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Low-temperature transport in ac-driven quantum dots in the Kondo regime
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We present a fully nonequilibrium calculation of the low-temperature transport properties of a quantum dot
in the Kondo regime when an ac potential is applied to the gate. We solve a time-dependent Anderson model
with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in pertur-
bation theory in the on-site interaction, in the context of the Keldysh nonequilibrium technique, and the effect
of the ac voltage is taken into account exactly for all ranges of ac frequencies and ac intensities. The obtained
linear conductance and time-averaged density of states of the quantum dot evolve in a nontrivial way as a
function of the ac frequency and ac intensity of the harmonic modulation.
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I. INTRODUCTION i.e., the energy necessary to add an electron to the QD. The
relevant energy scale ic=+2UT e "lIEr~<ol(U+<l2l'V

Recent experiments® showing Kondo behavior in the which is related to the binding energy of the many-body
low-temperature transport of quantum do®D’s) have state* For T<Ty, the Kondo regime is reached wheg
opened a new arena for the study of strongly correlated elec<E.—T" ande,>E-—U+1I" and the mixed-valence regime
trons in artificial systems. The Kondo effect in dilute mag-js established forEp—T'<ep<Er and Ep—U<ey<Ef
netic alloys appears as a crossover from weak to strong cou= |y + 1. |n the Kondo regime al =0, the low-energy ex-
pling between delocalized electrons of the host ”O“mag“etiEitations(quasiparticle)sproduce a peak &g (Kondo reso-
metal and the unpaired localized electron of the magneti¢, . ~a or Abrikosov-Suhl resonanda the density of states
impurity as the temperatur€l) is reduced well below the (DOS).* One electron aE. becomes scattered by the QD

4 .
Kondo temperatureT(k).” This crossover leads to the forma- undergoing a phase shift which is proportional to the dis-

tion of a singlet state between the unpaired localized electron .
in the impurity and electrons in the host metal. It is impor- placed chargesn [Friedel-Langreth sum ruléFLSR) (Ref.

tant, however, to emphasize the main differences of thg)] and the linear conductance for a2 QD_symmetricaIIy
Kondo physics in QD’s with respect to bulk magnetic impu- Coupled to the leads takes the valire (2¢*/h)sir’(man). In

rities. The parameters which define the in QD's can be the Symmetric caseep=—U/2), n=0.5 leads to a perfect
changed in a controlled way by applying the appropri(.jlt‘,;,transparency of the QD. For any chemical potential between
combination of gate voltages. So, it is possible to study ei€o @ndey+U the QD has the linear conductance as a func-
ther Kondo or mixed-valence regimes in the same sampldion of the chemical potential of an almost perfectly open
For this to be possible, there is an important requirement: théhannel 2%/h.°~® This constitutes the unitary limit and has
charging energy and level separation of the QD must be sigecently been experimentally verified in QD’s by Van der
nificantly larger than the level broadening due to the couMWiel etal® However, as temperature increases, inelastic
pling to the leads. More importantly, the study of Kondo scattering processes reduce the DOEat(i.e., the linear
physics in QD’s opens a new road to the studynohequi- conductanceat the Kondo valley and eventually two peaks
librium many-body phenomena, a relatively young and richat € and eo+U appear forT>Ty .
area in contemporary condensed-matter physics. As we already mentioned, new questions arise when driv-
In this paper, we address the issue of a QD driven out ofg the QD out of equilibriunt®=?* When this is done by
equilibrium by means of an ac voltage. More specifically, wemeans of the application of a finite dc voltage bias, the linear
study theoretically the low-temperature transport propertie§onductance is reduced and the Kondo peak in the DOS
of a QD with an ac voltage applied to the central gate. Wesplits*?~***®More sophisticated configurations of QD's in
use a time-dependent version of the Anderson model. In it§1e Kondo regime constitute a growing area of intense inves-
simplest formulation, the Anderson model, valid for both tigations, both from the theoretical and experimental sides.
Kondo and mixed-valence regimes in bulk systems, deJime-dependent Kondo physit$Kondo physics in integer-
scribes a single discrete level with on-site electron-electrosPin QD's}” QD’s embedded in Aharonov-Bohm ringSor
interaction coupled to a band. The model describes differerlouble QD systentS are examples of such configurations.
physical regimes which, for QD’s, are determined by the We focus on the study of the transport properties of an
following parameters(i) The energy difference between a Anderson Hamiltonian with a time-dependent resonant level
discrete level in the QD) and the Fermi energy of the ‘e(t) = ey+V,LOSgt). This can be achieved experimen-
leads E€g). (i) The tunneling couplingl() between the dis- tally by means of a time-dependent central gate voltage ca-
crete level in the QD and the electronic states in the resempacitively coupled to the QD. In the high-temperature regime
voirs. (iii) The QD charging energgon-site interactiorlJ),  this type of experiment has indeed been carried out leading
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to the observation of photon-assisted processes in the Cou- T+
lomb blockade regimé&®?! This regime has been studied
theoretically as welf? In the same way, there has been some
theoretical effort devoted to studying the ac transport at very
low (T<Tg) and intermediate temperatureB<Ty) in the
Kondo and mixed-valence regim&s2° Recently transport
in an ac driven QD at low temperatures has been measured —0
as well*° T

In this work yve clarify the role of an ac voltage in the FIG. 1. Complex time contour. The times in the positive branch
Kondo effect in QD's. We concentrate on the low- 5re - \while times in the negative branch are .
temperature regime so that a model in the context of Fermi-
liquid theory is adequate. The occupation of the QD as Wellnodels and comment on recent experimental information.

as all the r_eIevant quantities in transport he_tve to be Calcul':inally, Sec. IV summarizes the main conclusions of the
lated by using nonequilibrium propagators. Finally, some ap

proximation is needed for calculating the Green’s function Ofoaper.

