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Self-consistent fluid model for a quantum electron gas
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It is shown that, for a large class of statistical mixtures, the Wigner-Poisson~or Hartree! system can be
reduced to an effective Schro¨dinger-Poisson system, in which the Schro¨dinger equation contains a new non-
linearity. For the case of a zero-temperature one-dimensional electron gas, this additional nonlinearity is of the
form uCu 4. In the long-wavelength limit, the results obtained from the effective Schro¨dinger-Poisson system
are in agreement with those of the Wigner-Poisson system. The reduced model is further used to describe the
stationary states of a quantum electron gas and the two-stream instability.
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I. INTRODUCTION

Understanding the dynamics of a quantum electron ga
an important issue for a variety of physical systems, such
ordinary metals, semiconductors, and even astrophysical
tems under extreme conditions~e.g., white dwarfs!. Although
some level of understanding can be achieved by conside
independent electrons, a more accurate description req
the use of self-consistent models, where electron-electron
teractions are taken into account. As the treatment of the
N-body problem is clearly out of reach, mean-field mod
are usually adopted, of which the Hartree and Hartree-F
models are standard examples.1 In the Hartree approxima
tion, each electron is described by a one-particle wave fu
tion ~obeying Schro¨dinger’s equation!, and the electrostatic
force acting on it results from Poisson’s equation.~Fock’s
correction accounts for the parity of theN-particle wave
function for an ensemble of fermions, but this correction w
not be considered in this paper.!

The Hartree model can be written in a more compact,
strictly equivalent, form by making use of Wigner function
The Wigner representation2 is a useful tool to express quan
tum mechanics in a phase-space formalism~for reviews, see
Ref. 3!. In this representation, a quantum state~either pure or
mixed! is described by a Wigner function~i.e., a function of
the phase-space variables!, and the Wigner equation provide
an evolution equation that is similar to the Vlasov equati
well known from classical plasma physics. We note th
although the Wigner distribution satisfies most of the st
dard properties of probability distributions, it cannot be
garded as such, since it may take negative values. The re
ing self-consistent model is called the Wigner-Poisson~WP!
system, and has been extensively used in the study of q
tum transport.4–6

Despite its considerable interest, the WP formulation p
sents some intrinsic drawbacks :~a! it is a nonlocal, integro-
differential system, and~b! its numerical treatment require
the discretization of the whole phase space. Moreover, a
often the case with kinetic models, the WP system gi
more information than one is really interested in. For the
reasons, it would be useful to obtain an accurate redu
model that, though not providing the same detailed inform
tion as the kinetic WP system, is still able to reproduce
main features of the physical system under consideration
0163-1829/2001/64~7!/075316~7!/$20.00 64 0753
is
as
s-

ng
res
n-
ll

s
k

c-

l

t

,
t,
-
-
lt-

n-

-

is
s
e
ed
-
e

After discussing the general validity of the WP model, w
will derive an effective Schro¨dinger-Poisson~SP! system,
which, in an appropriate limit, reproduces the results of
kinetic WP formulation. A similar result was recently ob
tained in the mathematical literature,7,8 although its physical
implications have not been fully analyzed. In this effecti
SP model, the Schro¨dinger equation is nonlinear, as it in
cludes an effective potential depending on the modulus
the wave function. The exact form of this effective potent
depends on the specific physical system being studied
order to obtain the effective SP system, we will first derive
system of reduced ‘‘fluid’’ equations by taking moments
the WP system. It will be shown that the pressure term
pearing in the fluid equations can be decomposed into a c
sical and a quantum part. With some reasonable hypoth
on the pressure term, the fluid system can be closed. Fin
the effective SP system will be applied to several physi
problems, including linear wave propagation, nonlinear s
tionary solutions, and the two-stream instability.

