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Low-temperature transport in ac-driven quantum dots in the Kondo regime
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We present a fully nonequilibrium calculation of the low-temperature transport properties of a quantum dot
in the Kondo regime when an ac potential is applied to the gate. We solve a time-dependent Anderson model
with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in pertur-
bation theory in the on-site interaction, in the context of the Keldysh nonequilibrium technique, and the effect
of the ac voltage is taken into account exactly for all ranges of ac frequencies and ac intensities. The obtained
linear conductance and time-averaged density of states of the quantum dot evolve in a nontrivial way as a
function of the ac frequency and ac intensity of the harmonic modulation.
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I. INTRODUCTION

Recent experiments1–3 showing Kondo behavior in the
low-temperature transport of quantum dots~QD’s! have
opened a new arena for the study of strongly correlated e
trons in artificial systems. The Kondo effect in dilute ma
netic alloys appears as a crossover from weak to strong
pling between delocalized electrons of the host nonmagn
metal and the unpaired localized electron of the magn
impurity as the temperature~T! is reduced well below the
Kondo temperature (TK).4 This crossover leads to the forma
tion of a singlet state between the unpaired localized elec
in the impurity and electrons in the host metal. It is impo
tant, however, to emphasize the main differences of
Kondo physics in QD’s with respect to bulk magnetic imp
rities. The parameters which define theTK in QD’s can be
changed in a controlled way by applying the appropri
combination of gate voltages. So, it is possible to study
ther Kondo or mixed-valence regimes in the same sam
For this to be possible, there is an important requirement:
charging energy and level separation of the QD must be
nificantly larger than the level broadening due to the c
pling to the leads. More importantly, the study of Kond
physics in QD’s opens a new road to the study ofnonequi-
librium many-body phenomena, a relatively young and r
area in contemporary condensed-matter physics.

In this paper, we address the issue of a QD driven ou
equilibrium by means of an ac voltage. More specifically,
study theoretically the low-temperature transport proper
of a QD with an ac voltage applied to the central gate.
use a time-dependent version of the Anderson model. In
simplest formulation, the Anderson model, valid for bo
Kondo and mixed-valence regimes in bulk systems,
scribes a single discrete level with on-site electron-elect
interaction coupled to a band. The model describes diffe
physical regimes which, for QD’s, are determined by t
following parameters:~i! The energy difference between
discrete level in the QD (e0) and the Fermi energy of th
leads (EF). ~ii ! The tunneling coupling (G) between the dis-
crete level in the QD and the electronic states in the re
voirs. ~iii ! The QD charging energy~on-site interactionU),
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i.e., the energy necessary to add an electron to the QD.
relevant energy scale isTK.A2UGe2p[ uEF2e0u(U1e0)]/2GU,
which is related to the binding energy of the many-bo
state.4 For T,TK , the Kondo regime is reached whene0

,EF2G ande0.EF2U1G and the mixed-valence regim
is established forEF2G,e0,EF and EF2U,e0,EF

2U1G. In the Kondo regime atT50, the low-energy ex-
citations~quasiparticles! produce a peak atEF ~Kondo reso-
nance or Abrikosov-Suhl resonance! in the density of states
~DOS!.4 One electron atEF becomes scattered by the Q
undergoing a phase shift which is proportional to the d
placed chargedn @Friedel-Langreth sum rule~FLSR! ~Ref.
5!# and the linear conductance for a QD symmetrica
coupled to the leads takes the valueG5(2e2/h)sin2(pdn). In
the symmetric case (e052U/2), dn50.5 leads to a perfec
transparency of the QD. For any chemical potential betw
e0 ande01U the QD has the linear conductance as a fu
tion of the chemical potential of an almost perfectly op
channel 2e2/h.6–8 This constitutes the unitary limit and ha
recently been experimentally verified in QD’s by Van d
Wiel et al.9 However, as temperature increases, inela
scattering processes reduce the DOS atEF ~i.e., the linear
conductance! at the Kondo valley and eventually two pea
at e0 ande01U appear forT@TK .

As we already mentioned, new questions arise when d
ing the QD out of equilibrium.10–23 When this is done by
means of the application of a finite dc voltage bias, the lin
conductance is reduced and the Kondo peak in the D
splits.12–14,16 More sophisticated configurations of QD’s i
the Kondo regime constitute a growing area of intense inv
tigations, both from the theoretical and experimental sid
Time-dependent Kondo physics,16 Kondo physics in integer-
spin QD’s,17 QD’s embedded in Aharonov-Bohm rings,18 or
double QD systems19 are examples of such configurations

We focus on the study of the transport properties of
Anderson Hamiltonian with a time-dependent resonant le
ẽ0(t)5e01Vaccos(v0t). This can be achieved experimen
tally by means of a time-dependent central gate voltage
pacitively coupled to the QD. In the high-temperature regi
this type of experiment has indeed been carried out lead
©2001 The American Physical Society19-1
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to the observation of photon-assisted processes in the C
lomb blockade regime.20,21 This regime has been studie
theoretically as well.22 In the same way, there has been so
theoretical effort devoted to studying the ac transport at v
low (T!TK) and intermediate temperatures (T&TK) in the
Kondo and mixed-valence regimes.23–29 Recently transport
in an ac driven QD at low temperatures has been meas
as well.30

In this work we clarify the role of an ac voltage in th
Kondo effect in QD’s. We concentrate on the low
temperature regime so that a model in the context of Fer
liquid theory is adequate. The occupation of the QD as w
as all the relevant quantities in transport have to be ca
lated by using nonequilibrium propagators. Finally, some
proximation is needed for calculating the Green’s function
the QD. Let us remark that there is not yet a nonequilibri
generalization of the theoretical tools usually employed
solving the Anderson model, i.e., Bethe ansatz,32 numerical
renormalization-group,33 or quantum Monte Carlo
methods;34 furthermore, it is difficult to extract information
about dynamical quantities from these techniques~though
see Ref. 35 for a recent perturbative renormalization-gr
method in real time to tackle nonequilibrium situations!. We
choose, then, to use a finite-U perturbation theory for the
Green’s function of the impurity which allows us to obta
the dynamical properties at low temperatures and to gene
ize these quantities to a nonequilibrium situation in t
whole range of interactions (U/G). This perturbative solu-
tion overestimates the width of the Kondo peak, i.e.,TK .4,31

In fact, our Fermi-liquid approach gives a resonance wi
which decreases algebraically withU, instead of having an
exponential decay as given by scaling calculations.4 Apart
from this, finite-U perturbation theory10,36,37 gives a good
description in the symmetric case, but presents clear ano
lies away from this special situation~which can be overcome
by means of an interpolating self-energy!.11,27 Previous ef-
forts have concentrated on theU→` limit where a noncross-
ing approximation~NCA! ~Refs. 12, 13, 23, and 26! can be
made for high and intermediate temperatures. However, s
approximations do not give a good description of the ex
local Fermi-liquid properties asT→0. By using the NCA the
transition from the weak-correlation to the strong-correlat
regime is not described properly. In this paper we will r
strict ourselves to the symmetric case. The study of
asymmetric case will be analyzed elsewhere.

