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Anisotropic exchange interaction of localized conduction-band electrons in semiconductors
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The spin-orbit interaction in semiconductors is shown to result in an anisotropic contribution into the
exchange Hamiltonian of a pair of localized conduction-band electrons. The anisotropic exchange interaction
exists in semiconductor structures that are not symmetric with respect to spatial inversion, for instance in bulk
zinc-blende semiconductors. The interaction has both symmetric and antisymmetric parts with respect to
permutation of spin components. The antisymmd(iizyaloshinskii-Moriya interaction is the strongest one.

It contributes significantly into spin relaxation of localized electrons; in particular, it governs low-temperature
spin relaxation im-GaAs with the donor concentration neartfd@m™2. The interaction must be allowed for

in designing spintronic devices, especially spin-based quantum computers, where it may be a major source of
decoherence and errors.
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I. INTRODUCTION where the vectod is related with the antisymmetric part of
the tensorA:
The dynamics of electron spins in semiconductors now
attracts a considerable interest due to the idea of using spin Aap=Apa=Eapydy, (4)

for storage, transfer, and processing of information,pee eqp, IS the third-rank antisymmetric tensor. The

. . l . .
(spintronic$.” In particular, it has been SUQ?ESt,ed t0 USepzyaloshinskii-Moriya interaction can exist when the crystal
spins of localized electrons in quantum compufteither as  pejghhorhood of the two interacting ions lacks inversion

carriers of quantum information unitqubits,® or as agents symmetry (thus allowing the existence of the vectd). It
mediating coupling and coherent transfer of information bejiges as the first-order perturbation in the spin-orbit interac-
tween qubits realized on nuclear spfnBor any spintronic o0 “and for this reason it is the strongest anisotropic spin-
application, the strength and symmetry of basic mteractlongpin interaction in numerous types of magnetic crystals, in-
of electron spins are of key importance, because these inteé]uding Group 11-VI diluted-magnetic semiconductdrgo
ac_tions govern the information transfer as well as spin re""’fthe best of our knowledge, this interaction has never been
ation and, consequently, decoherence and errors. The Spip§ngidered in the context of localized charge carriers in
of two localized electrons are known to be coupled by tWoOgemiconductors. In this paper, we argue that the spin-orbit
kinds of interaction, namely, magnetodipole and exchangg,ieraction produces an anisotropic part of the exchange in-
interactions. As distinct from the magnetodipole interaction o o tion between localized conduction-band electrons, hav-
the e>§cha.nge interaction of Iopalized_ conduction-band ele(:l—ng the general form given by Eq2), in semiconductor
trons is widely believed to be isotropic, structures that lack inversion symmetry, including practically

. all low-dimensional structures and also bulk semiconductors

Hex=2J51S;, (1) with zinc-blende and wurtzite type of the crystal lattice. The
whereJ is an exchange constant. Isotroicalay interac-  Main part of the anisotropic exchange interaction has the
tions conserve the total spin of the two electrons, and for thigorm of the Dzyaloshinskii-Moriya interaction and may be as
reason they do not cause spin relaxation and correspondirfgong as several hundredths of the isotropic exchange. This
information losses in spintronic devices. The isotropic ex-nteraction poses considerable problems for the design of
change interaction has been supposed to govern the sphPin-based quantum computers employing electrons bound
structure of the impurity band in-type semiconductors at to natural or artificial localization centers in semiconductor
low temperaturé. However, in the crystal environment, the Structures, for instance, quantum dats shallow donors. It

general form of the interaction between two spins-1/2 iscan be experimentally detected by its effect upon spin-
more complex: relaxation times in bulk semiconductors and semiconductor
nanostructures with appropriate doping.

