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Pumped current and voltage for an adiabatic quantum pump

M. L. Polianski and P. W. Brouwer
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
(Received 08 February 2001; published 13 July 2001

We consider adiabatic pumping of electrons through a quantum dot. There are two ways to operate the
pump: to create a dc currehtor to create a dc voltagg. We demonstrate that, for very slow pumpim_gﬁnd
V are not simply related via the dc conductar@eas | =VG. For the case of a chaotic quantum dot, we
consider the statistical distribution &G—1. Results are presented for the limiting cases of a dot with
single-channel and with multichannel point contacts.
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I. INTRODUCTION 1T
V= ?j dt V(t). 2
An electron pump is a device that converts a periodic 0

variation of its characteristics into a time-independent elec-

tric current! Such characteristics can be “macroscopic,” like Naively, one might expect that, for small pumping ampli-
the charge on the device or the conductance of point con- ' ’

tacts, or “microscopic,” such as the location of a scatterer 0|IUOI_eS’I andV are related via the dot's conductanGeas |

the magnetic flux threading the sample. When there are twe-VG. However, as we show in this paper, this naive
characteristics of the device that can be varied harmonicallyOhm’s law” is not always true, depending on whether the
with a frequencyw and phase differenceb, pumping of pumping frequencyw is small or large compared to the
electrons already occurs in the adiabatic limit-0. In that ~ charge-relaxation ratey of the reservoirs.(For adiabatic
case the pumped current is proportional dosing, and  pumping,» must always be small compared to the charge-
changes sign when the phase relationship between the peglaxation rate of the quantum dofor w<y and if the
rameters is reversed. Adiabatic electron pumps have begrumberN of propagating channels in the point contacts be-
realized experimentally irfarrays of Coulomb blockaded tween the quantum dot and the electron reservoirs is small,

quantum dots, using the voltages on plunger gates, and/or thee pumped currerit and the differenc® =VG—1 can ac-
transparencies of the contacts as pumping pararr?ei‘érs. tually be of comparable magnitude.

In this paper, we consider an adiabatic electron pump that A qualitative explanation why the pumped voltage and
consists of a semiconductor quantum dot coupled 10 tWQrrent are not related via the simple relatié@— 1 in the
electron reservoirs by means of ballistic point contdcts. limit w<y follows from the observation that both the

Variation of two gate voltages allows for small changes Ofpumped current and the pumped voltage have dc and ac
the shape of the dot, and thus for ”ge flow of a dc currentoomnanents. For slow pumping, the electron pump generates
Following a proposal by Spivakt al.” such a device has ;a5 yoltage that counteracts both the dc and ac currents
been built and investigated by Switkesal.” The device Of  ganerated in the dot. Since the conductadtself also

Ref. 7 is referred to as an “"adiabatic quantum pump,” be-5ies in time v, G has a dc component. It is this additional
cause the variation of the gate voltages predominantly affects,qtifieq dc component of the current that is responsible for
the quantum interference of the electrons in the quantum do%he difference betweelG and T for an adiabatic electron

not their classical trajectories. An important property of the Co .
guantum dot used in the experiment of Ref. 7 is that itgPUMmPp- When pumping Is faster than the charge relaxation

classical dynamics is chaotic. As a result, the magnitude an'('uate of the reservoirs, no ac b|a§ voltage is geﬂeratedE bal-
the sign of the expected pumped curréntre subject to ance the ac current, and the difference betw&&hand |

m ic fluctuations. Since these fluctuations are larg8!S2PPEars. | o o
esoscopic fluctua (_) S s_zce (_ase UC uations a e. a gg’ The purpose of this paper is to find the distribution of the
the mean(l) and variancg|“) are insufficient to describe —

the ensemble, and one needs to know the entire probabilit |ﬁerenceVG—I_benNeen pumped current and pumped voIt_—
distribution P(I_) ge for adiabatic pumping of electrons through a chaotic

: . —  quantum dot and to compare it to the distributiond afnd
Theoretical analysis has focused on the dc current V. F haotic dot. th distributi h . |
pumped through the dét3 . For a chaotic dot, these distributions have a universa

form, independent of details of the pumping mechanism or

1T the shape of the quantum dot. In Sec. Il we use the scattering
| = ?f dti(t), (1) approach to present a quantitative theory for the pumped
0 voltageV, and the differenc® =VG—1. In Sec. lll we then

T=2m/w being the period of the pumping cycle. However, evaluate the distribution 0#G—1 for an ensemble of cha-
experimentally, the preferred measurement is that of the dgtic quantum dots, using random matrix theory. We conclude
voltageV that the electron pump generafes, in Sec. IV.
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whereG is the dc cconductance of the quantum dot. Here we
assume that all variations are made slowly on the scale of the
dwell time of the quantum dot.

