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Using the Boltzmann weights of classical statistical-mechanics vertex models we define a new class of
tensor productAnsaze for two-dimensional quantum-lattice systems, characterized by a strong anisotropy,
which gives rise to stripelike structures. In the case of the six-vertex model we compute exactly, in the
thermodynamic limit, the norm of thénsatz and other observables. Employing thissatawe study the phase
diagram of a Hamiltonian given by the sum of XXZ Hamiltonians along the legs coupled by an Ising term.
Finally, we suggest a connection between the six- and eight-vertex anisotropic tensor-gkosazs and
their associated Hamiltonians, with the smectic-stripe phases recently discussed in the literature.
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I. INTRODUCTION an hexagonal latticez=4 for a square lattice, so on and so

Low-dimensional spin systems constitute one of the mosforth.}>-2°By analogy with statistical mechani¢SM) these
active areas in condensed-matter physics due to the expegtates can be called tensor-product veramsaze (TPVA)
mental findings and the associated theoretical activity. Thesgecause the auxiliary variables are associated to the links
systems are strongly correlated with very rich phase diapf the lattice, while the amplitudes are associated to the
grams studied by means of a miscellanea of analytical anglertices?® Another class of 2DAns#ze is formed by the
numerical techniques, among which the study of simplifiedensor-product facé\nsaze (TPFA), where the amplitudes
variationalAnsazefor the ground statéGS) and excitations 46 associated to the faces of a square lattice as in the face or
have pIayegI a 3|gn|f|cant role. . L interaction around a face models in statistical mechafits.

In one-dimensior(1D), there_ls_ a plethora of var'llatloznal The 2D generalizations of the AKLT states for spins 3/2, 2,
Ansdze the AKLT states, the finitely correlatedAnsaze and higher belong to the TPVA class. The recipe to construct

e : 3-5 .
the_ matrlx product anés dze (MPA), "the recurrent TPA’s is as in Eq(1), where the contraction of the auxiliary
variationalAnsatz(RVA),° etc. All theseAnsdzehave a com- . .

variables follows the pattern of the underlying vertex or face

mon structure for the GS wave function that is given by the
sum, over some auxiliary variables, of products of ampli-mOdeIS' , o ) ) )
tudes that also depend on the spin variables at the sites. The MOSt Of the TPAs studied in the literature are isotropic,
basic quantity here is the “matrix-product amplitude” mea.nmg.that. their propertlgs are largely independent of the
A, s[m;], wherem, is the spin at théth site andw and are spatial d|regt|on. Howevgr in 2D and 3D there are physical
auxiliary variables, which can be associated to the linkssystems, like some high-temperature superconduttors,
meeting at the site. For a spin chain with sites and duantum Hall systen®, or manganite$? which exhibit
periodic-boundary conditions the corresponding state can b&rongly anisotropic properties due to the existence of stripes.
written aé These objects are static or dynamic charge inhomogenetities,
which are linear in 2D or planar in 3D. One may wonder
_ whether these systems can be modeled with simple TPA's,

[wew) =2, Tr(AIM,] . ATmDIMy) - . my), - (D) just as Haldane spin chains can be easily described as
valence-bond states. In this work we shall not address di-
where the trace is over the auxiliary variablesSome MPA  rectly this question, but the results we have obtained suggest
states, such as the AKLT ones, are exact ground states oftRe possibility of a simple description of stripes in terms of
Hamiltonian, which is given by the sum of projectors be-Tpas. More precisely, in this paper we shall investigate a
tween nearest-neighbor §|tbin other cases, the MPA states (|ass of TPA's based on classical exactly solvable 2D-vertex
are used as variationAnsazefor a given Hamiltonian, with  odels with strong anisotropic properties reminiscent to the
the MPA amplitudes\, ;[ m], playing the role of variational  stripe systems investigated in Refs. 26,27. Any classical SM
parameters. Within the latter category fall, the DMRG states 2p_vertex model, not necessarily integrable, defined by its
(for a review on the DMRG sé&8), which are in fact MPA  Boitzmann weights, give rise to an anisotopic tensor product
states with open-boundary conditions alnodllpositi0n-dependemnsatz(ATpA). If, in addition, the SM model is exactly solv-
amplitudes(i.e., inhomogeneous MPAS%*!In the DMRG  gpje, then the corresponding ATPA becomes quasi-exactly-
the auxiliary variables label the states kept in the blocks. gglyable. The latter term is borrowed from the theory of

The MPA states can be generalized in a natural way to 2Rpectral problems associated to the Sdhwger Equatiorf®

systems, replacing the matrix amplitudes, s/m] Dy  meaning, in our context, that some quantities, as the norm of
“tensor-product” amplitudesA, ., .. .[M], wherez is  the ATPAs and some expectation values, can be computed
given by the coordination number of the lattice, iz=3 for  exactly in the thermodynamic limit.

