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Theoretical study of a tunable phononic band gap system
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The control of acoustic-frequency gaps by altering the geometry of the system is analyzed in the particular
case of a set of parallel solid square-section columns distributed in air on a square lattice. This system is shown
to be sensitive enough to the rotation of the columns to be considered for practical sonic band-gap-width
engineering. For different geometric configurations, specific interpretation models are used, taking into account
the important mismatch of the impedance between the compounds. The accuracy of the plane-wave calculation
is discussed in the different cases.
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I. INTRODUCTION

The propagation of elastic or acoustic waves in perio
heterogeneous materials has received much renewed a
tion in the last years. Periodic realizations of elastic hete
structures, calledphononic crystals, make possible the
achievement of complete frequency band gaps, useful to
hibit the specific vibrations in accurate technologies such
transducers or sonars.1–4

Different ways for enlarging a gap were already describ
in the literature for both photonic and phononic crystals. F
example, the reduction of the total symmetry of the crys
can remove some band degeneracies, allowing for the
pearance of complete gaps.5–7 A common example consist
of a comparison between diamond and zinc-blende cryst4

A widening of photonic band gap was also previous
achieved by inserting a material at well-chosen places in
unit cell.8

A different approach to obtain a tunable phononic ba
gap width is proposed here. It consists of a rotation o
two-dimensional periodic system of hard inclusions hosted
air. By choosing square-section rods distributed accordin
a square lattice, and by increasing the rotation angle of th
rods with respect to the lattice orientation, we can obtai
progressive widening of the gap.

Figure 1 represents a geometric assembly of the colu
in air in two different configurations. In the left part, th
columns are aligned with the square lattice. In the right p
of the same figure, an angle (u) of 30° is formed between
the alignment of the rods and that of the lattice. The rep
sentation is shown for a filling fraction, expressed as the r
between the rod section and the surface of the tw
dimensional unit cell, of 0.50.

This tuning technique differs from those described in
literature, where no additional insertions are made. We
see that a reduction of the symmetry cannot be used to
plain the gap widening when the angle is increased. Eve
the symmetry is reduced for angles differing from 0° or 45
45° seems to be the best angle for generating the largest
as the following discussion will point out.

Geometric tuning was already suggested in photonic c
tals, but no emphasis was given to a detailed origin of
wave stopping.9 Here we will reach for a plausible explana
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tion of the wave transmission by regarding the geome
effects induced on the gap by the rotation of the rods.

II. NUMERICAL FORMULATION

It is well established that homogeneous elastic me
present no gap in their dispersion relations. The lin
branches issuing from theG point have slopes equal to th
different sound velocities. Periodic inhomogeneities play
crucial role in the opening of gaps. The periodic insertion
components, characterized by different elastic constants
shapes the spectral response. The adjustment of param
such as the mass densities or the sound velocities allows
an opening of partial or complete gaps. We have buil
phononic crystal.1–4

The study of elastic mode propagation through inhom
geneous solid structures is not straightforward, since a c
pling between the transverse and longitudinal modes is
pected in comparison with homogeneous syste
Nevertheless, for two-dimensional periodic systems, a pa
decoupling is achieved by assuming a normal incidence
the waves with respect to the direction normal to the plane
the periodicity. Pure transverse modes are found along
axis ~denoted by thez index!. These modes are independe
of the related coupled modes propagating in the plane of
periodicity ~denoted by index i, i 51,2!.10 Equations

FIG. 1. Geometric representation of the two-dimensional p
odic systems of hard rods in air arranged in a square lattice.
rods have a square section, and the filling fraction is 0.50. The
part of the figure represents a column array having the same o
tation as the empty lattice. The right part deals with the same a
rotated by 30°~rotation angleu).
©2001 The American Physical Society18-1
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describing these distinct modes can be expressed in the
monic approximation by

2r~r t!v
2uz5“•@m~r t!“uz#, ~1!

2r~r t!v
2ui5

]

]xi
@l~r t!“•u#1“•@m~r t!“ui #

1“•S m~r t!
]

]xi
uD ~ i 51,2!, ~2!

wherer t represents a direct-space vector in the plane of
periodicity,“ is the two-dimensional Laplace operator,r(r t)
is the mass density distribution, andm(r t) andl(r t) are the
so-called Lame´ coefficients.uz andui ( i 51,2) are the three
components of the elastic displacement vectoru.

