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Self-consistent fluid model for a quantum electron gas

G. Manfredf and F. Haas
Laboratoire de Physique des Milieux lonsseJniversiteHenri Poincare Boite Postale 239, 54506 Vandoeuvre-les-Nancy, France
(Received 8 December 2000; published 31 July 2001

It is shown that, for a large class of statistical mixtures, the Wigner-Poigsohlartree system can be
reduced to an effective Schitimger-Poisson system, in which the Satirmer equation contains a new non-
linearity. For the case of a zero-temperature one-dimensional electron gas, this additional nonlinearity is of the
form |¥| 4. In the long-wavelength limit, the results obtained from the effective Stthger-Poisson system
are in agreement with those of the Wigner-Poisson system. The reduced model is further used to describe the
stationary states of a quantum electron gas and the two-stream instability.
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[. INTRODUCTION After discussing the general validity of the WP model, we
will derive an effective Schidinger-PoissonSP system,

Understanding the dynamics of a quantum electron gas ighich, in an appropriate limit, reproduces the results of the
an important issue for a variety of physical systems, such akinetic WP formulation. A similar_result was recently ob-
ordinary metals, semiconductors, and even astrophysical sytained in the mathematical literatuté although its physical
tems under extreme conditiofes.g., white dwarfs Although implications have not been fully analyzed. In this effective
some level of understanding can be achieved by consideringP model, the Schdinger equation is nonlinear, as it in-
independent electrons, a more accurate description requirédides an effective potential depending on the modulus of
the use of self-consistent models, where electron-electron irfhe wave function. The exact form of this effective potential
teractions are taken into account. As the treatment of the fulepends on the specific physical system being studied. In
N-body problem is clearly out of reach, mean-field modelsorder to obtain the effective SP system, we will first derive a
are usually adopted, of which the Hartree and Hartree-FocRystem of reduced “fluid” equations by taking moments of
models are standard exampleb the Hartree approxima- the WP system. It will be shown that the pressure term ap-
tion, each electron is described by a one-particle wave fund?€aring in the fluid equations can be decomposed into a clas-
tion (obeying Schidinger’s equatioy and the electrostatic Sical and a quantum part. With some reasonable hypotheses
force acting on it results from Poisson’s equatioRiock's ~ On the pressure term, the fluid system can be closed. Finally,
correction accounts for the parity of thé-particle wave the effective SP system will be applied to several physical
function for an ensemble of fermions, but this correction will Problems, including linear wave propagation, nonlinear sta-
not be considered in this paper. tionary solutions, and the two-stream instability.

The Hartree model can be written in a more compact, but
strictly equivalent, form by making use of Wigner functions.
The Wigner representatidiis a useful tool to express quan- ll. COUPLING PARAMETER FOR A QUANTUM PLASMA

tum mechanics in a phase-space formali$on reviews, see A classical plasma can be said to be collisionless
Ref. 3. In this representation, a quantum stegither pure or  («igeal” ) when long-range self-consistent interacticie-
mixed) is described by a Wigner functidine., a function of  gcriped by the Poisson equatjosiominate over short-range
the phase-space variableand the Wigner equation provides tyo-particle interactiongcollisions. This happens when the
an evolution equation that is similar to thg Vlasov equation,potentia| energy of two electrons separated by an average
well known from classical plasma physics. We note thatnterparticle distance is small compared to the average ki-
although the Wigner distribution satisfies most of the stanyetic energy. The potential energy is estimated Eag,
dard properties of probability distributions, it cannot be re'zezné’%o, while the average kinetic energy is simply given
garded as su_ch, since it may take negati\_/e values_. The resugy the temperatur& (measured in energy unjtHere — e is

ing self-consistent model is C"’.‘"ed the Wl_gner—P0|36MP) the electron charge,, the dielectric constant in vacuum, and
system, and has been extensively used in the study of quaHa the equilibrium particle density. One defines, therefore, a