II. COUPLING PARAMETER FOR A QUANTUM PLASMA

A classical plasma can be said to be collisionle
~‘‘ideal’’ ! when long-range self-consistent interactions~de-
scribed by the Poisson equation! dominate over short-rang
two-particle interactions~collisions!. This happens when the
potential energy of two electrons separated by an aver
interparticle distance is small compared to the average
netic energy. The potential energy is estimated asEpot

5e2n0
1/3/«0, while the average kinetic energy is simply give

by the temperatureT ~measured in energy units!. Here2e is
the electron charge,«0 the dielectric constant in vacuum, an
n0 the equilibrium particle density. One defines, therefore
classical coupling parameter,

GC5
Epot

Ekin
5

e2n0
1/3

«0T
, ~1!

such that the collisionless approximation is valid whenGC
!1. The classical coupling parameter can be written in
different way, by introducing the plasma frequency, the th
mal velocity, and the Debye length,
©2001 The American Physical Society16-1
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vp5S n0e2

m«0
D 1/2

, vT5S T

mD 1/2

, lD5
vT

vp
, ~2!

which are typical inverse time, velocity, and length scales
a collisionless plasma. With these definitions, the coupl
parameter can be expressed as

GC
3/25

1

n0lD
3

, ~3!

which is the inverse of the number of electrons contained
a Debye volume. When the conditionGC!1 is satisfied,
two-body correlations~collisions! can be neglected, and th
N-particle Liouville equation can be reduced, via
Bogolyubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy, to the one-particle Vlasov equation. The Vlasov-Pois
system is therefore the standard model to describe clas
electrostatic plasmas in the collisionless approximation.

Similarly, it is possible to define a quantum coupling p
rameterGQ . Let us consider the case of a completely deg
erate electron gas. Now the average kinetic energy is g
by the Fermi temperatureTF;\2n0

2/3/m ~we neglect irrel-
evant dimensionless constants!, so that the quantum couplin
parameter becomes

GQ5
Epot

TF
5

e2m

\2«0n0
1/3

. ~4!

Notice that, according to Eq.~4!, a quantum electron gas i
more ideal at higher densities. Using the Fermi velocityvF

5ATF /m, one can define a typical length scale for the qu
tum, plasma

lF5
vF

vp
. ~5!

The quantum coupling parameter can thus be expresse
the inverse of the number of electrons contained in a Fe
volume:

GQ
3/25

1

n0lF
3

. ~6!

Finally, another expression for the coupling parameter is
following:

GQ
1/25

\vp

TF
, ~7!

which is valid for any number of dimensions.
The quantum electron gas is collisionless whenGQ!1. In

this case, the quantumN-body problem can be reduced to
one-particle Wigner equation. The Wigner-Poisson system
therefore capable of describing a quantum electrost
plasma in the collisionless approximation.

The previous results were derived in the limiting cas
T@TF ~classical! andT!TF ~quantum degenerate!. For in-
termediate temperatures, simple expressions for the coup
parameters are not available, but one must expect a sm
transition between the two regimes.
07531
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For electrons in metal, we have typically

n0.1029 m23, vF.106 m s21, vp.1016 s21,

lF.10210 m. ~8!

These values yield a quantum coupling parameter of or
unity. Allowing for the dimensionless constants we have n
glected and the different properties of metals, we realize
GQ can be both smaller and larger than unity for typic
metallic electrons.

The above values seem to indicate that, asGQ.1,
electron-electron (e-e) collisions cannot be neglected fo
metals. If that were the case, one should abandon o
particle models such as the Wigner or Hartree equations,
resort to the fullN-body problem. This is hardly a feasibl
task. Fortunately, however, the exclusion principle comes
the rescue by reducing the collision rate quite dramatically
most cases of interest.1 This occurs when the electron distr
bution is close to the Fermi-Dirac equilibrium at relative
low temperatures. The fundamental point is that, when
lower levels are occupied, the exclusion principle disallow
vast number of transitions that would otherwise be possi
In particular, at strictly zero temperature, all electrons ha
energies belowTF , and no transition is possible, simply be
cause there are no available states for the electrons to
cupy. At moderate temperatures, only electrons within a s
of thicknessT about the Fermi surface can undergo co
sions. Thee-e collision rate~inverse of the lifetimetee) for
such electrons is proportional toT/\ ~this is a form of the
uncertainty principle, energy3 time5const). Theaverage
collision rate is obtained by multiplying the previous expre
sion by the fraction of electrons present in the shell of thic
nessT about the Fermi surface, which is;T/TF . One ob-
tains

1

tee
;

1

\

T2

TF
. ~9!