the QD. Let us remark that there is not yet a nonequilibrium

generalization of the theoretical tools usually employed for [l. THEORETICAL MODEL
solving the Anderson model, i.e., Bethe ansatapmerical
renormalization-group® or quantum Monte Carlo
methods®* furthermore, it is difficult to extract information ~ The application of a time-dependent component to the
about dynamical quantities from these techniqigmugh energy level in the Anderson Hamiltonigeee Eq.(3) be-

see Ref. 35 for a recent perturbative renormalization-groufow] breaks the time translational invariance of the system
method in real time to tackle nonequilibrium situatipn&/e ~ and, then, we need an approach capable of addressing this
choose, then, to use a finité-perturbation theory for the fully nonequilibrium situation. When the time-dependent
Green’s function of the impurity which allows us to obtain perturbation acts for a while, the system does not recover its
the dynamical properties at low temperatures and to generalhermodynamic equilibrium after the perturbation is over.
ize these quantities to a nonequilibrium situation in theThe whole process does not have the symmetry between
whole range of interactionsU(/T'). This perturbative solu- — —% andt—c and, then, an equilibrium expansion in
tion overestimates the width of the Kondo peak, iTg.,*3!  terms of expectation values is not possible. Nevertheless, the
In fact, our Fermi-liquid approach gives a resonance widtHProblem can be solved by allowing the system to evolve
which decreases algebraically with instead of having an from — to the moment of interegt and then continuously

exponential decay as given by scaling calculatibwart  eyolve fromt=t back tot— . In this way all the expec-
from this, finite. perturbation theor***" gives a good  tation values are evaluated in a well-defined state which was
description in the symmetric case, but presents clear anomgrepared in a remote past. This special complex time contour
lies away from this special situatidwhich can be overcome (see Fig. 1 is the main ingredient of the nonequilibrium
by means of an interpolating self-eneydy’ Previous ef-  keldysh formalisnf® In the conventional Keldysh matrix
forts have concentrated on thle— limit where a noncross-  formulation of the perturbation theory, one does not work
ing approximation(NCA) (Refs. 12, 13, 23, and 2@an be  directly with the Green’s function defined on the complex
made for high and intermediate temperatures. However, sudfine contour, but with a linear combination of the four pos-
approximations do not give a good description of the exackijple time orders. The usual linear combinations (aimilar
local Fermi-liquid properties a6— 0. By using the NCA the  relations hold for the self-energjes
transition from the weak-correlation to the strong-correlation
regime is not described properly. In this paper we will re- r N (N N < ,
strict ourselves to the symmetric case. The study of the Ga,o (L) =0 =t)[Gq,o(L) = Gy ,o(L)],
asymmetric case will be analyzed elsewhere.

The main difficulty for our purpose resides in the deter- Gl (tt)=0(t' =[Gy, (t,t") = Gg ,(t,t)], (D)
mination of the QD Green’s function, and specifically the
calculation of its self-energy. In a previous pagewe pro-  WhereGyg ,(t,t") is the retarded Green’s functioBg ,(t,t")
posed an ansatz for the modification of the QD Green'’s funcis the advanced Green’s function, aﬁqa(t,t’), Gjﬁ(t,t')
tion due to an harmonic modulation. Here, we improve ourare the so-called lesser and greater Green'’s functions, respec-
previous description, valid in the limit of small interactibh  tively.
and extend the calculation to finite temperatures.

The paper is organized as follows: in Sec. Il we describe
the theoretical model and deduce the expressions for the self-
energy and the time-averaged spectral density. In Sec. Il we The time-dependent Anderson Hamiltonian is:
present the results for the linear conductance and time-
averaged density of states at finite temperatures and for dif- H=H eagst Hop+ Hsgt Hadt), 2
ferent ac frequencies and ac intensities of the harmonic
modulation. Moreover, we compare with previous theoreticalwhere

A. Keldysh formalism

B. Hamiltonian
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_ T
Hcads™ E €kCx 5 1Ck, o
ke{lL,R},o

Hop= 2 €o,dd,+Udldd]d,, — T
o t_ 'y + tr_

R = FIG. 2. Self-energies of ordet?, 37 A(t,t’), and 35

Hse= > Vicp,d,+Vidlic,, X(t,t"). The times in the causal branch are marked with aym-
keil Rj.o bol whereas the times in the anticausal branch are marked with a
— symbol. Solid lines denote QD Green'’s functions in the Hartree

H c(t)ZE V,LOSw,t dtd . (3) approximation including coupling to the leads and ac potential.
@ & o Dashed lines correspond to the on-site repul&ialectron-electron
. . interaction.
V4. and wq are the ac intensity and ac frequency of the ac
potential respectivelyd’f, creates an electron with spinin D. Correlation self-energy

the QD, Whilecﬁva creates it in the lead with energy, (k
labels the rest of quantum number$he ac voltage modu-
lates in time the relative position of the QD levgJ,, with
respect toEg. An eventual breakdown of the spin degen-
eracy would be represented lay,# €y,,. The couplingVy
between the QD and the leads produces a broadening

The starting point for the derivation of the correlation
self-energy in the presence of the ac potential consists of
calculating the lesser and greater QD Green'’s functions, in
the Hartree approximation, including coupling to the leads.
In the absence of the time-dependent potential, the retarded
and advanced QD Green’s functions have the following ex-

LR (e)=—2 |m[E;éR)(6+ i5)] pressiongsee Appendix A
=272 ()| Vil ?S(e— &), gy (t—t)=Fio(xtxt’)
whereSL(P) is the hybridization single-particle retarded self- s exp 8t (€0, Ung o iZec LRI (4)

energy. Hereafter, for simplicity, we consider the wide band

(WB) limit approximation which neglects the principal value ng ,= (d*(t)dg(t)> being the QD occupation. Note that
of the hybridization self-energy and considers the imaginarthese QD Green'’s functions have been calculated taking into
part to be an energy-independent constant, §ésr‘(jR)(e) account the coupling self-energywhich is given by

=A"R (&) =i P(e)/2~—iTr-Ry2. Fi2,.1 rl'w/2) and the interaction in the Hartree approxi-
mation (given byUng 5). Now, if one also considers a time
C. Model modulation of the QD level, the retarded and advanced QD

Green’s functions have the following fornisee Appendix
Here, we discuss the procedure for obtaining the QDB