The main difficulty for our purpose resides in the det
mination of the QD Green’s function, and specifically t
calculation of its self-energy. In a previous paper27 we pro-
posed an ansatz for the modification of the QD Green’s fu
tion due to an harmonic modulation. Here, we improve o
previous description, valid in the limit of small interactionU,
and extend the calculation to finite temperatures.

The paper is organized as follows: in Sec. II we descr
the theoretical model and deduce the expressions for the
energy and the time-averaged spectral density. In Sec. II
present the results for the linear conductance and ti
averaged density of states at finite temperatures and for
ferent ac frequencies and ac intensities of the harmo
modulation. Moreover, we compare with previous theoreti
07531
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models and comment on recent experimental informati
Finally, Sec. IV summarizes the main conclusions of t
paper.

II. THEORETICAL MODEL

A. Keldysh formalism

The application of a time-dependent component to
energy level in the Anderson Hamiltonian@see Eq.~3! be-
low# breaks the time translational invariance of the syst
and, then, we need an approach capable of addressing
fully nonequilibrium situation. When the time-depende
perturbation acts for a while, the system does not recove
thermodynamic equilibrium after the perturbation is ov
The whole process does not have the symmetry betwet
→2` and t→` and, then, an equilibrium expansion
terms of expectation values is not possible. Nevertheless
problem can be solved by allowing the system to evo
from 2` to the moment of interestt̄ and then continuously
evolve fromt5 t̄ back tot→2`. In this way all the expec-
tation values are evaluated in a well-defined state which
prepared in a remote past. This special complex time con
~see Fig. 1! is the main ingredient of the nonequilibrium
Keldysh formalism.38 In the conventional Keldysh matrix
formulation of the perturbation theory, one does not wo
directly with the Green’s function defined on the compl
time contour, but with a linear combination of the four po
sible time orders. The usual linear combinations are~similar
relations hold for the self-energies!

Gd,s
r ~ t,t8!5u~ t2t8!@Gd,s

. ~ t,t8!2Gd,s
, ~ t,t8!#,

Gd,s
a ~ t,t8!5u~ t82t !@Gd,s

, ~ t,t8!2Gd,s
. ~ t,t8!#, ~1!

whereGd,s
r (t,t8) is the retarded Green’s function,Gd,s

a (t,t8)
is the advanced Green’s function, andGd,s

, (t,t8), Gd,s
. (t,t8)

are the so-called lesser and greater Green’s functions, res
tively.

B. Hamiltonian

The time-dependent Anderson Hamiltonian is:

H5H leads1HQD1Hsd1Hac~ t !, ~2!

where

FIG. 1. Complex time contour. The times in the positive bran
aret1 while times in the negative branch aret2 .
9-2
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H leads5 (
kP$L,R%,s

ekck,s
† ,ck,s ,

HQD5(
s

e0,sds
†ds1Ud↑

†d↑d↓
†d↓ ,

Hsd5 (
kP$L,R%,s

Vkck,s
† ds1Vk* ds

†ck,s ,

Hac~ t !5(
s

Vaccosv0t ds
†ds . ~3!

Vac and v0 are the ac intensity and ac frequency of the
potential respectively.ds

† creates an electron with spins in
the QD, whileck,s

† creates it in the lead with energyek (k
labels the rest of quantum numbers!. The ac voltage modu
lates in time the relative position of the QD levele0,s with
respect toEF . An eventual breakdown of the spin dege
eracy would be represented bye0,sÞe0,s̄ . The couplingVk
between the QD and the leads produces a broadening

GL(R)~e!522 Im@Ssd
L(R)~e1 id!#

52p(kPL~R!uVku2d~e2ek!,

whereSsd
L(R) is the hybridization single-particle retarded se

energy. Hereafter, for simplicity, we consider the wide ba
~WB! limit approximation which neglects the principal valu
of the hybridization self-energy and considers the imagin
part to be an energy-independent constant, i.e.,Ssd

L(R)(e)
5LL(R)(e)2 iGL(R)(e)/2'2 iGL(R)/2.

C. Model

Here, we discuss the procedure for obtaining the Q
Green’s functions which allows us to obtain the spectral d
sity of the QD and the linear conductance. In the remote p
the QD is decoupled from the leads. The coupling betw
different regions~the contacts and the central region! is
treated as a perturbation by means of standard equilibr
perturbation theory. In a first step, the effect of the on-s
interaction is included via a Hartree mean-field approxim
tion ~see Appendix A!. The time modulation of the QD leve
is treated via nonequilibrium perturbation theory, since
time translational invariance is broken by the ac voltage.
this point, we include the correlation effects by computi
the on-site interaction self-energy~lesser and greater! up to
second order by means of the diagrams of Fig. 2. Th
diagrams are evaluated by using the previous lesser
greater Green’s functions as bare propagators~Appendix B!.
These bare propagators include the coupling between the
and the contacts, the time dependence of the QD level,
the on-site interaction in the Hartree approximation. On
the correlation self-energy has been calculated, the QD
tarded Green’s function is obtained by means of the tim
dependent Dyson equation@Eq. ~10!#. Finally, the time-
averaged spectral density@Eq. ~18!# and the linear
conductance@Eq. ~19!# are calculated from the QD retarde
Green’s function.
07531
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D. Correlation self-energy

The starting point for the derivation of the correlatio
self-energy in the presence of the ac potential consists
calculating the lesser and greater QD Green’s functions
the Hartree approximation, including coupling to the lea
In the absence of the time-dependent potential, the reta
and advanced QD Green’s functions have the following
pressions~see Appendix A!:

gd,s
r ,a ~ t2t8!57 iu~6t7t8!

