superscript~0! here and
below indicates that the response functionsŝ (0) and D̂ (0)

correspond to the free CF theory, in the absence of coup
to the Chern-Simons field and interactionU(r12r2).

It is appropriate to recall here the general properties of
Matsubara conductivitysab(v). By the symmetry of kinetic
coefficients, the dielectric function is an even function
Matsubara frequency:eab( iv)5eba(2 iv) ~see Ref. 22!.
Relating it to conductivity by eab(v)5dab
14psab(v)/ iv, one obtains that the longitudinal~Ohmic!
conductivity is an odd function ofv, while the Hall part is
an even function ofv. This means that the constant condu
tivity case actually corresponds to a discontinuity insxx(v)
at v50

sxx~ iv!5sxx sgnv, ~30!
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whereassxy( iv)5sxy has no discontinuity. The same ap
plies to the components of the diffusivity tensorDab(v).

The coupling of composite fermion charge and current
the statistical gauge fieldam(r ,t) is described by the Chern
Simons action in a standard way:7

SCS5 i E dtE d2r S na01 j•a1
1

4pp
«mnlam]nalD .

~31!

Here p is an even integer corresponding to the number
flux quanta in the construction of composite fermions.

The charge and current densities entering Eqs.~28! and
~31! are not independent. They may satisfy a continu
equation. For the tunneling problem we employ

ṅ1“ j5J~r ,t ! ~32!

where the sourceJ(r ,t)5ed(r2r0)@d(t2t1)2d(t2t2)#
describes adding a composite fermion at the timet1 at the
point r0 and subsequently removing it at the timet2 at the
same point. To handle this constraint, one has to put in
action ~26! the term

Scont5 i E @ ṅ~r ,t !1“ j ~r ,t !2J~r ,t !#F~r ,t !d2r dt

~33!

with the Lagrange multiplier functionF(r ,t).
Finally, to complete the action, one has to ensure pro

boundary conditions. We choose the coordinates so that
2DEG occupies the half planey.0, so that the half-plane
edge coincides with thex axis. The boundary conditions a
the edge arise from the requirement that normal current at
edge vanishes:

j y~x,y50,t !50. ~34!

The corresponding part of the action is constructed by us
another Lagrange multiplier:

Sb.c.5 i E dxE dt jy~x,y50,t !f~x,t !. ~35!

Besides ensuring proper boundary conditions aty50, the
term ~35! is needed to make the total action gauge invari
with respect to gauge transformations of the Chern-Sim
field am .

As remarked in Sec. I B above, we do not need to inclu
in the effective action a term expressing the effect of
solenoid that appears in the system upon the transforma
of the electron into a composite fermion. Since we will wo
in the a050 gauge, the ‘‘string’’ phase facto
exp@i*t1

t2a0(t8)dt8# of Kim and Wen20 is absent.

As a validity check of the action~26! let us derive the
dynamical equations. They are obtained by taking the va
tion of the action~26! with respect to all variables excludin
the Lagrange multiplierF(r ,t). The resulting equations ar
of the standard form:

r̂ (0)j5ECS2“Ũn, ~36!
2-7
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1

2pp
ECS

a 5«ab j b, ~37!

1

2pp
BCS5n1 J̃ ~38!

where ECS5“a01ȧ and BCS5“3a are Chern-Simons
electric and magnetic fields. The effective interactionŨ is
defined as

Ũ~r2r 8!5U~r2r 8!1
1

k0
d~r2r 8!, ~39!

whereU(r2r 8) is the electron-electron interaction andk0
5m* /2p\2 is the compressibility of free composite ferm
ons. BothŨ andr (0) in Eq. ~36! in general act as nonloca
operators. The boundary conditionj y50, according to Eq.
~37!, requires that the tangential Chern-Simons electric fi
vanishes at the boundary:ȧx50.

Also, it is straightforward to check that eliminating th
Chern-Simons field leads to Ohm’s law with a corrected
sistivity tensor:

r̂ j52“~Ũn!. ~40!

Here

r̂5 r̂ (0)1
ph

e2 S 0 21

1 0 D ~41!

is the measured resistivity tensor. Note that the Che
Simons interaction changesrxy , while rxx remains intact.

C. The fundamental identity

The nonlocal current-current term in Eq.~28! makes a
calculation for the problem in the half planey.0 long and
not too transparent. To circumvent this algebraic difficu
we derive an identity for the action~28! that allows us to
replace it by an equivalent action with a local current-curr
term.

To that end, we introduce another CF action:

SCF
loc5

1

2 (
v

E d2r d2r 8F 1

v
j 2v
a ~r !rab

(0)~r ,r 8! j v
b~r 8!

1Ũ~r2r 8!n2v~r !nv~r 8!G , ~42!

where v is the Matsubara frequency. Hererab
(0)(r ,r 8)

5rab
(0)d(r2r 8) is the resistivity tensor andŨ is defined by

Eq. ~39!.
The relation between the actions~28! and~42! is provided

by the following fundamental identity:

SCF~n, j !5SCF
loc~n, j !2SCF

loc~nfree, j free!, ~43!

wheren(r ,t) and j (r ,t) arearbitrary functions satisfying the
continuity equation~32! and the boundary condition~34!,
whereasnfree(r ,t) and j free(r ,t) correspond to the saddl
07532
d
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t

point of the action describing noninteracting composite f
mions decoupled from the gauge field. Thus the functio
nfree and j free can be found by solving Eqs.~36!–~38! with
Ũ(r2r 8)5k0

21d(r2r 8) and no ECS and BCS. Supple-
mented with the continuity equation that is present in
effective action~26! as a constraint, the equations fornfree
and j free take the forms

j free~r ,v!52D̂ (0)
“nfree~r ,v!,

~44!
vnfree~r ,v!1“ j free~r ,v!5J~r ,v!.

The boundary condition for the system~44! is the absence o
normal currentj free at y50.

The result~43! is formulated and established below fo
local resistivity, because in this case the proof is mo
straightforward. It is possible, however, to generalize it to
case of nonlocal resistivityrab

(0)(r ,r 8). This requires more
general arguments which will be discussed at the end of
section.

To prove the identity~43!, we write the expression~29!

for the kernelK̂v
21 using gradients:

~Kv
21!ab5sabv1~saa8

“
Q

a8!D
bb8

“
W

b8 ~45!

where the operator convention is that“
W

a acts to the right,
whereas“Q a acts to the left. It is useful to introduce th
distinction between¹W and¹Q and to keep track of it later, so
that we are able to invert the kernelK̂v

21 and to evaluate the
expression in the first term of the action~28! before doing
the integral over the half plane. In this way we can prope
handle boundary terms.

Inverting Eq.~45! and using the Einstein relation betwee
Dab andsab together with the relation between conductivi
sab and resistivityrab , one obtains

Kab5
rab

v
2“

Q
a

1

k0v~v1¹Q D̂¹W !
¹W b . ~46!

Consider the first term in the action~28!:

g2v
a Kabgv

b5
1

v
g2v

a rab gv
b

2~“•g2v!
1

k0v~v1¹Q D̂¹W !
~“•gv!. ~47!

Below we perform some manipulations with the express
~47!, refraining from integrating overr until the very end,
because of the above-mentioned need to be careful with
dients and boundary terms.

Now we substitute

gv
a5 ja1Dab~v!“bn ~48!

in the first term of the right-hand side~RHS! of Eq. ~47!, and
find
2-8
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1

v
g2v

a rabgv
b5

1

v
j arab j b1

1

k0v
@ j a

“an1~“an! j a#

1
1

k0v
n~¹Q D̂¹W !n. ~49!

To transform the second term of the RHS of Eq.~47!, we
substitute

“•g5“• j1vn2~v1¹Q D̂¹W !n ~50!

and obtain

2~“•g2v!
1

k0v~v1¹Q D̂¹W !
~“•gv!

52J
1

k0v~v1¹Q D̂¹W !
J1

1

k0v
~Jn1nJ!

2
1

k0v
n~v1¹Q D̂¹W !n, ~51!

whereJ5“• j1vn.
Finally, we add the expressions~49! and ~51!, and com-

bine the last term in Eq.~49! together with the second an
third terms of Eq.~51!. After doing this we find the resulting
expression

1

v
j arab j b1

1

k0
n22J

1

k0v~v1¹Q D̂¹W !
J

1
1

k0v
“a~ j an1n ja!. ~52!