Green'’s functions which allows us to obtain the spectral den-

sity of the QD and the linear conductance. In the remote past, GLA(t t/):e—i(Vac/wo)(Sinwot—sinwot’)gr,a(t_t/) (5)

the QD is decoupled from the leads. The coupling between diot ™ d.o '

different regions(the contacts and the central regiois  The lesser and greater QD Green’s functions can be obtained
treated as a perturbation by means of standard equilibriuthrough the well-known relatioi**
perturbation theory. In a first step, the effect of the on-site

interaction is included via a Hartree mean-field approxima- ij(t,t’)

tion (see Appendix A The time modulation of the QD level

is treated via nonequilibrium perturbation theory, since the /
time translational invariance is broken by the ac voltage. At f dtlf dt:Gg o(t,12) 254 (12,12) GG o 12.1'),

this point, we include the correlation effects by computing (6)

the on-site interaction self-energlesser and greateup to

second order by means of the diagrams of Fig. 2. ThesehereXZ;” (t,,t,) are the lesser and greater coupling self-
diagrams are evaluated by using the previous lesser artgherg|es defmed in Appendix [&gs.(A2) and(A3), respec-
greater Green’s functions as bare propagat@ppendix B.  tively]. Now we include correlation effects up to second or-
These bare propagators include the coupling between the Q&er in the on-site Coulomb interactidsee Fig. 2. The new

and the contacts, the time dependence of the QD level, andsser and greater correlation self-energies are calculated by
the on-site interaction in the Hartree approximation. Oncemeans of the diagrams of Fig. 2 with bare lines which are
the correlation self-energy has been calculated, the QD regiven by the propagators of E¢6) [analytical expressions
tarded Green’s function is obtained by means of the timeare given in Appendix B, Eq$B8)—(B11)]:

dependent Dyson equatigrEqg. (10)]. Finally, the time-

averaged spectral densityEq. (18)] and the linear S (2)(tt )—|U2Gd Att)G ;%t’,t)Gjit,t’), 7)
conductanc¢Eq. (19)] are calculated from the QD retarded 7 7
Green'’s function. and
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Ej;,(z)(t,t’):—iUZeja(t,t’)Gj—(t’,t)G:—(t,t’). 8y  Now, the indexesn, n, andk replace the time arguments
' ’ 7 7 which appear in Eq(12). The coefficientx, are equal to 1
The retarded self-energy except wherm=k or n=Kk in which ¢,= 3. In this way, the
discretized time-dependent Dyson equation has the followin
SO =0t -S53N -35 2] O fomm: P ysoned ’
is obtained from Eqgs(7) and (8). m

go(Mn)=g,(m=—1n)— 8>, c,K,(m,k)g,(k,n).

E. Dyson equation k=n
- 16
The next step for deriving the retarded QD Green’s func- ) ) ) . (18
tion consists of solving the retarded time-dependent Dyso,Equatlon(16) constitutes a set of linear equations that can be

the retarded QD Green’s function which is used to study the

d [— ) transport properties of the system in the next section.
i ( coo() =1 2 r,,/z) Gy (tt)
wsbR F. Time-averaged spectral density and linear conductance
- 5(t—t’)+f dt,3 5@ (t,1) G Pty 1), The time-dependent spectral density(e,t), being t

=(t+t")/2, is defined as the imaginary part of the Fourier
(10)  transform with respect tor=t—t’ of the retarded QD

— Green’s function,
where €q ,(t) = €5 ,+ Ung 5(t) + V,L0Swet. In the symmet-

ric caseng ,=Ng,=1/2, which allows us to close the Dyson - 1 T @) — o
equation for the retarded Green’s functidy. (10)] without polet)=——Im | Gy (t+2,t—7/2)e<dr.
any further self-consistency in the lesser part. Equatid (17)

simplifies considerably by making the gauge transformation_ , o
Since the measurement of the linear conductance implies a

Gyt = —ia(t—t e udeonn i 3 T2l (), time-average irt, we work with the time-averaged spectral
- aelR density which reads

(1

I_n the presence of time modulation, the retarded Dyson equa- (A (€)= ﬂJ’ZW/deTpU(E,t_). (18)
tion becomes 2 )0

g t - The linear conductané®at finite temperature, in terms of

—0,(L,t")=— [ dt;K,(t,t1)g,(ty,t"), (12 the time-averaged spectral density, is given by

ot

t,
2

which is defined only fot=t’ due to thed function appear- G= e_f . NI [ af(e))z (AJe)), (19
ing in Eq.(11). K (t,t’) is the kernel of the integrodifferen- h I +Ig de |5 V7

tial time-dependent Dyson equation which is related to th

retarded self-energy through the relation "?Nheref(e) is the Fermi-Dirac distribution function.

. IIl. RESULTS
SE@(tt)=—i6(t—t)K,(t,t)

- We solve numerically the set of linear Eq46) for a QD
x e~ idrleoo(N~1Zqc rI/2] (13)  in the Kondo regimgsymmetric case,= —U/2 with sym-
metric couplingdl’ =T'r=T andU=2.5#T") at finite tem-

Whent=t', an additional condition must be imposed in EQ. yeatreT= 0.0 for different ac frequencies and ac inten-

. nh(2) — t — i . . . .
(10): Gy (1) = —i{{d,(t),d,(1)})=—1i, where{} is the  gjties. As we already mentioned, our perturbation scheme in
anticommutator. This condition implies that the solution of e on-site interaction overestimat®g. Nevertheless, it is
Eq. (12) whent=t’ is g,(t,t)=1. possible to extract an energy scale characterizing spin fluc-

We solve Eq(12) by discretizing the temporal variables, tuationsT, from the half-width of the many body Kondo
the partial derivative is replaced by the finite difference resonance aEr.* Also worth mentioning is the fact that,
_ _ according to this definitionTx acquires a clear physical
d— = Ggs(mn)—g,(m—1n) meaning in our Fermi-liquid context: at a finite temperature
ﬁgg(t't )= P ’ (14 T~Tk the unitary limit for scattering has been reduced to
) , L ) _1/2% In our case, symmetric configuration with=2.5xT,
where § |s'the grid spacing in time space. The integral is,q corresponding Kondo temperatureTis~0.24", i.e., T
converted into a sum <T. The Fermi-liquid theory is, then, a good approxima-
. m tion to describe the dynamical and transport properties of the
f dt, K, (t,t) gyt ,t")— 52 K, (m,K)g,(k,n). QD. We obtam, from thg solution of E(L6) fqr the retarded
t/ k=n Green’s function, the time-averaged density of stdtes.
(15 (18] and the linear conductan¢&q. (19)].
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The main effect of the ac potential consists in a reduction
of the time-averaged DOS & . This reduction can be in-
terpreted as decoherence induced by ac excitations, either &
real photon-assisted induced excitations at large ac
frequencie® or virtual spin-flip cotunneling processes at
small ac frequencie®. These processes introduce a quench-
ing of the Kondo peak causing a deviation of the linear con-
ductance from the unitary limit. It is difficult to extract the
magnitude of this lifetime induced by the ac from our ana- =
lytical expressions for the self-energies. Instead, in the nex
paragraphs, we present a simple estimate for the lifetime vie
a perturbative argument and try to relate this simple pertur-
bative result with our full calculation.

