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Theoretical study of a tunable phononic band gap system

C. Goffaux and J. P. Vigneron
Laboratoire de Physique du Solide, Facsltgniversitaires Notre-Dame de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
(Received 8 January 2001; revised manuscript received 28 March 2001; published 31 July 2001

The control of acoustic-frequency gaps by altering the geometry of the system is analyzed in the particular
case of a set of parallel solid square-section columns distributed in air on a square lattice. This system is shown
to be sensitive enough to the rotation of the columns to be considered for practical sonic band-gap-width
engineering. For different geometric configurations, specific interpretation models are used, taking into account
the important mismatch of the impedance between the compounds. The accuracy of the plane-wave calculation
is discussed in the different cases.
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[. INTRODUCTION tion of the wave transmission by regarding the geometric
effects induced on the gap by the rotation of the rods.
The propagation of elastic or acoustic waves in periodic
heterogeneous materials has received much renewed atten-
tion in the last years. Periodic realizations of elastic hetero- Il. NUMERICAL FORMULATION
structures, calledphononic crystals make possible the

) It is well established that homogeneous elastic media
achievement of complete frequency band gaps, useful to prog-

hibit th ific vibrati : te technoloi h resent no gap in their dispersion relations. The linear
it the specilic vibrations In accurate technologies Such ag, o, cpes issuing from thE point have slopes equal to the

trangducers or sonafs! . ) ifferent sound velocities. Periodic inhomogeneities play a
_ Different ways for enlarging a gap were already descrlbe(grucial role in the opening of gaps. The periodic insertion of
in the literature for b_oth photonic and phononic crystals. Forcomponents, characterized by different elastic constants, re-
example, the reduction of the total symmetry of the crystakpapes the spectral response. The adjustment of parameters
can remove some band degeneracies, allowing for the apych as the mass densities or the sound velocities allows for
pearance of complete gaPs. A common example consists an opening of partial or complete gaps. We have built a
of a comparison between diamond and zinc-blende cry%taISphononic crystat=*
A widening of photonic band gap was also previously The study of elastic mode propagation through inhomo-
achieved by inserting a material at well-chosen places in thgeneous solid structures is not straightforward, since a cou-
unit cell® pling between the transverse and longitudinal modes is ex-
A different approach to obtain a tunable phononic bandpected in comparison with homogeneous systems.
gap width is proposed here. It consists of a rotation of d\evertheless, for two-dimensional periodic systems, a partial
two-dimensional periodic system of hard inclusions hosted irflecoupling is achieved by assuming a normal incidence of
air. By choosing square-section rods distributed according téhe waves with respect to the direction normal to the plane of
a square lattice, and by increasing the rotation angle of thed&€ periodicity. Pure transverse modes are found along this

rods with respect to the lattice orientation, we can obtain &Xis (denoted by the index. These modes are independent
progressive widening of the gap. of the related coupled modes propagating in the plane of the

odicity (denoted by indexi, i=1,2.° Equations

Figure 1 represents a geometric assembly of the columni&e"
in air in two different configurations. In the left part, the
columns are aligned with the square lattice. In the right part
of the same figure, an angl&) of 30° is formed between
the alignment of the rods and that of the lattice. The repre-
sentation is shown for a filling fraction, expressed as the ratio
between the rod section and the surface of the two-
dimensional unit cell, of 0.50.

This tuning technique differs from those described in the
literature, where no additional insertions are made. We will
see that a reduction of the symmetry cannot be used to ex-
plain the gap widening when the angle is increased. Even if
the symmetry is reduced for angles differing from 0° or 45°, £, 1. Geometric representation of the two-dimensional peri-
45° seems to be the best angle for generating the largest gagyic systems of hard rods in air arranged in a square lattice. The
as the following discussion will point out. rods have a square section, and the filling fraction is 0.50. The left

Geometric tuning was already suggested in photonic cryspart of the figure represents a column array having the same orien-
tals, but no emphasis was given to a detailed origin of theation as the empty lattice. The right part deals with the same array
wave stopping.Here we will reach for a plausible explana- rotated by 30°(rotation angles).
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describing these distinct modes can be expressed in the hagate inside the columns. The rods are thus strong reflectors,

monic approximation by and the propagation is predominant in the background of air.
. It is thus a good approximation to consider the solid rods as
(M) U=V - [n(r)Vu,], (1) fluid inclusions with very high stiffness and specific mass.
s Indeed, it is well known that the huge contrast of acoustic
—P(ft)wzuizg[?\(n)v'U]+V'[#(rt)VUi] impedances in fluid systems induces a total reflection of the
1

