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Stripe ansätze from exactly solved models
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Using the Boltzmann weights of classical statistical-mechanics vertex models we define a new class of
tensor productAnsätze for two-dimensional quantum-lattice systems, characterized by a strong anisotropy,
which gives rise to stripelike structures. In the case of the six-vertex model we compute exactly, in the
thermodynamic limit, the norm of theAnsatz, and other observables. Employing thisAnsatzwe study the phase
diagram of a Hamiltonian given by the sum of XXZ Hamiltonians along the legs coupled by an Ising term.
Finally, we suggest a connection between the six- and eight-vertex anisotropic tensor-productAnsätze, and
their associated Hamiltonians, with the smectic-stripe phases recently discussed in the literature.
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I. INTRODUCTION
Low-dimensional spin systems constitute one of the m

active areas in condensed-matter physics due to the ex
mental findings and the associated theoretical activity. Th
systems are strongly correlated with very rich phase d
grams studied by means of a miscellanea of analytical
numerical techniques, among which the study of simplifie
variationalAnsätzefor the ground state~GS! and excitations
have played a significant role.

In one-dimension~1D!, there is a plethora of variationa
Ansätze: the AKLT states,1 the finitely correlatedAnsätze,2

the matrix-product ansätze ~MPA!,3–5 the recurrent-
variationalAnsatz~RVA!,6 etc. All theseAnsätzehave a com-
mon structure for the GS wave function that is given by
sum, over some auxiliary variables, of products of amp
tudes that also depend on the spin variables at the sites.
basic quantity here is the ‘‘matrix-product amplitude
Aa,b@mi #, wheremi is the spin at thei th site anda andb are
auxiliary variables, which can be associated to the lin
meeting at the site. For a spin chain withN sites and
periodic-boundary conditions the corresponding state can
written as4

ucMPA&5(
mi8s

Tr~A@m1# . . . A@mN# !um1& . . . umN&, ~1!

where the trace is over the auxiliary variablesa. Some MPA
states, such as the AKLT ones, are exact ground states
Hamiltonian, which is given by the sum of projectors b
tween nearest-neighbor sites.1 In other cases, the MPA state
are used as variationalAnsätzefor a given Hamiltonian, with
the MPA amplitudesAa,b@m#, playing the role of variationa
parameters. Within the latter category fall, the DMRG stat7

~for a review on the DMRG see8,9!, which are in fact MPA
states with open-boundary conditions and position-depen
amplitudes~i.e., inhomogeneous MPA’s!.4,10,11In the DMRG
the auxiliary variables label the states kept in the blocks

The MPA states can be generalized in a natural way to
systems, replacing the matrix amplitudesAa,b@m# by
‘‘tensor-product’’ amplitudesAa1 ,a2 , . . . ,az

@m#, where z is

given by the coordination number of the lattice, i.e.,z53 for
0163-1829/2001/64~7!/075117~9!/$20.00 64 0751
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an hexagonal lattice,z54 for a square lattice, so on and s
forth.12–20 By analogy with statistical mechanics~SM! these
states can be called tensor-product vertexansätze ~TPVA!
because the auxiliary variablesa i are associated to the link
of the lattice, while the amplitudes are associated to
vertices.21 Another class of 2DAnsätze is formed by the
tensor-product faceAnsätze ~TPFA!, where the amplitudes
are associated to the faces of a square lattice as in the fa
interaction around a face models in statistical mechanics.15,22

The 2D generalizations of the AKLT states for spins 3/2,
and higher belong to the TPVA class. The recipe to constr
TPA’s is as in Eq.~1!, where the contraction of the auxiliar
variables follows the pattern of the underlying vertex or fa
models.

