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Pumped current and voltage for an adiabatic quantum pump
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~Received 08 February 2001; published 13 July 2001!

We consider adiabatic pumping of electrons through a quantum dot. There are two ways to operate the

pump: to create a dc currentĪ or to create a dc voltageV̄. We demonstrate that, for very slow pumping,Ī and

V̄ are not simply related via the dc conductanceG as Ī 5V̄G. For the case of a chaotic quantum dot, we

consider the statistical distribution ofV̄G2 Ī . Results are presented for the limiting cases of a dot with
single-channel and with multichannel point contacts.

DOI: 10.1103/PhysRevB.64.075304 PACS number~s!: 73.23.2b, 72.10.Bg
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I. INTRODUCTION

An electron pump is a device that converts a perio
variation of its characteristics into a time-independent el
tric current.1 Such characteristics can be ‘‘macroscopic,’’ lik
the charge on the device or the conductance of point c
tacts, or ‘‘microscopic,’’ such as the location of a scatterer
the magnetic flux threading the sample. When there are
characteristics of the device that can be varied harmonic
with a frequencyv and phase differencef, pumping of
electrons already occurs in the adiabatic limitv→0. In that
case the pumped current is proportional tov sinf, and
changes sign when the phase relationship between the
rameters is reversed. Adiabatic electron pumps have b
realized experimentally in~arrays of! Coulomb blockaded
quantum dots, using the voltages on plunger gates, and/o
transparencies of the contacts as pumping parameters.2–4

In this paper, we consider an adiabatic electron pump
consists of a semiconductor quantum dot coupled to
electron reservoirs by means of ballistic point contac5

Variation of two gate voltages allows for small changes
the shape of the dot, and thus for the flow of a dc curre
Following a proposal by Spivaket al.,6 such a device has
been built and investigated by Switkeset al.7 The device of
Ref. 7 is referred to as an ‘‘adiabatic quantum pump,’’ b
cause the variation of the gate voltages predominantly aff
the quantum interference of the electrons in the quantum
not their classical trajectories. An important property of t
quantum dot used in the experiment of Ref. 7 is that
classical dynamics is chaotic. As a result, the magnitude
the sign of the expected pumped currentĪ are subject to
mesoscopic fluctuations. Since these fluctuations are la
the mean̂ Ī & and variancê Ī 2& are insufficient to describe
the ensemble, and one needs to know the entire probab
distributionP( Ī ).

Theoretical analysis has focused on the dc currenĪ
pumped through the dot,8–13

Ī 5
1

TE0

T

dt I~ t !, ~1!

T52p/v being the period of the pumping cycle. Howeve
experimentally, the preferred measurement is that of the
voltageV̄ that the electron pump generates,7
0163-1829/2001/64~7!/075304~6!/$20.00 64 0753
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V̄5
1

TE0

T

dt V~ t !. ~2!

Naively, one might expect that, for small pumping amp

tudes,Ī and V̄ are related via the dot’s conductanceG as Ī

5V̄G. However, as we show in this paper, this nai
‘‘Ohm’s law’’ is not always true, depending on whether th
pumping frequencyv is small or large compared to th
charge-relaxation rateg of the reservoirs.~For adiabatic
pumping,v must always be small compared to the charg
relaxation rate of the quantum dot.! For v!g and if the
numberN of propagating channels in the point contacts b
tween the quantum dot and the electron reservoirs is sm
the pumped currentĪ and the differenceD̄5V̄G2 Ī can ac-
tually be of comparable magnitude.

A qualitative explanation why the pumped voltage a
current are not related via the simple relationV̄G2 Ī in the
limit v!g follows from the observation that both th
pumped current and the pumped voltage have dc and
components. For slow pumping, the electron pump gener
a bias voltage that counteracts both the dc and ac curr
generated in the dot. Since the conductanceG itself also
varies in time,VacG has a dc component. It is this addition
rectified dc component of the current that is responsible
the difference betweenV̄G and Ī for an adiabatic electron
pump. When pumping is faster than the charge relaxa
rate of the reservoirs, no ac bias voltage is generated to
ance the ac current, and the difference betweenV̄G and Ī
disappears.

