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Anisotropic exchange interaction of localized conduction-band electrons in semiconductors

K. V. Kavokin
A. F. Ioffe Physico-Technical Institute, 194021 Politechnicheskaya 26, St. Petersburg, Russia

~Received 9 December 2000; published 13 July 2001!

The spin-orbit interaction in semiconductors is shown to result in an anisotropic contribution into the
exchange Hamiltonian of a pair of localized conduction-band electrons. The anisotropic exchange interaction
exists in semiconductor structures that are not symmetric with respect to spatial inversion, for instance in bulk
zinc-blende semiconductors. The interaction has both symmetric and antisymmetric parts with respect to
permutation of spin components. The antisymmetric~Dzyaloshinskii-Moriya! interaction is the strongest one.
It contributes significantly into spin relaxation of localized electrons; in particular, it governs low-temperature
spin relaxation inn-GaAs with the donor concentration near 1016 cm23. The interaction must be allowed for
in designing spintronic devices, especially spin-based quantum computers, where it may be a major source of
decoherence and errors.

DOI: 10.1103/PhysRevB.64.075305 PACS number~s!: 78.40.Fy, 71.70.Gm, 73.90.1f
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I. INTRODUCTION

The dynamics of electron spins in semiconductors n
attracts a considerable interest due to the idea of using
for storage, transfer, and processing of informat
~spintronics!.1 In particular, it has been suggested to u
spins of localized electrons in quantum computers2 either as
carriers of quantum information units~qubits!,3 or as agents
mediating coupling and coherent transfer of information
tween qubits realized on nuclear spins.4 For any spintronic
application, the strength and symmetry of basic interacti
of electron spins are of key importance, because these i
actions govern the information transfer as well as spin re
ation and, consequently, decoherence and errors. The s
of two localized electrons are known to be coupled by t
kinds of interaction, namely, magnetodipole and excha
interactions. As distinct from the magnetodipole interacti
the exchange interaction of localized conduction-band e
trons is widely believed to be isotropic,

Ĥex52JS1S2 , ~1!

whereJ is an exchange constant. Isotropic~scalar! interac-
tions conserve the total spin of the two electrons, and for
reason they do not cause spin relaxation and correspon
information losses in spintronic devices. The isotropic e
change interaction has been supposed to govern the
structure of the impurity band inn-type semiconductors a
low temperature.5 However, in the crystal environment, th
general form of the interaction between two spins-1/2
more complex:

Ĥex5AabS1aS2b , ~2!

where A is a second-rank tensor defined by the struct
symmetry. Anisotropic exchange interactions of this kind,
timately resulting from the spin-orbit interaction, are we
known for paramagnetic ions in crystals.6 The antisymmetric
part of this interaction, known as the Dzyaloshinskii-Mori
interaction,7,8 is usually written down in a vector form:

ĤDM5d•@S13S2#, ~3!
0163-1829/2001/64~7!/075305~7!/$20.00 64 0753
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where the vectord is related with the antisymmetric part o
the tensorA:

Aab2Aba5«abgdg , ~4!

where «abg is the third-rank antisymmetric tensor. Th
Dzyaloshinskii-Moriya interaction can exist when the crys
neighborhood of the two interacting ions lacks inversi
symmetry~thus allowing the existence of the vectord). It
arises as the first-order perturbation in the spin-orbit inter
tion, and for this reason it is the strongest anisotropic sp
spin interaction in numerous types of magnetic crystals,
cluding Group II–VI diluted-magnetic semiconductors.9 To
the best of our knowledge, this interaction has never b
considered in the context of localized charge carriers
semiconductors. In this paper, we argue that the spin-o
interaction produces an anisotropic part of the exchange
teraction between localized conduction-band electrons, h
ing the general form given by Eq.~2!, in semiconductor
structures that lack inversion symmetry, including practica
all low-dimensional structures and also bulk semiconduct
with zinc-blende and wurtzite type of the crystal lattice. T
main part of the anisotropic exchange interaction has
form of the Dzyaloshinskii-Moriya interaction and may be
strong as several hundredths of the isotropic exchange.
interaction poses considerable problems for the design
spin-based quantum computers employing electrons bo
to natural or artificial localization centers in semiconduc
structures, for instance, quantum dots3 or shallow donors.4 It
can be experimentally detected by its effect upon sp
relaxation times in bulk semiconductors and semiconduc
nanostructures with appropriate doping.