Most of the TPA’s studied in the literature are isotrop
meaning that their properties are largely independent of
spatial direction. However in 2D and 3D there are physi
systems, like some high-temperature superconducto23

quantum Hall systems,24 or manganites,25 which exhibit
strongly anisotropic properties due to the existence of strip
These objects are static or dynamic charge inhomogenei
which are linear in 2D or planar in 3D. One may wond
whether these systems can be modeled with simple TP
just as Haldane spin chains can be easily described
valence-bond states. In this work we shall not address
rectly this question, but the results we have obtained sug
the possibility of a simple description of stripes in terms
TPA’s. More precisely, in this paper we shall investigate
class of TPA’s based on classical exactly solvable 2D-ver
models with strong anisotropic properties reminiscent to
stripe systems investigated in Refs. 26,27. Any classical
2D-vertex model, not necessarily integrable, defined by
Boltzmann weights, give rise to an anisotopic tensor prod
Ansatz~ATPA!. If, in addition, the SM model is exactly solv
able, then the corresponding ATPA becomes quasi-exac
solvable. The latter term is borrowed from the theory
spectral problems associated to the Schro¨dinger Equation,28

meaning, in our context, that some quantities, as the norm
the ATPA’s and some expectation values, can be compu
exactly in the thermodynamic limit.
©2001 The American Physical Society17-1
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To illustrate our proposal we have chosen the well-kno
six-vertex model, whose 1D quantum-mechanical coun
part is the XXZ model or the 1D spinless fermion.21 We shall
show that the corresponding ATPA has some similarities w
the striped states of 2D spinless fermions studied in
literature.26,27

The organization of this paper is as follows. First of all w
review briefly the basic ingredients of vertex models in s
tistical mechanics~Sec. II! and the tensor-product vertexAn-
sätze~Sec. III!. In Sec. IV we introduce the ATPA’s based o
SM-vertex models and study their general properties. T
ATPA associated to the six-vertex model is used in Sec. V
a trial ground state for an anisotropic Hamiltonian clos
related to the XXZ spin-chain Hamiltonian, and derive t
phase diagram. In Sec. VI we briefly comment on the eig
vertex ATPA model. The possible connections between
six- and eight-vertex ATPA is explored in Sec. VII and final
in Sec. VIII we state our conclusions. In Appendices A and
we collect some technical results.

II. VERTEX MODELS IN STATISTICAL MECHANICS

Throughout this paper we shall follow closely Baxter
book.21 Let us consider a rectangular lattice withN rows and
L columns. Throughout these paper we shall also use
term ‘‘legs’’ for the rows and ‘‘rungs’’ for the columns. In a
vertex model there is a local state variablea associated to
every link and a Boltzmann weight associated to every v
tex d, which depends on the four link-variables meeting
it. We shall represent the Boltzmann weight as

Wa,j
b,h5

h

u

a 2 d 2 b.

u

j

~2!

The statistical weight of a global configuration is given
the product of the Boltzmann weights of all the vertices. T
partition functionZ is the sum of these weights over all th
link configurations, which can also be expressed using tra
fer matrices. The row-to-row and column-to-column trans
matrices are defined as,

Th,j
row5(

a8s
)
i 51

L

Wa i ,j i

a i 11 ,h i,

Ta,b
col 5(

j8s
)
i 51

N

Wa i ,j i

b i ,j i 11, ~3!

where j5(j1 , . . . ,jL), a5(a1 , . . . ,aN), etc., and the
periodic-boundary conditions are assumed along both di
tions. Using Eq.~3! the partition functionZ reads,

Z5Tr Trow
N 5Tr Tcol

L . ~4!

As an example we display in Table I the Boltzma
weights for the allowed vertex configurations of the s
07511
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vertex model. The link variables take on two values, sa
and 1, which in the standard notation correspond to the r
and up pointing~for a50), and left and down pointing~for
a51). The allowed configurations satisfy the ice rulea
1j5b1h, and the Boltzmann weights are invariant und
the reversal of all arrows, which leaves three independ
ones, calleda, b, andc. The six-vertex model is integrable
there is a uniparametric family of transfer matricesT(u)
commuting among themselves. This is guaranteed by
Yang-Baxter equation satisfied by the Boltzmann weights

III. TENSOR-PRODUCT VERTEX ANSÄTZE

As in the previous section we shall consider a lattice w
N legs of lengthL. In the quantum-spin model there is a sp
degree of freedomm at each vertex of the lattice. To con
struct a TPA we shall associate an auxiliary variablea to
each link, as in the SM models. The TPA amplitudes will
denoted as

Aaj
bh@m#5

h

u

a 2 m 2 b

u

j

. ~5!