The purpose of this paper is to find the distribution of t
differenceV̄G2 Ī between pumped current and pumped vo
age for adiabatic pumping of electrons through a chao
quantum dot and to compare it to the distributions ofĪ and
V̄. For a chaotic dot, these distributions have a univer
form, independent of details of the pumping mechanism
the shape of the quantum dot. In Sec. II we use the scatte
approach to present a quantitative theory for the pum
voltageV̄, and the differenceD̄5V̄G2 Ī . In Sec. III we then
evaluate the distribution ofV̄G2 Ī for an ensemble of cha
otic quantum dots, using random matrix theory. We conclu
in Sec. IV.
©2001 The American Physical Society04-1
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II. PUMPED CURRENT AND VOLTAGE

We consider a quantum dot coupled to two electron r
ervoirs via point contacts; see Fig. 1. The shape of the qu
tum dot is varied periodically by variation of two gate vo
ages, represented by dimensionless parametersX1 and X2.
Alternatively,X1 or X2 can represent the value of an appli
magnetic field, or any other parameter that characterizes
quantum dot.

As discussed in the Introduction, the electron pump c
be characterized experimentally via a direct measuremen
the pumped current, or via a measurement of the volt
V(t) between the two reservoirs generated as a result of
pumping of charge through the quantum dot.14 A formula for
the dc current has been derived in Refs. 8 and 9. To deri
formula for the dc voltageV̄, we introduce a simple mode
for the quantum dot and the two electron reservoirs; see
2. The dot and the reservoirs 1 and 2 are connected
screening gate via capacitancesC and C1 ,C2. Following
Refs. 15 and 16, we introduce the emissivityedq(m)/dXj ,
which is the charge that exits the dot through point contacm
(m51,2) when the parameterXj ( j 51,2) is changed adia
batically by an amountdXj . Then the total current flowing
through contacts 1 and 2 reads

I 1~ t !5e(
i 51

2
dq~1!

dXi

dXi

dt
1@V1~ t !2V2~ t !#G, ~3a!

I 2~ t !5e(
i 51

2
dq~2!

dXi

dXi

dt
1@V2~ t !2V1~ t !#G, ~3b!

FIG. 1. Schematic of a chaotic quantum dot whose shape ca
changed by varying gate voltagesX1 andX2 ~left!. In one cycleX1

andX2 trace out a contour in (X1 ,X2) space~right!.

FIG. 2. Equivalent circuit for a measurement of the pump
voltage through the dot~left! and of the pumped current~right!. Ci

andC are geometrical capacitances of thei th reservoir and the dot
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whereG is the dc cconductance of the quantum dot. Here
assume that all variations are made slowly on the scale of
dwell time of the quantum dot.

When current is measured, the voltages of the two re
voirs are equal,V1(t)5V2(t). Hence the dc currentĪ can be
found from integration of Eq.~3a! or ~3b!.8 Using Stokes’s
theorem,Ī can be rewritten as an integral over the surfa
areaS enclosed by the contour of the parametersX1 andX2
in the (X1 ,X2) plane,

Ī 5
ev

2pE dX1dX2 ī ~X1 ,X2!, ~4a!

where

ī 5
]

]X2

]q~1!

]X1
2

]

]X1

]q~1!

]X2
52

]

]X2

]q~2!

]X1
1

]

]X1

]q~2!

]X2
.

~4b!

When voltage is measured, the result depends on whe
variation of the parametersX1 and X2 is fast or slow com-
pared to the charge relaxation ratesg1,2;G/C1,2 of the res-
ervoirs. Combining Eq.~3a! with I 15C1dV1(t)/dt and I 2
5C2dV2(t)/dt one obtains

d~V12V2!

dt
5(

i 51

2 S e

C1

dq~1!

dXi
2

e

C2

dq~2!

dXi
DdXi

dt

1GS 1

C1
1

1

C2
D ~V12V2!. ~5!