tum transporf.~® : .
S . . . classical coupling parameter,
Despite its considerable interest, the WP formulation pre- Ping p

sents some intrinsic drawbacks3) it is a nonlocal, integro-

differential system, andb) its numerical treatment requires Enpot e’nd®
the discretization of the whole phase space. Moreover, as is Fec=—= T
often the case with kinetic models, the WP system gives kin 0
more information than one is really interested in. For these

reasons, it would be useful to obtain an accurate reducesuch that the collisionless approximation is valid wHén
model that, though not providing the same detailed informa<<1. The classical coupling parameter can be written in a
tion as the kinetic WP system, is still able to reproduce thelifferent way, by introducing the plasma frequency, the ther-
main features of the physical system under consideration. mal velocity, and the Debye length,

@
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which are typical inverse time, velocity, and length scales for Ne=10°m™, ve=1F ms*, w,=10°s",
a collisionless plasma. With these definitions, the coupling

parameter can be expressed as Ng=10"10m. @)
g2 1 , .
res=——7, (3)  These values yield a quantum coupling parameter of order
NoAp unity. Allowing for the dimensionless constants we have ne-

which is the inverse of the number of electrons contained iff/ected and the different properties of metals, we realize that
a Debye volume. When the conditidic<1 is satisfied, .o ¢an be both smaller and larger than unity for typical
two-body correlationgcollisions can be neglected, and the Metallic electrons. o

N-particle Liouville equation can be reduced, via The above values seem to indicate that, Iag=1,
Bogolyubov-Born-Green-Kirkwood-YvorlBBGKY) hierar- electron-electron €-e) collisions cannot be neglected for
chy, to the one-particle Vlasov equation. The Vlasov-Poissof'€t@ls. If that were the case, one should abandon one-
system is therefore the standard model to describe classicBfticle models such as the Wigner or Hartree equations, and
electrostatic plasmas in the collisionless approximation.  '€Sort to the fullN-body problem. This is hardly a feasible

Similarly, it is possible to define a quantum coupling pa_task. Fortunately, however, the exclusion principle comes to

rameterl’ . Let us consider the case of a completely degenlhe rescue by reducing the collision rate quite dramatically in

erate electron gas. Now the average kinetic energy is giveflloSt cases of intereS{This occurs when the electron distri-
by the Fermi temperatur@:~#%2n23¥m (we neglect irrel- bution is close to the Fermi-Dirac equilibrium at relatively

evant dimensionless constantso that the quantum coupling :OW telmpelratures. Th? ;ur:gamenlta[ point Is tlhag Wnen all
parameter becomes ower levels are occupied, the exclusion principle disallows a

vast number of transitions that would otherwise be possible.
In particular, at strictly zero temperature, all electrons have
lFo=—"=—5—%. (4) energies below ¢, and no transition is possible, simply be-
cause there are no available states for the electrons to oc-
cupy. At moderate temperatures, only electrons within a shell
of thicknessT about the Fermi surface can undergo colli-
sions. Thee-e collision rate(inverse of the lifetimer,e) for

such electrons is proportional /% (this is a form of the

Notice that, according to Ed4), a quantum electron gas is
more ideal at higher densities. Using the Fermi velooity
=/ Tr/m, one can define a typical length scale for the quan

tum, plasma : o .
uncertainty principle, energy time=const). Theaverage
VE collision rate is obtained by multiplying the previous expres-
Ap=—-. (5)  sion by the fraction of electrons present in the shell of thick-
P

nessT about the Fermi surface, which isT/Tg. One ob-
The quantum coupling parameter can thus be expressed t&Eins
the inverse of the number of electrons contained in a Fermi

volume:
1 1T1? ©
32 1 Tee h TF )
Iy=——s3. (6)
noxF
_ . _ At room temperatureze~10"'° s, which is much larger
Finally, another expression for the coupling parameter is thenan the typical collisionless time scafg=w, '=10"s.