In the case of heterostructures composed of fluids, sh
ing can be neglected (m50), and we can remove the cou
pling difficulty by using another variable, the pressurep,
defined as a pure scalar dilatation motion:

p52l~r t!“•u. ~3!

The basic equations which describe the wave propaga
then reduce to a simple scalar equation4

2
v2

l~r t!
p5“•S 1

r~r t!
“pD . ~4!

This describes the so-calledacoustic case, to be con-
trasted with theelasticcase. It is interesting to note the sim
larity between this equation and Eq.~1! introduced above for
describing the pure transverse motion in theelasticcase.

In both cases, we decided to make use of a plane-w
formulation. We set up Fourier developments of the perio
parameters and the Bloch theorem to express the elastic
placement vector or the pressure field. For a two-dimensio
periodic system, we can obtain a two-dimensional gene
ized eigenvalue problem by canceling the component of
wave vector in the direction normal to the plane of the pe
odicity (kz50).10 For practical applications, a good conve
gence is obtained by using a basis set of 600 plane wav

III. TUNABLE PHONONIC BAND-GAP SYSTEM

The modeling of systems mixing a solid and a fluid usi
a plane-wave representation is not known to be an easy
Unrealistic results or problems of convergence are co
monly encountered difficulties.11,12 In many cases, these sy
tems offer a huge density contrast between various part
the unit cell, and this property is of real interest for the ge
eration of a wide complete gap.13–15With an adequate mod
eling, these systems allow one to use a plane-wave met
In this section, we will introduce these models, in relati
with the tuning effect.

A. Air modes for low solid filling fractions

First, we examine the case of isolated solid rods in air
was shown that these inclusions can be considered as
fectly hard,16,17which implies that the sound does not prop
07511
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gate inside the columns. The rods are thus strong reflec
and the propagation is predominant in the background of
It is thus a good approximation to consider the solid rods
fluid inclusions with very high stiffness and specific mass

Indeed, it is well known that the huge contrast of acous
impedances in fluid systems induces a total reflection of
waves with a confinement of the waves inside the low
impedance region, that is to say, in the region of low dens
or low longitudinal velocity. In the calculations, this justifie
the use of the acoustic wave equation described above@Eq.
~4!#. This approximation is coherent with existing expe
mental results,1 and we call it theacoustical modelin this
paper. Two particular band structures are presented in Fi
for different symmetry directions of the two-dimension
first Brillouin zone. The first one~in the left part of the
figure! was calculated for a filling fraction of 0.40 and
rotation angle of 35°. A sketch of the two-dimensional pe
odicity is presented below the band structure. Except in
near neighborhood of the zone centerG, a restructuring of
the bands with regard to the homogeneous case is shown18,19

A large complete phononic band gap is clearly establis
between the first and second bands.

The next band structure~in the right part of the same
figure! was calculated for a filling fraction of 0.50, and for a
angle of 45°. The gap has increased in comparison with
first result, due to the higher angle of rotation and the hig
filling fraction. In the last example, the picture of the pe
odic distribution of columns shows that the close-pack
limit is reached: the columns are in contact at their corne

A summary of the calculated results is presented in Fig
For different filling fraction values~with a maximum of
0.50!, we can see curves of the normalized width of a co
plete gap, lying between the first and second bands, as f
tions of the rotation angle of the columns (u). The normal-
ized band-gap width is taken as the gap width divided by
midgap frequency. For each filling fraction, we clearly s
that the gap width increases progressively with the incre
ing angle and, at a fixed angle, increases with the fill
fraction.

We explain the widening of the gap by some effects
duced by the change of the geometry. At 0°, the space
between the columns is large enough to allow for propa
tion of the waves in the whole structure with little wav
interferences. This leads to dispersion relations without g
On the other hand, as the angle increases, this space i
duced, and more reflection on the columns can be expec
involving more destructive interferences. The increasin
destructive interferences are at the origin of the progres
widening of the gap. This explanation cannot be transfer
directly in the photonic case,9 because a huge contrast of th
dielectric functions is not possible.