A. Rate of spin-flip cotunneling processes

In the case of spin-flip cotunneling the simplest process
involves the hopping of one electron out of the dot to a state
above the Fermi level while another electron in the reser-
voirs, with opposite spin, enters into the dot. The rate of
virtual spin-flip cotunneling which takes into account one
photon processes is restricted to the case of very low ac
frequencies and amplitudes, i.@q,V,<€g,€9+U. Under
these conditions the rate of spin-flip cotunneling was derived
in Ref. 29. In the symmetric case the rate obtained there is
zero. Without restrictions, the expression for the rate can be
generalized quite easily. By means of a modified Schrieffer-
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wyT wyT
04 0.8 12 0I5 045 075 105 135
a b
e @ | | ® [«
— V,=03T | 702
— V,=0.125T 4
- V,=0.25T
------ V,=0.IT
0.04 -~ V,=0.0625T

0.02

0.5

yT

0.1

(c)

0.8

(d)

Wolff transformatio®2°accounting for the time dependence
of the parameters of the Hamiltoni&B) one can describe the
QD system in terms of a Kondo Hamiltonian with a time-
dependent coupling constant,

N

i 1
Ja,ar (V)= > Jn(ﬁ)Jm([g)el[(nm)wot]<

AT Pleads nm €9t Nwg
1 1 1
— + — ,
60+U+n0)0 €0+m0)0 60+U+m(1)0

(20)
whereJn(p) is the Bessel function of orderand argument

B=V,J wy. To second order in the time-dependent coupling

constant{Eg. (20)] the rate of spin-flip cotunneling can be
found as

1

= 3

2m aa’,n,m

(3072 In—m|w, (22)

whereJ,, is

Jn,m _ Vrara"]n(ﬁ)Jm(,B)
aa’ 4

1 1
Eo+n(1)0 60+U+n(1)0

1 1
+ - :
60+ m(l)o 60+U+mw0

(22

In the limit of very low ac frequencies and taking into ac-
count one-photon processes, we recover from B4) the
expression derived in Ref. 2Eq. (41D)]: y=(we/87)[ (',
+TRIU/(U+ €0) 1[VadU+26€0)/(e9+U)eg]?>.  Equation

(21) shows that the rate of spin-flip cotunneling depends on

FIG. 3. Spin-flip cotunneling rate as a functionaf for various
ac amplitudes(a) shows the case of very low ac amplitudes, for
wo<w, the rate grows linearly(b) depicts the rate for different ac
amplitudes in a range of ac frequencies frag=0.19"~Ty/2 to
wo=I'~4Ty. (c) and (d) exhibit the case of intense irradiation
where the Kondo peak is strongly quenched.

of energy given byin—m|w,, its behavior as a function of
the ac frequency depends on two opposite effects. On one
hand, by increasingyy the window of allowed states be-
comes larger but on the other hand the absorption or emis-
sion probability diminishes. The competition of these two
opposite effects produces a maximal rate at certain frequency

-
In Fig. 3 the decoherence rafEqg. (21)] is plotted as a
function of the ac frequency for different ac intensities. For
low ac intensities and low ac frequencies the rate grows lin-
early with wy as expectedw. moves to higher values as the

ac amplitude increases. The behavioregfas a function of
V. is linear(Fig. 4). We can conclude from the slope of this
curve thatw./V,~0.9 (or B~1.1).

These results can be connected with our numerical calcu-
lations for the conductance, see below, by using the exact
Anderson model relation for the scattering raté.This
quantity gives the total rate at which lead electrons of energy
Er suffer intralead and interlead scattering by the QD,

' +r
TA=m |vk|2<A<EF>>=§g<A<EF>>,
KEL,R

Pleads
(23

the absorption or emission probability of photons through thavhere(A(E¢)) [Eq. (18)] is the time-averaged spectral func-
Bessel functions, the energy denominators, and the windowion at the Fermi level. In the absence of irradiation and for
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1 With this notation, one can identify the imaginary part of this
! effective self-energy as the total rate of decoherence induced
08 | R by the ac potential, including the spin-flip cotunneling de-
N rived above, i.e.y=—Im(2(Eg)). We plot in Fig. %a) the
rate of spin-flip cotunneling and the total decoherence rate
obtained from our calculations versug. Both rates present
a maximum. It is obvious, then, from the behavior of the
04 ¢ . total decoherence rate versug, that the linear conductance
. presents a minimum at a critical frequency.
02 | o® From the dependence of the decoherence rate on the ac
parameters and from the energy scale for spin fluctuations
o* Tk we can define two different regimes for the ac Kondo
0 02 04 06 03 1 problem: (i) Weak reductiorregime occurs whem/Ty<1.
vV, /T In this case, the formation time for the Kondo stiag&zen by
1/T¢ (Ref. 40] is shorter than the necessary time to destroy
FIG. 4. w, as a function of the ac intensity. it, which is given by the inverse of the decoherence rate, and
the system spends most of the time in a Kondo state without
symmetric couplings the scattering rate can be obtained bgr with little decoherence. On average, this translates into a
using the FLSR in the symmetric case as high linear conductance independently of the applied ac pa-
rameters. As long as the photon absorption or emission rate
2 is negligible, and therefore the ac is not effective for induc-
. X (24 ing decoherence, it is irrelevant whether or not the frequency
[T=ImZn(Er)] is larger or smaller thaiik (see Fig. 3. (ii) Strong reduction
he regime is found whemw/T>1. In this case, the decoherence
time is shorter than Tj and the system spends most of the
time in a state with a strong reduction of the Kondo effect.