3exp2 i *
t8
t

dt1(e0,s1Und,s̄7 i (aPL,RGa/2), ~4!

nd,s5^ds
†(t)ds(t)& being the QD occupation. Note tha

these QD Green’s functions have been calculated taking
account the coupling self-energy~which is given by
7 i (aPL,RGa/2) and the interaction in the Hartree approx
mation ~given byUnd,s̄). Now, if one also considers a tim
modulation of the QD level, the retarded and advanced
Green’s functions have the following forms~see Appendix
B!

Gd,s
r ,a ~ t,t8!5e2 i (Vac/v0)(sin v0t2sin v0t8)gd,s

r ,a ~ t2t8!. ~5!

The lesser and greater QD Green’s functions can be obta
through the well-known relation39,41

Gd,s
,,.~ t,t8!

5E dt1E dt2Gd,s
r ~ t,t1!Ssd

,,.~ t1 ,t2!Gd,s
a ~ t2 ,t8!,

~6!

whereSsd
,,.(t1 ,t2) are the lesser and greater coupling se

energies defined in Appendix A@Eqs.~A2! and~A3!, respec-
tively#. Now we include correlation effects up to second o
der in the on-site Coulomb interaction~see Fig. 2!. The new
lesser and greater correlation self-energies are calculate
means of the diagrams of Fig. 2 with bare lines which a
given by the propagators of Eq.~6! @analytical expressions
are given in Appendix B, Eqs.~B8!–~B11!#:

Sd,s
.,(2)~ t,t8!5 iU 2Gd,s

. ~ t,t8!Gd,s̄
,

~ t8,t !Gd,s̄
.

~ t,t8!, ~7!

and

FIG. 2. Self-energies of orderU2, Sd,s
.,(2)(t,t8), and Sd,s

,,(2)

3(t,t8). The times in the causal branch are marked with a1 sym-
bol whereas the times in the anticausal branch are marked wit
2 symbol. Solid lines denote QD Green’s functions in the Hart
approximation including coupling to the leads and ac potent
Dashed lines correspond to the on-site repulsionU electron-electron
interaction.
9-3
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Sd,s
,,(2)~ t,t8!52 iU 2Gd,s

, ~ t,t8!Gd,s̄
.

~ t8,t !Gd,s̄
,

~ t,t8!. ~8!

The retarded self-energy

Sd,s
r ,(2)~ t,t8!5u~ t2t8!@Sd,s

,,(2)~ t,t8!2Sd,s
.,(2)~ t,t8!# ~9!

is obtained from Eqs.~7! and ~8!.

E. Dyson equation

The next step for deriving the retarded QD Green’s fu
tion consists of solving the retarded time-dependent Dy
equation. By using Eq.~9! for the self-energy, one can writ

F i
]

]t
2S ē0,s~ t !2 i (

aPL,R
Ga/2D GGd,s

r ,(2)~ t,t8!

5d~ t2t8!1E dt1Sd,s
r ,(2)~ t,t1!Gd,s

r ,(2)~ t1 ,t8!,

~10!

where ē0,s(t)5e0,s1Und,s̄(t)1Vaccosv0t. In the symmet-
ric casend,s5nd,s̄51/2, which allows us to close the Dyso
equation for the retarded Green’s function@Eq. ~10!# without
any further self-consistency in the lesser part. Equation~10!
simplifies considerably by making the gauge transformat

Gd,s
r ,(2)~ t,t8!52 iu~ t2t8!e2 i *

t8
t

dt[ ē0,s(t)2 i (
aPL,R

Ga/2]ḡs~ t,t8!.

~11!

In the presence of time modulation, the retarded Dyson eq
tion becomes

]

]t
ḡs~ t,t8!52E

t8

t

dt1Ks~ t,t1!ḡs~ t1 ,t8!, ~12!

which is defined only fort>t8 due to theu function appear-
ing in Eq. ~11!. Ks(t,t8) is the kernel of the integrodifferen
tial time-dependent Dyson equation which is related to
retarded self-energy through the relation

Sd,s
r ,(2)~ t,t1!52 iu~ t2t1!Ks~ t,t1!

3e2 i * t1

t dt[ ē0,s(t)2 i (aPL,RGa/2]. ~13!

When t5t8, an additional condition must be imposed in E
~10!: Gd,s

r ,(2)(t,t)52 i ^$ds(t),ds
†(t)%&52 i , where$ % is the

anticommutator. This condition implies that the solution
Eq. ~12! when t5t8 is ḡs(t,t)51.

We solve Eq.~12! by discretizing the temporal variable
the partial derivative is replaced by the finite difference

]

]t
ḡs~ t,t8!→ḡs~m,n!2ḡs~m21,n!

d
, ~14!

where d is the grid spacing in time space. The integral
converted into a sum

E
t8

t

dt1Ks~ t,t1!ḡs~ t1 ,t8!→d(
k5n

m

ckKs~m,k!ḡs~k,n!.

~15!
07531
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Now, the indexesm, n, and k replace the time argument
which appear in Eq.~12!. The coefficientsck are equal to 1
except whenm5k or n5k in which ck5 1

2 . In this way, the
discretized time-dependent Dyson equation has the follow
form:

ḡs~m,n!5ḡs~m21,n!2d2(
k5n

m

ckKs~m,k!ḡs~k,n!.

~16!

Equation~16! constitutes a set of linear equations that can
solved by standard numerical techniques. Its solution gi
the retarded QD Green’s function which is used to study
transport properties of the system in the next section.

F. Time-averaged spectral density and linear conductance

The time-dependent spectral densityrs(e, t̄ ), being t̄
5(t1t8)/2, is defined as the imaginary part of the Four
transform with respect tot5t2t8 of the retarded QD
Green’s function,

rs~e, t̄ !52
1

p
ImE

2`

`

Gd,s
r ,(2)~ t̄ 1t/2,t̄ 2t/2!ei etdt.

~17!

Since the measurement of the linear conductance implie
time-average int̄ , we work with the time-averaged spectr
density which reads

^As~e!&5
v0

2pE0

2p/v0
d t̄rs~e, t̄ !. ~18!

The linear conductance39 at finite temperature, in terms o
the time-averaged spectral density, is given by

G5
e2

\ E de
GLGR

GL1GR
S 2

] f ~e!

]e D(
s

^As~e!&, ~19!

where f (e) is the Fermi-Dirac distribution function.