If the variation is fast compared tog1,2 ~but still slow com-
pared to the charge relaxation rate of the quantum dot!, the
voltage differenceV12V2 is essentially time independen
and takes the value

V̄5 Ī /Ḡ, ~6!

whereḠ is the conductance averaged over one cycle,

Ḡ5
1

TE0

T

dt G„X1~ t !,X2~ t !…. ~7!

In the opposite limitv!g1,2, which is the case we will
consider in the remainder of the paper, the right-hand sid
Eq. ~5!, which is proportional tog1,2, must vanish, so tha
I 1(t)5hI 2(t), whereh5C1 /C2 is a numerical coefficient
describing the capacitive division between the two res
voirs. Combining this with Eq.~3a!, we find

V1~ t !2V2~ t !5
e

G~11h! (
i 51

2 S dq~1!

dXi

dXi

dt
2h

dq~2!

dXi

dXi

dt D .

~8!

The dc voltageV̄ is then found by integration over th
periodT, with the result

V̄5
hv

4peE dX1dX2v̄~X1 ,X2!, ~9a!

be

d
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v̄5
1

11h F ]

]X2
S 1

g

]q~1!

]X1
D2

]

]X1
S 1

g

]q~1!

]X2
D G

2
h

11hF ]

]X2
S 1

g

]q~2!

]X1
D2

]

]X1
S 1

g

]q~2!

]X2
D G , ~9b!

where g5hG/2e2 is the dimensionless conductance. F
small harmonic variations of the parameters,X1(t)
5dX1cos(vt) and X2(t)5dX2cos(vt1f), the integrations
are trivial, and one finds

Ī 5
1

2
evdX1dX2 ī sinf ~10!

for the pumped current, and

V̄5
hv

4e
dX1dX2v̄ sinf ~11!

for the pumped voltage.
If the conductanceG were constant in a cycle, i.e.,G

would not depend onX1 and X2, Eqs. ~4b! and ~9a!–~11!

give the identityV̄G5 Ī : the pumped current measured
zero bias and the pumped voltage measured at zero cu
are related by Ohm’s law. However, in generalG does de-
pend onX1 and X2, and this ‘‘Ohm’s law’’ does not hold.
The deviation is described by the difference

D̄5V̄G2 Ī . ~12!

For smalldX1 anddX2, we find from Eqs.~4! and ~9!,

D̄5
1

2
evdX1dX2d̄ sinf, ~13a!

d̄5
1

11hF1

g

]g

]X1

]q~1!

]X2
2

1

g

]g

]X2

]q~1!

]X1
G

2
h

11hF1

g

]g

]X1

]q~2!

]X2
2

1

g

]g

]X2

]q~2!

]X1
G . ~13b!

The derivatives toX1 andX2 appearing in the above formu
las are derivatives taken at constant values of the elec
chemical potentialm of the reservoirs. These are not nece
sarily equal to derivatives taken at a constant value of
~self-consistent17! electrostatic potentialVsc inside the quan-
tum dot.~The self-consistent electrostatic potential is me
in the sense of a mean-field approximation of the electr
electron interactions; see Refs. 14–16 for details.! Changes
of Vsc occur in a pumping cycle, because the total charge
the dot may vary during the pumping cycle. For techni
reasons, it is preferred to treatVsc, or, equivalently, the ki-
netic energyE5m2Vsc, as an independent parameter, a
to take derivatives at constantE. The above equations fo
pumped voltage and current can be rewritten using der
tives at constantE if we substitute the parametric derivative
]/]X1 and]/]X2 in Eqs.~4b!, ~9a!, and~13b! by15,16

] Um→ ] U1]E ]
, ~14a!
]X ]XE ]X ]E
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]E

]Xi
52

]q/]Xi

C/2e21]q/]E
. ~14b!

HereC is the capacitance of the quantum dot. In Eq.~14a!,
we abbreviated

]q

]Xj
5

]q~1!

]Xj
1

]q~2!

]Xj
. ~15!