’
mis
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To illustrate our proposal we have chosen the well-known TABLE I. Boltzmann weights of the six-vertex model.
six-vertex model, whose 1D quantum-mechanical counter
part is the XXZ model or the 1D spinless fermiprVe shall ~ Weight a b c
show that the corresponding ATPA has some similarities with

the striped states of 2D spinless fermions studied in the 0 0 0
literature?5-27 a B 0 0 11 0 1
The organization of this paper is as follows. First of allwe ¢ 0 0 1

review briefly the basic ingredients of vertex models in sta- 1 1 1
tistical mechanicgSec. I) and the tensor-product vertén-

saze(Sec. I1). In Sec. IV we introduce the ATPA's based on 11 0 0 10
SM-vertex models and study their general properties. The 1 1 0

ATPA associated to the six-vertex model is used in Sec. V as
a trial ground state for an anisotropic Hamiltonian closely ) .

related to the XXZ spin-chain Hamiltonian, and derive theVertex model. The link variables take on two values, say 0
phase diagram. In Sec. VI we briefly comment on the eight-‘"‘”d 1, wh|_ch_|n the standard notation corresponq t_o the right
vertex ATPA model. The possible connections between th@nd up pointingfor a=0), and left and down pointingfor

six- and eight-vertex ATPA is explored in Sec. VI and finally «=1)- The allowed configurations satisfy the ice rule

in Sec. VIIl we state our conclusions. In Appendices A and Bt §=8+ 7, and the Boltzmann weights are invariant under
we collect some technical results. the reversal of all arrows, which leaves three independent

ones, calledx, b, andc. The six-vertex model is integrable:
there is a uniparametric family of transfer matricEgu)
commuting among themselves. This is guaranteed by the

Throughout this paper we shall follow closely Baxter's Yang-Baxter equation satisfied by the Boltzmann weights.
book?! Let us consider a rectangular lattice wittrows and

II. VERTEX MODELS IN STATISTICAL MECHANICS

L columns. Throughout these paper we shall also use the lIl. TENSOR-PRODUCT VERTEX ANSATZE
term “legs” for the rows and “rungs” for the columns. In a _ ) i _ _ ,
vertex model there is a local state variableassociated to As in the previous section we shall consider a lattice with

every link and a Boltzmann weight associated to every verN 1€9s of lengtfL. In the quantum-spin model there is a spin
tex ®, which depends on the four link-variables meeting atdegree of freedonm at each vertex of the lattice. To con-

it. We shall represent the Boltzmann weight as struct a TPA we shall associate an auxiliary variabld¢o
each link, as in the SM models. The TPA amplitudes will be
7 denoted as
| 7
Wei=a — @ — B @ |
| ABm]=a — m - B (5)
¢ |
The statistical weight of a global configuration is given by &

the product of the Boltzmann weights of all the vertices. The
partition functionZ is the sum of these weights over all the
link configurations, which can also be expressed using tran
fer matrices. The row-to-row and column-to-column transfer

By analogy with SM we shall define the row-to-row and
é:_olumn—to—column transfer-matrix amplitudes

L
matrices are defined as, A;‘;‘g[m]zz |H1 Az:fé}i‘”i[mi],
L a's 1=
-I—row:E H Wi+ 17 N
X3 ~ - a; & ’ &
sttt T AZmI=2 T A% G, ()
§’s — irSi
N
Teol _ wWhi it 3 wherem=(my, ... ,m.) for A while m=(m,, ...,my)
*p 525 .1:[1 @ . ® for A®. Using Eqgs.(6) the TPA can be written in two alter-
native ways, i.e.,
where §=(&1, ....,&), a=(aq,...,ay), etc., and the 4
periodic-boundary conditions are assumed along both direc-
tions. Using Eq(3) the partition functiorz reads, [P row= 2 THAIM]. .. A mg])|my, . . . .My row
m's
Z=TrTh,=TrTs,. (4)