0.6 | o

TAPieads™

where 3| (Eg) is the proper interaction self-energy at t

Fermi level. AtT=0 the scattering rate reaches the unitary
limit ( 7peaqd = 1) since the low-energy excitations have an
infinite lifetime, i.e., ImY;(Eg)=0. A finite lifetime in-
duced by any decoherence source reduces the scattering rate.
Intuitively, one can argue that the main role of the ac poten- To illustrate the previous discussion we plot the conduc-
tial is to induce decoherence in the Kondo state by introductance as a function ab,, at a fixed ac intensit}in Fig. 6(a)

ing a finite lifetime(even atT=0). We can define an effec- for V,<I" and in Fig. Ta) for V,=TI']. In both cases we
tive time-averaged self-enerd¥ o:(Eg)) in the presence of find that there are two different behaviors separated by a
irradiation such that the time-averaged DOSEat can be  critical frequencyw., where the conductance presents a

B. Conductance as a function of the ac parameters

written as minimum. As we already mentioned, the presence of this
minimum is regulated by the competition of two opposite
2 effects. In the adiabatic limit, wherey,— 0, the effect of the
7' (A(Eg))= ps 5" (250  applied ac potential has a negligible effect on the dynamics
[T —Im(Z{(Ep))] of the correlated collective stafereak reductiorregime. In
oyTy oyTg
s 18 ! ML 25 2 4 d 10 FIG. 5. (8 Rate of decoher-
ence Vs wgy for V,=0.29"
(a) ®) ~2T«. The solid line shows the
05 | Strong reduction regime 12 total rate of decoherence obtained
27 18 from the numerical results, the
dotted line depicts the rate of spin-
c 1.6§ flip cotunneling derived from Eq.
g § L5} 16 (21) as a function ofw,. (b) Total
s s o u rate of decoherence vs, for two
g 1'2§ B $ intensities: V,=0.294'~T¢ and
"§ § It Strong reduction 14 Vac=0.5F~2_TK. _Strong and
Q 0.8 regime weak reduction regimes are sepa-
rated by the horizontal linev
=Tg. For wp<w, and wyg>wy
05 | 12 ; )
{04 V,=0.25T the system is found in the weak
reduction regime and the strong
Weak reduction regime reduction regime is achieved for
0 0 05 1 15 0 W< W< Wy -
@yT
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FIG. 6. (a) Conductance as a
function of wy. The solid line
shows the case oiV,~0.29"
~Tg, the dotted line corresponds
to the case of stronger ac intensity
V,e=0.5~2T¢. (b Time-
averaged DOS for the cases of
wo=0.379"~3T/2 (solid line),
wo=T12~2Ty (dotted ling, wq
=0.629"~5T¢/2 (dashed ling
for a fixed AC amplitude V.
=0.50~2Tk.

this case, the quenching of the Kondo peak is no longelows that of the spin-flip rate shown in Fig(l8: the slowest
effective and therefore the ac only induces a small decohedrop of conductance corresponds to the smallest ac ampli-
ence in the singlet state. In the very high ac frequency limittude. This competition of opposite effects giving a minimum
wherewg— o (in this limit 8—0), the unpaired electron has in conductance vs, is illustrated in Fig. @), where we

a negligible absorption probability and one reaches again thglot the time-averaged DOS & for three ac frequencies

weak reductionregime, i.e.,»/Tx <1 . For the lowest ac
amplitude in Fig. 6a) (solid line,V,.=0.29") the QD is in
the weak reductionregime for ac frequencies below,
~0.2I' and frequencies abovey,~1.2I" [see Fig. B)]. The
strong reductionregime (/Tx >1) is reached for frequen-
cies op<woe<wy . By doubling the ac amplitudgV
=0.9I", dotted line in Fig. €a)] the QD enters in thstrong
reductionregime for all the frequencies studi¢ffom Fig.
5(b), the rate is above the line/Ty=1 for all the frequen-

wo<w.. By increasing the ac frequency frowy,=0.379"

up to we=0.5I" the Kondo resonance is suppressed more
effectively than by raising the ac frequency frang=0.9I"

up to wg=0.629" where the reduction of the Kondo peak is
almost negligible. Figure(d) depicts the conductance ug

for V,=TI". Remarkably, we find./V,~1 in a good agree-
ment with the tendency found in Fig. 4. Here again the sup-
pression of the conductance is smaller for the lowest ac am-
plitude. Furthermore, in the region where the conductance is

cieg]. The critical frequency depends on the ac amplitude: foran increasing function of the ac frequency, this increase is

V= 0.29" w.~0.5" and forV,=0.5" w,~0.629". For

slower for the highest ac intensity. The previous behavior is

wo<w. the behavior of the conductance qualitatively fol- illustrated in Fig. Tb) where we plot the time-averaged DOS

—— VT
----------------- V,=L5T (@)

0.8 |

g

K I

3 00

3

=

E

T o4y

o
02 |

nlp(w)