Upon integrating this expression overr and multiplying by
1/2, the first two terms give corresponding terms of the
tion ~42!, the third term givesSCF

loc(nfree, j free) appearing in
Eq. ~43!, and the last term vanishes due to the bound
condition ~34!, thus proving the identity~43!.

Having given a formal proof of the identity~43!, let us
now point out the relation of Eq.~43! to the structure of RPA
diagrams in the perturbation theory for Green’s functions
the presence of disorder. To simplify the discussion, let
ignore the CS gauge field, and consider the problem of e
trons coupled only by Coulomb interaction. In this case,
RPA self-energyS can be represented graphically, as sho
in Fig. 1. In theD52 problem the bare unscreened intera
tion, represented in the figure by a thin broken line,
U(k)52pe2/euku. The diffusive polarization operator i
P(k,v)5k0Dk2/(v1Dk2), and the diffusive vertex part is
1/(v1Dk2). One can verify, by performing a resummatio
that the dynamically screened interaction, shown in Fig. 1
a thick black line, can be represented as follows:
07532
-

y

n
s
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e
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y

1

~v1Dk2!2

U~k!

11P~k,v!U~k!

5
1

v S 1

Dk21v/@11k0U~k!#
2

1

Dk21v
D ,

~53!

as the difference between the propagator of an auxiliary
teraction and the diffusive vertex part, multiplied byv21.
These two contributions are shown in Fig. 1 by the wavy r
and wavy green lines, respectively.

The self-energy diagram in Fig. 1 corresponds to inter
tion via a dynamically screened Coulomb potential, i.e., t
shakeup of a dissipative plasmon. This effect is described
the hydrodynamical effective action introduced above in S
II, and so it is to be expected that the expression in the R
of Eq. ~53! corresponds directly to the differenceS loc

2S free
loc in Eq. ~43!.

On can rewrite the formula~53! in a quite general opera
tor form, generalizing it for any interactionÛ, polarization
operatorP̂(v), and vertex partV̂(v), satisfying the Ward
identity P̂(v)5k0@ 1̂2vV̂(v)#. For that, one represents th
vertex part in the formV̂(v)5(l̂1v)21, and writes

V̂~v!@11ÛP̂~v!#21ÛV̂~v!

5
1

v S 1

l̂1v~ 1̂1k0Û !21
2

1

l̂1v
D . ~54!

The formula ~54! can be proved straightforwardly by ex
panding the fractions in operator geometric series, and s
sequent resummation.

One can view the formulas~53! and~54! as a motivation
for the identity~43!. More importantly, the relation to RPA
diagrams, explicit in Eqs.~53! and ~54!, demonstrates the
general character of the identity~43!, which is not evident
from the way it is justified above. Comparing to Eqs.~53!
and~54! makes it clear that the identity~43! is robust under
changes in the geometry of the system, alterations of
boundary conditions, and addition of more complicated
teractions such as the CS gauge fields.

FIG. 1. Resummation of the RPA diagram series for self-ene
for diffusive electrons. The black wavy and broken lines repres
dynamically screened interactions and bare unscreened Cou
interactions, respectively. The bubbles and triangles represent d
sive polarization operators and vertex parts. The two wavy lines
the RHS are defined in Eq.~53!.
2-9
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The analog of Eqs.~53! and~54!, and thus of the identity
~43!, holds even for ballistic Fermi-liquid dynamics. In th
case, according to the microscopic theory of Fermi liqui
P̂5k0k•v/(k•v2v) andV̂51/(v2k•v), and the operators
act on the particle-hole distributions on the Fermi surfa
For a Fermi liquid, the formula~54! holds with l̂52k•v.

III. THE DÄ1 ACTION FOR SHORT-RANGE
INTERACTION

A. Integrating out variables in the bulk

In this section we consider the simplest model of sh
range interaction,U(r2r 8)5Ud(r2r 8), and diffusive CF
transport described byrab(r ,r 8)5rabd(r2r 8).

We shall start with the actionStotal given by Eq.~26! in
the half plane and derive an effectiveD51 problem by in-
tegrating out the dynamics in the bulk, and keeping only
variables at the edge. Since the action~26! is quadratic, the
integration can easily be performed by the saddle po
method.

From now on we replace the CF action~28! by the action
~42! with a local current-current term. The virtue of doin
this is that the action~42! is much easier to handle, where
the identity~43! allows us to go back to the physically mea
ingful action ~28! at the very end.

First, it is convenient to integrate out the Chern-Simo
gauge fieldam , both in the bulk and at the edge. We do it b
fixing the gaugea050. Upon integration overam the CF
resistivity tensorrab

(0) turns into the electron resistivity tenso
~41!: rxy5rxy

(0)1ph/e2, rxx5rxx
(0) . The action acquires the

form Stotal5S2Sfree with

S5(
v

E d2r S 1

2v
j a,2vrab~v! j b,v1

Ũ

2
n2v~r !nv~r ! D

1Scont1Sb.c.. ~55!

Then we integrate outn and j in the bulk, keeping fixed the
normal currentj y at the edge. The result is

S5(
v

E d2r S 1

2
vsab~v!“aF2v~r !“bFv~r !

1
v2

2Ũ
F2v~r !Fv~r !1 iF~r ,t !J~r ,t !D

1 i E dx dt@F~x,y50,t !2f~x,t !# j y~x,y50,t !.

~56!

Hereŝ(v)5 r̂21(v) is the electron conductivity tensor. Th
frequency dependence ofŝ(v) is the same as that ofr̂(v):
sxx(v)5sxx sgnv, sxy(v)5sxy , etc.

The next step is to integrate overj y(y50), which gives
F(x,y50,t)5f(x,t). Hence, the action is
07532
,

.

t

e

t

s

S5(
v

E d2r S 1

2
vsab~v!“aF2v~r !“bFv~r !

1
v2

2Ũ
F2v~r !Fv~r !D 1 i E dx dtF~x,y50,t !J~x,t !.

~57!

In handling the source termJ we assume that the pointr0
5(x0 ,y0) at which charge is injected is very close to th
boundary, i.e.,y0→0, and thus the source in Eq.~57! can be
effectively placed at the edge:J(x,t)5ed(x2x0)@d(t2t1)
2d(t2t2)#.

Finally, we integrate out the bulk value ofF(r ,t). From
Eq. ~57! the equation forF at y.0 is

sxx~v!¹2Fv~r !1
v

Ũ
Fv~r !50. ~58!

It is convenient to use the Fourier transform ofFv(r ) with
respect to variablex only:

Fv~x,y!5(
k

Fv,k~y!eikx. ~59!

Note that Fourier transform iny is not suitable because w
are dealing with the boundary value problem in they.0
domain.

Then the solution to Eq.~58! is straightforward:

Fv,k~y!5Fv,k~y50!e2q(v,k)y, q2~v,k!5k21
uvu

Ũsxx

.

~60!

After substituting Eq.~60! into ~57!, one obtains aD51
action:

S5(
v,k

1

2
@sxxuvuq~v,k!1 isxyvk#f2v,2kfv,k

1J~2v,2k!fv,k , ~61!

where we put Eq.~61! in the Luttinger liquid theory form in
terms of the boundary fieldf(x,t)5F(x,y50,t) introduced
above as a Lagrange multiplier.

This effective action represents a generalization of
chiral Luttinger theory of edge modes to the compressi
problem with finitesxx . Because of the relation betweenq
andv, the dissipative term in the action~61! is nonlocal in
the time representation. In the incompressible limitsxx
→0, we recover the standard chiral Luttinger action:

S5
in

4pE ]xf ] tf dx dt1 i E J~x,t !fdxdt. ~62!

In the above derivation we ignored effects of the bound
compressibility. Taken into account, these effects lead to
additional term of the form*(] tf)2dxdt which does not
affect the long-time dynamics and drops from the final a
swer for the instanton action derived below.
2-10
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B. Instanton action

The source term in the action~61! describes coupling o
the tunneling charge to the fieldf(x,t). Thus, the electron
creation operator can be written asc†(x,t)
5cCF

† (x,t)eief(x,t), wherecCF
† (x,t) is the operator of a com

posite fermion, ande is the electron charge. Let us point o
the resemblance of the exponentialeief(x,t) to the standard
one-dimensional Luttinger liquid expression.