At room temperature,tee.10210 s, which is much larger
than the typical collisionless time scaletp5vp

21.10216 s.
Therefore, for times smaller thantee, the effect ofe-e col-
lisions can be safely neglected. In addition, it turns out t
the typical relaxation time scale ist r.10214 s, which is
again significantly larger thantp . In summary, the ordering

tp!t r!tee ~10!

implies that a collisionless~Wigner! model is appropriate for
relatively short time scales.

III. DERIVATION OF THE FLUID MODEL

In one spatial dimension, the Wigner-Poisson system2,3

reads
6-2
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] f

]t
1v

] f

]x
1

iem

2p\E E dl dv8eim(v2v8)l

3FfS x1
l\

2 D2fS x2
l\

2 D G f ~x,v8,t !50,

~11!

]2f

]x2
5

e

«0
S E f dv2n0D , ~12!

where f (x,v,t) is the Wigner distribution function,f(x,t)
the electrostatic potential,2e andm the electron charge an
mass,«0 the vacuum dielectric constant, andn0 a back-
ground ionic charge. Notice that the one-particle Wign
function used here actually represents anN-particle system.
Indeed, the above Wigner-Poisson system can be der
from the full N-body problem via a BBGKY hierarchy, ne
glecting two-body correlations and only keeping the me
Coulomb field.9 Further, it is easy to see that, in the limit\
→0, one recovers the familiar Vlasov-Poisson system
classical collisionless plasmas. For simplicity of notatio
only one-dimensional problems will be treated in the rest
this paper, but the results can be readily extended to hig
dimensions.

In order to derive a fluid model, we take moments of E
~11! by integrating over velocity space. Introducing the sta
dard definitions of density, mean velocity, and pressure,

n~x,t !5E f dv, u~x,t !5
1

nE f v dv,

P~x,t !5mS E f v2dv2nu2D , ~13!

we obtain

]n

]t
1

]~nu!

]x
50, ~14!

]u

]t
1u

]u

]x
5

e

m

]f

]x
2

1

mn

]P

]x
. ~15!

We immediately notice that Eqs.~14! and ~15! do not
differ from the ordinary evolution equations for a classic
fluid. This may seem surprising, but in the following it wi
appear that the quantum nature of this system is in fact
den in the pressure term.

The pressure term may be decomposed into a clas
and a quantum part. This can be shown as follows. T
Wigner distribution for a quantum mixture of statesca(x,t),
each characterized by an occupation probabilitypa , is writ-
ten as

f ~x,v,t !5
m

2p\ (
a

paE dl ca* S x1
l

2
,t D

3caS x2
l

2
,t Deimvl/\, ~16!
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where the sum extends over all possible states. The num
pa , representing probabilities, satisfy the relationspa>0,
(apa51. Using the previous expression, one can comp
the pressure. After some algebra, one obtains

P5
\2

4m (
a

paS 2U]ca

]x U2

2ca*
]2ca

]x2
2ca

]2ca*

]x2 D
1

\2

4mnF(
a

paS ca*
]ca

]x
2ca

]ca*

]x D G2

. ~17!

If we represent each state as

ca~x,t !5Aa~x,t !exp„iSa~x,t !/\…, ~18!

whereAa ~amplitude! andSa ~phase! are real functions, we
obtainP5PC1PQ, where the classicalPC and quantumPQ

parts of the pressure are

PC5
1

2mn (
a,b

papbAa
2Ab

2 S ]Sa

]x
2

]Sb

]x D 2

, ~19!

PQ5
\2

2m (
a

paF S ] Aa

] x D 2

2Aa

]2Aa

] x2 G . ~20!

Notice thatPQ only depends on the amplitudesAa , and that
for a pure state onlyPQ survives. It can be easily shown tha
PC represents the standard pressure, resulting from the
persion of velocities. To prove this, one has to remember
the phasesSa are related to the mean velocityua of each
wave function through the relationmua5]Sa /]x @the ua’s
should not be confused with theglobal mean velocityu de-
fined in Eq.~13!#. Thus, by expanding Eq.~19!, one obtains
after some algebra

PC5mnF (apaAa
2ua

2

n
2S (a paAa

2ua

n
D 2G . ~21!