By analogy with SM we shall define the row-to-row an
column-to-column transfer-matrix amplitudes

Ah,j
row@m#5(

a8s
)
i 51

L

Aa i ,j i

a i 11 ,h i@mi #,

Aa,b
col @m#5(

j8s
)
i 51

N

Aa i ,j i

b i ,j i 11@mi #, ~6!

wherem5(m1 , . . . ,mL) for Arow while m5(m1 , . . . ,mN)
for Acol. Using Eqs.~6! the TPA can be written in two alter
native ways, i.e.,

uc& row5(
m8s

Tr~Arow@m1# . . . Arow@mN# !um1, . . . ,mN& row ,

uc&col5(
m8s

Tr~Acol@m1# . . . Acol@mL# !um1, . . . ,mL&col .

~7!

TABLE I. Boltzmann weights of the six-vertex model.

Weight a b c

h

a b

j

0

0 0

0

0

1 1

0

0

0 1

1

1

1 1

1

1

0 0

1

1

1 0

0
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STRIPEANSÄTZE FROM EXACTLY SOLVED MODELS PHYSICAL REVIEW B64 075117
These equations are identical to Eq.~1!, which implies that
the TPA can be regarded as a MPA through the legs or
rungs. The norm of the TPA is given by

^cuc&5Tr T row
N 5Tr T col

L ~8!

where

T hh8,jj8
row

5(
m

Ah,j
row@m#Ah8,j8

row
@m#,

T aa8,bb8
col

5(
m

Aa,b
col @m#Aa8,b8

col
@m#. ~9!

Thus the computation of the norm~8! amounts to that of
the partition function of a classical SM-vertex model whe
the link variables are twice those of the quantum-mechan
model.

IV. ANISOTROPIC TENSOR PRODUCT ANSÄTZE

A. Generic case

Let us suppose we are given a vertex model with Bo
mann weightsWa,j

b,h . Using them, we shall define a ATP
model by the equation:

Aa,j
b,h@m#5dm,hWa,j

b,h ~10!

where the spin variable at each site, i.e.,m is identified with
the link variableh. In the case of the six-vertex model w
shall adopt the convention thatm50 corresponds to spin 1/
andm51 to spin21/2. For the six-vertex model the corre
sponding TPA amplitudes are given in Table II.

The choice~10! is extremely anisotropic since it treats o
a very different footing the vertical and horizontal directio
of the lattice. This is the main reason to consider both
row-to-row and column-to-column transfer matrices, whi
give rise to complementary descriptions of theAnsatz. In SM
models where the leg and rung variables run over differ
sets, one can obtain two inequivalent ATPA’s, not related
a 90° rotation. In the rest of the paper we shall suppose
the link variables are of the same type in both directions

Equation~10! implies a simple relationship between th
row-to-row TPA amplitude~6! and the row-to-row transfe
matrix ~3! of the underlying SM model, namely,

Ah,j
row@m#5dm,hTh,j

row , ~11!

TABLE II. Six-vertex TPA amplitudes.

Amplitude a b c

h

a m b

j

0

0 1 0

0

0

1 1 1

0

0

0 1 1

1

1

1 2 1

1

1

0 2 0

1

1

1 2 0

0
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which leads to the following row representation of the ATP
state~7!,

uc& row5(
m8s

Tm1,m2

row Tm2,m3

row . . . TmN,m1

row um1, . . . ,mN& row ,

~12!

where Tm1,m2

row is the row-to-row transfer matrix~3! builtup

from the SM Boltzmann weightsWa,j
b,h defining the ATPA

@Eq. ~10!#. The structure of this state is similar to th
Kramers-Wannier variational state, first proposed for the
of the Ising model,13,29 where the analogue ofTrow is played
by 232 matrices. The ATPA built from the choice~10! can
be seen as a superposition of leg states connected throug
row-to-row transfer matrix of the SM model. For example,
the antiferroelectric phase of the six-vertex model, the s
along the legs will be mostly of Neel type and correlat
antiferromagnetically with their nearest-neighbor legs. In
spinless fermion picture the latter state is a Wigner crys
with charge-density wave~CDW! order.