Hex: AaBS_I.aSZB ’ (2)

where A is a second-rank tensor defined by the structure
symmetry. Anisotropic exchange interactions of this kind, ul-
timately resulting from the spin-orbit interaction, are well The absence of the spatial inversion in the symmetry
known for paramagnetic ions in cryst&3he antisymmetric group of a semiconductor structure brings about spin-
part of this interaction, known as the Dzyaloshinskii-Moriya dependent terms in the Hamiltonian of conduction-band elec-
interaction’® is usually written down in a vector form: tron, having the following general form:

II. SPIN-ORBIT FIELDS IN SEMICONDUCTOR
STRUCTURES

Hom=d-[S; X S,], 3) Hso=h(k)-S. (5)
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The vectorh is an odd function of the electron wave vector A) is accompanied by the rotation of its spin through the
k. In particular, in zinc-blende semiconductors, like GalAs, same angle, but in the opposite directitbecausén changes

is cubic in the components & 1911 its polarity for the backward motionin other words, inter-
changing the positions of the two electrons goes along with
hy= afi3(MeyV2mEy) ~ ky( kf,— k2), (6)  reciprocal rotation of their spins. As a result, there is no way

to bring the two electrons into contact, whether at one of the
centers or in between, without turning their spins with re-
spect to each other around the direction of the spin-orbit
field. One can expect, therefore, that the exchange interaction
would couple these tipped spin§, and S;, rather then
genuine electron-spin operators at cent&randB (S, and

mSB' respectively. This leads to the following heuristic ex-
ession for the exchange Hamiltonian:

wherem, is the effective mass of the electrdg, is the band
gap, and,, ky, k, are components of the wave vector along
cubic axe§100], [010], and[001] respectivelyY andZ com-
ponents oh are obtained from E(6) by cyclic interchange
of indices. The dimensionless coefficiemtis equal to 0.07
for GaAs. Dyakonov and KachorovskKiinoted that the con-
finement of the electron envelope wave function in quantu
wells creates a considerable mean-squared value of t
wave-vector component along the structure axis. As a result, "

h becomes linear in the components of the two-dimensional Hex=2J5:5
wave vector. For instance, if the structure axi$d61]: =2JS,Sgcosy+ (2J/b?)(Sab) (Sgb)
h,=—ak,; hy=ak,; h,=0, (7) X (1—cosy)+(2J3/b)(b[ Sy X Sz])siny, (9)

where a= aﬁ3(mew/2meEg)‘1< k?). Similar terms exist in wherevy is the angle of relative rotation of spins, ands the
bulk semiconductors with wurtzite structure, and in strainedeffective spin-orbit field that acts upon the electron tunneling
zinc-blende crystal$’ from A to B. The first term in Eq.9) is the usual scalar

Another contribution to the spin-orbit field is due to gra- interaction, the second term corresponds to the symmetric
dients of macroscopic potential in the semiconductor crystalpart of the anisotropic exchange, and the third one — to the
Averaging the spin-orbit interaction over the potential profileantisymmetric(Dzyaloshinskii-Moriya interaction. A rigor-
in asymmetric quantum wells gives the following depen-ous consideration based on the Heitler-London approach,
dence ofh on k:** given below, confirms this conclusion and gives the value of

the angley.
hy=cky; hy=—ck; h,=0, (8)

where ¢ is a constant depending on the shape of the V. FORMAL DERIVATION

guantum-well potential and properties of the interfaces. This Let us seek the two-electron wave function in the form of
contribution(the so-called Rashba teynas distinct from the  a linear combination of functions:

spin-orbit terms given by Eq$6) and(7), can exist in semi- o
conduc_tors with a centrosymmetri.c unit.ce_II, Iike Si and Ge. ‘PA(l)‘I’B(Z)Xi'Ing and pr(z)qu(l)X‘l’lxgz, (10
The existence of the effective spin-orbit field is well docu-

mented experimentally. It causes spin relaxation of electronwhere the numbers 1,2 numerate electrobg,and ¥y are
via the Dyakonov-Perel mechanisti*3It has been also de- coordinate wave functions localized at cent&rand B, re-
tected directly by passing electric currents through a semispectively, andy“ are spin functions. The functiori€q.
conductor structure: collective movement of the electrons ret10)] approximate eigenfunctions of the full two-electron
sults in a coherent precession of their total spit!  HamiltonianH at the limit of infinite distance between cen-
Recently, the field has been extensively discussed due to iters. These functions do not allow either for the influence of

effect upon weak localizatiolf. the potential created by each of the centers upon the one-
electron function localized at the other center, or for spin-
l1l. ANISOTROPIC EXCHANGE: QUALITATIVE orbit interaction. This choice is justified by the smallness of
CONSIDERATION spin-orbit terms in the conduction-band Hamiltonian with