=2 Tr(A®[m,]...A% :
As an example we display in Table | the Boltzmann [#)ca ;S FATTM,] [mCDIma, - M eo
weights for the allowed vertex configurations of the six- 7
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TABLE II. Six-vertex TPA amplitudes. which leads to the following row representation of the ATPA
state(7),
Amplitude a b ¢
7 0 0 0 |¢>rowzz T:r?r,lsz:g:lms' ' 'Tﬁﬁml|ml1 s 1mN>r0W1
am§p 0+0 1+1 0+1 m’s (12)
3 0 0 1

1 1 1 where T, is the row-to-row transfer matrix3) builtup
from the SM Boltzmann Weightwffjg defining the ATPA

[Eq. (10)]. The structure of this state is similar to the

1 1 0 Kramers-Wannier variational state, first proposed for the GS

of the Ising modet>?°where the analogue af°" is played

by 2X 2 matrices. The ATPA built from the choic¢&0) can

Qe seen as a superposition of leg states connected through the

row-to-row transfer matrix of the SM model. For example, in

the antiferroelectric phase of the six-vertex model, the state
(¢ 'ﬂ)szTPow:TTTIEm (8) alopg the legs yvill be _mostly of Neel type and correlated

antiferromagnetically with their nearest-neighbor legs. In the
where spinless fermion picture the latter state is a Wigner crystal
with charge-density waveCDW) order.
The norm of Eq(12) is given simply by

These equations are identical to Edy), which implies that
the TPA can be regarded as a MPA through the legs or th
rungs. The norm of the TPA is given by

row _ row; row
T oy = 2 A mIA" [m],
()= 2 (T ) (Tl )2 (Th )2, (13)
T o = 2 AadMAZ 5 [m] (©) m's
ac’ B 45 BT el pr T
It is important to notice that Eq(l3) is not the partition

Thus the computation of the nort8) amounts to that of function of the SM model defined with Boltzmann weights

the partition function of a classical SM-vertex model whereW&'7 or their square. The reason being that in general,

the link variables are twice those of the quantum-mechanical o 2 5
model. (Tml,mz) 7 (Trow) my,my s (14)

where the LHS of this equation is the square of the element

Tiom, Of the row-to-row transfer matrix, while the RHS is

A. Generic case the entry (n;,m,) of the square of the row-to-row transfer

Let us suppose we are given a vertex model with Boltz-matrix. In any case, the computation of Hd.3) requires
mann weightsW” 7. Using them, we shall define a ATPA much less effort than Ed8) because the matrices involved

IV. ANISOTROPIC TENSOR PRODUCT ANSATZE

model by the equation: contain half of the indices of those of the general case. In
other words, the ATPA does not lead to a doubling of indices
AL T m]= 6 ,WE' 2 (10)  in the row representation.

. . L . , The situation improves even further in the column repre-
where the spin variable at each site, ima.is identified with sentation. Using Eqg6) and (10) we see that the column

the link variable. In the case of the six-vertex model we arpa amplitudes are given by the product of the Boltzmann
shall adopt the convention that=0 corresponds to spin 1/2 weights on a column, i.e.,
andm=1 to spin—1/2. For the six-vertex model the corre-
sponding TPA amplitudes are given in Table II. N

The choice(10) is extremely anisotropic since it treats on AZO'B[m]: 11 Wii 2' , (15)
a very different footing the vertical and horizontal directions ' =1 il
of the lattice. This is the main reason to consider both th%vherem — . Consedquently the column-to-column ATPA
row-to-row and column-to-column transfer matrices, WhiChtransfer%atrih;(iQ) beco?nes y
give rise to complementary descriptions of thesatz In SM
models where the leg and rung variables run over different N
sets, one can obtain two inequivalent ATPA's, not related by ol :2 H WA mi Wﬂi’ o
a 90° rotation. In the rest of the paper we shall suppose that o = B ELU B R, T
the link variables are of the same type in both directions.