II. SPIN-ORBIT FIELDS IN SEMICONDUCTOR
STRUCTURES

The absence of the spatial inversion in the symme
group of a semiconductor structure brings about sp
dependent terms in the Hamiltonian of conduction-band e
tron, having the following general form:

ĤSO5h~k!•S. ~5!
©2001 The American Physical Society05-1
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The vectorh is an odd function of the electron wave vect
k. In particular, in zinc-blende semiconductors, like GaAsh
is cubic in the components ofk:10,11

hx5a\3~meA2meEg!21kx~ky
22kz

2!, ~6!

whereme is the effective mass of the electron,Eg is the band
gap, andkx , ky , kz are components of the wave vector alo
cubic axes@100#, @010#, and@001# respectively.Y andZ com-
ponents ofh are obtained from Eq.~6! by cyclic interchange
of indices. The dimensionless coefficienta is equal to 0.07
for GaAs. Dyakonov and Kachorovskii12 noted that the con-
finement of the electron envelope wave function in quant
wells creates a considerable mean-squared value of
wave-vector component along the structure axis. As a re
h becomes linear in the components of the two-dimensio
wave vector. For instance, if the structure axis is@001#:

hx52akx ; hy5aky ; hz50, ~7!

where a5a\3(meA2meEg)21^kz
2&. Similar terms exist in

bulk semiconductors with wurtzite structure, and in strain
zinc-blende crystals.13

Another contribution to the spin-orbit field is due to gr
dients of macroscopic potential in the semiconductor crys
Averaging the spin-orbit interaction over the potential profi
in asymmetric quantum wells gives the following depe
dence ofh on k:14

hx5cky ; hy52ckx ; hz50, ~8!

where c is a constant depending on the shape of
quantum-well potential and properties of the interfaces. T
contribution~the so-called Rashba term!, as distinct from the
spin-orbit terms given by Eqs.~6! and~7!, can exist in semi-
conductors with a centrosymmetric unit cell, like Si and G
The existence of the effective spin-orbit field is well doc
mented experimentally. It causes spin relaxation of electr
via the Dyakonov-Perel mechanism.11–13It has been also de
tected directly by passing electric currents through a se
conductor structure: collective movement of the electrons
sults in a coherent precession of their total spin.15–17

Recently, the field has been extensively discussed due t
effect upon weak localization.18

III. ANISOTROPIC EXCHANGE: QUALITATIVE
CONSIDERATION

In localized single-electron states, the odd-in-k terms dis-
appear on averaging over the envelope function of the lo
ized state. However, they do not entirely disappear for
states of two electrons localized at a pair of donors or qu
tum dots. Instead, they bring forth an anisotropy of the
change interaction of the electrons. Qualitatively, this can
explained in the following way. When one of the two ele
trons localized at centersA and B tunnels to the adjacen
localization center~say, fromA to B), it experiences an in-
fluence of the spin-orbit field resulted from the under-barr
motion of the electron. The field causes rotation of the el
trons spin through a small angle. Respectively, tunneling
the second electron to the first electrons position~from B to
07530
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A) is accompanied by the rotation of its spin through t
same angle, but in the opposite direction~becauseh changes
its polarity for the backward motion!. In other words, inter-
changing the positions of the two electrons goes along w
reciprocal rotation of their spins. As a result, there is no w
to bring the two electrons into contact, whether at one of
centers or in between, without turning their spins with r
spect to each other around the direction of the spin-o
field. One can expect, therefore, that the exchange interac
would couple these tipped spins,SA8 and SB8 , rather then
genuine electron-spin operators at centersA and B (SA and
SB , respectively!. This leads to the following heuristic ex
pression for the exchange Hamiltonian:

Ĥex52JSA8SB8

52JSASBcosg1~2J/b2!~SAb!~SBb!