III. RESULTS

We solve numerically the set of linear Eqs.~16! for a QD
in the Kondo regime~symmetric casee052U/2 with sym-
metric couplingsGL5GR5G andU52.5pG) at finite tem-
peratureT50.05G for different ac frequencies and ac inte
sities. As we already mentioned, our perturbation schem
the on-site interaction overestimatesTK . Nevertheless, it is
possible to extract an energy scale characterizing spin fl
tuationsTK from the half-width of the many body Kondo
resonance atEF .4 Also worth mentioning is the fact that
according to this definition,TK acquires a clear physica
meaning in our Fermi-liquid context: at a finite temperatu
T;TK the unitary limit for scattering has been reduced
1/2.4 In our case, symmetric configuration withU52.5pG,
the corresponding Kondo temperature isTK'0.24G, i.e., T
!TK . The Fermi-liquid theory is, then, a good approxim
tion to describe the dynamical and transport properties of
QD. We obtain, from the solution of Eq.~16! for the retarded
Green’s function, the time-averaged density of states@Eq.
~18!# and the linear conductance@Eq. ~19!#.
9-4
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The main effect of the ac potential consists in a reduct
of the time-averaged DOS atEF . This reduction can be in
terpreted as decoherence induced by ac excitations, eithe
real photon-assisted induced excitations at large
frequencies26 or virtual spin-flip cotunneling processes
small ac frequencies.29 These processes introduce a quen
ing of the Kondo peak causing a deviation of the linear c
ductance from the unitary limit. It is difficult to extract th
magnitude of this lifetime induced by the ac from our an
lytical expressions for the self-energies. Instead, in the n
paragraphs, we present a simple estimate for the lifetime
a perturbative argument and try to relate this simple per
bative result with our full calculation.

A. Rate of spin-flip cotunneling processes

In the case of spin-flip cotunneling the simplest proc
involves the hopping of one electron out of the dot to a st
above the Fermi level while another electron in the res
voirs, with opposite spin, enters into the dot. The rate
virtual spin-flip cotunneling which takes into account o
photon processes is restricted to the case of very low
frequencies and amplitudes, i.e,v0 ,Vac!e0 ,e01U. Under
these conditions the rate of spin-flip cotunneling was deri
in Ref. 29. In the symmetric case the rate obtained ther
zero. Without restrictions, the expression for the rate can
generalized quite easily. By means of a modified Schrief
Wolff transformation28,29accounting for the time dependenc
of the parameters of the Hamiltonian~3! one can describe th
QD system in terms of a Kondo Hamiltonian with a tim
dependent coupling constant,

Ja,a8~ t !5
AGaGa8
4pr leads

(
n,m

Jn~b!Jm~b!ei [(n2m)v0t] S 1

e01nv0

2
1

e01U1nv0
1

1

e01mv0
2

1

e01U1mv0
D ,

~20!

whereJn(b) is the Bessel function of ordern and argument
b5Vac/v0. To second order in the time-dependent coupl
constant@Eq. ~20!# the rate of spin-flip cotunneling can b
found as

g5
1

2p (
aa8,n,m

~Jaa8
n,m

!2un2muv0 , ~21!

whereJaa8 is

Jaa8
n,m

5
AGaGa8Jn~b!Jm~b!

4 S 1

e01nv0
2

1

e01U1nv0

1
1

e01mv0
2

1

e01U1mv0
D . ~22!

In the limit of very low ac frequencies and taking into a
count one-photon processes, we recover from Eq.~21! the
expression derived in Ref. 29@Eq. ~41!#: g5(v0/8p)@(GL
1GR)U/(U1e0)#2@Vac(U12e0)/(e01U)e0#2. Equation
~21! shows that the rate of spin-flip cotunneling depends
the absorption or emission probability of photons through
Bessel functions, the energy denominators, and the win
07531
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of energy given byun2muv0, its behavior as a function o
the ac frequency depends on two opposite effects. On
hand, by increasingv0 the window of allowed states be
comes larger but on the other hand the absorption or em
sion probability diminishes. The competition of these tw
opposite effects produces a maximal rate at certain freque
vc .

In Fig. 3 the decoherence rate@Eq. ~21!# is plotted as a
function of the ac frequency for different ac intensities. F
low ac intensities and low ac frequencies the rate grows
early withv0 as expected.vc moves to higher values as th
ac amplitude increases. The behavior ofvc as a function of
Vac is linear~Fig. 4!. We can conclude from the slope of th
curve thatvc /Vac'0.9 ~or b'1.1).

These results can be connected with our numerical ca
lations for the conductance, see below, by using the ex
Anderson model relation for the scattering rate.4,26 This
quantity gives the total rate at which lead electrons of ene
EF suffer intralead and interlead scattering by the QD,

pD5p (
KEL,R

uVku2^A~EF!&5
p

2

~GL1GR!

r leads
^A~EF!&,

~23!

where^A(EF)& @Eq. ~18!# is the time-averaged spectral fun
tion at the Fermi level. In the absence of irradiation and

FIG. 3. Spin-flip cotunneling rate as a function ofv0 for various
ac amplitudes.~a! shows the case of very low ac amplitudes, f
v0,vc the rate grows linearly.~b! depicts the rate for different ac
amplitudes in a range of ac frequencies fromv050.15G'TK/2 to
v05G'4TK . ~c! and ~d! exhibit the case of intense irradiatio
where the Kondo peak is strongly quenched.
9-5
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symmetric couplings the scattering rate can be obtained
using the FLSR in the symmetric case as

pDr leads5
G2

@G2Im S int
r ~EF!#2

, ~24!

where S int
r (EF) is the proper interaction self-energy at th

Fermi level. AtT50 the scattering rate reaches the unita
limit ( pr leadsD51) since the low-energy excitations have
infinite lifetime, i.e., ImS int(EF)50. A finite lifetime in-
duced by any decoherence source reduces the scattering
Intuitively, one can argue that the main role of the ac pot
tial is to induce decoherence in the Kondo state by introd
ing a finite lifetime~even atT50). We can define an effec
tive time-averaged self-energy^S int

ac(EF)& in the presence o
irradiation such that the time-averaged DOS atEF can be
written as

pG^A~EF!&5
G2

@G2Im^S int
ac~EF!&#2

. ~25!