following: Therefore, for times smaller than,, the effect ofe-e col-
lisions can be safely neglected. In addition, it turns out that

ng_ﬁwp’ (7)  the typical relaxation time scale is=10""*s, which is
Te again significantly larger tham, . In summary, the ordering
which is valid for any number of dimensions.
The quantum electron gas is collisionless whgg<1. In Ty <7, <Tee (10)

this case, the quantuid-body problem can be reduced to a
one-particle Wigner equation. The Wigner-Poisson system is_ . - i . .
therefore capable of describing a quantum electrostatiH“p“_es that a co_lhsmnlesengneo model is appropriate for
plasma in the collisionless approximation. relatively short time scales.

The previous results were derived in the limiting cases
T>Tg (classical and T<Tg (quantum degenerateFor in-
termediate temperatures, simple expressions for the coupling
parameters are not available, but one must expect a smooth In one spatial dimension, the Wigner-Poisson systéem
transition between the two regimes. reads

I1l. DERIVATION OF THE FLUID MODEL
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of Jf  iem oo where the sum extends over all possible states. The numbers
E+va_x+ﬁj fd)\ dv’em@-v’) p., representing probabilities, satisfy the relatigns=0,
> .P.=1. Using the previous expression, one can compute

N\ i the pressure. After some algebra, one obtains
X| ¢ X+ —- —¢ X= > f(x,v’,1)=0,
hz &w 2 (92¢_ azlp*
11 =— Y <
y P~ am Ea: p“(z x| Y ax2 Y ax?
(?2(;') e ) 2 %\ 12
P fdu— 12 h Iy I
ax2 &g J dv="o}, (12 amn % Pa| Yasr ~Vag (17)

where f(x,v,t) is the Wigner distribution functiong(x,t)
the electrostatic potentiat; e andm the electron charge and
mass,eq the vacuum dielectric constant, amg a back- B (X, 1) = A (x,1)expliS,(x,1)/h), (18)
ground ionic charge. Notice that the one-particle Wigner

function used here actually representshaparticle system. whereA, (amplitude andS, (phase are real functions, we
Indeed, the above Wigner-Poisson system can be derivagbtainP=P¢+ P?, where the classic&® and quantunP®
from the full N-body problem via a BBGKY hierarchy, ne- parts of the pressure are

glecting two-body correlations and only keeping the mean

If we represent each state as

Coulomb field® Further, it is easy to see that, in the linit c 1 5 2 9S.  9Sg 2

—0, one recovers the familiar Vlasov-Poisson system for P ~omn az/; PaPsAAS X ox | (19)
classical collisionless plasmas. For simplicity of notation, ’

only one-dimensional problems will be treated in the rest of 52 JA\2 2

this paper, but the results can be readily extended to higher pQ— E 0 ( a) A al' 20
dimensions. 2m ‘I ax “ax?

In order to derive a fluid model, we take moments of Eq. .
(11) by integrating over velocity space. Introducing the stan-Notice thatP< only depends on the amplitudes; , and that
dard definitions of density, mean velocity, and pressure, for a pure state onlf? survives. It can be easily shown that
P represents the standard pressure, resulting from the dis-
1 persion of velocities. To prove this, one has to remember that
n(x,t)=f fdv, u(xt)= ﬁf fu dv, the phasesS, are related to the mean velocity, of each
wave function through the relatiomu,=dS,/dx [theu,’s
should not be confused with tlggobal mean velocityu de-
P(x,t)=m(j fvzdv—nuz), (13)  fined in Eq.(13)]. Thus, by expanding Eq19), one obtains
after some algebra

we obtain )
2
an (9(nu) D p A2u2 Ea paAaua
_ — C_ ara’ ‘a a_
atx O (14 PC=mn —— . .
Ju du edp 1 9P With an appropriate definition of averages, we can rewrite
T U Tmax  mnax (15  the above equation &%=mn((u?)—(u,)?), which is the

standard expression for the pressure. The contrib@féron
We immediately notice that Eq$14) and (15 do not the other hand, is a purely quantum pressure, with no classi-
differ from the ordinary evolution equations for a classicalcal counterpart.