3~12cosg!1~2J/b!~b@SA3SB# !sing, ~9!

whereg is the angle of relative rotation of spins, andb is the
effective spin-orbit field that acts upon the electron tunnel
from A to B. The first term in Eq.~9! is the usual scalar
interaction, the second term corresponds to the symme
part of the anisotropic exchange, and the third one — to
antisymmetric~Dzyaloshinskii-Moriya! interaction. A rigor-
ous consideration based on the Heitler-London approa
given below, confirms this conclusion and gives the value
the angleg.

IV. FORMAL DERIVATION

Let us seek the two-electron wave function in the form
a linear combination of functions:

CA~1!CB~2!x1
s1x2

s2 and CA~2!CB~1!x1
s18x

2
s28 , ~10!

where the numbers 1,2 numerate electrons,CA andCB are
coordinate wave functions localized at centersA and B, re-
spectively, andxs are spin functions. The functions@Eq.
~10!# approximate eigenfunctions of the full two-electro
HamiltonianĤ at the limit of infinite distance between cen
ters. These functions do not allow either for the influence
the potential created by each of the centers upon the o
electron function localized at the other center, or for sp
orbit interaction. This choice is justified by the smallness
spin-orbit terms in the conduction-band Hamiltonian w
respect to the electron binding energy at the center; the
fluence of the spin-orbit interaction on the wave function
the localized electron is negligible. The functions@Eq. ~10!#
correspond to degenerate energy levels withE5E0. At finite
distances,CA andCB overlap, that results in the appearan
of off-diagonal matrix elements ofĤ between the two-
electron functions of Eq.~10!:

^CA~1!CB~2!x1
s1x2

s2uĤuCA~2!CB~1!x1
s18x

2
s28&

5J8ds1s
18
ds2s

28

1^CA~1!CB~2!x1
s1x2

s2uĤSOuCA~2!CB~1!x1
s18x

2
s28&
5-2
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ANISOTROPIC EXCHANGE INTERACTION OF . . . PHYSICAL REVIEW B 64 075305
5J8ds1s
18
ds2s

28
1 iV^s2ub•S2us28&ds1s

18

2 iV^s1ub•S1us18&ds2s
28

5@J81 iVb~S2z2S1z!#ds1s
18
ds2s

28
, ~11!

whereJ8 is the usual exchange integral~it does not include
the spin-orbit interaction!, V is the overlap integral of func
tions CA and CB , b5^CAu ih„k…uCB&, and the axisZ is
directed alongb. Note that spin-orbit terms, however sma
they may be, cannot be omitted in calculating the ma
elements between degenerate energy levels. The
electron functions, odd with respect to the permutation
electrons, which are eigenfunctions of the HamiltonianĤ,
can then be easily found:

F IM 5~CA~1!CB~2!ei (g/2)(S1z2S2z)

1~21! ICA~2!CB~1!e2 i (g/2)(S1z2S2z)!z IM ,

~12!

wherez IM is an eigenfunction of the total-spin operator
the two electronsI5S11S2 , M is the Z projection of I , g
5arctan(Vb/J8). The corresponding eigenvalues areE6

5E06AJ821(Vb)2. Since we do not take into conside
ation states with both electrons located near the same ce
~this is justified due to strong Coulomb repulsion of ele
trons!, the operator of the total spinI can be as well repre
sented asI5SA1SB , whereSA andSB are spin operators o
electrons localized at centersA and B, respectively. Noting
that the first term in Eq.~12! corresponds to the location o
the first and second electron near centersA and B, respec-
tively, and the second term to the inverted location of el
trons, one can substitute the pair of spin operatorsSA andSB
instead ofS1 andS2 in exponents, thus obtaining

F IM 5@CA~1!CB~2!1~21! ICA~2!CB~1!#exp

3F2 i
g

2
~SAz2SBz!Gz IM . ~13!

We come to a two-electron wave function, which is a pro
uct of an~odd or even! orbital function and a spin function
h IM (g)5exp@2ig/2(SAz2SBz)#z IM . The functionsh IM (g)
are eigenfunctions of the operator

expF i
g

2
~SAz2SBz!GSASBexpF2 i

g

2
~SAz2SBz!G5SA8SB8 ,

~14!

whereSA8 andSB8 are obtained fromSA andSB by a rotation
around Z through the angles2g/2 and g/2, respectively.
This immediately yields the expression~9! for the exchange
operator Ĥex , with g5arctan(Vb/J8) and J
5(J8/uJ8u)AJ821(Vb)2. Let us now find the vectorb for
two characteristic cases.