When current is measured, the voltages of the two reser-
voirs are equaly(t) =V,(t). Hence the dc currentcan be
found from integration of Eq(3a) or (3b).2 Using Stokes’s
theorem,|l can be rewritten as an integral over the surface
areaS enclosed by the contour of the parametéfsand X,

X, in the (X{,X5) plane,

FIG. 1. Schematic of a chaotic quantum dot whose shape can be — €Gw —
changed by varying gate voltag¥s and X, (left). In one cycleX; I= ﬂf dX,dXai (X1, X2), (43)
and X, trace out a contour inX;,X,) space(right).
where
Il. PUMPED CURRENT AND VOLTAGE

_ — 9 9q1) 4 dq(1) 4 (9q(2)Jr d dq(2)
We consider a quantum dot coupled to two electron resd = X2 9%, axl X, ﬂXz X, aX, X,

ervoirs via point contacts; see Fig. 1. The shape of the quan- (4b)
tum dot is varied periodically by variation of two gate volt-
ages, represented by dimensionless parameterand X,. When voltage is measured, the result depends on whether
Alternatively, X; or X, can represent the value of an applied variation of the parameters; and X, is fast or slow com-
magnetic field, or any other parameter that characterizes theared to the charge relaxation ratgs,~G/C, , of the res-
quantum dot. ervoirs. Combining Eq(3a) with I,=C;dV,(t)/dt and 1,

As discussed in the Introduction, the electron pump car=C,dV,(t)/dt one obtains
be characterized experimentally via a direct measurement of
the pumped current, or via a measurement of the voltage d(V1 Vz)
V(t) between the two reservoirs generated as a result of the E
pumping of charge through the quantum &b formula for
the dc current has been derived in Refs. 8 and 9. To derive a

formula for the dc voItaga7, we introduce a simple model
for trr:e qduanturg dr? tand the two elec(tjron reservoirs; se((je qu(fi the variation is fast compared tg, , (but still slow com

2. The dot and the reservoirs 1 and 2 are connected to )
screening gate via capacitanc€sand C,,C,. Following pared to the charge relaxation rate of the quantun), dio¢
Refs. 15 and 16, we introduce the emissiviig(m)/oX; , vol(;ag(::< d|ffﬁrenclevl V, is essentially time independent
which is the charge that exits the dot through point comact and takes the value

(m=1,2) when the paramete{; (j=1,2) is changed adia- v=T/G 5
batically by an amoun®X;. Then the total current flowing - ' 6)
through contacts 1 and 2 reads

e 5q(1) e 8q(2)\dX;
Ci, 68X C2 X, dt

1 1
_— 4 —

6t

(V1—=Vy). 5

whereG is the conductance averaged over one cycle,
()= 22: a% +[V Vo (1) ]G, 3 a=1("
1(t)—ei=1 oX dt +[V1(t) = V(1) ] (3a G= Tfo dt G(Xq(1),X5(1)). (7)

5q(2) In the opposite limitw<y, ,, which is the case we will
+[Vo(t)—V4(1)]G,  (3b) consider in the remainder of the paper, the right-hand side of

=N Eq. (5), which is proportional toy; ,, must vanish, so that

I1(t)=nl,(t), where =C;/C, is a numerical coefficient

@ —D— describing the capacitive division between the two reser-
~ @ voirs. Combining this with Eq(3a), we find
dot
j Vv & é sq(l) dX.  8q(2) dX;
1 1 L A1 O=VaO=507) & | ox at ~7ex dt
T¢, c J¢ ¢ G| 8
The dc voltagev is then found by integration over the

.||—

period T, with the result

FIG. 2. Equivalent circuit for a measurement of the pumped
voltage through the ddieft) and of the pumped currefiight). C;
andC are geometrical capacitances of thie reservoir and the dot. 4 me