Tunneling is related to the electron Green’s function.
find the tunneling rate, we evaluate the equal point Gree
functionG(t)5^c(0,t1)c†(0,t2)&t5t12t2

of an electron. Us-

ing the above relation ofc andcCF, we write the electron
Green’s function in terms of the CF operators and then m
a factorization approximation:

^c~0,t1!c†~0,t2!&5^cCF~0,t1!cCF
† ~0,t2!&

3K expS i E J~x,t !f~x,t !dxdtD L ,

~63!

where the first and the second averages on the right-h
side are taken over the fermionic ground state and over fl
tuations of the electric and CS gauge fields, respectiv
This approximation holds because the dynamics of the
jected quasiparticle and of the collective charge relaxa
mode are decoupled in space and time. The CF quasipart
and edge magnetoplasmons differ both in the rate of pene
tion into the 2DEG bulk and in the velocity of motion alon
the edge~cf. the discussion in Sec. I B!.

Thus the imaginary time Green’s function can be writt
as

G~t!5GCF~t!K expS i E J~x,t !f~x,t !dxdtD L
5GCF~t!e2[S(t)2Sfree(t)] , ~64!

where GCF(t) is the Green’s function of a free composi
fermion injected and later removed at a point of the bou
ary. In the last term of Eq.~64! we used the identity~43!
relating the average overf(x,t) in ^exp(i*J(x,t)f(x,t)dxdt)&
to the action~61!.

According to the CS Fermi-liquid theory, in the effectiv
composite fermion mass approximation,GCF(t)51/t. This
essentially free fermion result holds even though the ga
field fluctuations give rise to infrared-divergent logarithm
corrections7,23 to the effective massm* , because these co
rections are canceled by corrections to the residueZ of the
Green’s function.

The tunneling current is obtained fromG(t) in a standard
way. One has to continueG(t) from imaginary to real time,
and to do the integral over time:

I ~V!;ImE
0

`

G~ t !
eieVt

t
dt. ~65!

Now, we evaluatê exp(i*J(x,t)f(x,t)dxdt)& using the local
action ~61!. By a Gaussian integration, the result ise2S,
where
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S5
1

2 (
k,v

uJ~v!u2

uvu~sxxq1 isxyk sgnv!
. ~66!

The substitutionk5k0 sinh 2x with k05(uvu/sxxŨ)1/2 sim-
plifies integration overk:

S5
1

4 (
v

uJ~v!u2

uvu E ~ex11!dx

sex1s*
, ~67!

wheres5sxx1 isxy . The integral~67! is taken in the do-
main 2xmax,x,xmax, and gives an ultraviolet logarithmi
cally divergent answer which we cut atkmax5k0xmax:

S5E dv

uvu
uJ~v!u2F rxx

8p2
ln

4kmax
2 sxxŨ

uvu
1

1

4p2rxyuHG .

~68!

Note that this expression does not vanish even in the abs
of interaction with the Chern-Simons field and electro
electron interaction, whenp50 andŨ5k0

21. This indicates
that part of the answer represents the contribution of non
teracting composite fermions and must be subtracted
This subtraction happens automatically because of the id
tity ~43!, which confirms that the correct action is indee
S2Sfree.

One can see that the countertermSfree is indeed related to
the effect of free composite fermions. The physical origin
the ultraviolet divergence atkmax is that for free fermions the
relaxation is fast and involves large momentak;kF . On the
other hand, the contribution resulting from the interacti
should not diverge at large momenta.

To find S2Sfree, we subtract from Eq.~68! the same ex-
pression withp50 andŨ5k0

21. Integrating the difference
over v, we getS2Sfree5(a21)ln t/t0, wheret0 is a micro-
scopic time of the order of the scattering time, anda is given
by

a511
2e2

ph
@uHrxy2uH

(0)rxy
(0)#

1
e2rxx

ph
ln@~11k0U !sxx /sxx

(0)#, ~69!

whereuH5tan21rxy /rxx is the Hall angle,U is the short-
range interaction, andk05m* /2p\2 is the free CF com-
pressibility. The behavior ofa as a function ofrxy is dis-
played in Fig. 2.

To verify that a is the tunneling current exponent, w
write the electron Green’s function as~64!, where the free
composite fermion Green’s function isGCF(t);t21. There-
fore, the Green’s function isG(t);t2a. One can compute
the tunneling current from Eq.~65!, and obtain the power
law I (V);Va. The expression~69! shows that the shakeu
effects suppress tunneling in a uniform fashion for the filli
factorsn both on and off the quantum Hall plateaus. TheI -V
curve is given by a power law with the exponent depend
smoothly on the filling factor, via the resistivitiesrxx and
rxy , and effective interactionk0U.

One can compare this result with the chiral Luttinger li
uid theories of tunneling into the edge of an incompressi
2-11
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QH state. For that, one has to consider the limit of a la
Hall angle:uH5uH

(0)5p/2. In this caserxx→0 and the ex-
ponent~69! acquires the form~1! corresponding to a stair
case with plateaus in the intervals 1/3,n,1/2, 1/5,n
,1/4, etc., interpolated by straight lines with the slope 2.
the rational filling fractionsn5n/(pn61) we recover the
results of the Luttinger liquid theories. To see this, substit
rxy5(p11/n)h/e2, rxy

(0)5h/ne2 in the expression~1!, and
get I;V11up11/nu21/unu, which agrees with the universal tun
neling exponents predicted by Wen1 and by Kane, Fisher
and Polchinski2 for Jain filling factors with positive and
negativen.

It is interesting that the tunneling exponent~1! has cusp-
like singularities near the compressible rationaln ’s with even
denominator,n51/2, 1/4, etc. The origin of this effect is
qualitative change in the structure of the edge modes n
these filling factors. In particular, let us discuss the vicin
of n51/2, where the quantum Hall state can be describe
a Fermi liquid of composite fermions carryingp52 flux
quanta each, and exposed to ‘‘residual’’ magnetic fielddB
5(22n21). At n,1/2 the residual field direction coincide
with the total field, and all edge modes propagate in the sa
direction. On the other hand, atn.1/2, the structure of the
edge is qualitatively different, consisting of modes going
opposite directions. This effect makesn51/2 a singular den-
sity from the point of view of the tunneling exponent.

The singularities atn51/p are smeared in the presence
scattering by disorder, i.e., at finiterxx . Interestingly, the
deviation from the staircase described by the expression~1!
due to effects of finiterxx can be either positive or negative
depending on the interaction strengthk0U ~see Fig. 2!. In the
absence of interaction, atU50, the tunneling exponenta
,a(rxx50). On the other hand, at large interaction,a
.a(rxx50).

It is instructive to compare the results~69! and ~1! with
the exponent a51/n found using hydrodynamica
approaches9–11,16,14in which the edge dynamics is modele
as a charged fluid, without any additional inner quasipart
degrees of freedom. Our expressions~69! and ~1! have the
form of a difference of two contributions, the first of which
essentially 1/n with small corrections due to finiterxx . The
second contribution is expressed in terms of the respo
functions of free composite fermions, and it is this term th
leads to nonanalyticity and plateaus ina(n). According to

FIG. 2. The tunneling exponent for the model~39! with
short-range interactionU(r2r 8)5Ud(r2r 8), where k5k0

5m* /2p\2.
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the identity~43!, these contributions arise from the local a
tion Sloc and the countertermSloc

free, respectively. It is easy to
see that there is a direct correspondence between our a
Sloc and the hydrodynamical actions.9–11,16,14 In our ap-
proach, the role of the countertermSloc

free is to ensure that the
Green’s function of free composite fermions agrees w
Fermi statistics. From that point of view, the plateauli
structure ina(n) is a manifestation of the role of composi
fermions as underlying quasiparticles of the QH state.