For a realistic quantum dot, the charging energye2/C is
much larger than the mean level spacingD. In that limit, one
finds that the dot charge remains constant during the pu
ing cycle,I 1(t)52I 2(t) for all time. As a consequence, th
pumped voltageV̄ and the differenceD̄5V̄G2 Ī lose their
dependence on the capacitive divisionh.

In the absence of inelastic processes and for low temp
tures~temperatureT below the mean level spacingD in the
quantum dot!, the emissivities]q(m)/]Xj and the conduc-
tanceG can be expressed in terms of the scattering matriS
of the quantum dot and its derivatives toX1 , X2, andE. The
matrix Shas dimension 2N, whereN is the number of propa-
gating channels in each point contact; it is unitary~unitary
symmetric! in the presence~absence! of a time-reversal sym-
metry breaking magnetic field. The derivatives ofS are pa-
rametrized via Hermitian matricesR andRj , defined as20

R52 i
D

2p

]S

]E
S†, Rj52 i

]S

]Xj
S†.

Then the emissivities]q(m)/]E and]q(m)/]X, m51,2, are
given by16

]q~m!

]E
5

1

D
Re trPmR, ~16a!

]q~m!

]Xj
5

1

2p
Re trPmRj . ~16b!

Here P1512P2 is a diagonal matrix with elements (P1) j j
51 if j <m and zero otherwise. The dc conductanceg is
given by the Landauer formula,

g5tr S†P1SP2 . ~17!

In the next section, we shall study the distribution of t
dimensionless differenced̄5 v̄g2 ī for the case of a chaotic
quantum dot.

III. DISTRIBUTION OF D ǞV̄GÀ Ī

For an ensemble of chaotic quantum dots, the statist
distribution of the scattering matrix and its derivatives
known from the literature.19 It takes its simplest form when
the derative ofS is not parametrized by the matricesRj and
R, but by the symmetrized derivativesQ andQj ,

Q5S21/2RS1/2, Qj5S21/2RjS
1/2.

In the presence of time-reversal symmetry~labeled by the
Dyson parameterb51!, the matricesQ, Q1, andQ2 are real
symmetric. When time-reversal symmetry is broken by
4-3
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magnetic field (b52), Q, and Q1, and Q2 are Hermitian.
For ideal contacts, the joint distributionP(S,Q,Q1 ,Q2)
reads19

P}S 11
2e2

CD
tr QD ~detQ!2N/222(bN122b)

3expF2
b

2
tr~Q21!GQ~Q!

3expF2
b

16
tr@~Q21Q1!21~Q21Q2!2#G , ~18!

where Q(Q)51 if all eigenvalues ofQ are positive and
Q(Q)50 otherwise. The capacitanceC appears in the dis
tribution because the ensemble is obtained by sweepin
external gate voltage, not the self-consistent energyE.18

To find the distributionP(d̄), we first integrate overQ1
and Q2 at fixed S and Q, and then overS and Q. The first
integration can be done analytically, since, for fixedQ, Q1
and Q2 are Gaussian random matrices; see Eq.~18!. The
result of this integration takes a simple form,

P~ d̄!5 K 1

2s
e2ud̄u/sL

S,Q

, ~19!

where the angular brackets indicate the average overSandQ
that remains to be done. In Eq.~19! s is positive function of
S andQ, given by

s25S 16

bgD 2F S tr A21
db,1

2
tr~PRSPRTS†2PRPR! D tr B2

2~ tr AB!2G , ~20!

where we abbreviated

A5RS P2
tr PR

CD/2e21tr R
D ,

B5RS L2
tr LR

CD/2e21tr R
D ,

and P5(P12hP2)/(11h), L5 i (P1SP2S†2SP2S†P1).
For the remaining integrations overSandQ we consider two
limiting cases: multichannel point contacts (N@1) and
single-channel point contacts (N51).