~i! A pair of donors in a zinc-blende semiconductor.In
this caseh(k) is given by Eq.~6!. For spherically symmetric
functionsC(r ), it is easy to obtain by direct differentiation
07530
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]z S ]2

]x2
2

]2

]y2D C~r !5
z~x22y2!

r 3 FC-23
C9

r
13

C8

r 2 G
5

i

2
A32p

105
@Y3,12~u,w!

1Y3,22~u,w!#FC-23
C9

r
13

C8

r 2 G ,

~15!

where Y3,62(u,w)52 iA(105/32p)cosu sin2u exp(62iw) is
a third-order spherical harmonic, anglesu andw are defined
in the usual way, so thatz5r cosu, x5r sinu cosw, y
5r sinu sinw. Making use of the axial symmetry of the sy
tem and of the properties of spherical harmonics,19 one can
derive the following expressions for the components ofb:

bz5A3E d3r C~ ur2Ru!F ]

]z S ]2

]x2
2

]2

]y2D C~r !G
5A3cosu0 sin2u0~cos2w02sin2w0!

3E d3r S iA4p

7
Y3,0DC~ ur2Ru!FC-23

C9

r
13

C8

r 2 G
5A3

Rz~Rx
22Ry

2!

R3
f 3~R!, ~16!

where

f 3~R!5E d3r
cosu~5 cos2u23!

2

3C~ ur2Ru!FC-23
C9

r
13

C8

r 2 G ,

A35a\3~meA2meEg!21,

angles u0 and w0 define the direction ofR, so that Rz
5R cosu0, Rx5R sinu0 cosw0, and Ry5R sinu0 sin w0.
The expressions for other components ofb are obtained by
cyclic interchange of indices.

~ii ! A similar result for the linear-in-k spin-orbit field in a
two-dimensional systemcan be obtained with elementar
trigonometry:

bx52A1

Rx

R
f 1~R!; by5A1

Ry

R
f 1~R! ~17!

for Dyakonov-Kachorovskii terms, and

bx5A1

Ry

R
f 1~R!; by52A1

Rx

R
f 1~R! ~18!

for Rashba terms. Here
5-3
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K. V. KAVOKIN PHYSICAL REVIEW B 64 075305
f 1~R!5E d2rFC~ ur2Ru!
]C~r!

]r
cosuG ,

r is a two-dimensional position vector,u is the angle be-
tween r and R, A1 equalsa for Dyakonov-Kachorovskii
terms@Eq. ~7!#, andc for Rashba terms@Eq. ~8!#.

V. ESTIMATION OF THE INTERACTION STRENGTH

Asymptotic expressions for the integrals in Eqs.~16!,
~17!, and ~18!, valid at long distances between centers,
obtained by putting cosu equal to 1 and retaining only term
with the third derivative in Eq.~16!. For hydrogenlike cen-
ters they read

f 3~R!5
V

aB
3

; f 1~R!5
V

2aB
, ~19!

whereaB is the effective Bohr radius, andV is the overlap
integral. Expressions~19! can be used to estimatef 1(R) and
f 3(R) for any other type of potential, substituting in the d
nominator the corresponding localization radius. Having
mind thatJ8}V2EB , whereEB is the electron binding en
ergy at the center, we find thatg does not depend on th
distance exponentially. The dependence ofg on the distance
is due to preexponential factors inV, f, andJ8, and is rather
weak. One can therefore obtain as an order-of-magnit
estimate of angular averages ofg at intercenter distance
several times greater than the localization radius~when pre-
exponential factors are still close to 1, but asymptotic expr
sions@Eq. ~19!# are already valid!:

tang3'
A3

EBaB
3

; tang1'
A1

EBaB
. ~20!