IV. MODELS WITH A LONG-RANGE INTERACTION

A. The action for the edge mode

We assumed above that the interaction has a short ra
Due to the long-range character of the Coulomb interacti
electromagnetic modes in a real system are very differ
from those considered in Sec. III. Hence the effect
shakeup of these modes on tunneling is also somewhat
ferent. In this section we extend the method outlined ab
to the problem with Coulomb interaction, and consider s
eral situations describing screening of the interaction in
overgrown cleaved edge system, as well as the unscre
Coulomb interaction.24

For the long-range interaction, the method of deriving t
effective action for the edge outlined in Sec. III can be fo
lowed without any change up to Eq.~56!, which in this case
takes the form

S5
1

2 (
v

E
y.0

d2r @vsab~v!“aF2v~r !“bFv~r !

1 iF~r ,t !J~r ,t !#

1
1

2 (
v

E E d2rd2r 8 v2F2v~r !Ũ21~r ,r 8!Fv~r 8!

1 i E dx dt@F~x,y50,t !2f~x,t !#x~x,t !, ~70!

whereŨ21(r ,r 8) is the inverse of the interaction kernel, an
the notation

x~x,t !5 j y~x,y,t !uy50 ~71!

is introduced. It will be convenient now, instead of integra
ing over j y(x,y50,t) as we did above, to keep it as
dynamical field.

Let us note that in the interaction term in Eq.~70! the
integral overr and r 8 goes over the whole plane, not ju
over the half planey.0 as in Sec. III. The reason is simp
to understand by writing the relation betweenF andn:

vF~r !5E
y8.0

Ũ~r ,r 8!n~r 8!d2r 8, ~72!

and observing that for long-rangeŨ the field F(r )Þ0 for
both y.0 andy,0.

To proceed with deriving the effectiveD51 action, we
decompose the conductivity tensor into the diagonal and
2-12
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diagonal parts,sab(v)5sxxsgnvdab1sxyeab . The off di-
agonal conductivity term in Eq.~70! is a full derivative
because

eab“aF2v~r !“bFv~r !5“a@eabF2v~r !“bFv~r !#.
~73!

As a consequence, this term is converted into the bound
term expressed in terms ofFy50(x,t)5f(x,t), and the total
action can be written as

Stotal5S2D1S1D , ~74!

where

S1D5 i E S 1

2
sxy]xf* ~x,t !] tf~x,t !1f~x,t !J~x,t !

1@Fy50~x,t !2f~x,t !#x~x,t ! Ddtdx ~75!

and

S2D5
1

2 (
v

S E
y.0

uvusxx“aF2v~r !“aFv~r !d2r

1E E v2F2v~r !Ũ21~r ,r 8!Fv~r 8!d2rd2r 8D .

~76!

We included the source termJ in S1D by placing it at the
boundary y50 and accordingly added the ter
if(x,t)J(x,t) to Eq.~75!, simultaneously removing the term
iFv(r )J2v(r ) from Eq. ~76!.

Now, one can integrate over the fieldFv(r ). This
amounts to taking the saddle point ofStotal, i.e., to solving
the problem

2uvusxx¹
2Fv~r !1vn~r !5 ixv~x!d~y!,

~77!

vF~r !5E
y.0

Ũ~r ,r 8!n~r 8!d2r 8

in the domainy.0 with the boundary condition]yFy50
50 which corresponds to the absence of current norma
the edge. This problem describes the response of the cha
in the conducting half plane to the external charge sou
xv(x)d(y). The solution of this problem taken at the boun
ary y50 can be written as some linear operator applied
the sourcexv(x). In terms of Fourier components one ha

Fy50~k,v!5Q21~k,v!
ixk,v

uvusxx
, ~78!

which defines the functionQ(k,v) playing the key role in
what follows. Interestingly, there is no dependence in
problem~77! on sxy whatsoever, because the correspond
part of the action is a boundary term, and thus it belongs
the boundary action~75!.
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We postpone the discussion of the problem~77!
and proceed with deriving the effectiveD51 action.
The integration over Fv(r ) simply adds the term
1
2 (k,vuvu21Q21(k,v)x2k,2vxk,v to the actionS1D given by
Eq. ~75!.

Finally, we integrate over the fieldx(x,t), and obtain the
total action in terms of the boundary fieldf(x,t):

S5(
v,k

1

2
@sxxuvuQ~v,k!1 isxyvk#f2k,2vfk,v

1f2k,2vJk,v . ~79!

This action, in which the functionQ(v,k) has to be found
by solving the problem~77!, represents the analog of th
action ~61! derived in Sec. III for short-range interaction.

Using this action for calculating the Green’s function go
in complete parallel with Sec. III. The resulting Green
function is G(t)5e2SGCF

(0)(t), whereGCF
(0)(t)5t21 is the

free CF Green’s function. The saddle point actionS, by vir-
tue of the identity~43!, can be written asS5S loc2S free

loc ,
where S loc and S free

loc are found by taking an appropriat
saddle point of Eq.~79!. The result is conveniently expresse
in terms of a ‘‘spectral weight’’A(v):

G~t!5
1

t
expS 2E

0

`

uJ~v!u2A~v!
dv

4p\uvu D ,

J~v!5e~12e2 ivt!. ~80!

HereA(v) is defined as

A~v!5E
2`

` S 1

sxxQ~k,v!1 isxyk

2
1

sxx
(0)Q(0)~k,v!1 isxy

(0)k
D dk

p
, ~81!

whereQ(k,v) is defined by Eq.~78!, andQ(0)(k,v) is de-
termined from Eq.~77! for Ũ(r ,r 8)5k0

21d(r2r 8), which
corresponds to noninteracting composite fermions. While
riving Eq. ~81!, we replacedsxyvk by sxyuvuk in the action
~79!, which does not change the integral in Eq.~81! because
a sign change ofv can be accommodated by a sign chan
of k.

The relation between the tunneling exponenta and the
spectral weightA(v) is most simple whenA does not de-
pend onv, as in the case of short-range interaction discus
in Sec. III. In this case, simplya5A11. A frequency de-
pendentA(v) can be interpreted as an energy depend
tunneling exponent

a~v!5A~v!11. ~82!

This interpretation is meaningful only if thev dependence of
A is sufficiently weak. This will turn out to be precisely th
case below, for the problem of long-range Coulomb inter
tion, in which A(v) varies withv not faster than logarith-
mically.
2-13
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In what follows we consider the problem~77!, find
Q(k,v), and evaluate the spectral weight~81!.

B. Solving for Q„v,k…

The problem~77! that has to be considered in order
find Q(v,k) involves a long range kernelŨ(r ,r 8) and, in
general, requires solving an integral equation. This equa
is defined in the half planey.0, and thus cannot be treate
by simple tools. Generally speaking, one has to treat it by
Wiener-Hopf method.

However, there are special cases corresponding to in
action screened by a mirror image in the regiony,0 that
can be handled by the Fourier transformation. Below
consider three models:

modelV2V8: Ũ~r ,r 8!5
e2

eur2r 8u
2

e2

eur2r 9u

1
1

k0
d~r2r 8!; ~83!

modelV1V8: Ũ~r ,r 8!5
e2

eur2r 8u
1

e2

eur2r 9u

1
1

k0
d~r2r 8!; ~84!

modelV0 : Ū~r2r 8!5
e2

eur2r 8u
1

1

k0
d~r2r 8!. ~85!

Here the pointr 9 is a mirror image ofr 8 with respect to the
edgey50: r 85(x8,y8), r 95(x8,2y8).

We start with the modelV2V8 because it is simpler, an
also because it directly corresponds to the overgrown clea
edge system where screening of the type~83! occurs due to
the charges induced in the doped region. One can trans
the problem~77! in the half planey.0 to a problem in the
full plane by extending the functionsF, n, and x to the
negative half planey,0 with a sign change:F(x,2y)
52F(x,y), n(x,2y)52n(x,y). Similarly, the sourcex in
Eq. ~77! must be extended so thatxv(x,2y)52xv(x,y). In
that, the sourcexv(x,y) is assumed to be located not right
the liney50 but somewhat away from it, so that the depe
dence ofx in Eq. ~86! below on y is given by xv(x,y)
5xv(x)@d(y2y0)2d(y1y0)# with a small y0.0. The
limit y0→0 will be taken at the end.

Upon extending the problem to the whole plane the int
action ~83! has to be replaced by the unscreened interac
~85!. Then the problem~77! takes the form

~2uvusxx¹
21v2Ū21!Fv~r !5Ad8~y!1 ixv~x,y!,

~86!

whereŪ21 denotes the inverse of the operator with the k
nel ~85!.