We already showed that waves propagate mainly ins
low-density or low-velocity regions of fluid systems. Isolate
cavities of low density can even lead to a confinement
waves in these regions, responsible for the appearanc
flatbands in the band structure.20,21 We could show that a
high contrast of densities is the main condition in order
confine the waves. In this case, the contrast of velocities d
not affect the shape of the band structures, and only
8-2
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FIG. 2. Dispersion relations calculated for the structure described in Fig. 1 in different directions of the two-dimensional Brillou
~the vertical scale is the frequency expressed in arbitrary units,na/c, wherea is the cell parameter andc is the sound speed in air!. In the
left part, the filling fraction was set at 0.40, and the rotation angle as 35°. A gap is clearly visible between the first and second ba
second part, in the right, was calculated for a filling fraction of 0.50 and for an optimum rotation angle of 45°. The gap is then lar
to the higher values of the angle and the filling fraction. In both cases, a plane of the two-dimensional periodicity is given be
dispersion relations. We note that the close-packing arrangement is reached in the second case.
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frequency scale can be modified. On the other hand, a sy
offering high contrasts of velocities without high contrasts
densities will not allow for the confinement of the modes

Note that the mechanisms responsible for the confinem
are explained by the settling of interferences in the wa
propagation process, as described in this work. These ar
different from those used to explain the localization in
disorder system;22 however, in the two cases, localize

FIG. 3. Representation of the normalized first gap width~lying
between the first and second bands! vs the rotation angle (u) cal-
culated for hard rods in air with different filling fractions (f ). The
normalized gap width~expressed in arbitrary units! is obtained by
dividing the gap width by the midgap frequency. A widening of t
gap value with increasing rotation angle is observed in all the ca
The elastic parameters chosen for the calculations arerair

51 kgm23, r rod51500 kgm23, cair5340 ms21, and crod

52000 ms21.
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modes are characterized by an exponential decay as the
tance from the localization center increases.

B. Elastic modes for high solid filling fractions

Such kinds of flatband structures could appear if the
clusions are in contact, so that the air host forms isola
cavities. This means that we exceed the close-packed
rangement of the hard prisms. This situation can be found
filling fractions higher than 0.50, and above a critical val
of the rotation angle (uc). This value is related with the
filling fraction ~f! by the following simple law:

cosuc5Af . ~5!

Nevertheless, for an infinite crystal, this pattern is equi
lent to that obtained with air columns inserted in an hom
geneous solid matrix. Thus the acoustical model canno
properly employed, and the shearing inside the host mus
accounted for by using the full elastic equations@see Eqs.~1!
and ~2!#.

As already suggested, systems composed of both fl
and solids are not easily described with the plane-w
method.11,12 The existing inaccuracies11 were attributed to
problems encountered during the diagonalization step, w
huge contrasts are found in the system. Other methods,
as the finite-difference time-domain method12 ~FDTD! or the
so-called Kornage-Kohn-Rostoker approach,11 shed some
light on this particular plane-wave limitation.

As an example, consider the system described above f
filling fraction of 0.60 and a rotation angle of 45°, which

s.
8-3
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FIG. 4. Dispersion relations calculated for the inverted structure of air cavities in a solid host. The filling fraction of the hard com
is 0.60, and the rotation angle is 45°. The vertical scale is the frequency expressed in arbitrary unitsna/ct , wherea is the cell parameter and
ct is the transverse velocity in the host. In the left part, the band structure was calulcated for the pure transverse motion with a null t
velocity in the fluid. Many flatbands are found. Three bands, denoted byB1, B2, andB3, present a normal character. In the middle part,
same band structure is calculated with a high artificial transverse velocity in the fluid. The flat bands are removed, and theB1, B2, andB3
bands stay in the same position. A strong similarity with the band structure presented in Fig. 2 is found. In the right part, the band
associated with the mixed motions is calculated with the same approach. In the last two cases a phononic band gap is found. T
parameters chosen for the calculations arerair51 kgm23, rhost51500 kgm23, cl ,air5340 ms21, cl ,host53500 ms21, and ct,host

52000 ms21. The value of the artificial transverse velocity inside the fluid is discussed in the text.
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higher than the critical angle of the close-packed arran
ment of the solid rods (uc539.2°). A more realistic ap-
proach consists of considering the equivalent infinite ela
crystal of air columns occupying 40% in a heavy so
matrix.