With an appropriate definition of averages, we can rew
the above equation asPC5mn(^ua

2&2^ua&2), which is the
standard expression for the pressure. The contributionPQ, on
the other hand, is a purely quantum pressure, with no cla
cal counterpart.

In order to close the fluid system, some equation of st
relating PC and PQ to the densityn, must be used. In this
paper, we consider a statistical mixture in which all the a
plitudes are equal~but not constant!, Aa(x)5A(x). This
gives, using Eqs.~13! and~16!, n5A2. With the help of Eq.
~20!, the quantum pressure becomes

PQ5
\2

2mF S ]

]x
AnD 2

2An
]2

]x2
AnG . ~22!

For the classical part of the pressure, we make the stan
assumption that it is some function of the density,PC

5PC(n). With these hypotheses, the force equation~15! can
be written as
6-3
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]u

]t
1u

]u

]x
5

e

m

]f

]x
2

1

mn

]PC

]x
2

1

mn

]PQ

]x
. ~23!

Defining the effective potential

W~n!5Endn8

n8

dPC~n8!

dn8
, ~24!

and using the identity

1

mn

]PQ

]x
52

\2

2m2

]

]x S ]2~An!/]x2

An
D , ~25!

the force equation~23! reduces to

]u

]t
1u

]u

]x
5

e

m

]f

]x
2

1

m

]W

]x
1

\2

2m2

]

]x S ]2~An!/]x2

An
D .

~26!

Now comes the crucial point: it is possible to combi
Eqs. ~14! and ~26! into an effective Schro¨dinger equation.
Indeed, let us define the effective wave function,

C5An~x,t !exp„iS~x,t !/\…, ~27!

with S(x,t) defined according tomu(x,t)5]S(x,t)/]x. We
obtain thatC(x,t) satisfies the equation

i\
]C

]t
52

\2

2m

]2C

]x2
2efC1WC. ~28!

This is a nonlinear Schro¨dinger equation, as the effectiv
potentialW depends on the wave function through Eq.~24!,
wheren5uCu2. Separating Eq.~28! into its real and imagi-
nary parts, we indeed find the continuity~14! and force~26!
equations. Finally, the complete effective SP system is c
posed of Eq.~28! and the Poisson equation

]2f

]x2
5

e

«0
~ uCu22n0!. ~29!

To summarize what we have achieved so far, we no
that, in general, the dynamics of a statistical mixture mus
treated with the full Wigner-Poisson system, or, equivalen
with a set of Schro¨dinger equations, coupled by Poisson
equation~Hartree’s model!. In the present section, we hav
shown that one can reduce the problem of quantum trans
to a single nonlinear Schro¨dinger equation plus Poisson
equation. Also, notice that the nature of the interaction~elec-
trostatic in our case! is not of essential importance. The ma
result is that we can reduce the~phase-space! Wigner equa-
tion to a ~real-space! nonlinear Schro¨dinger equation.

The two hypotheses used for this reduction are as follo
~a! all states composing the mixture have the same amplit
@which leads to Eq.~22! for the quantum pressure#, and ~b!
the equation of state for the classical pressure isPC

5PC(n). Hypothesis~b! is the standard fluid closure, an
needs no further comment. Hypothesis~a! means that all
electrons are distributed in space according to the same p
ability distribution n(x)5A2(x). What distinguishes the
07531
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electrons from one another is their phaseSa , and therefore
their velocity ua . This approximation can be viewed as
first step beyond the standard homogeneous equilibrium
fermion gas, for which each state is represented by a p
wave,

ca~x,t !5A exp~ imuax/\!,

with the amplitudeA and the velocityua spatially constant.
In our approximation, both the amplitude and the veloc
can be spatially modulated, although we still restrict o
selves to the case in which the amplitude is the same fo
states. This appears to be a reasonable closure assumptio
systems that are not too far from the Fermi-Dirac equil
rium.