The termAd8(y) is inserted because the functionFv(r ),
extended fromy.0 to y,0 with a sign change, must have
07532
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jump at y50. The value of the jumpF(y510)2F(y
520)52A/uvusxx , and thus the boundary valuesF(y
560)57A/2uvusxx .

The formal solution of Eq.~86! can be written in Fourier
components:

Fv~k!5
Ū~k!@ iqA1 ixv~k,q!#

uvu@ uvu1sxxk
2Ū~k!#

, ~87!

wherek5(k,q), and

Ū~k!5
2pe2

e~q21k2!1/2
1

1

k0
. ~88!

The constantA is determined from the boundary condition

]yFv~y→0!5E iqS Fv~k!2
A

uvusxxiq
D dq

2p
50,

~89!

where the second term in the integral is inserted to cance
jump of F at y50.

SubstitutingF from Eq. ~87!, evaluating the part of the
integral ~89! containing xv(k,q) in the limit y0→0, and
simplifying the other part, one obtains

E xv~k,q!

q

dq

2p
52AE uvu1sxxŪ~k!k2

uvu1sxxŪ~k!~k21q2!

dq

2p
.

~90!

Now, note that the LHS of Eq.~90! is equal to
i *xv,k(y)dy5 ixv,k , the one-dimensional source densi
and the value ofF at y→0 is just given by2A/2uvusxx , as
discussed above. Hence, it follows from Eq.~90! that

Q~v,k!52E uvu1sxxŪ~k!k2

uvu1sxxŪ~k!~k21q2!

dq

2p
. ~91!

In the special case whenŪ(k) is a constant, the result~91!
agrees with the expression~60! for q(v,k) found in Sec. III.

The integral overq in Eq. ~91! for Ū of the form ~85!,
~88! can be evaluated exactly. We will only need the res
for small uku!r s

21 , wherer s5e/2pk0 is the screening ra-
dius of the 2DEG. In this limit,

Q~v,k!5
2k

p Fa lnS 2

r suku D1~12a2!F~a!G , ~92!

wherea5ve/2psxxk, and

F~a!5H ~12a2!21/2 arctanAa2221 for a,1

~a221!21/2 ln~a1Aa221! for a.1.
~93!

The expression~93! has no singularity ata51. The behav-
ior of F(a) as a function ofa is such thatF(a!1)5p/2,
F(a@1)5a21ln 2a, F(1)51.

The next step is to substitute this expression in Eq.~80! to
determine the spectral weightA(v) and the instanton action
The resulting tunneling exponenta(v)5A(v)11 has a
weak frequency dependence. This is demonstrated on Fi
2-14
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where a is plotted as a function of frequencyv for n
51/2. In the two other models~84! and ~85!, discussed be-
low, the frequency dependence ofa(v) is somewhat stron-
ger. This is quite natural because in the modelV2V8 the
interaction is to some extent screened by image charges
the results are expected to be closer to those for short-ra
interaction, wherea(v) has no frequency dependence. Sim
lar difference between the effect of screened and unscre
interactions on tunneling is known for the diffusive zero-b
anomaly.18,25

The modelV2V8 is closer to the experimental situatio
than other models studied in this paper, because it treat
teraction as long ranged, and accounts for screening in
doped region. Thus, it is theV2V8 model that is interesting
to compare to experiment.5,6,17 The tunneling exponent cal
culated above can be plotted versusrxy ~see Fig. 4!. Experi-
mentally, the parameter controlling occupation of the Land
levels is the magnetic field, and so the experimentally m
sured a are shown in5,6,17 as functions of nbulk

21

5B/F0n2DEG. However, at large Hall angle,rxx!rxy , and
away from incompressible densities,e2rxy /h is quite close
to n21.

Also, it would be incorrect to ignore the difference b
tween the 2DEG density in the bulk and near the edge, an

FIG. 3. The tunneling exponenta(v)5A(v)11 for the mod-
els V2V8, V1V8, and V0 @see Eqs.~83!, ~84!, and ~85!# at n
51/2 as a function of frequencyv. The frequency is measured i
units ofv05k0e4. For the modelV2V8 the frequency dependenc
of a is much weaker than for the modelsV1V8 andV0. Note that
even in the latter two cases the frequency dependence is quite w
logarithmic at most.

FIG. 4. The tunneling exponent for the modelV2V8 @see Eq.
~83!# corresponding to Coulomb interaction screened by the do
region in the overgrown edge system.
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compare the graph in Fig. 4 directly with the experimenta
measureda. One can argue~see Sec. V below! that the den-
sity near the edge exceedsnbulk by 20–30 %. Taking this into
account, one has to rescale the slope of the experimen
observed dependencea51/nnbulk , and to compare the
curves in Fig. 3 with the dependencea
5(1.2–1.3)rxye

2/h. This agrees reasonably well with th
average slope of the curves in Fig. 3 in the interval 1,rxy
,4 studied experimentally.6,17

Of course, a more important issue is whether there
plateaulike features in the experimental dependencea(n). In
the experiment6 a straight line is observed, without any sig
of plateaus. More recently, however, it was found that so
samples show signs of a plateau nearn51/3. Upon rescaling
of the filling factor by 1.2–1.3, this corresponds tonedge
between 1/2 and 1/3, which is exactly where the middle
the plateau in Fig. 4 is located. However, the matter is clea
not yet resolved, and more experimental studies would
very welcome.

There is one other type of interaction for which the pro
lem ~77! in the half plane is tractable by Fourier transform.
corresponds to the modelV1V8 above, defined by Eq.~84!.
The interaction~84! describes the situation when imag
charges are of the same sign as the source charges. De
being unphysical, this problem is still worth attention, b
cause the solution is very simple and has behavior qua
tively different from the modelV2V8. Physically, this prob-
lem is similar to the one of unscreened interaction which
discuss below.

Starting with the interaction~84!, one can extend the
problem to the full plane, now in a symmetric way:F(x,
2y)5F(x,y), etc. Upon doing this the interaction~84! has
to become unscreened, of the formŪ(k) given by Eq.~85!.
Then the solution is straightforward in Fourier componen

Fv~k!5
2ixv,k

uvusxxk
21v2/Ū~k!

. ~94!

This form automatically satisfies the boundary conditi
]yF(y50)50, becauseF is an even function ofy.

The function Q(v,k) is found by evaluatingF at the
boundaryy50:

Q21~v,k!5
1

pE dq

q21k21uvu/sxxŪ~k!
5

2

pk
F~a!,

~95!

whereF(a) is defined by Eq.~93!.
Again, we now substitute this expression in Eq.~80! to

calculate the instanton action. The resulting tunneling ex
nent a(v)5A(v)11 has a logarithmic frequency depe
dence, as shown in Fig. 3. The origin of this logarithm
dependence can be traced to the zero-bias anomaly in a
fusive conductor.25,18 On Fig. 5 we plota as a function of
rxy for several values ofv. One notes that the valuesa in
Fig. 5 are somewhat larger than those for the modelV2V8
in Fig. 4. This is due to the ‘‘antiscreening’’ in the mod
V1V8 which enhances the effect of the long-range part

ak,

d

2-15
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the interaction in the dynamics. Qualitatively, the behavior
a for the modelV1V8 is similar to that for the modelV0
discussed below.

C. Wiener-Hopf problem for the model V0

Here we consider the modelV0, describing unscreene
Coulomb interaction~85!, i.e., in the absence of imag
charges of any kind. The strategy will be to derive an integ
equation forFv,k(y) and to deal with it using the Wiener
Hopf method. Our approach is similar to that employed
Volkov and Mikhailov in a study of the edg
magnetoplasmons.26

We start with the problem~77! written in Fourier repre-
sentation with respect tox. Nondimensionalized, the firs
equation of~77! reads

~k22]y
2!Fv,k~y!1mnv,k~y!5 i x̃v,kd~y2y0!, ~96!

wherem5uvu/sxx and x̃5x/(uvusxx). As in the above dis-
cussion of the modelV2V8, it is convenient to place the
sourcex̃ at a small distancey0 from the edge, and take th
limit y0→0 later.