fluid. This may seem surprising, but in the following it will In_ordeé to close the fluid system, some equation of state,
appear that the quantum nature of this system is in fact higkelating P¢ and P? to the densityn, must be used. In this
den in the pressure term. paper, we consider a statistical mixture in which all the am-

The pressure term may be decomposed into a classicalitudes are equalbut not constant A,(x)=A(x). This
and a quantum part. This can be shown as follows. Th@ives, using Eqs(13) and(16), n=A?. With the help of Eq.
Wigner distribution for a quantum mixture of stateg(x,t), ~ (20), the quantum pressure becomes
each characterized by an occupation probabpity is writ-

ten as - 52

Q—___
PO=> . (22)

EURC

+)\t
X 2

m
—_— *
fxu.0) 2ah Z., p“f d\ For the classical part of the pressure, we make the standard

assumption that it is some function of the densiBf
X ﬁ t | @imon/i (16) =PC(n). With these hypotheses, the force equatibb) can
2’ ' be written as

X o
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Ju au edp 1 oPC 1 PR electrons from one another is their ph&&g and therefore
U T mn o mn ax (23) their velocity u,. This approximation can be viewed as a
first step beyond the standard homogeneous equilibrium of a
Defining the effective potential fermion gas, for which each state is represented by a plane
wave,
ndn’ dP®(n’)
W(n)= o Taw (24) P (x,t)=Aexp(imu,x/f),

with the amplitudeA and the velocityu, spatially constant.
In our approximation, both the amplitude and the velocity
1 PR PY ((92(\/5)/(9)(2) can be spatially modulated, although we still restrict our-

and using the identity

(25 selves to the case in which the amplitude is the same for all

mn ax 2 IX . .
mn ox 2m? X Vn states. This appears to be a reasonable closure assumption for
the force equatiori23) reduces to systems that are not too far from the Fermi-Dirac equilib-
rium.
u  Ju edp 1aW K2 9 [dA(In)lax?
—tU—=—==———— — .
ot IX m Jx m dx 2m2 IX \/ﬁ IV. APPLICATIONS
(26) As a relevant example of the above theory, we consider a

zero-temperature one-dimensional electron gas, with Fermi
velocity v and equilibrium density,. In this case, the clas-
sical pressure is

Now comes the crucial point: it is possible to combine
Egs. (14) and (26) into an effective Schidinger equation.
Indeed, let us define the effective wave function,

W = Jn(x DexpiS(x,t)/4), 27) pc_ MOF 0
>n°.
with S(x,t) defined according tonu(x,t) = dS(x,t)/dx. We 3ng

obtain that¥ (x,t) satisfies the equation (Notice that the term “classical” is somewhat inappropriate

here, asP® will contain Planck’s constant through the Fermi

EAG w2 52 . . e .
i = — eV +WW. (28) velocity) We also note that the Fermi velocity in one spatial
at 2m gy dimension
This is a nonlinear Schdinger equation, as the effective 7 fing
potentialW depends on the wave function through Ezg), VE=5 (31

wheren=|W¥|2. Separating Eq(28) into its real and imagi-

nary parts, we indeed find the continuiy4) and force(26)  is proportional ton,, whereas in three dimensionsg
equations. Finally, the complete effective SP system is coms n(l)/3_

posed of Eq(28) and the Poisson equation Using Eq.(30), the effective potential defined in E(R4)
turns out to be

PP e
— = —([P[>=ny). (29) )
(7X 80 mUF 4
W= o2 | w4, (32)
To summarize what we have achieved so far, we notice Mo

that, in general, the dynamics of a statistical mixture must bggtice that the effective potential is repulsive, and tends to
treated with the full Wigner-Poisson system, or, equivalentlyiatten the electron density. This is quite naturalderives
with a set of Schrdinger equations, coupled by PoISSON'S from the pressur®C, which in turn is a manifestation of the
equation(Hartree’s model In the present section, we have gispersion of velocities in a fermion gas. When the gas is at
shown that one can reduce the problem of quantum tra”Spoéhuilibrium W~n2~ const. and this term has no effect.