IV. APPLICATIONS

As a relevant example of the above theory, we conside
zero-temperature one-dimensional electron gas, with Fe
velocity vF and equilibrium densityn0. In this case, the clas
sical pressure is

PC5
mvF

2

3n0
2

n3. ~30!

~Notice that the term ‘‘classical’’ is somewhat inappropria
here, asPC will contain Planck’s constant through the Ferm
velocity.! We also note that the Fermi velocity in one spat
dimension

vF5
p

2

\n0

m
~31!

is proportional to n0, whereas in three dimensionsvF

}n0
1/3.
Using Eq.~30!, the effective potential defined in Eq.~24!

turns out to be

W5
mvF

2

2n0
2

uCu4. ~32!

Notice that the effective potential is repulsive, and tends
flatten the electron density. This is quite natural, asW derives
from the pressurePC, which in turn is a manifestation of the
dispersion of velocities in a fermion gas. When the gas is
equilibrium,W;n2; const, and this term has no effect.

We also point out that a similar nonlinear Schro¨dinger
equation with auCu4-dependent potential has recently be
derived in the study of low-dimensional Bose condensate10

We stress, however, that such a boson-fermion duality o
applies to one-dimensional systems. For aD-dimensional
fermion system, the classical part of the pressure has
form PC;n(D12)/D, so that the effective potential become
W;n2/D.11

A. Linear wave propagation

As a first application, let us study wave propagation
the effective SP system~28! and ~29! with W given by Eq.
6-4
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~32!. Linearizing around the homogeneous equilibriumC
5An0, ef5mvF

2/2, we obtain the following dispersion re
lation ~for waves with frequencyv and wave numberk):

v25vp
21k2vF

21
\2k4

4m2
. ~33!

For vF50, we recover the dispersion relation of the stand
SP system.6 Equation~33! can be written in dimensionles
units by using Eqs.~5! and ~7!, which are valid both in one
and three spatial dimensions,

v2

vp
2

511k2lF
21

k4lF
4

4
GQ . ~34!

Note that quantum-mechanical effects ~dispersion of the
wave packet! are first order in the coupling parameterGQ ,
whereas quantum-statistical effects ~Fermi-Dirac distribu-
tion! appear at leading order.

We want to compare this dispersion relation to the o
obtained from the complete WP system~11! and~12!, which,
in the most general case, reads6,12

12
vp

2

n0
E f 0~v !dv

~v2kv !22\2k4/4m2
50. ~35!

In our case,f 0(v) is given by the Fermi-Dirac distribution
for a zero-temperature one-dimensional electron gas at e
librium, i.e., f 0(v)5n0/2vF if uvu,vF and f 0(v)50 if uvu
.vF . Substituting into Eq.~35!, one obtains~without any
further approximation!

v2

vp
2

5
V2

vp
2
cothS V2

vp
2 D 1k2lF

21
k4lF

4

4
GQ , ~36!

where

V2

vp
2

5
\k3vF

mvp
2

5k3lF
3GQ

1/2. ~37!

Now we expand the first term on the right-hand side
Eq. ~36! in the long-wavelength~fluid! limit V!vp . Using
the expansionx coth(x)511x2/32x4/451•••, one obtains

v2

vp
2

511k2lF
21S k4lF

4

4
1

k6lF
6

3 DGQ2
1

45
k12lF

12GQ
2 1•••.

~38!

This is a double expansion in powers of the parame
GQ andklF . The collisionless regime is in principle chara
terized byGQ!1, although, as was seen in Sec. II, electro
electron interactions can be neglected even whenGQ.1, as
is the case for metals. On the other hand, the fluid regim
characterized by small wave numbers (V!vp). Indeed,
keeping terms to fourth order inklF , Eq.~38! reduces to the
dispersion relation for the effective SP system, Eq.~34!. This
07531
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is a further indication that the effective SP system is a go
approximation to the complete WP system for long wav
lengths.

We also note that forGQ→0, the dispersion relation re
duces to

v25vp
21k2vF

2 . ~39!