One can see that for the values of parameters typica
most semiconductors, these values are much smaller
unity, so that tang'g. Estimates of the typical values of th
angleg for a few demonstrative cases are given below:

~1! shallow donors in bulk GaAs:g'0.01;
~2! donors or quantum dots in a 100-A-wide@100# GaAs

quantum well:g'0.1;
~3! donors near the interface in Si, withR parallel to the

surface:20 g'0.03.
To obtain a numerical example of the dependenceg(R), a

pair of shallow donors in a bulk semiconductor with t
zinc-blende lattice is arguably the best model, because lo
izing potentials, one-particle wave functions, and spin-o
constants are well known for these systems. Figure 1
plays the results of a numerical calculation ofg for donors in
GaAs as a function of the distance between donors. The
culation has been performed using exact expressions fo
exchange constant5,21 J8520.82EB(R/aB)5/2exp(22R/
aB) and the overlap integral22 V5@11R/aB1(R/
aB)3# exp(2R/aB) for hydrogenlike centers. Since in th
caseg depends on the orientation of the donor pair w
respect to crystal axes, the angular average ofg(R), ḡ(R)
5((1/4p)*0

p*0
2pg2(R,u,w)sinudu dw)1/2, and the maximal
07530
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value ofg(R) corresponding to the orientation of the don
pair along@110#, are plotted. It is worth noting thatg rises
with R. With further increase ofR it asymptotically ap-
proachesp/2. However, for actual structures at meaning
distances, it remains small. This means that, like in the c
of Mn21 ions in Group II–VI semimagnetic semiconductor
the Dzyaloshinskii-Moriya interaction is the strongest a
practically the only significant part of the anisotropic e
change interaction.

VI. COMPARISON WITH EXPERIMENT: SPIN
RELAXATION IN n-GaAs

A great variety of experimental manifestations of anis
tropic spin-spin interactions in systems of magnetic ions
nuclear spins are presently known, including their influen
on the magnetic order in magnets,7,23 spin relaxation,6 selec-
tion rules for spin-flip Raman scattering,24,25 etc. Recently,
plenty of optical effects have been observed that are du
anisotropic exchange interaction between electrons and h
in excitons confined in low-dimensional semiconduc
structures.26–28Any of those phenomena can be, in princip
considered as a template for designing experiments with
calized conduction-band electrons, aimed at revealing the
isotropic exchange interaction, but of course the specific
the energy spectrum, symmetry, and spatial scale of the e
tron wave function should be taken into account. The use
the conventional6 or optical29 electron paramagnetic reso
nance, or of the Hanle effect,13 in n-type semiconductors to
detect the influence of the anisotropic exchange on the s
relaxation time in the ensemble of donor-bound electro
seems to be the most realistic way. Let us discuss this p
sibility in more detail. GaAs is the most appropriate mod
semiconductor for such an inquiry since spin-related p
nomena in GaAs have been studied by optical methods
more than three decades, and their main features, inclu
spin-relaxation mechanisms of free electrons, are w
documented.13 GaAs has the zinc-blende lattice, and the

FIG. 1. Angular average~solid line! and the maximal value ofg
~dashed line! for a pair of donors in GaAs vs the distance betwe
donors.
5-4
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ANISOTROPIC EXCHANGE INTERACTION OF . . . PHYSICAL REVIEW B 64 075305
fore the anisotropic exchange should be calculated using
~16!. Spin relaxation is caused by random effective fie
originating from anisotropic interaction of a given spin wi
all the other spins in the crystal.6 Keeping in mind that the
isotropic exchange is by a factorg21 stronger than the an
isotropic one, we can apply the dynamic averaging form
for the corresponding spin-relaxation time~exchange nar-
rowing!, yielding

1

tSA
5

2

3
g2tc

21 , ~21!

wheretc is the mean correlation time of the electron sp
governed by flip-flop transitions due to the isotropic part
the exchange interaction. The solid line in Fig. 2 shows
calculated tSA as a function of donor concentrationnD
within the range from 231015 cm23 to 231016 cm23 ~at
this latter concentration the Mott transition into the state w
metallic conductivity occurs30!. tc has been calculated b
averaging the inverse values of spin splittings of the don
bound electron, induced by its isotropic exchange interac
with other donors, over the random distribution of donors
the crystal. Exponential dependence of the exchange
stant on the average distance between neighboring do
results in very longtSA at low donor concentrations, so th
other mechanisms of spin decoherence may become c
petitive. One can suggest~i! thermal activation into the con
duction band, where electrons can lose spin orientation
Dyakonov-Perel or Elliot-Yaffet mechanisms,~ii ! direct in-
teraction with phonons,31 and~iii ! interaction with the lattice
nuclei.