Equation(10) implies a simple relationship between the Let us suppose for a moment that we restrict ourselves to
row-to-row TPA amplitude(6) and the row-to-row transfer the “diagonal” sector of7<®, which is defined by the choices

(16)

matrix (3) of the underlying SM model, namely, a=a' and B=pg'. Then Eq.(16) becomes a column-to-
o ow column transfer matrix3) with Boltzmann weights being the
AL dM]=6m 5Ty (1) square oW? 7, namely,
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This is quite a useful result for it implies that if the SM

model defined by the Boltzmann weights®=(W)? [Eq.

(21)] is integrable them\ .« can be computed exactly, at

east in the limitN— o, In the case of the ATPA based on the

For a ge_nerip TPA this diagonal fruncation may be a gooAs.ix-vertex model, the Boltzmann weighte® are simply the
approximation in certain regions of the parameter space, assquare of the ori’ginal ones. i.e

has been shown by Niggemaahal.in a TPA for a spin-3/2
system on a hexagonal lattice.

We shall show below that for a subclass of ATPAS, this
diagonal truncation is in fact exact, which has important con-and hence the norm of the ATPA can be computed exactly in
sequences. the thermodynamic limit.

There is yet another important consequence of the conser-
vation law(18). As it is well known in the theory of transfer
matrices, Eq(18) implies that the row-to-row transfer matrix
preserves the sum of all quantum numbers of every row, i.e.,

N
Towpp= 2 LT OWED )2=T,wWA). (7)

WO(a,b,c)=W(a?b?c?), (24)

B. Ansaze with conserved quantum numbers

Let us assume that the Boltzmann weigWS;;7 satisfy a
conservation law of the type,
W2 7=0 (18)

unless a+§&é=pB+7, T —0

L L

o unless Z,l mi=i=21 my . (25)
where the link-variables label the basis of an irreducible rep-
resentation(irrep) of a Lie groupG. The six-vertex model Hence all the terms appearing in the s(i8), giving | ) ow
corresponds to the spin 1/2 irrep of the grogp SU(2),  Must have the same value of “angular momenta” per leg. In
with the conventiona=0 (1) for the s,=1/2 (s,=—1/2). the six-vertex model, this implies the vanishing of all corr-
For a general Lie group the link variables will be given by elators between raising and lowering spin operators among
the weights of the corresponding irrep. different rows/legs, i.e.,

The immediate consequence of HG8) is that the non

vanishing terms of Eq(16) must satisfy (S72Sp)=0, if i#]j, (26)

wheresfa is the raising(lowering) spin operator on thath
site of theith leg. In other words, the quantum fluctuations
across the legs of the ATPA are strictly forbidden. In the

ai+mi_1=,8i+mi, izl,...,N,

ai tMi-a =B+ m, (19 six-vertex model the spins may only fluctuate along the legs.

which implies Using the spinless fermion terminology, the only allowed
charge fluctuations occur inside the legs. As mentioned in the
al —ai=B{ - Bi=Q;, (20 introduction, this lack of quantum fluctuations across the legs

is reminiscent to that occurring in some models of high-
superconductorésee Sec. VIl

The previous considerations give us a hint on what sort of
Hamiltonians, the ATPA's may become approximate ground
states. After all, we want to use the ATPA as variational
Ansdzefor physically interesting systems. We postpone this
question until next section after a discussion on correlators
and density matrices for ATPA'S.

whereQ;=1,0,—1 for the six-vertex model. In the general
caseQ;, being the difference of two weights of irreps, is
either zero or a root of the Lie group

Defining the Boltzmann weightd/? as

(W)L Z=W5 WG 2, (1)

we see from Eqs(16) and (20) that 7 breaks into a block

transfer matrices T® labeled by the vector Q _ _
=(Qq, ...,Qn), whose entries are given by C. Correlators and density matrices
N Let (’)?’i+l be a diagonal operator acting between the legs
TSBETSSLJrQﬁ[HQ:Z I (WQi)gi ™o (22 i andi +}dthat does ngt change thglr state_s and with matrix
' ’ m i=1 -1 eIementOmi'miH. A typical example in the six-vertex model

is provided by the Ising ternwf ,o7,,,. The expectation

The caseQ=0 corresponds to the matri®7), and hence value Ofoid,i+1 in the ATPA is be given by,

the truncation of the model to the “diagonal” sector is not an
approximation, but an exact result. This fact greatly simpli-
fies the computation of the norm of the ATPA in the thermo-
dynamic limitL— oo, which is given byA ., WhereA .4 IS
the biggest of all largest eigenvaIuA§ of the matricesT®.
In Appendix A we show that this eigenvalue belongs to the