This is exactly the dispersion relation obtained from the cl
sical Vlasov-Poisson system with a zero-temperature Fe
Dirac equilibrium. In other words, when the quantum co
pling parameter is vanishingly small, a classical dynami
equation can be used, as the only quantum effects come
the Fermi-Dirac statistics. This situation may apply to e
tremely dense astrophysical systems such as white dwa

B. Stationary solutions

As a second illustration, we use the present formalism
describe the stationary states of the electron gas.13 This result
is more easily obtained by using the fluid version of o
model. In the time-independent case, the continuity equa
~14! and the force equation~26! possess the following firs
integrals:

J5A2u, E5
mu2

2
2ef1W2

\2

2mA

d2A

dx2
, ~40!

whereA5An. The first integrals in Eq.~40! corresponds to
current ~J! and energy~E! conservation. We can alway
chooseE50 by a shift in the electrostatic potential. In th
way, we can reduce the description of the stationary state
a set of second-order nonlinear ordinary differential eq
tions for the amplitudeA and the electrostatic potentialf.
For a zero-temperature one-dimensional electron gas, th
fective potentialW is given by Eq.~32!; thus from Eqs.~40!
and ~29! we get

\2
d2A

dx2
5mS mJ2

A3
22eAf1

mvF
2

n0
2

A5D , ~41!

d2f

dx2
5

e

«0
~A22n0!. ~42!

Notice that, if the amplitudeA(x) is a slowly varying func-
tion of x, the second derivative on the left-hand side of E
~41! can be neglected. With this assumption, Eq.~41! reduces
to an algebraic equation, which can be solved forA, and the
result plugged into Eq.~42!. This becomes a nonlinear dif
ferential equation for the electrostatic potential, which
merely the Thomas-Fermi approximation to our model.

It can be easily verified that theJ50 case cannot sustai
small-amplitude, periodic solutions. Hence, we assumeJ
5n0u0 with u0Þ0 and introduce the following rescaling:
6-5
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x̂5
vpx

u0
, Â5

A

An0

, f̂5
ef

mu0
2

, ~43!

H5
\vp

mu0
2

, VF5
vF

u0
.

We obtain, in the transformed variables~omitting the caret
for simplicity of notation!,

H2
d2A

dx2
522f A1

1

A3
1VF

2A5, ~44!

d2f

dx2
5A221, ~45!

a system that only depends on the rescaled parametersH and
VF . Note that the quantum coupling parameter can be w
ten asGQ5H/VF

2 .
It is interesting to perform a linear stability analysis

order to see in what conditions the system supports sm
amplitude spatially periodic solutions. Writing

A511A8 exp~ ikx!, f5~11VF
2 !/21f8 exp~ ikx!,

~46!

and retaining in Eqs.~44! and ~45! only terms up to first
order in the primed variables, we obtain the relation

H2k424~12VF
2 !k21450. ~47!

This second degree equation has solutions

k25
2~12VF

2 !62A~12VF
2 !22H2

H2
. ~48!

Clearly, spatially oscillating solutions only exist whenk2 is
real and positive, which yields the condition

VF
2,12H, ~49!

or equivalently

mu0
2.mvF

21\vp . ~50!

This expression sets a lower bound on the speedu0, below
which no oscillating stationary solution can exist.

C. Two-stream instability

A classical plasma composed of two counterstream
electronic populations with velocities6u0 can give rise, for
certain wave numbers, to an instability. In a previous pape13

we have shown that quantum effects modify the dispers
relation, and give rise to a new instability branch. The
results were obtained by neglecting the effects of quan
statistics, and are therefore valid in the limitvF!u0. Here,
we perform the same calculations for finite values ofvF .

We consider two electronic populations, which are bo
distributed according to a zero-temperature Fermi-Di
equilibrium, but with average velocities6u0. The motion-
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less ions provide a neutralizing background. The dispers
relation for such a two-stream plasma can be found in
following way. For a single stream propagating at veloc
6u0, our fluid model yields the following dielectric constan
~thus valid for long wavelengths!:

e6~k,v!512
vp

2

~v7ku0!22k2vF
22\2k4/4m2

. ~51!