Posing the correct boundary condition for Eq.~96! re-
quires a discussion. The absence of normal current at
edge means that]yF(y50)50. On the other hand, by inte
grating Eq. ~96! from the edge to the sourcex̃, over the
small interval 0<y<y0, from current conservation one ob
tains ]yF(y5y010)y0→052 i x̃v,k . Therefore, in the limit

y0→0 the boundary condition is written as]yF(y→0)
52 i x̃v,k . This condition defines completely the bounda
value problem in the region of interesty.y0→0. However,
without any loss of generality, it will be convenient to a
sume that near the very edge, for 0,y,y0, the normal de-
rivative ]yF vanishes.

Now, by performing convolution of Eq.~96! with Uk(y)
5*eikxU(x,y)dx, remembering thatnk(y,0)50, and us-
ing the second equation of~77!, we transform the problem to

E
y8.0

Uk~y2y8!~k22]y8
2

!Fv,k~y8!dy81mFv,k~y!

5 i x̃v,kUk~y2y0!. ~97!

FIG. 5. The tunneling exponent for the modelV1V8 @Eq. ~84!#
corresponding to Coulomb interaction in the presence of an ‘‘a
screening’’ due to image charges in the doped region of the s
sign as the source charges.
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We will be solving Eq.~97! in the domainy.0 with k andv
being parameters. Hence, for simplicity, below we suppr
the dependence onv andk and useF(y), U(y), etc.

It is convenient to integrate in Eq.~97! by parts using the
boundary condition]yF(y→0)y,y0

50, which gives

~k22]y
2!E

y8.0
U~y2y8!F~y8!dy81mF~y!

5 i x̃U~y2y0!2]yU~y!F0 , ~98!

whereF05F(y50). The form~98! of the problem is most
suitable for applying the Wiener-Hopf method to which w
now proceed.

The first step is to perform Fourier expansion ofF(y)
with respect to they coordinate:

F~y!5(
q

eiqyF~q! ~99!

Since the integral in Eq.~98! is taken overy8.0, in order to
rewrite it in terms ofF(q) we decomposeF(y) as F(y)
5F.(y)1F,(y), nonzero for y.0 and y,0, respec-
tively. One can assume thatF.(y) and F,(y) decay aty
→6` and verify it later, when a solution is found. In term
of F. andF, , Eq. ~97! becomes

m„F.~q!1F,~q!…1~k21q2!U~q!F.~q!

5 iU ~q!~ x̃e2 iqy02qF0!. ~100!

Here the Fourier transformed interactionU(q) is given by
Eq. ~88!. In what follows we sety050.

The functionsF.(q) and F,(q) have nice analytical
properties, namely,F,(q) is an analytic function ofq in the
upper complex half plane Imq.0, andF.(q) is analytic in
the lower half plane Imq,0. To make the discussion below
more transparent, we denoteF.(q) by F2(q) andF,(q)
by F1(q), where6 indicate the half plane of analyticity in
q.

Now, Eq. ~100! can be written as

K~q!F2~q!1F1~q!5R~q!, ~101!

where

K~q!511
1

m
~k21q2!U~q!, ~102!

R~q!5
i

m
U~q!~ x̃2qF0!. ~103!

The next step is to decomposeK(q) into the ratio of two
functions which are analytic in the upper and lower h
planes, respectively,

K~q!5
X1~q!

X2~q!
, ~104!

where

i-
e

2-16
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X6~q!5expS 1

2p i E2`

` dq8

q82q7 i0
ln K~q8!D . ~105!

The asymptotic behavior ofX6(q) at uqu@2pk0 /e is
X1(q)5(q1 i uku)/l, X2(q)5l/(q2 i uku), where l
5Amk0.

Now, Eq. ~100! turns into

F1~q!

X1~q!
1

F2~q!

X2~q!
5C~q!, ~106!

where

C~q!5
R~q!

X1~q!
5

i ~ x̃2qF0!

q21k2 S 1

X2~q!
2

1

X1~q! D .

~107!

Now we decomposeC(q) into the sum of two functions
with appropriate analytical properties:

C~q!5C1~q!2C2~q!,
~108!

C6~q!5
1

2p i E2`

` dq8

q82q7 i0
C~q!.

The standard Wiener-Hopf reasoning27 then leads to

F1~q!5X1~q!C1~q!, F2~q!52X2~q!C2~q!.
~109!

Fourier transform of Eq.~109! gives F(y) for y,0 andy
.0.

It is not difficult to find C6(q) explicitly. For that, one
has to substitute Eq.~107! into the Cauchy integral in Eq
~108!, which gives

C2~q!52
1

2p i E2`

` dq8

q82q1 i0

i ~ x̃2qF0!

q21k2

3S 1

X2~q!
2

1

X1~q! D , ~110!

and a similar equation forC1(q). Now, we close the inte-
gration contour in Eq.~110! in the upper or lower half plane
depending on whetherX1

21 or X2
21 is to be integrated, and

evaluate the integral~110! using residues. Having foun
C2(q), and then using Eq.~109! to go back toF2(q), we
obtain

F2~q!5
i ~ x̃2qF0!

q21k2
1

X2~q!

2uku

3F 1

i uku1q

x̃1 i ukuF0

X2~2 i uku!
1

1

i uku2q

x̃2 i ukuF0

X1~ i uku! G .

~111!

Several remarks are in order about the result~111!.
First of all, let us verify thatF2(q) is analytic at Imq

,0. The expression~111! has an apparent pole in the low
half plane atq52 i uku. However, it is easy to see from Eq
07532
~111! that the residue for this pole is zero. From analyticity
Im q,0 it follows thatF(y,0)50, as it should be.

Next, let us verify that the boundary valueF0 is repro-
duced correctly. For that we expand Eq.~111! in inverse
powers ofq at uqu→`:

F2~q!5
a

iq
2

b

q2
1•••. ~112!

Since F(y,0)50, one simply hasF(y→10)5a. To
evaluatea, only the first term of Eq.~111! is important, be-
cause X2(q→`)5l/q1O(q22), where l5Amk0, and
thus the second term of Eq.~111! does not contribute toa.
From the first term one obtainsa5F0, as expected.

After these consistency checks we can proceed with fi
ing the relation betweenF0 and x̃. Conservation of curren
at the boundaryy50 for the problem~96! implies ]yF(y

→0)52 i x̃. On the other hand,b5]yF(y→0) in the ex-
pansion~112!. By carrying out the expansion of the resu
~111! up to the orderq22 to obtainb, and then setting up the
equation2 i x̃5b, we have

2 i x̃52 i x̃1
1

2luku F x̃2 i ukuF0

X1~ i uku!
2

x̃1 i ukuF0

X2~2 i uku!G ,

~113!

where l is the coefficient in the asymptotic expansion
X2(q→`) defined above. This equation can be rewritten
the form

F05
i x̃

uku
X1~ i uku!2X2~2 i uku!
X1~ i uku!1X2~2 i uku!

. ~114!

According to Eq.~78!, the relation~114! definesQ(v,k) in
terms ofX1( i uku) andX2(2 i uku).

The expressions forX6(6 i uku) can be simplified:

X6~6 i uku!5exp@6I ~v,k!#, ~115!

where

I ~v,k!5
1

pE0

` dj

j211
lnS 11

1

m
k2~j211!U~kAj211! D .

~116!

Herej5q/uku, m5uvu/sxx . After putting Eq.~115! into Eq.
~114!, one finally arrives at

Q~v,k!5ukucothI ~v,k!. ~117!

With this expression forQ(v,k) one can go back to the
effective action~79!, and find the Green’s function~80! in
terms of the spectral weightA(v) given by Eq.~81!.

The integral entering Eq.~116! can easily be tabulated
numerically. The spectral weightA(v) has a logarithmic fre-
quency dependence, as shown in Fig. 3, similar to that of
modelV1V8. The behavior of the tunneling exponenta as a
function ofrxy , shown in Fig. 6, is also close to that for th
modelV1V8. One notes that the values ofa are somewhat
less than those for the modelV1V8 with similar parameters.
2-17
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This is due to a relatively weaker effect of the long-ran
part of the interaction in the modelV0.

V. COMPARISON TO THE EXPERIMENT

In this section we discuss some aspects of the overgr
cleaved edge system.5,6,17 In our view, the most relevant is
sue concerns the 2DEG density distribution near the ed
One of the key features of cleaved edge systems is that
produce structures with supposedly an atomically sharp c
fining potential, and thus the 2DEG density profile near
edge is expected to be reasonably smooth. This is impor
in edge tunneling experiments, because the system must
a well defined filling factor even very close to the edge.