0.8 r

)
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FIG. 7. (a) Conductance as a
function of wy and different inten-
sities: V,=I'=~4T, (solid line),
V,=1.9'~6T¢ (dotted ling,
V,=2I'~8Ty (dashed ling (b)
Time-averaged DOS fov,.=2I"
and different ac frequencies: solid
line wy=3.5I'~14T¢ (8=0.57),
dotted line wy=4I'~16T« (B
=0.5), dashed line wy=5I"
~20T¢x (B=0.22), and long-
dashed line wg=6I'~24T« (B
=0.16).
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for several ac frequencies at the strongest ac intengjty peratures of the order and higher thgn. In that sense, both
=2T. In this regime the Kondo peak always increasesgs calculations should be regarded as complementary. The de-
does. pendence of the conductance as a function of the ac ampli-
Let us now compare our results with the ones obtainedude is shown in Fig. @& for four different ac frequencies.
with different scheme&’?®Kaminskiet al?® predict no sup-  The height of the Kondo peak falls off as the applied ac
pression of the Kondo peak for the symmetric cagg ( intensity increases. Again, we can explain our results in sim-
=—U/2) in clear disagreement with both our theory andpler terms by relating them to the rate of spin-flip cotunnel-
experimental result® Their analysis of the ac Kondo prob- ing [Eq. (21)]. Figure &b) plots the conductance as a func-
lem is based on a decoherence rate obtained for the ca$en of g for three different ac frequencies. From this figure
where one takes into account one photon processes at ve@ie can conclude that for the same valuggaame absorp-
low ac frequencies. In asymmetric cases, they predict a mdion probability of photonsthe maximal reduction in the
notonous decrease of the height of the Kondo peak as a fungonductance is reached for the largest ac frequency as one
tion of wg. Their results(for e;# —U/2) show that increas- should expect.
ing the ac frequency the Kondo peak declines. Our results Experimentally there was found an almost universal be-
(for eo=—U/2) show, as well, a decay of the Kondo peak in havior of the conductance as a function@f® It is impor-
the low ac frequency regime as, grows[see Fig. 6)]. The  tantto note, however, that in the experiment the ac amplitude
rest of the cases discussed here are away from the range @fthe radiation seen by the electrons in the QD depends on
validity of Ref. 29. Our study of the ac Kondo problem hasthe attenuation which is ac frequency dependent. In our cal-
been restricted to the symmetric case which is relevant in theulation, attenuation effects, which depends on complicated
experiment. However, we expect a similar behavior in thecircuit-dependent parameters, are not included and, then, a
Kondo regime away from the symmetric configuratighe  direct comparison with the experimental results is beyond
rate of the spin-flip cotunneling presents the same behavidhe scope of our work. Let us mention only that the experi-
as a function of the ac parameters for asymmetric cases; séental scales for spin and charge fluctuations are very close,
Eq. (21)]. T~T/2~100 ueV~25 GHz. It is difficult, then, to sepa-
Using a NCA, Nordlandeet al?® found a nonmonoto- rate contributions coming from spin-flip related Kondo phys-
nous behavior of the conductanceass and the existence of iCs to those coming from charge fluctuations.
a minimum, in qualitative agreement with us. In addition
Nordlanderet al. found oscillations in the conductance as a
function of the ac frequency for asymmetric configurations.
These oscillations come from charge fluctuations induced by Another important question in the ac Kondo problem is if
the ac potential whem, approximately equals the ionization the sidebands of the Kondo peak induced by the irradiation
energy €. In our particle-hole symmetric configuration can be observed. In order to investigate when the Kondo
charge fluctuations are not possible and, then, our results dijate develops sidebands we plot in Fig. 9 the time-averaged
not show such oscillations. Thus caution is needed in comPOS for three different ac frequenciesy=1I"/4~Ty [Fig.
paring both works due to the different approximations in-9(a)], we=I72~2Ty [Fig. Ab)] and w,=T"~4T [Fig.
volved and the different regimes of validity for both calcu- 9(c)]. For each ac frequency we consider different ac inten-
lations. Whereas our perturbative calculation is valid for thesities corresponding t@=0, 0.25, 0.5, and 0.75. We have
symmetric case, and low temperatures, the NCA considershosen the3 parameter since this one regulates the absorp-
the limit U—x (i.e., the strongly asymmetric cgsand tem-  tion or emission probability of photons. Figuréa® corre-

C. Time-averaged density of states
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1 DOS asp increase$?*3More importantly, we point out that
e (@ (| =™ ®) || © the Kondo satellites can only be observed by measuring the
e B=0.25 - - p=0.25 . . -
0.8 | - poos - pos differential conductancelI/dVdC|VdC:wO. The finite dc volt-
= beors = beors age is an extra source of decoherence, i.e., reduction and
06 | broadening of the satellite peal®&®® not addressed here. In
S the experimental results of Ref. 30 the sidepeaks never be-
T 04 | ! come apparent in the differential conductance. The experi-
’ ,\"f mental frequency rang€l0-50 GHz corresponds, in our
jt}l\ units, to a range fromwy=I'/5 to wy~I". For the lowest
02 ) &= = S/ ANS experimental ac frequency we do not observe sate[lFas
9(@)]. When wy=~TI" [Figs. 9c)] satellites are visible in the

time-averaged DOS, although we stress again that these sat-
ellites can be masked in a differential conductance measure-
ment inasmuch as the necessary dc bias voNgge g can

FIG. 9. Time-averaged DOS%a) The ac frequency imy,=I/4  be large enough to destroy the Kondo sidepeaks. Finally, we
~Ty, the solid line is the case in the absence of the ac potentialnote that the mean-field resonances locatedzaand ¢
i.e., 8=0, wheref=V,¢/ w,. In this case the peak & reaches a +U/2 do not display satellites in the time-averaged DOS,

height of 0.93. The dotted line corresponds £=0.25 (Vo  sincew, is smaller than their widths which are of the order
=0.0623"~Ty/4). The dashed line shows the case 05 of oT.

(Vac=0.129"~Ty/2). The dot-dashed line corresponds ®

0 Il 1 1 Il 1 I I I I I 1 1 1 1 1
—-6-4-20 2 4-6-4-20 2 4-6-4-20 2 4
o/l [N o/l

=0.75 (Vo,=0.1879"~3T/4). In the three cases the Kondo peak IV. SUMMARY
is slightly reduced by the ac signdb) w,=1'/2~2Ty . The solid '
line corresponds toB=0, the dotted line t08=0.25 (Vg In conclusion, interesting features are found in the finite