to a single nonlinear Schdinger equation plus Poisson’s We also point out that a similar nonlinear Sathirger

equatipn.. Also, notipe that the nature _of the interactelec- __equation with aW|*-dependent potential has recently been
trostatic in our caseis not of essential importance. The main yerived in the study of low-dimensional Bose condensiftes.
result is that we can reduce tiighase-spagenigner equa-  \ye stress, however, that such a boson-fermion duality only
tion to a(real-spacgnonlinear Schrdinger equation. applies to one-dimensional systems. FoDadimensional

The two hypotheses used for this reduction are as followsgg i system, the classical part of the pressure has the
(a) all states composing the mixture have the same amplitud rm PC~n(®+2/ 50 that the effective potential becomes

[which leads to Eq(22) for the quantum pressufeand (b) W~ n2P 11
the equation of state for the classical pressurePfs '
=PC(n). Hypothesis(b) is the standard fluid closure, and

needs no further comment. Hypothes® means that all

electrons are distributed in space according to the same prob- As a first application, let us study wave propagation for
ability distribution n(x)=A?(x). What distinguishes the the effective SP systert28) and (29) with W given by Eq.

A. Linear wave propagation
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(32). Linearizing around the homogeneous equilibritkn  is a further indication that the effective SP system is a good
=ny, e¢p=muvZ/2, we obtain the following dispersion re- approximation to the complete WP system for long wave-

lation (for waves with frequency and wave numbek): lengths.
We also note that fof’,—0, the dispersion relation re-
, , hA&A duces to
2_ 2
0 =wytkve+ a2 (33

w’= w‘2)+ k20,2: . (39

Forvg=0, we recover the dispersion relation of the standard

SP systerﬁ: Equation(33) can be written in dimensionless g is exactly the dispersion relation obtained from the clas-
units by using Eqs(5) and(7), which are valid both in one - gjc4| vjasov-Poisson system with a zero-temperature Fermi-
and three spatial dimensions, Dirac equilibrium. In other words, when the quantum cou-
pling parameter is vanishingly small, a classical dynamical
equation can be used, as the only quantum effects come from
the Fermi-Dirac statistics. This situation may apply to ex-
tremely dense astrophysical systems such as white dwarfs.

2 4y 4
F

w
=1+KkA\2+

p
Note that quantunmechanical effects (dispersion of the
wave packetare first order in the coupling parametes,
whereas quanturatatistical effects (Fermi-Dirac distribu-
tion) appear at leading order. As a second illustration, we use the present formalism to
We want to compare this dispersion relation to the onelescribe the stationary states of the electron'gasis result
obtained from the complete WP systéii) and(12), which, is more easily obtained by using the fluid version of our

B. Stationary solutions

in the most general case, re&ds model. In the time-independent case, the continuity equation
(14) and the force equatiof26) possess the following first
w'ZJJ fo(v)dv ~ - integrals:
NoJ (w—kv)?—42k*4m?
) m h? d?A
In our casefq(v) is given by the Fermi-Dirac distribution J=A%u, E=—-—eptW- IMA g2 (40

for a zero-temperature one-dimensional electron gas at equi-
librium, i.e., fo(v) =ng/2v¢ if |v|<vg andfy(v)=0 if |v| o )
>v,. Substituting into Eq(35), one obtaingwithout any ~ WhereA= \n. The first integrals in Eq(40) corresponds to

further approximatiohn current (J) and energy(E) conservation. We can always
chooseE=0 by a shift in the electrostatic potential. In this
w2 02 02 K4 ,‘i way, we can reduce the description of the stationary states to
—= —2cotr< —2) +KANE+ Iy, (36) a set of second-order nonlinear ordinary differential equa-
W, Wy Wy tions for the amplitudeA and the electrostatic potentidl.