<¢|Oid,i+1|¢>row

— row 2 /Trow 2 row 2.7yd
%S (Tml,mz) (Tmz,m3) s -(TmN,ml) Omi,miﬂ'

Q=0 sector and thus,

Ama=AS°. (23

lim <’;D| ¢>coI=Ama><v

L—ox

(27)

It can be shown that the square of the row-to-row transfer
matrix can be written agrecall Egs.(20) and(21)]
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a andb are equal. From now on we shall assume the latter

(Tﬂ?zvmz)zzg T(W)m, m, (28) condition, which implies thab}, =v = v .
The computation of Eq(31) is in general quite difficult
and hence the suit27) becomes depending on the operator in question. An approximation can
q however be made using the following result. (ﬁ?d is a
(WO 1) row positive definite operator then
=2 2 o TV TOWN (OP)=(v|O*v). (34)
m’s Q1+ N
o The proof of Eq.(34) uses the Perron-Frobenius theorem
XOm m (29

and the Schwartz inequality and it is similar to the one given

in Appendix A to prove Eq.23). For diagonal operators
In the thermodynamic limit this sum will be dominated by gcting on a leg, Eq(34) becomes an equality.

the termQ;=---=Q\=0, just as in the computation of the
norm of the state and hence the expectation valu@fqtl
reduces to an expectation value in the SM model with Bolt-
zmann weight&\°. This is a property of all diagonal opera-  The considerations made above suggest that an ATPA
tors that allow their exact evaluation, provided they arebased on the six-vertex model should be a reasonable ap-
known in the underlying exactly solved model. proximation to the ground state of the following Hamil-

In the case of the operatar{ 07, ,, its correlator is tonian:
equivalent to the SM expectation value

V. THE SIX-VERTEX ATPA

H= Hleg+ Hrunga
P= < O'iz,ao-iz+ 1,a>ATPA: <5i aSi+ l,a>six—vertexr (30) N
. . . 1
wheres=1,—1 is related to the link variable=0,1 by the Hieg= — 3. 2 > (07 40T ar 1+ ) 207 ai1
equations=1—2a. In Appendix B we shall compute this =la=1
guantity using the exact solution of the six-vertex model. +Agot 0P ), (35
Let us next consider an off-diagonal opera;f@?d acting 0%i.a%ia+1
on theith leg with matrix element@;‘imi,:(mﬂOi"d|mi’>. L
Its expectation value will be given by, rung_i Z Z fa0li1a
(O?d>=Tr(pi@°d), (31 which is a combination of the XXZ Hamiltonian along the

legs and an Ising one along the rungs. The latter choice is

where p; is the density matrix of théth leg whose entries  oiyated by the absence of quantum fluctuations across the

are, legs. This model has also been studied in Ref. 32 using
1 bosonization techniques. Using the Hellman-Feynman theo-
P! =T 2 (T:T?Wm )2.. L Trow m rem and Eqs(30) and(34), one can find the following lower
V() m’s#m; or m’ 2 Mi=1- bound of the energy per site of the ATPA
XTI T T o). JEo 1
MMy - MMy - My, My, - (Tmy, ml) E(A,AO,J’):EO(A)+(AO—A)TA()+ EJ’ P(A),
(32 (36)
Using again Eq(28) in the thermodynamic limit we can whereA is the anisotropy parameter associated to the Bolt-
write p; as zmann weightan®, i.e.,
1 2 | row row = M
Pmemi Ar2nax Mi—1.Mj+1 Oy mi-gm m;_1.m; 2agby
X Tty Tt (33 ay=a%by=b?,co=C2 (37)
i [
wherev!!" are the left and right eigenvectors with hlghestP(A) Is the expectation value defined in &80), andEq(4)

eigenvalued ..., of the transfer matrif (W°). Equation(33) s the GS energy per site of the XXZ model with anisotropy

shows that the regions located above or below of a given leg " The problem is: fixingh, andJ’, find the value oft that
behave as if they were in a single coherent state, which 'rr]nmimizes the total energ(g6), i.e

some cases can be identified with the ground state of the T
underlying quantum-mechanical model. This is indeed the A=A(Ag,d") (39)
case if we assume thai(W°) is a symmetric matrix, which 0=

is achieved in the six-vertex model if the Boltzmann weightslt is easy to see that ' =0 thenA=A,.