waves with a confinement of the waves inside the lowest
P impedance region, that is to say, in the region of low density
p«(rt)gu) (i=1,2), (20 or low longitudinal velocity. In the calculations, this justifies
i the use of the acoustic wave equation described apBge
wherer, represents a direct-space vector in the plane of thé4)]. This approximation is coherent with existing experi-
periodicity, V is the two-dimensional Laplace operatofr ) mental result$,and we call it theacoustical modeln this
is the mass density distribution, apdr,) and\(r;) are the Ppaper. Two particular band structures are presented in Fig. 2
so-called Larﬁe’;oefﬁcients_uz and U (| :1,2) are the three for different symmetry directions of the two-dimensional
components of the elastic disp]acement vector first Brillouin zone. The first ondin the left part of the
In the case of heterostructures composed of fluids, sheafigure) was calculated for a filling fraction of 0.40 and a
ing can be neg|ected,u(: 0)’ and we can remove the cou- rotation angle of 35°. A sketch of the two-dimensional peri-
pling difficulty by using another variable, the pressyme odicity is presented below the band structure. Except in the

+V-

defined as a pure scalar dilatation motion: near neighborhood of the zone centéra restructuring of
the bands with regard to the homogeneous case is shHotin.
p=—N(ryV-u. (3 A large complete phononic band gap is clearly established

] ) . . _ between the first and second bands.
The basic equations which describe the wave propagation The next band structuréin the right part of the same

then reduce to a simple scalar equation figure) was calculated for a filling fraction of 0.50, and for an
2 1 angle of 45°. The gap has increased in comparison with the
_“ p=V- —Vp). 4 first result, due to the higher angle of rotation and the higher

A(ry) p(ry) filling fraction. In the last example, the picture of the peri-

odic distribution of columns shows that the close-packing
limit is reached: the columns are in contact at their corners.
A summary of the calculated results is presented in Fig. 3.

This describes the so-calleacoustic case, to be con-
trasted with theelasticcase. It is interesting to note the simi-

larity between this equation and Eq) introduced above for - - gitterent filling fraction valueswith a maximum of

describing the pure transverse motion in #lastic case. 0.50, we can see curves of the normalized width of a com-

n bOFh cases, we decidg:-d to make use of a plane-.wa_v lete gap, lying between the first and second bands, as func-
formulation. We set up Fourier developments of the pen_odl_ ions of the rotation angle of the columng)( The normal-
parameters and the Bloch theorem to express the' elastlp di ‘ed band-gap width is taken as the gap width divided by the
pla(_:enjent vector or the pressure field. F(_)r atw_o-dlmen5|on idgap frequency. For each filling fraction, we clearly see
penod_lc system, we can obtain a t_wo-dlmensmnal general'fhat the gap width increases progressively with the increas-
ized eigenvalue problem by canceling the component of th

. S .?ng angle and, at a fixed angle, increases with the filling
wave vector in the direction normal to the plane of the peri-g.J 400

odicity '(kz_th)'. (Ij:(t))r practical ;\ppllcatltonfségogo?d CONVET™ e explain the widening of the gap by some effects in-
gence IS obtained Dy using a basis set o plane WaveSy,ced by the change of the geometry. At 0°, the space left
between the columns is large enough to allow for propaga-
IIl. TUNABLE PHONONIC BAND-GAP SYSTEM tion of the waves in the whole structure with little wave
The modeling of systems mixing a solid and a fluid usmginterferences. This leads to dispersion relations without gap.
a plane-wave representation is not known to be an easy tasg.n tze otr&er hand, fﬁs the anglk(]a mc:eases, th|sbspace 1S rde—
Unrealistic results or problems of convergence are com@Yc€d, and more re ection on the columns can be expected,
monly encountered difficultie€:12In many cases, these sys- involving more destructive interferences. The increasingly
tems offer a huge density contrast between various parts _stru_ctlve mterferences_ are at the_ origin of the progressive
the unit cell, and this property is of real interest for the gen-V/dening of the gap. This explanation cannot be transferred
eration of a wide complete gdf-'5With an adequate mod- directly in the photonic casebecause a huge contrast of the
eling, these systems allow one to use a plane-wave methofi€/€Ctric functions is not possible.