Settinge6(k,v)50 leads to the dispersion relation foun
previously, Eq.~33!, with the appropriate Doppler shift. Th
dielectric constant for the two-stream case is found by av
aging the contributions from each streame(k,v)5(e1

1e2)/2. Using the normalization of Eqs.~43!, we obtain

e~k,v!512
1/2

~v1k!22k2VF
22H2k4/4

2
1/2

~v2k!22k2VF
22H2k4/4

. ~52!

Settinge(k,v)50, we obtain the dispersion relation fo
the two-stream plasma,

v42S 112k2~11VF
2 !1

H2k4

2 Dv22k2S 12VF
22

H2k2

4 D
3S 12~12VF

2 !k21
H2k4

4 D50. ~53!

Notice that forVF50, we recover the dispersion relatio
obtained in Ref. 13. Solving forv2, one obtains

v25
1

2
1k2S 11VF

21
H2k2

4 D
6

1

2 F118k2S 112k2VF
21

H2k4

2 D G1/2

. ~54!

The solution forv2 has two branches, one of which
always positive and gives stable oscillations. The other so
tion is negative (v2,0) provided that

@H2k224~12VF
2 !#@H2k424~12VF

2 !k214#,0. ~55!

We immediately notice that, ifVF>1, Eq. ~55! is never
verified, and therefore there is no instability. This is a qu
natural result. Indeed, mathematically, the instability is d
to the fact that the two-stream velocity distribution has
‘‘hole’’ around v50. WhenVF>1, the hole is filled up, and
no instability can occur. To put it differently, there can b
instability only when the equilibrium distribution is a non
monotonic function of the energy, which ceases to be t
whenVF>1.

When VF,1, Eq. ~55! bifurcates forH512VF
2 . If H

>12VF
2 , the second factor is always positive, and instab

ity occurs forH2k2,4(12VF
2). If H,12VF

2 , there is in-
stability if either
6-6
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0,H2k2,2~12VF
2 !22A~12VF

2 !22H2 ~56!

or

2~12VF
2 !12A~12VF

2 !22H2,H2k2,4~12VF
2 !.

~57!

This yields the stability diagram plotted in Fig. 1, which
similar to the one obtained in the limiting caseVF50. The
presence of a finite Fermi velocity has the effect of reduc
the region of instability. Numerical simulations yield simila
results to those observed in theVF50 case, which are re
ported in Ref. 13.

V. CONCLUSION

In this paper, we have first established the conditions
validity of the Wigner-Poisson system. Subsequently, by t
ing moments of the Wigner equation, we have derived

FIG. 1. Stability diagram for the two-stream plasma, withVF

50.7 ~solid lines! andVF50 ~dashed lines!. The curves correspond
to Eqs.~56! and ~57!. For both cases, the region of the plane co
taining theH2 axis is unstable.
07531
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effective Schro¨dinger-Poisson system that captures the
sential features of a quantum electron gas. In the lo
wavelength limit, this model correctly reproduces the resu
of the linear analysis of the Wigner-Poisson system. The
vantages of the effective SP model are manifold: it is loca
space~compared to the nonlocal WP system!; it is cast into
the ordinary space, rather than the phase space; and it h
straightforward interpretation in terms of fluid quantitie
Furthermore, it is easily amenable to numerical stud
given the abundance of accurate numerical techniques fo
Schrödinger equation~in comparison, numerical methods fo
the Wigner equation12 are much scarcer and more cumbe
some to implement!. The crucial points in the derivation o
the model are~a! the decomposition of the pressure into
classical and a quantum contribution, and~b! the restriction
to an appropriate class of statistical mixtures~composed of
states with the same amplitude but different phases!. We be-
lieve that this class is wide enough to describe a signific
range of relevant physical systems.

For the case of a completely degenerate electron gas
effective SP model can be put in a particularly simple for
in which the Schro¨dinger equation exhibits auCu 4 nonlin-
earity. This model has been applied to the study of lin
wave propagation, nonlinear stationary solutions, and
two-stream instability. The simplicity of the resulting syste
of equations makes it a useful tool for the study of quant
transport in solid-state plasmas.
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