075117-5



M. A. MARTI'N-DELGADO, M. RONCAGLIA, AND G. SIERRA

In the antiferromanetic regiofAF) of the XXZ model,

i.e.,A<—1, the parametrization of the Boltzmann weights is

given by?!

A=—cosh\, A>0,

. A—U
a0=psth,
(39

Ao
b0=p5|nhT,

Co=p Sinh\,

wherep is an overall factor and is the spectral parameter

PHYSICAL REVIEW B64 075117

J’

FIG. 1. Phase diagram of the Hamiltoni&é8b) obtained using

that is set to zero in order to have a symmetric transfer mathe six-vertex ATPA. The poina corresponds ta\,=—4.6 and

trix.

J'=-2.17, b is a generic point on the line AE/ above the point

The total energy and its derivative in the AF region can bea, and finallyd corresponds ta\,=1 andJ’=0.

found from the Bethe\nsdz solution and they reat,

[

1
Eo=—=cosh\ —sinh\ —4 sinh\ , (40
2 mzzl €™ +1 40
B 1 1 4
A~ 2" tanhy T tanhn
~ 1 . mem
X (42)

-8 —.
m=1@™+1 m=1(e?™+1)32

The matrix elemenP in this region is derived in Appen-
dix B and it reads,

2 4 sinhm\

- sintf(A/2) i tanh(N/2) 7=1 cosE mn
(42)

P=-1

In the critical region C), i.e., —1<A<1, the parametri-
zation of the Boltzmann weights is given BY,
A=—cosu, O<u<m,
—U

. M
ag=p SII’]T,

(43
. ptu
bo=p sin——,
Co=pSinu.
The GS energy per site and its derivative rféad
1 sinu »  log coshux
Eo==cosu— ——|21o 2—27-rf dxX———|,
TR L g 0 sink? 7x
(44)

IEq 1 27-rf°c X tanhux

RNty + _ S

dA 2 plo  sinkwx
1

mtanu g2

*  |log coshux
—2I092+27rf dxg_—hM
0 sink? x

(45)

andP is given by(see Appendix B

A f " sint? ux

ptan(ul2) Jo XCOSh,uX sint? x

Figure 1 shows the phase diagram of the Hamiltorigi)
obtained by minimization of the enerd$6). We recall that
Eq. (36) is a lower bound of the energy of the ATPA, and
hence does not yield an upper bound of the exact GS energy
of Eq. (35).

The region denoted AF in Fig. 1 corresponds to the cases
whereA(Ag,J’) lies inside the antiferromagnetic regime
<—1. The regionC describes the critical regime, i.e;1
<A<1, while the regionF denotes the cases whete=1.

The phase boundaries between these regions have different
properties. The ARZ boundary lineab corresponds ta\ =

—1, and hence the transition between the AF @nphases
seems to be continuous. Below the painthe value ofA,

near the line AFF but on the AF side, is smaller thanl,
indicating that the ARF boundary is discontinuous. The
C/F line ad is also discontinuous, meaning that jumps
across it. Finally, there is no discontinuities across @ie
boundary above the poimt

In Ref. 32 the Hamiltonian(35 was studied using
bosonization, mean-field and renormalization-groigG)
methods. Disregarding the interleg forward scattering and
umklapp terms, that arise upon bosonization, the main con-
clusion of Ref. 32 is the existence of an AF region whenever
[J'|>2A, (mean-field resujtor |J'|>4A, (RG resulj. Fur-
thermore, the interchain forward scattering terms can be
taken into account using the sliding-Luttinger liquid ap-