<l

XmdXZU(Xl X5), (99
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— 1 i(} c?Q(l)) _i(} &Q(l)” JE gl aX; (14
1+ n (9X2 g (9)(1 0»(1 g 07X2 axl - C/2€2+ &q/&E :
o om | 9 (14q(2)| d [14q(2) (p HereCs the capacitance of the quantum dot. In Bt
1+ ndXo g 90Xy aXy\g X, | we abbreviated
where g=hG/2e? is the dimensionless conductance. For ag  dq(1l) dq(2)
small harmonic variations of the parameterX;(t) axX WJF X (15
= 5X,cos(t) and X,(t)= SX,coswt+¢), the integrations J ! '
are trivial, and one finds For a realistic quantum dot, the charging eneeyC is
much larger than the mean level spacihgin that limit, one
— 1 — finds that the dot charge remains constant during the pump-
= 5€wdX5X,1 sing (100 ing cycle,I5(t)=—1,(t) for all time. As a consequence, the
pumped voltage/ and the differencd® =VG—1 lose their
for the pumped current, and dependence on the capacitive divisign
he In the absence of inelastic processes and for low tempera-
V= 4—5X15X2v_sin¢ (11) tures(temperaturer b(.aloyv.t.he mean level spaciny in the
e quantum dot the emissivitiesig(m)/dX; and the conduc-

tanceG can be expressed in terms of the scattering m&rix
of the quantum dot and its derivativesXq, X,, andE. The

_ matrix Shas dimension B, whereN is the number of propa-
W.OUId noj[ dep.erg o_r)(_l. and Xz, Egs. (4b) and (99—~11) gating channels in each point contact; it is unitamyitary
give the identityVG=1: the pumped current measured at gy mmetrig in the presencéabsenckof a time-reversal sym-
zero bias and the pumped voltage measured at zero curremetry breaking magnetic field. The derivativesSére pa-

are related by Ohm's law. However, in gene€aldoes de-  pmatrized via Hermitian matrice® and R;, defined a¥
pend onX; and X,, and this “Ohm’s law” does not hold.

for the pumped voltage.
If the conductanceG were constant in a cycle, i.eG

The deviation is described by the difference A S aS
R=—i——=S", R=-i——S"
— —  — 27 JE J 28
D=VG-1I. (12
Then the emissivitiegg(m)/JE anddqg(m)/dX, m=1,2, are
For small§X; and 6X,, we find from Eqgs(4) and(9), given by*®
D= S ewdX,6%,ds 13 A _ 1 cetp,R 16
—Eew 10X,d sing, (133 JE A etrPyR, (163
— 1 [1 49 9q(1) 1 9g dq(1 aq(m) 1
go L |19 sal) 199 dq(1) U _ L etp.R. (16
1+ 79 g dX; X, g dXy 9Xy Xy 2w

7 [1 ag 9q(2) 1 dg dq(2) Here P,=1—P, is a diagonal matrix with element$();;
—1 [_W X _WW}' (13b) =1 if j=<m and zero otherwise. The dc conductampés
MG R %2 QR 0% given by the Landauer formula,

The derivatives toX; and X, appearing in the above formu- ot
las are derivatives taken at constant values of the electro- g=trS'P;SP;. (17)
chemical potential of the reservoirs. These are not neces-In the next section, we shall study the distribution of the
sarily equal to_derivatives taken at a constant value of thgjimensionless differencE:u_g—i_for the case of a chaotic
(self-consisterif) electrostatic potentiaV/. inside the quan- quantum dot.

tum dot. (The self-consistent electrostatic potential is meant
in the sense of a mean-field approximation of the electron-
electron interactions; see Refs. 14-16 for detalthanges

of V. occur in a pumping cycle, because the total charge on  For an ensemble of chaotic quantum dots, the statistical
the dot may vary during the pumping cycle. For technicaldistribution of the scattering matrix and its derivatives is
reasons, it is preferred to tre¥t., or, equivalently, the ki-  known from the literaturé? It takes its simplest form when
netic energyE=u— Vs, as an independent parameter, andthe derative ofSis not parametrized by the matricBs and

to take derivatives at constafit The above equations for R but by the symmetrized derivativ€sand Q.

pumped voltage and current can be rewritten using deriva-

tives at constark if we substitute the parametric derivatives Q=S "Rs"? Q=sRS"2

alaX, anddl X, in Eqgs.(4b), (9a), and(13b) by>1®

lll. DISTRIBUTION OF D =VG—1

In the presence of time-reversal symmetlgbeled by the
Dyson paramete= 1), the matrice®, Q,, andQ, are real
JE o . ; )
+<9_X&_E' (14a  symmetric. When time-reversal symmetry is broken by a

J
X

9
# 9Xe
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magnetic field f=2), Q, andQ,, and Q, are Hermitian.