FIG. 4. vc as a function of the ac intensity.
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With this notation, one can identify the imaginary part of th
effective self-energy as the total rate of decoherence indu
by the ac potential, including the spin-flip cotunneling d
rived above, i.e.,n52Im^S int

ac(EF)&. We plot in Fig. 5~a! the
rate of spin-flip cotunneling and the total decoherence r
obtained from our calculations versusv0. Both rates presen
a maximum. It is obvious, then, from the behavior of t
total decoherence rate versusv0, that the linear conductanc
presents a minimum at a critical frequency.

From the dependence of the decoherence rate on th
parameters and from the energy scale for spin fluctuati
TK we can define two different regimes for the ac Kon
problem: ~i! Weak reductionregime occurs whenn/TK,1.
In this case, the formation time for the Kondo state@given by
1/TK ~Ref. 40!# is shorter than the necessary time to dest
it, which is given by the inverse of the decoherence rate,
the system spends most of the time in a Kondo state with
or with little decoherence. On average, this translates in
high linear conductance independently of the applied ac
rameters. As long as the photon absorption or emission
is negligible, and therefore the ac is not effective for indu
ing decoherence, it is irrelevant whether or not the freque
is larger or smaller thanTK ~see Fig. 3!. ~ii ! Strong reduction
regime is found whenn/TK.1. In this case, the decoherenc
time is shorter than 1/TK and the system spends most of t
time in a state with a strong reduction of the Kondo effec

B. Conductance as a function of the ac parameters

To illustrate the previous discussion we plot the cond
tance as a function ofv0, at a fixed ac intensity@in Fig. 6~a!
for Vac,G and in Fig. 7~a! for Vac>G#. In both cases we
find that there are two different behaviors separated b
critical frequencyvc , where the conductance presents
minimum. As we already mentioned, the presence of t
minimum is regulated by the competition of two oppos
effects. In the adiabatic limit, wherev0→0, the effect of the
applied ac potential has a negligible effect on the dynam
of the correlated collective state~weak reductionregime!. In
d

-

a-

k
g
r

FIG. 5. ~a! Rate of decoher-
ence vs v0 for Vac50.25G
'2TK . The solid line shows the
total rate of decoherence obtaine
from the numerical results, the
dotted line depicts the rate of spin
flip cotunneling derived from Eq.
~21! as a function ofv0. ~b! Total
rate of decoherence vsv0 for two
intensities: Vac50.25G'TK and
Vac50.5G'2TK . Strong and
weak reduction regimes are sep
rated by the horizontal linen
5TK . For v0,vm and v0.vM

the system is found in the wea
reduction regime and the stron
reduction regime is achieved fo
vm,v0,vM .
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FIG. 6. ~a! Conductance as a
function of v0. The solid line
shows the case ofVac50.25G
'TK , the dotted line correspond
to the case of stronger ac intensi
Vac50.5G'2TK . ~b! Time-
averaged DOS for the cases o
v050.375G'3TK/2 ~solid line!,
v05G/2'2TK ~dotted line!, v0

50.625G'5TK/2 ~dashed line!
for a fixed AC amplitude Vac

50.5G'2TK .
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this case, the quenching of the Kondo peak is no lon
effective and therefore the ac only induces a small deco
ence in the singlet state. In the very high ac frequency lim
wherev0→` ~in this limit b→0), the unpaired electron ha
a negligible absorption probability and one reaches again
weak reductionregime, i.e.,n/TK ,1 . For the lowest ac
amplitude in Fig. 6~a! ~solid line, Vac50.25G) the QD is in
the weak reductionregime for ac frequencies belowvm
;0.2G and frequencies abovevM;1.2G @see Fig. 5~b!#. The
strong reductionregime (n/TK .1) is reached for frequen
cies vm,v0,vM . By doubling the ac amplitude@Vac
50.5G, dotted line in Fig. 6~a!# the QD enters in thestrong
reduction regime for all the frequencies studied@from Fig.
5~b!, the rate is above the linen/TK51 for all the frequen-
cies#. The critical frequency depends on the ac amplitude:
Vac50.25G vc'0.5G and for Vac50.5G vc'0.625G. For
v0,vc the behavior of the conductance qualitatively fo
07531
r
r-

t,

he

r

lows that of the spin-flip rate shown in Fig. 3~b!: the slowest
drop of conductance corresponds to the smallest ac am
tude. This competition of opposite effects giving a minimu
in conductance vsv0 is illustrated in Fig. 6~b!, where we
plot the time-averaged DOS atEF for three ac frequencies
v0<vc . By increasing the ac frequency fromv050.375G
up to v050.5G the Kondo resonance is suppressed m
effectively than by raising the ac frequency fromv050.5G
up tov050.625G where the reduction of the Kondo peak
almost negligible. Figure 7~a! depicts the conductance vsv0
for Vac>G. Remarkably, we findvc /Vac.1 in a good agree-
ment with the tendency found in Fig. 4. Here again the s
pression of the conductance is smaller for the lowest ac
plitude. Furthermore, in the region where the conductanc
an increasing function of the ac frequency, this increase
slower for the highest ac intensity. The previous behavio
illustrated in Fig. 7~b! where we plot the time-averaged DO
d

FIG. 7. ~a! Conductance as a
function ofv0 and different inten-
sities: Vac5G'4TK ~solid line!,
Vac51.5G'6TK ~dotted line!,
Vac52G'8TK ~dashed line!. ~b!
Time-averaged DOS forVac52G
and different ac frequencies: soli
line v053.5G'14TK (b50.57),
dotted line v054G'16TK (b
50.5), dashed line v055G
'20TK (b50.22), and long-
dashed line v056G'24TK (b
50.16).
9-7
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FIG. 8. ~a! Conductance as a
function of Vac for four ac fre-
quencies.~b! Conductance vsb
for three ac frequencies.
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for several ac frequencies at the strongest ac intensityVac
52G. In this regime the Kondo peak always increases asv0
does.

Let us now compare our results with the ones obtain
with different schemes:29,26Kaminskiet al.29 predict no sup-
pression of the Kondo peak for the symmetric casee0
52U/2) in clear disagreement with both our theory a
experimental results.30 Their analysis of the ac Kondo prob
lem is based on a decoherence rate obtained for the
where one takes into account one photon processes at
low ac frequencies. In asymmetric cases, they predict a
notonous decrease of the height of the Kondo peak as a f
tion of v0. Their results~for e0Þ2U/2) show that increas
ing the ac frequency the Kondo peak declines. Our res
~for e052U/2) show, as well, a decay of the Kondo peak
the low ac frequency regime asv0 grows@see Fig. 6~a!#. The
rest of the cases discussed here are away from the ran
validity of Ref. 29. Our study of the ac Kondo problem h
been restricted to the symmetric case which is relevant in
experiment. However, we expect a similar behavior in
Kondo regime away from the symmetric configuration@the
rate of the spin-flip cotunneling presents the same beha
as a function of the ac parameters for asymmetric cases
Eq. ~21!#.