P=1

(46)
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proach of Refs. 26,27. fAit was shown that the effect of the 1
inter-chain forward scattering is to modify the phase bound- H=— 5 E
aries separating the AF and C regions in an asymmetric way. ha
Indeed the AF region appears whéh>C, A, (if J'>0)
and —J'>C_A, (if J’<0), with C,#C_. Hence the re- X (i athi+1ath.c.)+23,
sults of Refs. 32,33, which should be valid in the weak cou-
pling regime|A|,|J’| <1, suggest that the system should be 1
in an AF phase whenever the legs are antiferromagnetic, i.e., —23’( Nia™ 5) ( Nia+1— 5)
Ay<<0. This is in contradiction with the ATPA result where
there exist critical region witlh ;<<0. On the other hand the which describes the motion of holons along the legs of a 2D
ATPA agrees with the aforementioned works on the existencgattice[term (J,+ J,)]. which are coupled by density-density
of large regions in the phase diagram where the system igteractions(term J'), together with pair tunneling between
critical, which we identify with the sliding or smectic the legs and the environmerterm (\]X—\]y)].31 Upon
Luttinger-liquid fixed points of Ref. 26,27. bosonization Eq(49) has a structure similar, but not identi-
cal, to the “smectic” Hamiltonian in the spin-gap case con-
sidered in Ref. 26 and the spinless sliding-Luttinger model of
Ref. 27. Indeed, the smectic symmetey,— ¢+ a,,?°
An ATPA closely related to the six-vertex model one thatwhered, is the boson field of thath leg, is the dual version
can be built from the Baxter’s eight-vertex model, whoseof the standardJ(1) symmetry of the six-vertex model,
Boltzmann weights are those of the six-vertex model plusvhich corresponds t@,— 6,+ a,, where 6, is the dual
two new weightaV3s=W?99=d.?! The conservation lai18  boson® The CDW coupling among the stripes’if’ corre-
now becomes, sponds to the termd’, while the Josephson tunneling is
somehow reflected by the pair creation and annihilation
W{jg’=0 unless a+é=B+7, (mod 2. (47) terms. Assuming _these_ correspondences, it _is quite natural to
’ conjecture a relationship between the smectic phases of Refs.
ol ) ) 26,27 and the corresponding phases of the eight-vertex
QThe transfer matrix7™ also breaks into block matrices ,4e| The stripe-crystal phase should correspond to the an-
T~ with the difference tha@; only takes two values 0 and 1, (iterromagnetic phase, the smectic-superconducting phase

(It I (P athiv1ath.c)+ (3= 3)

1 1
Nja— E Nit1a— E

: (49

VI. THE EIGHT-VERTEX ATPA

sinceQj=—1=1(mod 2). should correspond to the disordered phase and finally, the
The eight-vertex ATPA can be_talfen as theAmmsatzfor  gmectic metal should be associated to the critical phase,
the GS of the following Hamiltonian: which is the one of the six-vertex model wherl<A<1.

H=Heg+Hrung: VIIl. CONCLUSIONS

In this paper we have proposed a new class of ATPA using

1 i . S .
Hieg= — 3 % (007 207 av1 T Iyo) q0) a1+ 3,07 07 000, :he Bol;zrlnann weights of classical statistical-mechanics ver-
: ex models.
(48) We have shown that the computation of the norm and

some observables simplifies enormously, becoming exact
1 , whenever the underlying SM model is exactly solvable.
Hrungzz‘y% Oiali+1a- The strong anisotropy of the ATPAs is reflected in the
’ absence of quantum fluctuations across the legs of the 2D
lattice, a property that suggests a possible connection with

The phase diagram of this model can be worked out usingome current models of stripes.
the Baxter’s exact solution of the eight-vertex model, as we e have studied the ATPA based on the six-vertex model,
did for the six vertex one in the previous section. The resultgs 3 trial state for the ground state of a Hamiltonian given by
will be presented elsewhere. the sum of XXZ Hamiltonians along the legs of a 2D lattice,
which are coupled by an Ising term. Using the exact solution
of the six-vertex model we have proposed the phase diagram
of this model and compared it with the one obtain with other

An interesting feature of the six- and the eight-vertex AT-methods’>33
PA's is their possible connection with the stripes in high- We have suggested a connection between the six-vertex
superconductors, specially when regarded as electronic liggnd eight-vertex ATPAs, and their associated 2D Hamilto-
uid crystals?®27:3%n this section we shall briefly explore this nians, with the smectic-stripe phases considered in Refs. 26
issue that deserves a more detailed study in the future.  and 27.