For ideal contacts, the joint distributioR(S,Q,Q4,Q,)
reads®

2

2
Poc| 1+ CiAtrQ (detQ)~N2-2(BN+2-£)

Xex;{ - g tr(Q‘H}@(Q)

. (19

X exr{ - %’[r[(Q_lQl)z"" (Q71'Q2)?]

where ®(Q)=1 if all eigenvalues ofQ are positive and
®(Q) =0 otherwise. The capacitan€zappears in the dis-

PHYSICAL REVIEW B64 075304

O s s
0.0 0.2 0.4
Ivg-il

FIG. 3. Distribution of the normalized difference=vg—i be-

tween pumped voltage and pumped currerit for single-channel
point contacts, for the physically relevant lintA <e? (main fig-

tribution because the ensemble is obtained by sweeping ajte). The opposite limitCA>e? is shown in the inset for the case

external gate voltage, not the self-consistent en&dy

To find the distributionP(d), we first integrate ove®,
and Q, at fixed S andQ, and then ovelS and Q. The first
integration can be done analytically, since, for fix@dQ,
and Q, are Gaussian random matrices; see Bd@). The
result of this integration takes a simple form,

P(E)=<%e|d’”> , (19)

SQ
where the angular brackets indicate the average $e@dQ
that remains to be done. In EQ.9) ¢ is positive function of
SandQ, given by

16)2 Spa
o= B9 trA2+T'tr(PRSPRrST—PRPFQ tr B2
—(trAB)?|, (20

where we abbreviated

trPR
A=R|P— ——F——],
CA/2e2+1trR
trAR
B=R|A————],
CA/2e2+1rR

and P=(P,—nP,)/(1+7), A=i(P,SP,S'—-SP,S'P,).

For the remaining integrations ovBrandQ we consider two
limiting cases: multichannel point contactiN$1) and
single-channel point contactdNE 1).

A. Single-channel contacts

n=0. The presencdabsencg of time-reversal symmetry3=1
(B=2) is shown as a soliddashedl line.

large capacitanc€A>e? and asymmetric reservoir&a-
pacitive divisionn=0). Ford close to zero, the distribution
shows a cusp with a logarithmically divergent derivative at
d=0. Ford>1, the distributionP(d) has power-law tails.
For CA<e? these ar®®

573! B:l
d3Ind, B=2.

The tails of the distribution correspond to samples with an
anomalously large eigenvalue @), corresponding to an
anomalously large dwell timey, :2° a value ofd in the tail of
the contribution typically corresponds to a dwell timg
~14d%#, 7,=%IA being the Heisenberg time. Since con-
figurations with anomalously large dwell times are more sen-
sitive to dephasing or thermal smearing, such perturbations
will truncate the tails ford=(7,/74)#? or d= (74 T) A2

For comparison, we have also calculated the distribution
of the pumped current and voltagev. For single-channel
contacts, the distribution again takes the foft®), with o
replaced byo; ando,, respectively. Expressions fet, and
o, can be found in the Appendix. The resulting distributions
are shown in Fig. 4(The distribution of the current was
calculated previously in Ref. BThe main conclusion upon
comparison of Figs. 3 and 4 is that, for single-channel point
contacts, the distributions af and ofd=vg—i have com-
parable widths. Hence, fdd=1, deviations from “Ohm’s

law,” as characterized bEz vg—i_are of the same order as
the pumped currerit itself.

P(d)= (21)

ForN=1 the remaining number of variables is small, and

can be integrated over numerically, using the distribution

(18).2! Results for théphysically relevantlimit CA<e? are
shown in Fig. 3. In this limit, the distributioR(d) does not

B. Multi-channel contacts

The distribution ofd in the limit N>1 can be directly
obtained from Eq(19). The integration over the unitary ma-

depend on the capacitive division between the reservoirs. trix U of eigenvectors oR and over the scattering matr8ds

The results for larger values Gf are not very different from  performed using the method of Ref. 22. For the remaining
those shown in Flg 3. This is illustrated in the inset of Flg 3,integration over the eigenvajue& | = 1,...,N, of the ma-

where we have shown the distributicﬂ(E) for the case of

trix R it is sufficient to know their densit}’
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current and voltage are not simply related by the dot’s con-
ductanceG. We have calculated the distribution of the dif-

ferenceVG—1 for small pumping amplitudes, which is uni-
versal for a chaotic quantum dot. If the numbir of
propagating channels in the contacts between the quantum

dot and the reservoirs is ong,and VG—1 can be of the
same size; iN>1, VG—1 is typically a factorN smaller

0 ‘ . thanI. Our results are valid in the limit of slow pumping,
0.0 0.2 0.4 where the pumping frequenay is much smaller than the
lil charge relaxation ratg of the reservoirs. lfw> vy, the dif-

o ) _ ) ferenceVG—1 is suppressed.