] ) ) . respect to the electron binding energy at the center; the in-
In localized single-electron states, the oddkiterms dis-  fluence of the spin-orbit interaction on the wave function of
appear on averaging over the envelope function of the locakne |ocalized electron is negligible. The functidii. (10)]
ized state. However, they do not entirely disappear for th%orrespond to degenerate energy levels \EithE,. At finite

tum dots. Instead, they bring forth an anisotropy of the ex-

X . o . of off-diagonal matrix elements ofi between the two-
change interaction of the electrons. Qualitatively, this can b%lectron functions of Eq(10):
explained in the following way. When one of the two elec- o
trons localized at center& and B tunnels to the adjacent o1 o o o)
localization centefsay, fromA to B), it experiences an in- (PA(L)Wa(2)x1 X3 HIVA(2) Pa(L)x; "x5?)
fluence of the spin-orbit field resulted from the under-barrier  _y 5 5 |
motion of the electron. The field causes rotation of the elec- 717177272
trons spin through a small angle. Respectively, tunneling of o1 ool o o
the second electron to the first electrons positiwom B to (WAL We(2)x7 X, Hsd Wa(2) Wa(1) X, X,%)
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2 2 2 2 " ’
=318, 18, o+ Qo]0 S} S, o 9|99 XY Y Y
1B 2l S 2}, aZ(ﬁxz e
_iQ<O-1|b'Sl|O-ZII.>50'20'é i
i 327
=[3'+106(Sp~ $12) 1001 Oy, (11) =2 V105 Vanalte)
whereJ’ is the usual exchange integr@ does not include " "
the spin-orbit interaction Q) is the overlap integral of func- +Y3_2(0,0)]| ¥ —3T+3r—2 ;
tions ¥, and Wg, b=(W¥,Jih(k)|¥g), and the axisZ is
directed alongb. Note that spin-orbit terms, however small (15

they may be, cannot be omitted in calculating the matrix _ _ o
elements between degenerate energy levels. The twavhereY;.,(6,¢) =.—|V(105/3?77)0036’Sm296><p(i2|QD) is
electron functions, odd with respect to the permutation ofa third-order spherical harmonic, anglésind ¢ are defined

electrons, which are eigenfunctions of the Hamiltonfan 1N the usual way, so thaz=r cosé, x=rsinfcose, y

can then be easily found: =r sin#sing. Making use of the axial symmetry of the sys-
tem and of the properties of spherical harmonitene can
Dy =(VA(1)¥g(2)e (M1~ %22) derive the following expressions for the component®:of

(1) W2 V(D) 0D S,
(12 DA [ w(r-R)

where ¢, is an eigenfunction of the total-spin operator of
the two electrond=S;+S,, M is the Z projection ofl, y

=arctan{)b/J’"). The corresponding eigenvalues akEe. .
=E,*J'?+(Qb)?. Since we do not take into consider- X j d3r(i \/=Y;3 O)qf(|r—R|)
ation states with both electrons located near the same center [

(this is justified due to strong Coulomb repulsion of elec- >

trons, the operator of the total spincan be as well repre- —A Ry( Rx_Ry)f (R) (16)
sented a$=S,+ Sz, whereS, andSg are spin operators of 3 RS 0

electrons localized at centefsand B, respectively. Noting

that the first term in Eq(12) corresponds to the location of \where

the first and second electron near cent&rand B, respec-

al o & v
72\ a2 o)t
=A3C0S6, Sirtfy(copo—Sirfeo)

”n !

v
Y- 3— +3—
r r2

tively, and the second term to the inverted location of elec- cos6(5 co0—3)

trons, one can substitute the pair of spin operaSrand S fg(R)zj dr

instead ofS; andS, in exponents, thus obtaining 2

\I,H !
Dy =[PaA(1)Wg(2)+(—1)'Wa(2)Wg(1)]exp XW¥(|r—R]|) V" —-3—+3—|,
r
.Y
X _lz(SAz_sBz) dim - 13 A3:aﬁ3(me\/WeEg)_l,