In this section, we will introduce these models, in relationI \/\(/je alr_eadylshoweid that waves ]E)frlopdagate mainly l'ns'ge
with the tuning effect. ow-density or low-velocity regions of fluid systems. Isolate

cavities of low density can even lead to a confinement of
. R _ waves in these regions, responsible for the appearance of
A. Air modes for low solid filling fractions flatbands in the band structu?®?! We could show that a
First, we examine the case of isolated solid rods in air. Ithigh contrast of densities is the main condition in order to
was shown that these inclusions can be considered as peaenfine the waves. In this case, the contrast of velocities does
fectly hard®*"which implies that the sound does not propa-not affect the shape of the band structures, and only the
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FIG. 2. Dispersion relations calculated for the structure described in Fig. 1 in different directions of the two-dimensional Brillouin zone
(the vertical scale is the frequency expressed in arbitrary urats;, wherea is the cell parameter antlis the sound speed in airn the
left part, the filling fraction was set at 0.40, and the rotation angle as 35°. A gap is clearly visible between the first and second bands. The
second part, in the right, was calculated for a filling fraction of 0.50 and for an optimum rotation angle of 45°. The gap is then larger due
to the higher values of the angle and the filling fraction. In both cases, a plane of the two-dimensional periodicity is given below the
dispersion relations. We note that the close-packing arrangement is reached in the second case.

frequency scale can be modified. On the other hand, a systemodes are characterized by an exponential decay as the dis-
offering high contrasts of velocities without high contrasts oftance from the localization center increases.
densities will not allow for the confinement of the modes.

Note that the mechanisms responsible for the confinement _ ) . _
are explained by the settling of interferences in the wave B. Elastic modes for high solid filling fractions
propagation process, as described in this work. These are far Such kinds of flatband structures could appear if the in-
different from those used to explain the localization in aclusions are in contact, so that the air host forms isolated
disorder systerf? however, in the two cases, localized cavities. This means that we exceed the close-packed ar-

rangement of the hard prisms. This situation can be found for

/ filling fractions higher than 0.50, and above a critical value
4 of the rotation angle 4.). This value is related with the

V2]
L —a— f0.25 filling fraction (f) by the following simple law:
g0 —e— £0.30 -
> —a— £0.35
—v— £0.40 v cosf=/f. (5)
Q 0.4 //’
e —e— £0.45 —
i —+— £0.50 A o . . :
/ /// __a Nevertheless, for an infinite crystal, this pattern is equiva-
0.2 +/:/ // lent to that obtained with air columns inserted in an homo-
/://‘ — lid matrix. Thus th tical model th
e geneous solid matrix. Thus the acoustical model cannot be
%ﬁé‘ [ properly employed, and the shearing inside the host must be
0.0 ; " . accounted for by using the full elastic equatipsse Eqs(1)
0 10 20 30 40 and (2)]

0 (degrees) As already suggested, systems composed of both fluids

FIG. 3. Representation of the normalized first gap widying and 50'1'1"152 are noF e_aSII_y descrlb_eéi with the_ plane-wave
between the first and second banus the rotation angled) cal- method.™ The existing inaccuracieswere attributed to

culated for hard rods in air with different filling fractiong)( The ~ Problems encountered during the diagonalization step, when
normalized gap widthiexpressed in arbitrary unjtés obtained by ~Nuge contrasts are found in the system. Other methods, such
dividing the gap width by the midgap frequency. A widening of the &S the finite-difference time-domain methbdEFDTD) or the

gap value with increasing rotation angle is observed in all the case§0-called Kornage-Kohn-Rostoker approdthshed some

The elastic parameters chosen for the calculations @re  light on this particular plane-wave limitation.
=1 kgm 3, p;oq=1500 kgm3, c,;,=340 ms?!, and coq As an example, consider the system described above for a
=2000 mst. filling fraction of 0.60 and a rotation angle of 45°, which is
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FIG. 4. Dispersion relations calculated for the inverted structure of air cavities in a solid host. The filling fraction of the hard component
is 0.60, and the rotation angle is 45°. The vertical scale is the frequency expressed in arbitrarg/anitsvherea is the cell parameter and
¢, is the transverse velocity in the host. In the left part, the band structure was calulcated for the pure transverse motion with a null transverse
velocity in the fluid. Many flatbands are found. Three bands, denotd&ilhB2, andB3, present a normal character. In the middle part, the
same band structure is calculated with a high artificial transverse velocity in the fluid. The flat bands are removed an82hendB3
bands stay in the same position. A strong similarity with the band structure presented in Fig. 2 is found. In the right part, the band structure
associated with the mixed motions is calculated with the same approach. In the last two cases a phononic band gap is found. The elastic
parameters chosen for the calculations pgg =1 kgm 3, ppos=1500 kgm3, ¢ ;=340 mS?L, ¢ 0s=3500 ms?, and ¢ pos;
=2000 ms . The value of the artificial transverse velocity inside the fluid is discussed in the text.