A. Single-channel contacts

For N51 the remaining number of variables is small, a
can be integrated over numerically, using the distribut
~18!.21 Results for the~physically relevant! limit CD!e2 are
shown in Fig. 3. In this limit, the distributionP(d̄) does not
depend on the capacitive divisionh between the reservoirs
The results for larger values ofC are not very different from
those shown in Fig. 3. This is illustrated in the inset of Fig.
where we have shown the distributionP(d̄) for the case of
07530
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n

,

large capacitanceCD@e2 and asymmetric reservoirs~ca-
pacitive divisionh50). For d̄ close to zero, the distribution
shows a cusp with a logarithmically divergent derivative
d̄50. For d̄@1, the distributionP(d̄) has power-law tails.
For CD!e2 these are23

P~ d̄!}H d̄23, b51

d̄23ln d̄, b52.
~21!

The tails of the distribution correspond to samples with
anomalously large eigenvalue ofQ, corresponding to an
anomalously large dwell timetD :20 a value ofd̄ in the tail of
the contribution typically corresponds to a dwell timetD

;tHd̄2/b, tH5\/D being the Heisenberg time. Since co
figurations with anomalously large dwell times are more s
sitive to dephasing or thermal smearing, such perturbati
will truncate the tails ford̄*(tf /tH)b/2 or d̄*(tHT)2b/2.

For comparison, we have also calculated the distribut
of the pumped currentī and voltagev̄. For single-channel
contacts, the distribution again takes the form~19!, with s
replaced bys i andsv , respectively. Expressions fors i and
sv can be found in the Appendix. The resulting distributio
are shown in Fig. 4.~The distribution of the current wa
calculated previously in Ref. 8.! The main conclusion upon
comparison of Figs. 3 and 4 is that, for single-channel po
contacts, the distributions ofī and of d̄5 v̄g2 ī have com-
parable widths. Hence, forN51, deviations from ‘‘Ohm’s
law,’’ as characterized byd̄5 v̄g2 ī are of the same order a
the pumped currentī itself.

B. Multi-channel contacts

The distribution ofd̄ in the limit N@1 can be directly
obtained from Eq.~19!. The integration over the unitary ma
trix U of eigenvectors ofR and over the scattering matrixS is
performed using the method of Ref. 22. For the remain
integration over the eigenvaluest i , i 51, . . . ,2N, of the ma-
trix R it is sufficient to know their density,19

FIG. 3. Distribution of the normalized differenced̄5 v̄g2 ī be-

tween pumped voltagev̄ and pumped currentī for single-channel
point contacts, for the physically relevant limitCD!e2 ~main fig-
ure!. The opposite limitCD@e2 is shown in the inset for the cas
h50. The presence~absence! of time-reversal symmetryb51
(b52) is shown as a solid~dashed! line.
4-4
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r~t!5(
j 51

2N

^d~t j2t!&5
N

pt2
A~t12t!~t2t2!, ~22!

wheret65(36A8)/2N. The result is

^s2&5
4

bN4 F11
4

b S 12h

11h D 2S D

D12e2/C
D 2G . ~23!

@The 1/N4 prefactor in Eq.~23! follows from a contribution
}1/N2 from the factorg22 in Eq. ~20! and a factor 1/N from
each of the traces trA2 and trB2 in that same equation; th
term (trAB)2 in Eq. ~20! does not contribute tôs2& to
leading order in 1/N.# Calculation of higher moments ofs
shows that fluctuations ofs are small compared to the ave
age asN→`. Hence, we can conclude that the distributi
of d̄ in multichannel limit is of the Poissonian form~19!,
with s2 given by Eq.~23!.

This is to be contrasted with the distribution of th
pumped currentī , which is Gaussian for largeN, with zero
mean and with root mean square8,10

^ ī 2&1/25
1

pN
. ~24!

Hence we conclude that, for largeN, typically d̄ is a factor
;N smaller than the pumped current, and can be negle
in a measurement. Hence, in the limitN→` the expectation
of Ohm’s law v̄g5 ī holds, and one readily concludes th
the pumped voltagev̄ has a Gaussian distribution with ze
mean and with root mean square

^v̄2&1/25
2

pN2 . ~25!