We come to a two-electron wave function, which is a prod-angles 6, and ¢, define the direction ofR, so thatR,
uct of an(odd or even orbital function and a §pin function, =Rcosf,, R,=Rsinf,cosg, and Ry=Rsind, sin g
mm () =exXd —1¥2(Sa,— Sg) 1¢im - The functionsyy(y)  The expressions for other componentshofire obtained by
are eigenfunctions of the operator cyclic interchange of indices.

(ii) A similar result for the linear-in-k spin-orbit field in a

Y _ Y _ ol two-dimensional systernan be obtained with elementary
eXF{' 2 (Saz—Ss2) SASBeXF{ ) (Saz—Sg2) |=SpSs, trigonometry:
(14
, / : ; R R
whereS, and S; are obtained frons, and Sy by a rotation b= —Alﬁxfl(R)i byZAlﬁyfl(R) (17)

around Z through the angles-y/2 and y/2, respectively.
This immediately yields the expressi@®) for the exchange -
operator H.,, with y=arctanQb/J’) and J for Dyakonov-Kachorovskii terms, and
=(J3'/|3')V3"?+ (Qb)2. Let us now find the vectob for
two characteristic cases.

(i) A pair of donors in a zinc-blende semiconductbr.
this caseh(k) is given by Eq.(6). For spherically symmetric
functionsW (r), it is easy to obtain by direct differentiation: for Rashba terms. Here

R R
b=Ai 5 fi(R): by=-Afi(R) (18
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JV¥(p) T

V(lp—R)) ap %) 0.020

fl(R):J d2P

p is a two-dimensional position vecto#, is the angle be-
tweenp and R, A; equalsa for Dyakonov-Kachorovskii 0.0151 i
terms[Eq. (7)], andc for Rashba termgEq. (8)].

V. ESTIMATION OF THE INTERACTION STRENGTH 0.010+

Asymptotic expressions for the integrals in Edq4&6),
(17), and (18), valid at long distances between centers, are 0.0051
obtained by putting cog equal to 1 and retaining only terms
with the third derivative in Eq(16). For hydrogenlike cen-
ters they read 0.000

Q R/a

Q
fi(R)=5—, (19

f3(R)= 2ag

3
B

QD

FIG. 1. Angular averagésolid line) and the maximal value of
(dashed lingfor a pair of donors in GaAs vs the distance between

whereag is the effective Bohr radius, and is the overlap donors

integral. Expression&l9) can be used to estimatg(R) and
f3(R) for any other type of potential, substituting in the de- ) _ )
nominator the corresponding localization radius. Having inv&lue of ¥(R) corresponding to the orientation of the donor
mind thatJ’ = Q2Eg, whereEg is the electron binding en- Par anng[llO], are p!otted. It is quth noting t'hay rises
ergy at the center, we find that does not depend on the with R. With further increase oR it asymptotically ap-
distance exponentially. The dependenceyain the distance Proachesm/2. However, for actual structures at meaningful
is due to preexponential factors b, f, andJ’, and is rather dlstanzce_s, it remains small. Th|s_ means _that, I|I_<e in the case
weak. One can therefore obtain as an order-of-magnitud@’ Mn " ions in Group I1-VI semimagnetic semiconductors,

estimate of angular averages gfat intercenter distances '€ Dzyaloshinskii-Moriya interaction is the strongest and
several times greater than the localization radiusen pre-  Practically the only significant part of the anisotropic ex-
exponential factors are still close to 1, but asymptotic expresShange interaction.