For a zero-temperature one-dimensional electron gas, the ef-

where fective potentiaW is given by Eq.(32); thus from Eqs(40)
and (29) we get
0 1k o gian
—2: 2 :k )\FFQ f (37)
@p  M@p A [mP mo2
_ _ _ P——=m| ——2eAp+—A%|, (41)
Now we expand the first term on the right-hand side of dx A ng
Eq. (36) in the long-wavelengtlifluid) limit ) <w,. Using
the expansiorx cothf)=1+x%3—x*/45+ - - -, one obtains ,
d¢p e
— = —(A%—ny). 42
wz_l_i_kz)\z_i_ K\ N kﬁ)\2> 1 K12\ 1202 4 dx? 80( o) (42
w? Fil o4 3/ Q 45" "FTQ ‘

(39 Notice that, if the amplitudé\(x) is a slowly varying func-
tion of x, the second derivative on the left-hand side of Eq.
This is a double expansion in powers of the parameter¢41) can be neglected. With this assumption, &) reduces
I'q andk\g . The collisionless regime is in principle charac- to an algebraic equation, which can be solvedApand the
terized byl'o<1, although, as was seen in Sec. Il, electron-result plugged into Eq(42). This becomes a nonlinear dif-
electron interactions can be neglected even whgs:1, as  ferential equation for the electrostatic potential, which is
is the case for metals. On the other hand, the fluid regime igmerely the Thomas-Fermi approximation to our model.

characterized by small wave number@ €w,). Indeed, It can be easily verified that the=0 case cannot sustain
keeping terms to fourth order k\ g, Eq.(38) reduces to the small-amplitude, periodic solutions. Hence, we assuine
dispersion relation for the effective SP system, &84). This ~ =ngug with ug# 0 and introduce the following rescaling:
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A wpX A A &5 ¢ 3
X:—, :—, :—,
Uo Vo g
hw v
H:_Z, F:_F.
muy Ug

We obtain, in the transformed variablésmitting the caret
for simplicity of notation,

A 1,
H2&=—2¢A+E+VFA5, (44)
d2
d—i):Az—l, (45)
X

a system that only depends on the rescaled parantétensl

PHYSICAL REVIEW B64 075316

less ions provide a neutralizing background. The dispersion
relation for such a two-stream plasma can be found in the
following way. For a single stream propagating at velocity
*+ug, our fluid model yields the following dielectric constant
(thus valid for long wavelengths

2

b (51)

(07 kug)?— k%2 —12k*4m?’

w

e (kiw)=1—

Settinge- (k,w) =0 leads to the dispersion relation found
previously, Eq.33), with the appropriate Doppler shift. The
dielectric constant for the two-stream case is found by aver-
aging the contributions from each streaatk,w)= (e,
+€_)/2. Using the normalization of Eq$43), we obtain

1/2

e(k,w)=1—
(ko) (w+k)2—K?VE—Hk*/4

Ve . Note that the quantum coupling parameter can be writ-

ten asl'o=H/VE.

It is interesting to perform a linear stability analysis in
order to see in what conditions the system supports small-

amplitude spatially periodic solutions. Writing

A=1+A"expikx), ¢=(1+V2)/2+ ¢ explikx),

(46)

and retaining in Egs(44) and (45) only terms up to first
order in the primed variables, we obtain the relation

H%k*—4(1-V2)k?+4=0. (47)
This second degree equation has solutions
2(1-V2)+2(1-VE)2—H?

k2= F (1~ Ve : (48)

H2

Clearly, spatially oscillating solutions only exist wh&f is
real and positive, which yields the condition
VZ<1—H, (49)

or equivalently
mug>moi+fiw,. (50)

This expression sets a lower bound on the spggdelow
which no oscillating stationary solution can exist.