FIG. 4. Distribution of normalized pumped currénand (inse? The results obtained here are important in view of the
voltagev for single-channel contacts. The presettabsenceof interpretation of the experiment of Ref. 7. The observations
time-reversal symmetrg=1 (8=2) is shown as a solilashedl  of that experiment can also be explained if the observed dc
line. voltage is the result of rectification of ac displacement cur-
rents generated by the time-dependent gate voltages that

N should drive the electron punfp.Therefore, it is important
P(T):Zl (o(rj=m)=—N(r —7)(r=7.), (22 g identify signatures that distinguish adiabatic pumping
: mr from mere rectification of displacement currents. For the
wherer., =(3+ \/8)/2N. The result is case of a current measurement, two such signatures are the
magnetic field symmetry and the typical size of the pumped
4 A current!®?4 Except for the cas&l=1, our results allow one
(o >:W B T (239)  to translate these signatures to a voltage measurement as

B € well.?® Further, the relation between pumped voltage and
[The 1N* prefactor in Eq.(23) follows from a contribution ~pumped current provides a third signature of adiabatic pump-
«1/N? from the factorg =2 in Eq. (20) and a factor M from  ing: For few-channel point contacts, VG, and the differ-
each of the fraces & and trB? in that same equation; the encevG—1 are all random and of comparable magnitude for
term (trAB)® in Eq. (20) does not contribute t¢o®) t© 5 quantum pump, while, if the dc signal is due to rectifica-

lsehig/lvnsgtk?e:?ﬁLé?ugigniﬂ;?Lgraélcs)%glfl rc]gr:e;ggrpoe?rfz Zf/er- tion, there is a fixed relationship< G2V, the proportionality
b constant being nonunivers#l.

age asN—<., Hence, we can conclude that the distribution
of d in multichannel limit is of the Poissonian forifl9),
with 2 given by Eq.(23).

This is to be contrasted with the distribution of the We thank C. Marcus for discussions. This work was sup-
pumped current, which is Gaussian for largh, with zero  ported by the NSF under Grant No. DMR-0086509 and by
mean and with root mean squéfé the Sloan Foundation.
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(?)1/2:%_ (24) APPENDIX
Below we present results for the “intermediate” distribu-
tions of the normalized current voltagev, and of the dif-
® renced- =vg—i after integration over the matric€¥, and
Q, at fixedSandQ, but before integration ove3andQ, for
the case of a chaotic quantum dot with two single-channel

point contacts. For that case, the distributiortd$ given by

Hence we conclude that, for lardé typicallyais a factor
~N smaller than the pumped current, and can be neglect
in a measurement. Hence, in the limit- the expectation

of Ohm’s lawvg=i holds, and one readily concludes that

the pumped voltage has a Gaussian distribution with zero
mean and with root mean square

oe P(E):<ie—5’0d> , (A1)
(25 20 50

T2\12_
<U > — N2 d

mN?’
where the angular brackets - -)s o denote the remaining

average over the scattering mati®and the symmetrized

In summary, for adiabatic pumping of electrons through aime-delay matrixQ. The distributions fori andv have the
chaotic quantum dot, we have derived expressions of theame form withoy replaced byo; and o,, respectively.

pumped current (in case of a current measuremjeat the ~ However, we should note that, unlike for the differertte

pumped voltageV (in case of a voltage measuremeit  the form (A1) does not hold for the distributions dfandv
terms of the scattering matrix of the quantum dot. PumpedvhenN>1.

IV. CONCLUSION
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Below we list(statistical expressions fory, o, ando, (r,75)% 1
for N=1 for the caseCA <e?. We introduce the eigenvalues 05’ﬂ=1= 25 > 3
7, and 7, of the normalized time-delay matriR. Their dis- (11t 72)° 9

tribution can be found in Ref. 19. Further, we introduce two
independent random variablés(uniformly distributed be-

. . . 2
tween 0 and 1) and (uniformly distributed between 0 and > 1-g(8mm -
. S . = X - -
27) that arise from the randomly distributed eigenvectors of”46=2" ¢~ | 7.+ 1, [ram2 (1=t (7= 72) i ],
R and the phases of the scattering maS&i¥inally, the equa-
tions foroy, o, ando, contain the dimensionless conduc-
tance ge[0,1], which has distribution P(Q) ) 5 T— 75\ 2
— —1+p/2 H = 4 1_4 l_
=(BI2)g~1"#"2. We then find 0f g—2=(47172) t(1-t) ——
3 2
TIT 1-
0222256(12) ( 9)’
d,p=1 2
(Tl+72) g 1/ 87+ 2
o2 =— L2 {17+ (11— 72)?
(117)3 VB2 gslmd ) TR
2
of p=1=256——-0, . 2
(T11 1) X[2\(L—g)t(1—t)sing+(1—2t) Vg2
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