sions[Eq. (19)] are already valid

VI. COMPARISON WITH EXPERIMENT: SPIN

A A !
tanys~ ——: tany,~Z 1 20) RELAXATION IN n-GaAs
Ega a

B g BB A great variety of experimental manifestations of aniso-
. tropic spin-spin interactions in systems of magnetic ions or
One can see that for the values of parameters typical o, cjear spins are presently known, including their influence
most semiconductors, these values are much smaller th the magnetic order in magnét& spin relaxatior?, selec-
unity, so that tary~ y. Estimates of the typical values of the jo 1 jes for spin-flip Raman sca,tteriﬁél,25 etc. Récently,
angley for a few demonstrative cases are given below:  yianty of optical effects have been observed that are due to
(1) shallow donors in bulk GaAsy~0.01; anisotropic exchange interaction between electrons and holes
(2) donors or quantum dots in a 100-A-wifit00] GaAs i excitons confined in low-dimensional semiconductor
quantum well:y~0.1; . structure$®-22 Any of those phenomena can be, in principle,
3) d%nors near the interface in Si, wikh parallel to the  ;onsidered as a template for designing experiments with lo-
surface’ y~0.03. calized conduction-band electrons, aimed at revealing the an-
To obtain a numerical example of the dependep(®), &  isotropic exchange interaction, but of course the specifics of
pair of shallow donors in a bulk semiconductor with the ihe energy spectrum, symmetry, and spatial scale of the elec-
zinc-blende lattice is arguably the best model, because locafron wave function should be taken into account. The use of
izing potentials, one-particle wave functions, and spin-orbitne conventiondl or opticaf® electron paramagnetic reso-
constants are well known for these systems. Figure 1 disﬁance, or of the Hanle effel,in n-type semiconductors to

plays the results of a numerical calculatiomofor donors in  getect the influence of the anisotropic exchange on the spin-
GaAs as a function of the distance between donors. The cajg|axation time in the ensemble of donor-bound electrons

culation has been peiformed using exact exeressions for th&ems to be the most realistic way. Let us discuss this pos-
exchange constait’ J'=—0.8Zg(R/ag)*’exp-2R  gipility in more detail. GaAs is the most appropriate model
""B)3 and the overlap integrdl Q=[1+R/ag+(R/  semiconductor for such an inquiry since spin-related phe-
ag)”] exp(~R/ag) for hydrogenlike centers. Since in this nomena in GaAs have been studied by optical methods for
casey depends on the orientation of the donor pair withmore than three decades, and their main features, including
respect to crystal axes, the angular average/(®), y(R) spin-relaxation mechanisms of free electrons, are well
=((U4m) [T153™v*(R,0,¢)sinddode)'?, and the maximal documented® GaAs has the zinc-blende lattice, and there-
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1 2,
a-g(wwﬁc- (22)
wherewy, is the frequency of the electron-spin precession in
an effective fluctuating magnetic field produced by the
nuclear spins within the electron orbit. For shallow donors in
GaAs,wy=5%10°c .32 The dashed line in Fig. 2 displays
the results of calculation ofgy performed along Eq(22)
o/ ° under the assumption that the correlation timés governed
/ by the isotropic exchange interactidgthis is reasonable at
10"+ low temperature and low compensation of the semiconduc-
tor, when activation into the conduction band and hopping to
n, [em?] empty donors are less probable processes than flip-flop tran-
sitions. The dotted line gives the spin-relaxation time
FIG. 2. Spin-relaxation time vs donor concentration in GaAs.:(Tg,}H- TgAl)—l, which is a result of combined action of the
Solid line: calculation assuming relaxation exclusively via the an-ywo considered mechanisms.
isotropic exchange interaction of donor-bound electroms,)( To the best of our knowledge, two experimental groups
Dashed line: relaxation via hyperfine interaction with lattice nucleip5ye reported measurements of spin-relaxation time in GaAs
(7sn). Dotted line:7s=(7ey+ 754) ~*. Open circles: experimental yithin this concentration range at liquid-helium tempera-
data(Refs. 33 and 34 Solid circle: 75 in n-Alg ,dGay 75As at 4.2 K tures: Dzhioevet al3? (Np=2X 1015 cm73), and Kikkawa