A. Thomas-Fermi model

To estimate the importance of various factors controll
the density near the edge, below we consider a simpli
electrostatic Thomas-Fermi model, in which the 2DEG
modeled as an ideal charge fluid, and all effects of electr
electron correlation and finite density of states are ignor
except very close to the edge. In principle, this approxim
tion is quite reliable at distances larger than the screen
length r s5e/2pk0, and so the results will be meaningful
distances more thanr s from the edge.

The electrostatic problem we consider involves the 2D
density n(x,y) in the half planey.0, top surface charge
states that are at a distancew5600 nm above the 2DEG,
layer of charged donors parallel to the 2DEG at a dista
w1560 nm above the 2DEG plane, and also charges in
three-dimensional doped region, which in our model oc
pies the half spacey,2wb , wherewb59 nm is the width
of the barrier together with the buffer region. The top s
face, the 2DEG, and the doped region are assumed t
equipotentials in the problem. For simplicity, we assume t
the 2DEG is grounded, and the bias voltage on the 3D do
region is very small, so that the electrochemical potentials
the two regions are essentially equal. Relative to the 2D
the electrostatic potential at the top surface isVs
52800 mV, and the electrostatic potential at the bound
of the 3D doped region isVd'20 mV. ~The value ofVd
reflects the chemical potential difference before the cha
redistributes itself. It is given by the difference of Ferm

FIG. 6. The tunneling exponent for the modelV0 @Eq. ~85!#
corresponding to unscreened Coulomb interaction. Frequenc
given in units ofv05k0e4.
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energies in the doped region and in the 2DEG plus the c
finement energy of the 2DEG.! The charge density of donor
s1 is taken to be constant everywhere aty.0 up to the edge
y50. The potentialVd is much smaller than the barrie
height, which is estimated as.120 meV.

One can write down a simple analytic formula for th
2DEG density, using the electrostatic superposition princip
according to which the effects on the 2DEG due to the
nors, the top surface charge, and the doped region, ca
treated separately and then added.

First, let us consider the charge induced by donors, w
the top surface and the doped region are at the same ele
static potential as the 2DEG. We make an approximationw
@w1 , which allows us to move the top surface to infinit
and thus to ignore it. Also, we assume that the distance to
doped regionwb!w1 , the separation of the donors from th
2DEG. With the values forw, w1 , and wb quoted above,
both approximations are reasonable. The resulting contr
tion to the 2DEG charge density is

s2DEG
(1) ~y!5

2s1

p
arctan

y

w1
. ~118!

It describes the 2DEG density, constant and equal tos1 at
y@w1 , and decreasing to 0 near the edge.

The effect of the top surface potentialVs , in the absence
of donors, and with the 2DEG and the doped region at z
electrostatic potential, can be evaluated as follows. In
approximationwb!w, the problem is equivalent to the stan
dard electrostatic problem of a half-open slit, with one s
of the slit being at the potentialVs with respect to the othe
side and the end. The induced charge density in this prob
is

s2DEG
(2) ~y!5

eVs

4pw
tanh

py

2w
. ~119!

This contribution is constant and equal toeVs/4pw in the
bulk, at y@w/p, and decreases to zero near the edge.

Finally, the effect of potential difference between th
2DEG and the doped region can be considered ignoring
top surface and the donors. The relevant spatial scale in
case iswb!w1 ,w, and so the problem is reduced to that
a ground half plane~representing the 2DEG!, and a conduct-
ing plane perpendicular to it, at a relative potentialVd , lo-
cated a distancewb away from the ground half plane. Th
charge density induced in the 2DEG is

s2DEG
(3) ~y!5

eVd

2p2

1

A~y1wb!22wb
2

. ~120!

It behaves as 1/y away from the edge, and as 1/Ay near the
edge. The square root divergence near the edge is an ar
of the simplified model ignoring finite density of states of t
2DEG. In a Thomas-Fermi model, the divergence would
cut at a distance;r s from the edge.

The resulting 2DEG charge density is a sum of thr
terms, s total5s2DEG

(1) 1s2DEG
(2) 1s2DEG

(3) . To eliminate the un-

is
2-18
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EFFECTIVE ACTION OF A COMPRESSIBLE QUANTUM . . . PHYSICAL REVIEW B64 075322
physical singularity near the edge due tos (3), we average
the densitys total over intervals of length 2r s , and consider

s total
av ~y!5~2r s!

21E
y2r s

y1r s
s total~y8!dy8. ~121!

The averaged densitys total
av is plotted in Fig. 7 for severa

values of the doped region potentialVd . The screening ra-
dius used in the averaging is taken to ber s520 nm.

One can see from Fig. 7 that the density within.200 nm
near the edge is quite sensitive to the potentialVd . Another
feature evident in Fig. 7 is that the density close to the e
exceeds that in the bulk by 20–30 %. The 2DEG dens
approaches the bulk value at distances>400 nm from the
edge. Also, there is a peak in the density profile near the v
edge, resulting from thes (3) contribution averaged over th
length .r s . This peak makes the density profile nonmon
tonic, with a minimum at.30–40 nm from the edge. Alto
gether, the 2DEG density near the edge is smooth but
perfectly uniform.

It should be remarked that our simplified electrosta
model is perhaps insufficient at distances smaller than o
the order ofr s.20 nm. Thus the smallest scale features
Fig. 7, such as the density peak near the edge, shoul
taken with caution. Moreover, we used the Thomas-Fe
model, the screening radiusr s , etc., in the absence of mag
netic field. It remains to be seen whether the results are
served in a more accurate treatment accounting for Lan
levels, finite 2DEG compressibility, and exchange effec
On the other hand, on spatial scales larger thanr s , the results
obtained from a purely electrostatic model should be relia

One issue that can be addressed using the electros
model is the calibration of density in the experiment.5,6 The
tunneling exponenta is presented there as a function
magnetic field, which is calibrated in terms of the bulk fillin

FIG. 7. Density distribution in the 2DEG near the edge plot
for six values of the potentialVd of the doped region~listed from
top to bottom!. The top surface potentialVs52800 mV and the
donor densitys151.9431011 cm22 correspond to the 2DEG bulk
densitynbulk51011 cm22. The geometrical parameters used are
fined in the text.
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factor using magnetotransport data. However, the filling f
tor relevant for tunneling is that near the edge. According
the above, in the region 100–300 nm from the edge,
density is at least 20–30 % higher than in the bulk. If o
assumes that this is the relevant distance scale for ch
relaxation at the temperatures and voltages employed in
experiments, then the dependencea51/nbulk observed in6,17

translates intoa'(1.2–1.3)nedge
21 . In actuality, the relevant

distance scale will depend on the filling factor and the cle
liness of the edge, as well as the energy of the tunne
electron.

One notes that after accounting for the difference betw
nedgeandnbulk the dependencea(n) shifts closer to the the-
oretical curves~see Fig. 8!.

B. Two-mode model

Because the 2DEG density profile discussed above is
nificantly nonmonotonic near the edge, it is possible that t
may change the structure of the edge modes. More preci
suppose that the peak density near the edge is so high
the filling factor reachesn51 within the region.30 nm
corresponding to the peak displayed in Fig. 7. Then the e
mode on the periphery will correspond ton51 even when
n,1 away from the edge. In this case, in addition, there w
also be counterpropagating modes positioned on the in
side of the incompressiblen51 region. The number of thes
modes and their Hamiltonian will depend onn somewhat
away from the edge. This type of composite structure of
edge was first proposed by MacDonald for then52/3 sys-
tem, based on a Hartree-Fock analysis.28

In this model, the tunneling electron is injected into t
outern51 mode, because of higher overlap of the tunnel

-

FIG. 8. Solid curves: The tunneling exponent in the compos
edge model~122! is shown for three values of the ratioa/w of the
distance between the outer and inner edges and the tunneling b
width. For comparison, a theoretical curve for theV2V8 model is
shown, for rxx5rxy/10 and v51025k0e4. Dashed curves: The
straight linea5rxy corresponds to experiment~Refs. 5, 6, and 17!,
and the linea51.3rxy is obtained by correcting the filling factor b
the ratio of the densities near the edge and in the bulk.
2-19
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state with the mode closest to the edge. We assume tha
edge is so clean that we can neglect scattering between
ferent edge modes. Then, the inner modes will be impor
only to the extent that tunneling charge couples with them
Coulomb interaction, and shakes them up. In this scena
after tunneling there is no statistics change of the injec
particle, since it remains in the fermionicn51 edge state.
Therefore, one expects a smooth dependence of the tunn
exponent onn, without any cusps or plateaus.