IV. CONCLUSION

In summary, for adiabatic pumping of electrons throug
chaotic quantum dot, we have derived expressions of
pumped currentĪ ~in case of a current measurement! or the
pumped voltageV̄ ~in case of a voltage measurement! in
terms of the scattering matrix of the quantum dot. Pump

FIG. 4. Distribution of normalized pumped currentī and~inset!

voltage v̄ for single-channel contacts. The presence~absence! of
time-reversal symmetryb51 (b52) is shown as a solid~dashed!
line.
07530
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current and voltage are not simply related by the dot’s c
ductanceG. We have calculated the distribution of the di
ferenceV̄G2 Ī for small pumping amplitudes, which is un
versal for a chaotic quantum dot. If the numberN of
propagating channels in the contacts between the quan
dot and the reservoirs is one,Ī and V̄G2 Ī can be of the
same size; ifN@1, V̄G2 Ī is typically a factorN smaller
than Ī . Our results are valid in the limit of slow pumping
where the pumping frequencyv is much smaller than the
charge relaxation rateg of the reservoirs. Ifv@g, the dif-
ferenceV̄G2 Ī is suppressed.

The results obtained here are important in view of t
interpretation of the experiment of Ref. 7. The observatio
of that experiment can also be explained if the observed
voltage is the result of rectification of ac displacement c
rents generated by the time-dependent gate voltages
should drive the electron pump.24 Therefore, it is important
to identify signatures that distinguish adiabatic pumpi
from mere rectification of displacement currents. For t
case of a current measurement, two such signatures ar
magnetic field symmetry and the typical size of the pump
current.10,24 Except for the caseN51, our results allow one
to translate these signatures to a voltage measuremen
well.25 Further, the relation between pumped voltage a
pumped current provides a third signature of adiabatic pum
ing: For few-channel point contacts,Ī , V̄G, and the differ-
enceV̄G2 Ī are all random and of comparable magnitude
a quantum pump, while, if the dc signal is due to rectific
tion, there is a fixed relationshipĪ }G2V̄, the proportionality
constant being nonuniversal.24
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APPENDIX

Below we present results for the ‘‘intermediate’’ distribu
tions of the normalized currentī , voltagev̄, and of the dif-
ferenced̄5 v̄g2 ī after integration over the matricesQ1 and
Q2 at fixedSandQ, but before integration overSandQ, for
the case of a chaotic quantum dot with two single-chan
point contacts. For that case, the distribution ofd̄ is given by

P~ d̄!5 K 1

2sd
e2ud̄u/sdL

S,Q

, ~A1!

where the angular brackets^•••&S,Q denote the remaining
average over the scattering matrixS and the symmetrized
time-delay matrixQ. The distributions forī and v̄ have the
same form withsd replaced bys i and sv , respectively.
However, we should note that, unlike for the differenced̄,
the form ~A1! does not hold for the distributions ofī and v̄
whenN.1.
4-5
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Below we list~statistical! expressions forsd , s i , andsv
for N51 for the caseCD!e2. We introduce the eigenvalue
t1 andt2 of the normalized time-delay matrixR. Their dis-
tribution can be found in Ref. 19. Further, we introduce tw
independent random variablest ~uniformly distributed be-
tween 0 and 1) andf ~uniformly distributed between 0 an
2p) that arise from the randomly distributed eigenvectors
R and the phases of the scattering matrixS. Finally, the equa-
tions for sd , s i , andsv contain the dimensionless condu
tance gP@0,1#, which has distribution P(g)
5(b/2)g211b/2. We then find

sd,b51
2 5256

~t1t2!3

~t11t2!2

~12g!2

g
,

s i ,b51
2 5256

~t1t2!3

~t11t2!2
g,
.M

re

an

en

,

c

d

07530
f

sv,b51
2 5256

~t1t2!3

~t11t2!2

1

g3
,

sd,b52
2 5

12g

g S 8t1t2

t11t2
D 2

3@t1t21t~12t !~t12t2!2sin2f#,

s i ,b52
2 5~4t1t2!2F124t~12t !S t12t2

t11t2
D 2G ,

sv,b52
2 5

1

g3 S 8t1t2

t11t2
D 2

$t1t21~t12t2!2
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