(determined from experimental data of Ref).35 and Awschalori (Np=10' cm™3). In both experiments,
relaxation times as long as nearly 70 ¢ were measured.
fore the anisotropic exchange should be calculated using Eehe calculated spin relaxation time is compared in Fig. 2
(16). Spin relaxation is caused by random effective fieldsyith the experimental values from Refs. 33 and 34. For ref-
originating from anisotropic interaction of a given spin with grence, the value ofrg for n-Aly.dGa -As (Np=2.8
all the other spins in the crystalKeeping in mind that the X 10" cm™3), determined from experiméntal data on the
isotropic exchange is by a factgr * stronger than the an- Hanle effect® is also shown. One can see that the aniso-
isotropic one, we can apply the dynamic averaging formularopic exchange interaction is expected to dominate spin re-
for the corresponding spin-relaxation tinfexchange nar- |axation at donor concentrations higher than approximately

[ns]

15 16

10

rowing), yielding 7x 10" cm3, so that the experimental result of Ref. 34 can
be confidently attributed to the effect considered in this pa-
1 2, ., per. A more _ detailed_ th_eoretics_;ll treatment of low-

T_SA: R (21)  temperature spin relaxation in the impurity bandrefype

zinc-blende semiconductors with due allowance for all the
mentioned mechanisms, will be published elsewhere.
where 7. is the mean correlation time of the electron spin,
governed by flip-flop transitions due to the isotropic part of
the exchange interaction. The solid line in Fig. 2 shows the
calculated 755 as a function of donor concentratiomy The quantum computgis a hypotetic device that would
within the range from X 10" cm 3 to 2x10'® cm 3 (at  allow data processing by performing unitary transformations
this latter concentration the Mott transition into the state withover arrays of two-level quantum systems. The state of each
metallic conductivity occurd). 7, has been calculated by of the two-level systems encodes one quantum information
averaging the inverse values of spin splittings of the donorunit, the qubit. It has been proved that general unitary trans-
bound electron, induced by its isotropic exchange interactioflormations cannot be performed only by manipulating iso-
with other donors, over the random distribution of donors inlated qubits by applying external fields to the two-level sys-
the crystal. Exponential dependence of the exchange corems (one-qubit quantum gatgslt is necessary to perform
stant on the average distance between neighboring donoadso two-qubit quantum gates, realized by switching on an
results in very longrs, at low donor concentrations, so that interaction between corresponding two-level systéfriEhe
other mechanisms of spin decoherence may become coroperations with qubits should be performed with extreme
petitive. One can sugge§) thermal activation into the con- accuracy. Even with the use of special codes for error cor-
duction band, where electrons can lose spin orientation byection, large-scale quantum computation would become
Dyakonov-Perel or Elliot-Yaffet mechanism@i,) direct in-  possible only if the probability of error per quantum gate is
teraction with phonon3! and i ) interaction with the lattice less than 10° (Ref. 37. There exist several designs of quan-
nuclei. tum computers exploiting spins of localized electrons in
The latter process should be the most significant at lonsemiconductor structures either as the two-level systems car-
temperature. The expression for the spin-relaxation time ofying qubits® or as the mediator of the interaction between
donor-bound electrons due to hyperfine interaction with latqubits stored on nuclear spifiSpins of localized electrons
tice nuclei was derived by Dyakonov and PefelAt zero  are attractive for the purposes of quantum computing be-
external magnetic field it reads cause they are not subject to the main mechanisms of spin

VII. IMPLICATIONS FOR QUANTUM COMPUTERS
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relaxation known for free carriefd.For this reason, the hy- phase between the ternis 1/2/(—1/2 and(—1/2/(+1/2.
perfine interaction is considered as the main source of decince entangled states lik80| and(10 play a very impor-
herence in quantum-computer cells based on quantunfdotgant role in the theory of quantum computation, the aniso-
Employing monoisotopic Si with spinless nuclei has beertropic exchange interaction may have a serious impact on the
suggested to remove even this channel of spin relaxitionoperation of the quantum computer. The readout of data
All the designs of spin-based quantum computers rely upofrom the computer may also be affected. As follows from the
the exchange interaction as the basic means for bringing qwbove considerations, the spin state corresponding to the
bits into contact; besides the exchange interaction is assumegmmetric orbital function of the two electrons is not the
to be isotropic. It follows from the above consideration thatpure spin singlet00. Therefore, the measurement of the
this assumption is incorrect for the majority of semiconduc-spin state of the pair of electrons by checkifwgth single-