To estimate the shakeup effect due to Coulomb coup
to the inner modes, let us represent them by a single cha
mode. Thus the system can be described by two coun
propagating chiral modes:

S5
1

2 (
v,k

S ivk~f (1)f (1)2gf (2)f (2)!

1v2 (
i , j 51,2

Vi j f
( i )f ( j )D 1f (1)J, ~122!

whereg512n andVi j is the coupling matrix, expressed i
terms of the interactionsVi j

0 as follows: V115V11
0 , V12

5gV12
0 , V215gV21

0 , V225g2V22
0 . The form of the action

~122! can easily be justified in the same way as in Sec. III.
this case there is no issue of charge injection in the in
mode, and so there are no complications related to coun
terms, as in Eq.~43!.

It is straightforward to write down the Green’s functio
by evaluating the saddle point of the quadratic action~122!.
The result reads

G~t!5expS 2
1

8p2

3E ~v2V222 igvk!uJvu2dv dk

~v2V111 ivk!~v2V222 igvk!2v4V12V21
D .

~123!

To evaluate the Green’s function, we assume that the c
pling matrix Vi j has nok dependence. This is true for th
screened Coulomb interaction 2pe2(12e22auku)/euku at
auku<1, wherea is the distance from the edge mode loc
tion to the doped region. Hence the lengtha is somewhat
larger than the barrier widthwb .

In this case the integral overk can be done by residues
and the result isG(t)5t2a, where

a5
V11

0 1gV22
0

A~V11
0 1gV22

0 !224gV12
0 V21

0
. ~124!

The dependencea(n) in the interval 0,n,1 is smooth,
without singularities, as it should be in the case when
effect of the fractional edge is purely a shakeup, not acco
panied by injection of charge.

To estimate numerical values ofa, we consider a mode
in which the interactionsVi j

(0) are given by the Coulomb
potential screened by the doped region. We assume tha
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outer edge is separated from the doped region by a barrie
thicknessw , and the inner and outer edge states are a
tancea apart. Then

V11
(0)5

2pe2

euku ~12e22wuku!, V22
(0)5

2pe2

euku ~12e22(w1a)uku!,

V12
(0)5V21

(0)5
2pe2

euku
e2auku~12e22wuku!.

We consider the limit of smallk, where the interactionsVi j
(0)

do not depend onk: V11
(0)52w(2pe2/e), V22

(0)52(w1a)
3(2pe2/e), V12

(0)5V21
(0)5(2w2a)(2pe2/e).

In this model, the only parameter is the ratioa/w. The
tunneling exponent is plotted in Fig. 8 as a function ofrxy
5n21 for several values ofa/w. On the same figure, we
show the experimental dependence ofa versusrxy rescaled
by a factor 1.3 as discussed above.

The distinct feature of the composite edge model is
absence of plateaus in the tunneling exponenta(n). How-
ever, note that in order for the tunneling exponenta to fall in
the right range, one has to assume unphysically small va
of the ratio a/w. Also, the theoretical curves for nonzer
a/w have curvature which is absent in the experimen
curve. This curvature is even more significant at higher v
ues of the parametera/w and is unlikely to disappear if one
takes into account possible dependence ofa/w on n. It is
apparent that this simplified two-mode model does not ag
with the experimental results on tunneling. Nevertheless
illustrates the point that, if scattering between edge mode
sufficiently small, a complicated edge structure can lead
large changes in the observed tunneling exponent, which
not be closely related to the bulk filling factor.

VI. SUMMARY

The problem of tunneling into the edge of a compos
fermion QH system is treated for long-range Coulomb int
action between electrons, as well as for a short-range in
action model. It is shown that in the case of diffusive C
dynamics described by finiterxx , the tunneling exponent is
controlled by the coupling of tunneling electron to th
charged edge mode. The effective action for this mode
generalized chiral Luttinger action with a nonlocal dissip
tive term.

The tunneling exponent is found to be a continuous a
monotonic function ofrxy , given, in the limitrxx→0, by
a511(e2/h)(rxy2urxy

(0)u), whererxy
(0) is the CF Hall resis-

tivity due to motion in the residual magnetic field. In order
verify the robustness of the results we consider several m
els for the electron–electron interaction: the short-range
Coulomb interaction, and, in the latter case, with and with
electrostatic screening due to image charges in the do
region.

The dependence ofa on rxy is characterized by plateau
like features, not observed in the experiments on clea
edge systems. We discuss the 2DEG density profile near
cleaved edge, and propose that the discrepancy betw
theory and experiment is possibly due to spatial variation
2-20
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the density near the edge and, in particular, to a nonmo
tonic density profile, giving rise to a composite structure
edge modes.
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APPENDIX: ESTIMATE FOR THE BALLISTIC REGIME

In the ballistic regime, for length scales smaller than
composite fermion mean free pathl, the conductivity tensor
is nonlocal in space. Close to the edge, the CF conducti
sab

(0)(r ,r 8,v) depends on the distance from the edge, as w
as on the separationr2r 8. As a crude approximation, how
ever, in order to estimate the contribution of the sho
distance response to the tunneling exponent, we shall ig
the dependence on the distance from the edge and use
stead, the bulk CF conductivity, which depends only
r2r 8.24

As discussed in Secs. II and III, for a nonlocal conduct
ity we may still approximate the Green’s functionG(t) us-
ing the factorization~64!, but the actionsS(t) and Sfree(t)
should be evaluated using the correct nonlocal conductiv
Instead of this, in our approximation, we use the form~66!
for S, with the change that we replace the macroscopic c
ductivity sxx by the quantitys l(uku), which is the wave-
vector dependent longitudinal conductivity for the bulk co
pressible Hall state. Specifically, atn51/2, according to Ref.
7, we have

s l~k!;~e2/8p\!~k/kF! ~A1!

for l 21,k,kF , while s l(k) reduces to the macroscop
conductivitysxx for k, l 21. We continue to approximate th
Hall conductivity in Eq.~66! by its macroscopic valuesxy .
m

.

.
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In evaluating Eq.~66!, it is convenient to combine contri
butions from wave vectorsk and 2k, and replace the sum
over k by an integral over positive values ofk. If the fre-
quency v is sufficiently small, there will be two distinc
regions that can contribute significantly to the integral. T
first, for k, l 21, gives the same contribution as was found
Sec. III above, sinces l(k)5sxx in this region. In the region
k. l 21, we may setq5k, whenv is sufficiently small, so
that the integrand takes the form

I large k5
uJ~v!u2

uvuukusxy
Re

sxy

@s l~k!1 isxy#
. ~A2!

The last factor in Eq.~A2! is small fork!kF but becomes
of order unity fork'kF , wheres l(k)'sxy . The contribu-
tion from this region to the integral could therefore make
contribution of order unity to the tunneling exponenta.
However, this contribution may be largely or complete
canceled by the corresponding contribution toSfree.

If we neglect the difference between the longitudinal a
transverse conductivities at the finite wave vectork, then

Re
1

@s l~k!1 isxy#
5r l~k! ~A3!

which is the longitudinal resistivity at wave vectork. In cal-
culating Sfree, using the same assumptions, we obtain
identical expression, because the longitudinal conductivity
the composite fermions is the same as that of the electr
Thus the contribution to the tunneling exponent from sh
wavelengths is canceled, in this approximation. We theref
wind up with the same value fora as was obtained in Sec
III, namely, a;3 at n51/2, for a system wheresxx!sxy .

It is not possible to say whether a similar cancellati
would occur in a proper analysis incorporating the nonlo
conductivity. If the cancellation does not occur, then the s
viving contribution from short wavelengths could give a co
tribution of order unity to the tunneling exponent, whic
would be independent of the mean free path in the lim
l !kF
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