higher than the critical angle of the close-packed arrange- We claim that this model is justified by the same geomet-
ment of the solid rods .=39.2°). A more realistic ap- ric arguments as before. Instead of postulating a purely lon-
proach consists of considering the equivalent infinite elastigitudinal behavior of the solid, we now give an atrtificial
crystal of air columns occupying 40% in a heavy solidtransverse character to the fluid.
matrix. As for the shape of the equations, we find a strong simi-
We calculated the band structure associated with the purarity between the acoustic case and the pure transverse case.
transverse motiomn,. The result is shown in the left part of The band structures presented in Fig. 2 and in the middle of
Fig. 4. Three bands denoted By, B2, andB3 converge. In  Fig. 4 are roughly similar. These analogies suggest that the
the other hand, some unphysical flatbands appear. We cahearing coefficieni. plays the same important role as the
show that these bands do not converge, and appear randomtyass density in the fluid case. Thus the waves will propagate
according to the number of plane waves. Moreover, for armainly in the region of highw. The air cavities are reflectors,
equivalent number of plane waves, their position can diffetbecause the waves now propagate mainly in the solid. This
according to the routines employed in the calculation, sugjustifies the use of an artificial transverse character of the
gesting a bad numerical problem condition. fluid. This simple model, deduced from the simplest case,
In the case of a huge contrast of densities, the FDREX.  gives a good account of the insertion of a low-density fluid in
12) method showed that only thB1, B2, andB3 bands a solid. This is not valid for massive fluids such as merdary.
constitute thephysicalband structure. Using a plane-wave The higher density in the fluid does not allow one to consider
method, the flatbands can be removed by taking an artificisthe fluid as a perfect reflector, as a strong mode conversion
transverse velocity inside the fluid. For the calculations, éetween the transverse modes and the longitudinal ones is
value of 1500 ms! was chosen. This can be only done for expected.
very low-density fluid, in order to keep the ratio between the In the case of the in-plane motions, this simple model is
density and the artificial velocity small compared with thestill valid. Nevertheless, the nontrivial shape of the equations
one in the solid? As already suggested, this value dependsdoes not allow for the same kind of analogy, so that the
on the routines and on the convergence. explanation for the use of a high artificial transverse velocity
Our band structure is presented in the middle part of Figin air is not straightforward.
4. The three remaining bands in the pure transverse case are A gap tuning is then also expected for large filling frac-
theB1, B2, andB3 bands. The flatbands have disappearedtions, due to geometric effects similar to those found for
and a gap has settled between Bie andB2 bands. In the small filling fractions. The orientation of the air cavities will
right part of Fig. 4, the band structure associated with thénduce exactly the same opening of the gap as the rotation
in-plane motions is calculated with a similar approach. Inangle is increased. The frequency scale is larger, since the
this case, an artificial transverse velocity of°1Ms ! is  material host is now a solid. This theoretical example is il-
introduced in order to remove the unrealistic flatbands. Bylustrated in Fig. 5. The normalized gap width is drawn for a
overlaying the two band structures, a full phononic band gajost filling fraction of 0.70. Above the close-packing ar-
is still obtained. rangement of the solid compound & 33.2°), the elastic
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—A— Transverse square section distributed in air. This system is of practical
0.151 —8— Mixed case interest in order to achieve a phononic crystal with a tunable
_ gap width, adjustable by rotating the columns.
/ Such a system, mixing fluid and solid compounds, is not
easy to study with a plane-wave method. Nevertheless, two
models were developed in order to avoid the difficulties for

low and high filling fractions of the solid component in the
air host. In a complementary way, these models explained

0-97 /. the effects induced by the progressive change of the geom-
etry on the gap size. They take into account the important
- b limi/ contrast of impedances responsible for a strong reflective ac-
0. 00 | o i tion in the interfaces of the compounds.
33 40 43 The real interest of the introduction of this device can be

6 (degrees) stressed by underlining that the tuning mechanisms provides

FIG. 5. Representation of the normalized first gap width vs the? nondestructive method of influencing the phononic struc-

rotation angle @) calculated for air cavities inserted in a solid host. t“r?' as we can obtain the de5|re_d \{alue of the gap without
The normalized gap widttexpressed in arbitrary unjtss obtained a_Ct'ng on 'Fhe _Shape or the C(_)nSt'tUt'_on of t_he rods. Sevgral
by dividing the gap width by the midgap frequency. The filling Q|reqt applications can be envisaged in the field of a selective
fraction of the host is 0.70. The normalized width is calculated forfiltering of the acoustic power.

both the transverse and mixed cases beyond the close packing

angle, .= 33.2°, denoted by the C.P. limit. A widening of the gap

value with higher rotation angles is observed in both cases, as in the ACKNOWLEDGMENTS
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