=0.129"~Ty/2). The dashed line shows the case@#0.5 (Vo  temperature transportT&Ty) properties of QD’s in the
=0.29"'~Ty) where the peak has been significantly reduced andkondo regime as an oscillatory gate voltage is applied. By
the dot-dashed line shows the case of an intense signal where solving the time-dependent Dyson equation we obtain the
=0.75 (Vo=0.379'~3T¢/2). In this case the replicas of the QD retarded Green’s function and the time-averaged density
Kondo become apparefibcated atw, and —wo) and the peak at  of states within the framework of the Fermi-liquid theory.
Er has been strongly reduce() corresponds tas=T": the solid e jnteraction self-energy in our model is calculated, in the
line f for the cases=0; the d_otted !lne sho\_NS the cage=0.25  ;ontext of the Keldysh nonequilibrium technique, by pertur-
E(%arfc;oo}zg;;rﬁ():é 'Aghg:,'vs 3: I'?Legsétgs:]l% f'“rrs]te S(?(;?::;;ep)sor?(;@thti bation theory up to second order in the on-site interaction
—0.5 (Vo= 0.5~ 2T,), in thi;s case the time-averaged DOSEat and the effect of the ac poten_tlal is taken_lnto account exactly
has bee?11c suppresseg E)elow 0.5. The dot-dashed line correspondsf?(g all ranges of ac frequencies z_ind ac_l_ntenSItles of the ac
; ; _ _ _ potential The Kondo resonance is modified by the external
ﬁlvtﬁz ?gigsﬁazligaﬁple%g? S{;;pgé;i;ﬂ'()‘ the Kondo peak ac voltage in a different way depending on the range of ac
frequencies studied. We find two different ac frequency
sponds to wo=I/4~Ty and different ac intensities ranges of opposite behavior, separated by a critical frequency
Vo=Tld (B=0.25), Vu=T¢/2 (B=0.5), and V. . Where the linear conductance is minimuin. depends on
~3Ty/4 (8=0.75). In all these situations the Kondo peak isthe ac intensity and moves to higher values/gsincreases.
slightly reduced, i.e., the dynamics of the correlated collecAt small ac frequencies, and fixed ac intensity, the Kondo
tive state is practically not influenced by the ac potentialP€ak decreases as, grows. Once the critical frequency is
since both the ac frequency and the ac intensities are of th&ached the opposite behavior is found and the Kondo peak
order of T, . Furthermore, there is no evidence of replicas ofincreases ag=\V/ wo—0. Our method, valid for arbitrary
the Kondo peak in the time-averaged DOS. By doubling  ac frequencies and ac intensities, finite on-site interaction
[Fig. 9b)], the Kondo peak undergoes a stronger reductiorfnd temperatures beloWy , complete the range of param-
as the absorption probability of photons rises by increasingters previously studied.
B. However, a total suppression of the Kondo resonance is
only reached for our largest ac frequed&jg. Ac), wo=T"1. ACKNOWLEDGMENTS
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cases bothw, and V,; are much larger than the relevant ¢ ,qqjons with David Sanchez and Silvano De Franceschi.
energy scale of this problem given By . In Fig. 9c) even

the second satellitgs are resolvedat 0.5. The_ satellites APPENDIX A: QD GREEN'S FUNCTIONS

grow very slowly with 8 due to the two competing mecha- IN THE ABSENCE OF ac POTENTIAL

nisms previously discussed. This has to be compared with

the so-called Tien-Gordon description where one expects an In this appendix, the QD Green’s functions in the absence
appreciable increase of the satellites in the time-averageof time modulation are obtained. First of all, the QD Green’s
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function coupled to the leads is calculated, and afterwardén the WB limit approximation the previous self-energies
the interaction in the Hartree approximation is included. AbecomeX{(e)=+=,. r(i/2)I',. By inserting these self-
very simple calculation yields the exact lesser and greategnergies in Eq(A7), the retarded and advanced QD Green’s
Green’s functions foH |g¢s, functions coupled to the leads are

gic t—t)=i(ci(t e =if (e)e a1,

r,a _ 1
g0 Ot—t) =~ (e (D)) = —I[1- (g Je %), 9ol )= i | (A9

(Al) €— EO,UiE a;yR Fa'

where f(¢) is the Fermi-Dirac distribution function. The
lesser and greater hopping self-energies including hoppingne can Fourier transform back to get the time dependence

between the QD and the leads are written in terms of th@f the retarded and advanced QD Green'’s functions,
previous Green’s functions &8,

A — e iS Aty (0TI acl /T 4/2)
SS(ti—t,)= VEgr(t;—t,)Vy, g[j"’;(t,t y=Fi0(xtxt )e VrhleooTZacL RN /9,
sd(ti—t3) kg,R k Ok (ti—t) Vi (AL0)
- de ettty L/R Lo - :
:|§ Ze T2 a(e) - (e), Now the on-site interaction self-energy in the Hartree ap-

proximation is calculated via perturbation theory up to first
(A2)  orderinU:

Eid(tl_tz):kgR Vi gy (t—t2) Vi, siaM=ungy, (A11)
S Eefie(tlftz) wherend,;=<d£(t)d;(t)). By using the Dyson equation it is
R J 2m straightforward to get
X[1-fr(e)ITR(e), (A3)
whereI'"(e) =273, (|Vi|*8(e—€) and a similar expres-  g2(t,t")= Ii0(itIt’)e"f:'dtl(fofU“dF‘EaeL,RFa’Z).
sion is obtained fol'R(¢€). The retarded and advanced self- (A12)
energies fulfill the relations
Sodti—t) =0t~ ) [Soy(ti—t) — Syt~ )], APPENDIX B: QD GREEN'S FUNCTIONS
a - - IN THE PRESENCE OF ac POTENTIAL
2ldti—tr) = 0(ta—t)[Soy(ti—to) —Sgy(ti—ta) ] . . . . .
(A4) In this appendix we derive analytical expressions for the

) lesser and greater QD Green'’s functions in the presence of an
The Dyson equation for the retarded and advanced QR¢ potential, including the coupling to the leads and the in-
Green’s functions is teraction in the Hartree approximation. As we mentioned in
Sec. Il, one needs to obtain these propagators in order to
g{,’i(t—t’)=gg"'j‘;(°)(t—t’)+f dtlf dtzg[,"'j‘;(o) have an expression of the interaction self-energy which is
' ’ ’ given by Eg. (9). However, the lesser and greater QD
_ rac _ ra s _ 1 Green'’s function are given as a function of the retarded and
X)X (= )Gd, (). (AS) advanced self-energiésee Eq.(6)]. The Green’s functions
Here g2 (t—t’) are the QD Green’s functions oo,  have the following expressioris:
[Eq. (3)] without the on-site repulsion term,

gy O(t—t)=Tig(+tTt)e 0ot-t) (ag)  GEA(tt)=e ! ValwosinuotelVaclwo)sineot” ghl&) (¢ —t7)
In the absence of time dependence, it is advantageous to iy i ort it
Fourier transform, getting :p;m m;m Im(B)Ip(B)e 'PeotelMet gy
955 (=95 ' =2fe (A7) X(t—t'), (B1)
where
) i whereJ,(B) is the Bessel function of orden and argument
STace) = 2 [Vid I 2 A (e)II—F (e). B=V_,/wy. The greater and lesser QD Green'’s functions are
sd KETR €E—€&Xin LR 2°“ calculated by substituting the retarded and advanced QD