The latter process should be the most significant at
temperature. The expression for the spin-relaxation time
donor-bound electrons due to hyperfine interaction with
tice nuclei was derived by Dyakonov and Perel.32 At zero
external magnetic field it reads

 

FIG. 2. Spin-relaxation time vs donor concentration in GaA
Solid line: calculation assuming relaxation exclusively via the
isotropic exchange interaction of donor-bound electrons (tSA).
Dashed line: relaxation via hyperfine interaction with lattice nuc
(tSN). Dotted line:tS5(tSN

211tSA
21)21. Open circles: experimenta

data~Refs. 33 and 34!. Solid circle:tS in n-Al0.28Ga0.72As at 4.2 K
~determined from experimental data of Ref. 35!.
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tSN
5

2

3
^vN

2 &tc , ~22!

wherevN is the frequency of the electron-spin precession
an effective fluctuating magnetic field produced by t
nuclear spins within the electron orbit. For shallow donors
GaAs,vN553108c21.32 The dashed line in Fig. 2 display
the results of calculation oftSN performed along Eq.~22!
under the assumption that the correlation timetc is governed
by the isotropic exchange interaction~this is reasonable a
low temperature and low compensation of the semicond
tor, when activation into the conduction band and hopping
empty donors are less probable processes than flip-flop t
sitions!. The dotted line gives the spin-relaxation timetS

5(tSN
211tSA

21)21, which is a result of combined action of th
two considered mechanisms.

To the best of our knowledge, two experimental grou
have reported measurements of spin-relaxation time in G
within this concentration range at liquid-helium temper
tures: Dzhioevet al.33 (nD5231015 cm23), and Kikkawa
and Awschalom34 (nD51016 cm23). In both experiments,
relaxation times as long as nearly 1027 c were measured
The calculated spin relaxation timetS is compared in Fig. 2
with the experimental values from Refs. 33 and 34. For r
erence, the value oftS for n-Al0.28Ga0.72As (nD52.8
31016 cm23), determined from experimental data on th
Hanle effect,35 is also shown. One can see that the ani
tropic exchange interaction is expected to dominate spin
laxation at donor concentrations higher than approxima
731015 cm23, so that the experimental result of Ref. 34 c
be confidently attributed to the effect considered in this
per. A more detailed theoretical treatment of low
temperature spin relaxation in the impurity band ofn-type
zinc-blende semiconductors with due allowance for all
mentioned mechanisms, will be published elsewhere.

VII. IMPLICATIONS FOR QUANTUM COMPUTERS

The quantum computer2 is a hypotetic device that would
allow data processing by performing unitary transformatio
over arrays of two-level quantum systems. The state of e
of the two-level systems encodes one quantum informa
unit, the qubit. It has been proved that general unitary tra
formations cannot be performed only by manipulating is
lated qubits by applying external fields to the two-level sy
tems ~one-qubit quantum gates!. It is necessary to perform
also two-qubit quantum gates, realized by switching on
interaction between corresponding two-level systems.36 The
operations with qubits should be performed with extre
accuracy. Even with the use of special codes for error c
rection, large-scale quantum computation would beco
possible only if the probability of error per quantum gate
less than 1026 ~Ref. 37!. There exist several designs of qua
tum computers exploiting spins of localized electrons
semiconductor structures either as the two-level systems
rying qubits,3 or as the mediator of the interaction betwe
qubits stored on nuclear spins.4 Spins of localized electrons
are attractive for the purposes of quantum computing
cause they are not subject to the main mechanisms of

.
-

i
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K. V. KAVOKIN PHYSICAL REVIEW B 64 075305
relaxation known for free carriers.13 For this reason, the hy
perfine interaction is considered as the main source of d
herence in quantum-computer cells based on quantum d3

Employing monoisotopic Si with spinless nuclei has be
suggested to remove even this channel of spin relaxati4