Using a NCA, Nordlanderet al.26 found a nonmonoto-
nous behavior of the conductance vsv0 and the existence o
a minimum, in qualitative agreement with us. In additi
Nordlanderet al. found oscillations in the conductance as
function of the ac frequency for asymmetric configuratio
These oscillations come from charge fluctuations induced
the ac potential whenv0 approximately equals the ionizatio
energy e0. In our particle-hole symmetric configuratio
charge fluctuations are not possible and, then, our result
not show such oscillations. Thus caution is needed in co
paring both works due to the different approximations
volved and the different regimes of validity for both calc
lations. Whereas our perturbative calculation is valid for
symmetric case, and low temperatures, the NCA consid
the limit U→` ~i.e., the strongly asymmetric case! and tem-
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peratures of the order and higher thanTK . In that sense, both
calculations should be regarded as complementary. The
pendence of the conductance as a function of the ac am
tude is shown in Fig. 8~a! for four different ac frequencies
The height of the Kondo peak falls off as the applied
intensity increases. Again, we can explain our results in s
pler terms by relating them to the rate of spin-flip cotunn
ing @Eq. ~21!#. Figure 8~b! plots the conductance as a fun
tion of b for three different ac frequencies. From this figu
one can conclude that for the same value ofb ~same absorp-
tion probability of photons! the maximal reduction in the
conductance is reached for the largest ac frequency as
should expect.

Experimentally there was found an almost universal
havior of the conductance as a function ofb.30 It is impor-
tant to note, however, that in the experiment the ac amplit
of the radiation seen by the electrons in the QD depends
the attenuation which is ac frequency dependent. In our
culation, attenuation effects, which depends on complica
circuit-dependent parameters, are not included and, the
direct comparison with the experimental results is beyo
the scope of our work. Let us mention only that the expe
mental scales for spin and charge fluctuations are very cl
TK;G/2;100 meV;25 GHz. It is difficult, then, to sepa
rate contributions coming from spin-flip related Kondo phy
ics to those coming from charge fluctuations.

C. Time-averaged density of states

Another important question in the ac Kondo problem is
the sidebands of the Kondo peak induced by the irradia
can be observed. In order to investigate when the Kon
state develops sidebands we plot in Fig. 9 the time-avera
DOS for three different ac frequencies,v05G/4'TK @Fig.
9~a!#, v05G/2'2TK @Fig. 9~b!# and v05G'4TK @Fig.
9~c!#. For each ac frequency we consider different ac int
sities corresponding tob50, 0.25, 0.5, and 0.75. We hav
chosen theb parameter since this one regulates the abso
tion or emission probability of photons. Figure 9~a! corre-
9-8



is
ec
tia
f t
o

io
in
e

is
(
te

nt

-
wi
s
g

t
the

and
n
be-
eri-

sat-
ure-

we

S,
er

ite

By
the
sity
y.
the
ur-
ion
ctly
ac
al
ac
cy
ncy

do
s
eak

tion
-

n-
38,
ia

is-
i.

ce
n’s

tia

ak

an
re
e

e
to

nd
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sponds to v05G/4'TK and different ac intensities
Vac'TK/4 (b50.25), Vac'TK/2 (b50.5), and Vac
'3TK/4 (b50.75). In all these situations the Kondo peak
slightly reduced, i.e., the dynamics of the correlated coll
tive state is practically not influenced by the ac poten
since both the ac frequency and the ac intensities are o
order ofTK . Furthermore, there is no evidence of replicas
the Kondo peak in the time-averaged DOS. By doublingv0
@Fig. 9~b!#, the Kondo peak undergoes a stronger reduct
as the absorption probability of photons rises by increas
b. However, a total suppression of the Kondo resonanc
only reached for our largest ac frequency@Fig. 9~c!, v05G#.
Even for a small value ofb50.25, the Kondo resonance
reduced remarkably. For the highest ac amplitudeb
50.75) the Kondo resonance has been destroyed comple
The satellites become apparent in Figs. 9~b! and~c!. In these
cases bothv0 and Vac are much larger than the releva
energy scale of this problem given byTK . In Fig. 9~c! even
the second satellites are resolved atb50.5. The satellites
grow very slowly withb due to the two competing mecha
nisms previously discussed. This has to be compared
the so-called Tien-Gordon description where one expect
appreciable increase of the satellites in the time-avera

FIG. 9. Time-averaged DOS.~a! The ac frequency isv05G/4
'TK , the solid line is the case in the absence of the ac poten
i.e., b50, whereb5Vac/v0. In this case the peak atEF reaches a
height of 0.93. The dotted line corresponds tob50.25 (Vac

50.0625G'TK/4). The dashed line shows the case ofb50.5
(Vac50.125G'TK/2). The dot-dashed line corresponds tob
50.75 (Vac50.1875G'3TK/4). In the three cases the Kondo pe
is slightly reduced by the ac signal.~b! v05G/2'2TK . The solid
line corresponds tob50, the dotted line tob50.25 (Vac

50.125G'TK/2). The dashed line shows the case ofb50.5 (Vac

50.25G'TK) where the peak has been significantly reduced
the dot-dashed line shows the case of an intense signal wheb
50.75 (Vac50.375G'3TK/2). In this case the replicas of th
Kondo become apparent~located atv0 and2v0) and the peak at
EF has been strongly reduced.~c! corresponds tov05G: the solid
line is for the caseb50; the dotted line shows the caseb50.25
(Vac50.25G'TK). At this ac intensity the first satellites of th
Kondo resonance show up. The dashed line correspondsb
50.5 (Vac50.5G'2TK), in this case the time-averaged DOS atEF

has been suppressed below 0.5. The dot-dashed line correspo
a very intense signal,b50.75 (Vac50.75G'3TK), the Kondo peak
in this case has completely disappeared.
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DOS asb increases.42,43More importantly, we point out tha
the Kondo satellites can only be observed by measuring
differential conductancedI/dVdcuVdc5v0

. The finite dc volt-
age is an extra source of decoherence, i.e., reduction
broadening of the satellite peaks,13,29 not addressed here. I
the experimental results of Ref. 30 the sidepeaks never
come apparent in the differential conductance. The exp
mental frequency range~10–50 GHz! corresponds, in our
units, to a range fromv0'G/5 to v0'G. For the lowest
experimental ac frequency we do not observe satellites@Fig.
9~a!#. When v0'G @Figs. 9~c!# satellites are visible in the
time-averaged DOS, although we stress again that these
ellites can be masked in a differential conductance meas
ment inasmuch as the necessary dc bias voltageVdc'v0 can
be large enough to destroy the Kondo sidepeaks. Finally,
note that the mean-field resonances located ate0 and e0
1U/2 do not display satellites in the time-averaged DO
sincev0 is smaller than their widths which are of the ord
of 2G.