The first observation is that the eight-vertex Hamiltonian Let us finally comment on the relation between the ATPA
(48) [and similarly the six vertex oné5)] can be Jordan- and the DMRG. As we explained in Sec. IV, the link vari-
Wigner transformed onto the following spinless fermionables along the legs and the rungs of the SM-vertex model
Hamiltonian, can be of different type. For example we can choose the rung

VII. THE ATPA AND STRIPES
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variablesé, » to take only two values, say 0 and 1, as in the  Using Eqs(9) and(22) we can write the LHS of Eq/A3)
six-vertex model, while the legs variables8 can take a as

large number of values, say 1,2 .,m, as in the DMRG.

The ATPA so constructed would have a spin 1/2 at each site Ql i\ 0,0_ 2 2~ col col

with strong correlations along the legs. This state would be aXI T ¢)= Z XX a%m U gAa ol MAai g+l M],

sort of anisotropic DMRG state with a stripelike structure (A4)
builtin. The problem is to device an algorithm to update the _
local weights. wherel denotes the tripled, 8,m) andxlQ stands for
Q_ col
XE=Uqv gA m], A5
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APPENDIX A: HIGHEST EIGENVALUE OF TR On the other hand, the Schwartz inequality

In this appendix we shall give a proof of E(3) under
the condition that all the TPA amplitudes are non negative. ’E XX
Let us callAQ the largest eigenvalue of the transfer matrix !

TQ defined in Eq(22). The statement is that

< \/ (Z x?x?)(? X?XJQ) (A7)

implies

AG=AG™" vVQ. (A1) [(XITOB)=<AS. (A8)
Choosing two vectorsy and ¢, with positive entries and Hence, choosing and ¢ the left and right eigenvectors of
scalar product equal to one, T one derives the desired resgi1).

<X| ¢)=1, APPENDIX B: THE TWO-POINT CORRELATOR P(A)
) 5 In this appendix we indicate how to compute the expec-
Xa=Ug: $a=Vgr Ua0a>0, (A2)  tation value
one has by the definition of§, P=(S; 25+ 1) six-vertex (B1)
<X|TQ|¢>SA8 (A3) in the six-vertex model with Boltzmann weighds b, andc

whena=h, which is the case under study. This quantity is

similar, but not identical, to the polarizability,=(a,) de-

where the equality holds whenevgrand ¢ are the left and fined by Baxter:

right eigenvectors ofT® respectively(recall that, by the
Perron-Frobenius theorem, the eigenvectof ©f with high-

est eigenvalue, has all its entries positive panded as

1.00 . i ZZE antN2pnatnagns+ne (B2)

0.75f

0.50 1 weighta, etc. The weight@ andb contribute toP with +1

o5l while ¢ does it with—1, henceP is given by the formula,

S o P lim — = b z
« T NLZ\%a TP Cac
-0.25¢ L ’
-0.50 J b 9 9 ¢ B3
= — =+ —C —
-0.75} aé’a db Cc?c (B3)
1005 - - s . wheref is the free energy per site in the unkgT=1. It is
A important to realize that the derivatives in E83) are per-

FIG. 2. Plot ofP(A)=(S; 4Si 1 1a)sixvertexin the AF region[Eq.  (B3) assumes thaa, b, andc are independent quantities,
(42)] and critical regior{Eqg. (46)]. however ifa=b the formula forP becomes,

075117-8

The partition function of the six-vertex model can be ex-

wheren,; andn, are the number of vertices with Boltzmann

formed keeping the remaining ones unchanged. Equation
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b d d ¢ B4 o] +f°° dx sinh(\+v)x sinh(7— )X
a=b= | 855 T O/ (B4) —relegar |y sinharx coshux
: o (B6)
In the AF region the free enerdyis given, in the param- ) )
etrization(39), by Using Eqgs.(B4), (B5), (B6), (39), and(43), with v set equal
to zero, one can derive Eqgl2) and (46) yielding P(A).
A+tv <« e ™sinhm(\+v) In Fig. 2 we plotP(A) in the AF andC regions. In the AF
—f=loga+— * 2 T coshmy (B5  region one has- 1<P< —1/3, while in theC region — 1/3

<P<1. At the isotropic pointA=—1 one findsP=—1/3,
while in the critical region one has, in the parametrizationwhile in the XY model, i.e.A=0, the result isP=0. In all
(43)%* the ferromagneti¢F) region, i.e.,A>1, one haP=1.
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