We calculated the band structure associated with the p
transverse motionuz . The result is shown in the left part o
Fig. 4. Three bands denoted byB1, B2, andB3 converge. In
the other hand, some unphysical flatbands appear. We
show that these bands do not converge, and appear rand
according to the number of plane waves. Moreover, for
equivalent number of plane waves, their position can di
according to the routines employed in the calculation, s
gesting a bad numerical problem condition.

In the case of a huge contrast of densities, the FDTD~Ref.
12! method showed that only theB1, B2, and B3 bands
constitute thephysical band structure. Using a plane-wav
method, the flatbands can be removed by taking an artifi
transverse velocity inside the fluid. For the calculations
value of 1500 ms21 was chosen. This can be only done f
very low-density fluid, in order to keep the ratio between t
density and the artificial velocity small compared with t
one in the solid.12 As already suggested, this value depen
on the routines and on the convergence.

Our band structure is presented in the middle part of F
4. The three remaining bands in the pure transverse cas
the B1, B2, andB3 bands. The flatbands have disappear
and a gap has settled between theB1 andB2 bands. In the
right part of Fig. 4, the band structure associated with
in-plane motions is calculated with a similar approach.
this case, an artificial transverse velocity of 105 ms21 is
introduced in order to remove the unrealistic flatbands.
overlaying the two band structures, a full phononic band g
is still obtained.
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We claim that this model is justified by the same geom
ric arguments as before. Instead of postulating a purely l
gitudinal behavior of the solid, we now give an artifici
transverse character to the fluid.

As for the shape of the equations, we find a strong si
larity between the acoustic case and the pure transverse
The band structures presented in Fig. 2 and in the middl
Fig. 4 are roughly similar. These analogies suggest that
shearing coefficientm plays the same important role as th
mass density in the fluid case. Thus the waves will propag
mainly in the region of highm. The air cavities are reflectors
because the waves now propagate mainly in the solid. T
justifies the use of an artificial transverse character of
fluid. This simple model, deduced from the simplest ca
gives a good account of the insertion of a low-density fluid
a solid. This is not valid for massive fluids such as mercury12

The higher density in the fluid does not allow one to consi
the fluid as a perfect reflector, as a strong mode conver
between the transverse modes and the longitudinal one
expected.

In the case of the in-plane motions, this simple mode
still valid. Nevertheless, the nontrivial shape of the equatio
does not allow for the same kind of analogy, so that
explanation for the use of a high artificial transverse veloc
in air is not straightforward.

A gap tuning is then also expected for large filling fra
tions, due to geometric effects similar to those found
small filling fractions. The orientation of the air cavities wi
induce exactly the same opening of the gap as the rota
angle is increased. The frequency scale is larger, since
material host is now a solid. This theoretical example is
lustrated in Fig. 5. The normalized gap width is drawn fo
host filling fraction of 0.70. Above the close-packing a
rangement of the solid compound (uc533.2°), the elastic
8-4
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model of reflective air columns suggests a widening of
gap for both pure transverse and coupled motions. Never
less, the normalized gap width of the resulting full gap
smaller than in the former case.

IV. CONCLUSION

In this work, we used a plane-wave method for analyz
the band structure of a periodic assembly of hard rods

FIG. 5. Representation of the normalized first gap width vs
rotation angle (u) calculated for air cavities inserted in a solid ho
The normalized gap width~expressed in arbitrary units! is obtained
by dividing the gap width by the midgap frequency. The fillin
fraction of the host is 0.70. The normalized width is calculated
both the transverse and mixed cases beyond the close pa
angle,uc533.2°, denoted by the C.P. limit. A widening of the ga
value with higher rotation angles is observed in both cases, as in
acoustic system.
ri-
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square section distributed in air. This system is of practi
interest in order to achieve a phononic crystal with a tuna
gap width, adjustable by rotating the columns.

Such a system, mixing fluid and solid compounds, is
easy to study with a plane-wave method. Nevertheless,
models were developed in order to avoid the difficulties
low and high filling fractions of the solid component in th
air host. In a complementary way, these models explai
the effects induced by the progressive change of the ge
etry on the gap size. They take into account the import
contrast of impedances responsible for a strong reflective
tion in the interfaces of the compounds.

The real interest of the introduction of this device can
stressed by underlining that the tuning mechanisms prov
a nondestructive method of influencing the phononic str
ture, as we can obtain the desired value of the gap with
acting on the shape or the constitution of the rods. Sev
direct applications can be envisaged in the field of a selec
filtering of the acoustic power.
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