tor structures(note that the need to manipulate individual electronic techniqueshe parity of their orbital wave func-
qubits makes the designers to place localized electrons netion, suggested in Ref. 4, will be inevitably accompanied by
the surface, where it would be possible to apply concentratedrrors, again with the probability of the order ¢f~10"*
electric or magnetic fields; as a result, the exchange interac- 102,
tion will be anisotropic even if the host semiconductor is
centrosymmetric, like $i It is evident that, since the aniso-

tropic exchange interaction considered here does not con-
serve the total spin of the two interacting electrons, it pre- A theoretical study of the exchange interaction between
sents an additional source of decoherence. One can eastlyo conduction-band electrons localized at shallow centers
estimate the probability of the undesirable spin flip inducede.g., donors or quantum dot® a semiconductor structure,
by the anisotropic exchange during the swap operation  has shown that the interaction may have an anisotropic part
terchanging directions of two spins by switching on the iso-governed by the structure symmetry. The anisotropic ex-
tropic exchange for a short period of timasp.~ y2. Since  change interaction appears in the effective-mass approxima-
typical values ofy fall into the range from 0.01 to 0.1, the tion due to spin-dependent terms in the conduction-band
error probability appears to be 10 to 10 2, which is far  Hamiltonian, which are odd in the components of the elec-
beyond the limit of fault tolerant quantum computatiqna,  tron wave vectork. Respectively, the interaction exists in
<10 %, deduced by Preskifi’ One could of course suggest semiconductor structures that lack inversion symmetry, ei-
to use the states with a definite spin projectian1{2) onto  ther due to the unit-cell geometrie.g., bulk zinc-blende
the direction of the spin-orbit field as the basic states of the semiconductops or as a result of a macroscopic asymmetry
qubit. In this geometry, the anisotropic exchange will notof the structurgle.g., asymmetric quantum wells or interfa-
cause spin flips. However, this solution is of limited utility. cial layers. The main part of the interaction has the
First, it places constraints on the upscale of quantumpzyaloshinskii-Moriya form;ﬂDM:d.[slx S,], where the
computer circuits, because in quantum-well or interfacialdirection of the vectod is governed by the orientation of the
structures,b is usually parallel to the structure plane and pair of localization centers with respect to the crystal axes.
depends on the orientation of the pair of localization centersThe relative strength of the anisotropic interaction with re-
Therefore, this geometry will not allow two-dimensional ar- spect to the isotropic exchange interaction weakly depends
raying of qubits. Then, in quantum dots based on Group$n the distance between centers and is of the order of a few
-V and II-VI semiconductor quantum wells, Dyakonov- hundredths. The anisotropic exchange interaction provides
Kachorovskii[Eq. (7)] and RashbEq. (8)] spin-orbit fields  an effective channel of spin relaxation mGaAs neamp

can coexist® besides the latter is sensitive to applied electric=10% c¢m 3. It should be taken into account in analyzing
fields. This may result in changing the directionbofvith the  the spin dynamics of ensembles of localized electrons, which
gate voltage? unless the orientation of the pair of quantum js important for the operation of proposed spintronic devices,

dots, with respect to crystal axes, is carefully chosenespecially spin-based quantum computers.
Finally, the Dzyaloshinskii-Moriya interaction does not con-

serve the squared total spin of the pair of electrdéAsThis
means that in addition to errors related to undesirable spin
flips, it will cause phase errors. For example, if the quanti- The author is grateful to R. I. Dzhioev, V. L. Korenev,
zation axis is directed alond, the interaction still mixes and I. A. Merkulov for helpful discussions. The partial sup-
states  (00|=((+1/2(-1/2—(—1/2(+1/2)/\2 and port of RFBR(Project Nos. 00-15-96756 and 99-02-18p82
(10=((+1/2(—1/2+(—1/2(+1/2])/y2, changing the is acknowledged.

VIIl. CONCLUSION
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