All the designs of spin-based quantum computers rely u
the exchange interaction as the basic means for bringing
bits into contact; besides the exchange interaction is assu
to be isotropic. It follows from the above consideration th
this assumption is incorrect for the majority of semicondu
tor structures~note that the need to manipulate individu
qubits makes the designers to place localized electrons
the surface, where it would be possible to apply concentra
electric or magnetic fields; as a result, the exchange inte
tion will be anisotropic even if the host semiconductor
centrosymmetric, like Si!. It is evident that, since the aniso
tropic exchange interaction considered here does not
serve the total spin of the two interacting electrons, it p
sents an additional source of decoherence. One can e
estimate the probability of the undesirable spin flip induc
by the anisotropic exchange during the swap operation~in-
terchanging directions of two spins by switching on the is
tropic exchange for a short period of time!, aspe'g2. Since
typical values ofg fall into the range from 0.01 to 0.1, th
error probability appears to be 1024 to 1022, which is far
beyond the limit of fault tolerant quantum computation,pe
&1026, deduced by Preskill.37 One could of course sugge
to use the states with a definite spin projection (61/2) onto
the direction of the spin-orbit fieldb as the basic states of th
qubit. In this geometry, the anisotropic exchange will n
cause spin flips. However, this solution is of limited utilit
First, it places constraints on the upscale of quantu
computer circuits, because in quantum-well or interfac
structures,b is usually parallel to the structure plane a
depends on the orientation of the pair of localization cent
Therefore, this geometry will not allow two-dimensional a
raying of qubits. Then, in quantum dots based on Gro
III–V and II–VI semiconductor quantum wells, Dyakonov
Kachorovskii@Eq. ~7!# and Rashba@Eq. ~8!# spin-orbit fields
can coexist;38 besides the latter is sensitive to applied elec
fields. This may result in changing the direction ofb with the
gate voltage,39 unless the orientation of the pair of quantu
dots, with respect to crystal axes, is carefully chos
Finally, the Dzyaloshinskii-Moriya interaction does not co
serve the squared total spin of the pair of electrons,I 2. This
means that in addition to errors related to undesirable s
flips, it will cause phase errors. For example, if the quan
zation axis is directed alongb, the interaction still mixes
states ^00u5(^11/2u^21/2u2^21/2u^11/2u)/A2 and
^10u5(^11/2u^21/2u1^21/2u^11/2u)/A2, changing the
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phase between the terms^11/2u^21/2u and ^21/2u^11/2u.
Since entangled states like^00u and^10u play a very impor-
tant role in the theory of quantum computation, the ani
tropic exchange interaction may have a serious impact on
operation of the quantum computer. The readout of d
from the computer may also be affected. As follows from t
above considerations, the spin state corresponding to
symmetric orbital function of the two electrons is not th
pure spin singlet̂ 00u. Therefore, the measurement of th
spin state of the pair of electrons by checking~with single-
electronic techniques! the parity of their orbital wave func-
tion, suggested in Ref. 4, will be inevitably accompanied
errors, again with the probability of the order ofg2;1024

21022.

VIII. CONCLUSION

A theoretical study of the exchange interaction betwe
two conduction-band electrons localized at shallow cen
~e.g., donors or quantum dots! in a semiconductor structure
has shown that the interaction may have an anisotropic
governed by the structure symmetry. The anisotropic
change interaction appears in the effective-mass approx
tion due to spin-dependent terms in the conduction-b
Hamiltonian, which are odd in the components of the el
tron wave vectork. Respectively, the interaction exists
semiconductor structures that lack inversion symmetry,
ther due to the unit-cell geometry~e.g., bulk zinc-blende
semiconductors!, or as a result of a macroscopic asymme
of the structure~e.g., asymmetric quantum wells or interfa
cial layers!. The main part of the interaction has th
Dzyaloshinskii-Moriya form:ĤDM5d•@S13S2#, where the
direction of the vectord is governed by the orientation of th
pair of localization centers with respect to the crystal ax
The relative strength of the anisotropic interaction with
spect to the isotropic exchange interaction weakly depe
on the distance between centers and is of the order of a
hundredths. The anisotropic exchange interaction provi
an effective channel of spin relaxation inn-GaAs nearnD
51016 cm23. It should be taken into account in analyzin
the spin dynamics of ensembles of localized electrons, wh
is important for the operation of proposed spintronic devic
especially spin-based quantum computers.
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