IV. SUMMARY

In conclusion, interesting features are found in the fin
temperature transport (T!TK) properties of QD’s in the
Kondo regime as an oscillatory gate voltage is applied.
solving the time-dependent Dyson equation we obtain
QD retarded Green’s function and the time-averaged den
of states within the framework of the Fermi-liquid theor
The interaction self-energy in our model is calculated, in
context of the Keldysh nonequilibrium technique, by pert
bation theory up to second order in the on-site interact
and the effect of the ac potential is taken into account exa
for all ranges of ac frequencies and ac intensities of the
potential. The Kondo resonance is modified by the extern
ac voltage in a different way depending on the range of
frequencies studied. We find two different ac frequen
ranges of opposite behavior, separated by a critical freque
vc where the linear conductance is minimum.vc depends on
the ac intensity and moves to higher values asVac increases.
At small ac frequencies, and fixed ac intensity, the Kon
peak decreases asv0 grows. Once the critical frequency i
reached the opposite behavior is found and the Kondo p
increases asb5Vac/v0→0. Our method, valid for arbitrary
ac frequencies and ac intensities, finite on-site interac
and temperatures belowTK , complete the range of param
eters previously studied.
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APPENDIX A: QD GREEN’S FUNCTIONS
IN THE ABSENCE OF ac POTENTIAL

In this appendix, the QD Green’s functions in the absen
of time modulation are obtained. First of all, the QD Gree

l,

d
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9-9



rd
. A
at

e
in
th

-
lf-

Q

s

es

n’s

nce

p-
rst

the
f an
in-
in

r to
is

D
and

are
QD
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function coupled to the leads is calculated, and afterwa
the interaction in the Hartree approximation is included
very simple calculation yields the exact lesser and gre
Green’s functions forH leads,

gk
,,(0)~ t2t8![ i ^ck

†~ t8!ck~ t !&5 i f ~ek!e
2 i ek(t2t8),

gk
.,(0)~ t2t8![2 i ^ck~ t !ck

†~ t8!&52 i @12 f ~ek!#e
2 i ek(t2t8),

~A1!

where f (ek) is the Fermi-Dirac distribution function. Th
lesser and greater hopping self-energies including hopp
between the QD and the leads are written in terms of
previous Green’s functions as,39

Ssd
, ~ t12t2!5 (

kPL,R
Vk* gk

,~ t12t2!Vk ,

5 i(
L,R

E de

2p
e2 i e(t12t2) f L/R~e!GL/R~e!,

~A2!

Ssd
. ~ t12t2!5 (

kPL,R
Vk* gk

.~ t12t2!Vk ,

52 i(
L,R

E de

2p
e2 i e(t12t2)

3@12 f L/R~e!#GL/R~e!, ~A3!

whereGL(e)52p(kPLuVku2d(e2ek) and a similar expres
sion is obtained forGR(e). The retarded and advanced se
energies fulfill the relations

Ssd
r ~ t12t2!5u~ t12t2!@Ssd

. ~ t12t2!2Ssd
, ~ t12t2!#,

Ssd
a ~ t12t2!5u~ t22t1!@Ssd

, ~ t12t2!2Ssd
. ~ t12t2!#.

~A4!

The Dyson equation for the retarded and advanced
Green’s functions is

gd,s
r ,a ~ t2t8!5gd,s

r ,a,(0)~ t2t8!1E dt1E dt2gd,s
r ,a,(0)

3~ t2t1!Ssd
r ,a~ t12t2!gd,s

r ,a ~ t22t8!. ~A5!

Here gd,s
r ,a,(0)(t2t8) are the QD Green’s functions forHQD

@Eq. ~3!# without the on-site repulsion term,

gd,s
r ,a,(0)~ t2t8!57 iu~6t7t8!e2 i e0,s(t2t8). ~A6!

In the absence of time dependence, it is advantageou
Fourier transform, getting

gd,s
r ,a ~e!5@~gd,s~e!

r ,a,(0)!212Ssd
r ,a~e!21, ~A7!

where

Ssd
r ,a~e!5 (

kPL,R

uVku2

e2ek6 ih
5 (

aPL,R
La~e!7

i

2
Ga~e!.

~A8!
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In the WB limit approximation the previous self-energi
becomeSsd

r ,a(e)57(aPL,R( i /2)Ga . By inserting these self-
energies in Eq.~A7!, the retarded and advanced QD Gree
functions coupled to the leads are

gd,s
r ,a ~e!5

1

e2e0,s6
i

2 (
aPL,R

Ga

. ~A9!

One can Fourier transform back to get the time depende
of the retarded and advanced QD Green’s functions,

gd,s
r ,a ~ t,t8!57 iu~6t7t8!e2 i *

t8
t

dt1(e0,s7 i (aPL,RGa/2).
~A10!

Now the on-site interaction self-energy in the Hartree a
proximation is calculated via perturbation theory up to fi
order inU:

Sd,s
r ,a(1)5Und,s̄ , ~A11!

wherend,s̄5^ds̄
†(t)ds̄(t)&. By using the Dyson equation it is

straightforward to get

gd,s
r ,a ~ t,t8!57 iu~6t7t8!e2 i *

t8
t

dt1(e0,s1Und,s̄7 i (aPL,RGa/2).
~A12!