C. Two-stream instability

1/2
(0—k)2—k?VE—H2k4

(52

Setting e(k,w) =0, we obtain the dispersion relation for
the two-stream plasma,

21,4 H2k2
0*— | 1+2Kk%(1+V2)+ 5 )wZ—kZ(l—vﬁ— y )
H2k4
x| 1= (1-V2)K>+ 2 >=o. (53

Notice that forVg=0, we recover the dispersion relation
obtained in Ref. 13. Solving fap?, one obtains

1 21,2
w2=§+k2 1+VE+ T)
1 H2k4 1/2
+5 1+8k?| 1+2k?VE+ 5 ) (54)

The solution forw? has two branches, one of which is
always positive and gives stable oscillations. The other solu-
tion is negative ?<0) provided that

[H?k?—4(1—VE)][H?k*—4(1—V2)k?+4]<0. (55

We immediately notice that, ¥-=1, Eq. (55) is never
verified, and therefore there is no instability. This is a quite

electronic populations with velocities uy can give rise, for

o the fact that the two-stream velocity distribution has a

certain wave numbers, to an instability. In a previous paper, “hole” around v=0. WhenVg=1, the hole is filled up, and
we have shown that quantum effects modify the dispersioft© instability can occur. To put it differently, there can be
relation, and give rise to a new instability branch. Thesenstability only when the equilibrium distribution is a non-
results were obtained by neglecting the effects of quanturonotonic function of the energy, which ceases to be true

statistics, and are therefore valid in the limig<<u,. Here,
we perform the same calculations for finite values pf

whenVg=1.

When V<1, Eq. (55) bifurcates forH=1-V2. If H

We consider two electronic populations, which are both=1—VZ, the second factor is always positive, and instabil-
distributed according to a zero-temperature Fermi-Diradty occurs forH2k2<4(l—V§). If H<1—V§, there is in-

equilibrium, but with average velocities u,. The motion-

stability if either
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effective Schrdinger-Poisson system that captures the es-
sential features of a quantum electron gas. In the long-
wavelength limit, this model correctly reproduces the results
of the linear analysis of the Wigner-Poisson system. The ad-
vantages of the effective SP model are manifold: it is local in
space(compared to the nonlocal WP systenit is cast into
the ordinary space, rather than the phase space; and it has a
straightforward interpretation in terms of fluid quantities.
- Furthermore, it is easily amenable to numerical studies,
given the abundance of accurate numerical techniques for the
3 Schralinger equatiorfin comparison, numerical methods for
the Wigner equatiolf are much scarcer and more cumber-
FIG. 1. Stability diagram for the two-stream plasma, witp some to implement The crucial _p_oints in the derivatio_n of
=0.7(solid lineg andVg=0 (dashed lings The curves correspond the model arg(@) the decomposition of the pressure into a

to Egs.(56) and (57). For both cases, the region of the plane Con_classmal and a quantum contrl_bqtlon, a(rtnﬂi the restriction
taining theH? axis is unstable. to an appropriate class of statistical mixtufesmposed of

states with the same amplitude but different phasée be-

2},2 —V2)—2(1-V2)2—H? lieve that this class is wide enough to describe a significant
0<HK"<2(1=VE)=2V(1-VE)"~H (56 range of relevant physical systems.

Kz

or For the case of a completely degenerate electron gas, the
effective SP model can be put in a particularly simple form,
2(1-V2)+2(1-V2)2—H?<H2k?<4(1-V3). in which the Schrdinger equation exhibits A¥| 4 nonlin-

(57)  earity. This model has been applied to the study of linear
. o . _ .. wave propagation, nonlinear stationary solutions, and the
This yields the stability diagram plotted in Fig. 1, which is 1, stream instability. The simplicity of the resulting system

similar to the one obtained in the limiting ca¥%@=0. The ¢ o4 ations makes it a useful tool for the study of quantum
presence of a finite Fermi velocity has the effect of reduc'”gcransport in solid-state plasmas.
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