(A8) Green’s functions EqgB1), in Eq. (6):
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Gd (r(tt ) e I(Vacwo)SInth i(Vac/ wg)sin wgt” 2 2 \]m(ﬂ p(B)E

=—0ow m=-—®
» J‘oo E eipwotefimwot'efie(tft')fL/R(G)I‘L/R(E) (BZ)
—27 — i — i '
€~ Pwo— €t E Fa €~Mwy— €y~ 5 E Fa
72 4ELR 7 2 4ELR
p=w m=w
Gg, a(t,t’)=e*i<Vac’wo>Si”wo‘e“Vac’wo)Smwot’p; 2 In(BIB) 2,
» de eipwotefimwot'efie(tft') 1—f € FL/R
f - [1-fi/r(e)] i , (B3
- €~ Pwo— €t 5 2 ra €-Mwo— €y~ 5 2 Fa
' 2 ael,R ' 2 ael,R
p=w m=wx
Gy (1 )= eeushesig Wedeasnent 55 5, 3.(8)3(8) S,
» de e*ipwoteimwot'efie(t'7t)fL/R(E)I‘L/R
X — -
fwaW — — ' (B4)
€~ Pwp—€gst 5 2 ra €-Mwo— €y~ 5 Z Fa
' 2 ael,R ' 2 ael,R
p=® m=wx
G;U(tr't):ei(Vac/wo)sinwote—i(Vac/wo)Sinwot’p; ; Jm([)’)\]p(ﬂ)é
» de efipwoteimwot’efie(t'7t)[1_fL/R(E)]FL/R
X — - - .
leZw — I — i (B5)
€~ Pwo—€get 5 E Fa € Mwo— €y~ 5 2 Fa
' 2 ael,R ' 2 ael,R
I
Once again we have takerag— €0o+Ung 5 beingng ; the In order to abbreviate the notation, we define the follow-

QD averaged occupation. In the case of zero dc bias, th&g variables:
right and left Fermi-Dirac distribution functions afg r(€)

=1/(el* )T+ 1) whereT is the temperature. The analyti-

cal expressions for the lesser and greater QD Green’s func- ap=—
tion are obtained by integrating in the complex plane where

the Fermi-Dirac distribution function can be written as a dif-

ference of two digamma functions which have poles in the

— i
60,0'+ pwo_ z ZL R Fa) ’

lower and upper complex plane: bn=—| €go+ Mwg+ = EER Fa),
- 1 1 [l/f(l iz ) l//<l iz ) 1 _ 1
Z)—5=—5— - i i

—27

2 21ri 2 24T 2 2aT ap= 2 ST Ym= 2 5T b, (=e 27Tt
k=00
= ! B6)

_k:O 1+k iz 1+k+ iz ( _ 1 1 1 1

2 o7T 2 onT Up= 2[1 tan)‘(z_l_ , vm 2[1 tanl‘(z_l_b ”

(B7)
The complex integrals are performed with the restriction
—1'=0 because we use them to evaluate a retarded quantiWyith this notation, the analytic expressions for the lesser and
[the retarded self-energy in E®)]. greater QD Green'’s functions are

075319-11



LéPEZ, AGUADO, PLATERO, AND TEJEDOR

G>(t,t ’ ) —e" i(Vac/wg)sin wotei (Vae/ wg)sin wgt”

NI
X 2 2 In(B)Iy(B)

ipwgota—imagt’
e'Pwola 0] Fa

X
rM

R (p—m)wo—i Z r,

Fl(apylaap+ 1!5) _ Fl( 7ma117m+ 11§)
ap Ym

—2mi(u,—1)e@et"t) (B8)

G=< (t 't ’ ) —e” i(Vac/ wg)sin wotei (Vae/ wg)sin wgt”

[

X
©
I

2 In(B)Ip(B)

p

ipwota—imaogt’
e'Peola ®Q Fa

X
rM

® (p—m)wo—i 2 r,

X ( Fl(a; ,1,“; + 11§) _ Fl( ’}/:’]’1"}/:n+ 1’g)
*

*
a Ym

—2i v_me“bm(t‘t/)) , (B9)

G>(t/ ,t) — ei (Vac/wg)sin wote—i(Vach)Sin wot’
p=« m=
X 2 ; In(B)Ip(B)
e—ipwoteimmot/r
X Z .
eL,R

(p—M)wo—i E r,
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% ( Fl(apallap—‘r 1|§) _ Fl( ’ym,l,)/m+ 1!§)
ap Ym

—2i u_peiap“t’)) , (B10)

i(Vac/wo)sin wotg =i (Vac/wg)sin wgt”

G-(t',t)=—e

X 2 2 In(B)IB)

p

o
Il

e—ipwoteimwot'r‘a

X
-

ae

“(p-mawe—i > T,
ael,R

Fi(yrlym+10)

* *
ap Ym

Fi(ap.lap+14) B

— 27 (vpy— 1)~ Pm(t=t) (B11)

The functions=, are hypergeometric functions. Hey& and

a* are complex conjugates of and «, respectively. Once
the greater and the lesser QD Green’s functions are obtained,
the retarded QD interaction self-energy is given by

5Pt = —iU20(t—t")[Gg (t,t) G (1 )Gy At,t')

—Gg (L1)G (1 DG, Htt)]. (Bl

Here, we want to point out the nontrivial dependence of the
retarded self-energy on the parameters of the ac voltage.
With this nontrivial dependence the QD DOS strongly devi-
ates from the usual single-particle Tien-Gordon beh&ti6t.
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