APPENDIX B: QD GREEN’S FUNCTIONS
IN THE PRESENCE OF ac POTENTIAL

In this appendix we derive analytical expressions for
lesser and greater QD Green’s functions in the presence o
ac potential, including the coupling to the leads and the
teraction in the Hartree approximation. As we mentioned
Sec. II, one needs to obtain these propagators in orde
have an expression of the interaction self-energy which
given by Eq. ~9!. However, the lesser and greater Q
Green’s function are given as a function of the retarded
advanced self-energies@see Eq.~6!#. The Green’s functions
have the following expressions:39

Gd,s
r (a)~ t,t8!5e2 i (Vac/v0)sin v0tei (Vac/v0)sin v0t8 gd,s

r (a)~ t2t8!

5 (
p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!e2 ipv0teimv0t8gd,s
r

3~ t2t8!, ~B1!

whereJm(b) is the Bessel function of orderm and argument
b5Vac/v0. The greater and lesser QD Green’s functions
calculated by substituting the retarded and advanced
Green’s functions Eqs.~B1!, in Eq. ~6!:
9-10
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Gd,s
, ~ t,t8!5e2 i (Vacv0)sin v0tei (Vac/v0)sin v0t8 (

p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!(
L,R

3E
2`

` de

2p

eipv0te2 imv0t8e2 i e(t2t8) f L/R~e!GL/R~e!

S e2pv02 ē0,s1
i

2 (
aPL,R

GaD S e2mv02 ē0,s2
i

2 (
aPL,R

GaD , ~B2!

Gd,s
. ~ t,t8!5e2 i (Vac/v0)sin v0tei (Vac/v0)sin v0t8 (

p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!(
L,R

3E
2`

` de

2p

eipv0te2 imv0t8e2 i e(t2t8)@12 f L/R~e!#GL/R

S e2pv02 ē0,s1
i

2 (
aPL,R

GaD S e2mv02 ē0,s2
i

2 (
aPL,R

GaD , ~B3!

Gd,s
, ~ t8,t !5ei (Vac/v0)sin v0te2 i (Vac/v0)sin v0t8 (

p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!(
L,R

3E
2`

` de

2p

e2 ipv0teimv0t8e2 i e(t82t) f L/R~e!GL/R

S e2pv02 ē0,s1
i

2 (
aPL,R

GaD S e2mv02 ē0,s2
i

2 (
aPL,R

GaD , ~B4!

Gd,s
. ~ t8,t !5ei (Vac/v0)sin v0te2 i (Vac/v0)sin v0t8 (

p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!(
L,R

3E
2`

` de

2p

e2 ipv0teimv0t8e2 i e(t82t)@12 f L/R~e!#GL/R

S e2pv02 ē0,s1
i

2 (
aPL,R

GaD S e2mv02 ē0,s2
i

2 (
aPL,R

GaD . ~B5!
th

i-
un
er
if-
th

n
nt

w-

and
Once again we have takenē0,s5e0,s1Und,s̄ beingnd,s̄ the
QD averaged occupation. In the case of zero dc bias,
right and left Fermi-Dirac distribution functions aref L,R(e)
51/(e(e2EF)/T11) whereT is the temperature. The analyt
cal expressions for the lesser and greater QD Green’s f
tion are obtained by integrating in the complex plane wh
the Fermi-Dirac distribution function can be written as a d
ference of two digamma functions which have poles in
lower and upper complex plane:

f ~z!2
1

2
52

1

2p i FcS 1

2
1

iz

2pTD2cS 1

2
2

iz

2pTD G
5 (

k50

k5`
1

1

2
1k2

iz

2pT

2
1

1

2
1k1

iz

2pT

. ~B6!

The complex integrals are performed with the restrictiot
2t8>0 because we use them to evaluate a retarded qua
@the retarded self-energy in Eq.~9!#.
07531
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c-
e

e
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In order to abbreviate the notation, we define the follo
ing variables:

ap52S ē0,s1pv02
i

2 (
aPL,R

GaD ,

bm52S ē0,s1mv01
i

2 (
aPL,R

GaD ,

ap5
1

2
1

i

2pT
ap , gm5

1

2
1

i

2pT
bm , z5e22pT(t2t8),

ūp5
1

2 F12tanhS 1

2T
apD G , v̄m5

1

2 F12tanhS 1

2T
bmD G .

~B7!

With this notation, the analytic expressions for the lesser
greater QD Green’s functions are
9-11
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G.~ t,t8!5e2 i (Vac/v0)sin v0tei (Vac/v0)sin v0t8

3 (
p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!

3 (
aPL,R

eipv0te2 imv0t8Ga

~p2m!v02 i (
aPL,R

Ga

3S F1~ap,1,ap11,z!

ap
2

F1~gm,1,gm11,z!

gm

22p i ~ ūp21!eiap(t2t8)D , ~B8!

G,~ t,t8!5e2 i (Vac/v0)sin v0tei (Vac/v0)sin v0t8

3 (
p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!

3 (
aPL,R

eipv0te2 imv0t8Ga

~p2m!v02 i (
aPL,R

Ga

3S F1~ap* ,1,ap* 11,z!

ap*
2

F1~gm* ,1,gm* 11,z!

gm*

22p i v̄me2 ibm(t2t8)D , ~B9!

G.~ t8,t !5ei (Vac/v0)sin v0te2 i (Vacv0)sin v0t8

3 (
p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!

3 (
aPL,R

e2 ipv0teimv0t8Ga

~p2m!v02 i (
aPL,R

Ga
vid

et

n

B
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3S F1~ap,1,ap11,z!

ap
2

F1~gm,1,gm11,z!

gm

22p i ūpeiap(t2t8)D , ~B10!

G,~ t8,t !52ei (Vac/v0)sin v0te2 i (Vac/v0)sin v0t8

3 (
p52`

p5`

(
m52`

m5`

Jm~b!Jp~b!

3 (
aPL,R

e2 ipv0teimv0t8Ga

~p2m!v02 i (
aPL,R

Ga

3S F1~ap* ,1,ap* 11,z!

ap*
2

F1~gm* ,1,gm* 11,z!

gm*

22p i ~ v̄m21!e2 ibm(t2t8)D . ~B11!

The functionsF1 are hypergeometric functions. Hereg* and
a* are complex conjugates ofg and a, respectively. Once
the greater and the lesser QD Green’s functions are obtai
the retarded QD interaction self-energy is given by

Sd,s
r ,(2)~ t,t8!52 iU 2u~ t2t8!@Gd,s

, ~ t,t8!Gd,s̄
.

~ t8,t !Gd,s̄
,

~ t,t8!

2Gd,s
. ~ t,t8!Gd,s̄

,
~ t8,t !Gd,s̄

.
~ t,t8!#. ~B12!
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