The norm of Eq.~12! is given simply by

^cuc& row5(
m8s

~Tm1,m2

row !2~Tm2,m3

row !2 . . . ~TmN,m1

row !2. ~13!

It is important to notice that Eq.~13! is not the partition
function of the SM model defined with Boltzmann weigh
Wa,j

b,h or their square. The reason being that in general,

~Tm1,m2

row !2Þ~Trow
2 !m1,m2

, ~14!

where the LHS of this equation is the square of the elem
Tm1,m2

row of the row-to-row transfer matrix, while the RHS i

the entry (m1,m2) of the square of the row-to-row transfe
matrix. In any case, the computation of Eq.~13! requires
much less effort than Eq.~8! because the matrices involve
contain half of the indices of those of the general case
other words, the ATPA does not lead to a doubling of indic
in the row representation.

The situation improves even further in the column rep
sentation. Using Eqs.~6! and ~10! we see that the column
ATPA amplitudes are given by the product of the Boltzma
weights on a column, i.e.,

Aa,b
col @m#5)

i 51

N

Wa i ,mi 21

b i ,mi , ~15!

wherem05mN . Consequently the column-to-column ATP
transfer matrix~9! becomes

T aa8,bb8
col

5(
m

)
i 51

N

Wa i ,mi 21

b i ,mi W
a

i8 ,mi 21

b i8 ,mi . ~16!

Let us suppose for a moment that we restrict ourselve
the ‘‘diagonal’’ sector ofT col, which is defined by the choice
a5a8 and b5b8. Then Eq. ~16! becomes a column-to
column transfer matrix~3! with Boltzmann weights being the
square ofWa,j

b,h , namely,
7-3
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T aa,bb
col 5(

m
)
i 51

N

~Wa i ,mi 21

b i ,mi !25Ta,b
col ~W2!. ~17!

For a generic TPA this diagonal truncation may be a go
approximation in certain regions of the parameter space
has been shown by Niggemannet al. in a TPA for a spin-3/2
system on a hexagonal lattice.12

We shall show below that for a subclass of ATPA’s, th
diagonal truncation is in fact exact, which has important c
sequences.

B. Ansätzewith conserved quantum numbers

Let us assume that the Boltzmann weightsWa,j
b,h satisfy a

conservation law of the type,

Wa,j
b,h50 unless a1j5b1h, ~18!

where the link-variables label the basis of an irreducible r
resentation~irrep! of a Lie groupG. The six-vertex model
corresponds to the spin 1/2 irrep of the groupG5SU(2),
with the conventiona50 ~1! for the sz51/2 (sz521/2).
For a general Lie group the link variables will be given
the weights of the corresponding irrep.

The immediate consequence of Eq.~18! is that the non
vanishing terms of Eq.~16! must satisfy

a i1mi 215b i1mi , i 51, . . . ,N,

a i81mi 215b i81mi , ~19!

which implies

a i82a i5b i82b i5Qi , ~20!

whereQi51,0,21 for the six-vertex model. In the gener
caseQi , being the difference of two weights of irreps,
either zero or a root of the Lie groupG.

Defining the Boltzmann weightsWQ as

~WQ!a,j
b,h5Wa,j

b,hWa1Q,j
b1Q,h , ~21!

we see from Eqs.~16! and~20! thatT col breaks into a block
transfer matrices TQ labeled by the vector Q
5(Q1 , . . . ,QN), whose entries are given by

Ta,b
Q [T aa1Q,bb1Q

col 5(
m

)
i 51

N

~WQi !a i ,mi 21

b i ,mi . ~22!

The caseQ50 corresponds to the matrix~17!, and hence
the truncation of the model to the ‘‘diagonal’’ sector is not
approximation, but an exact result. This fact greatly simp
fies the computation of the norm of the ATPA in the therm
dynamic limit L→`, which is given byLmax whereLmax is
the biggest of all largest eigenvaluesL0

Q of the matricesTQ.
In Appendix A we show that this eigenvalue belongs to
Q50 sector and thus,

lim
L→`

^cuc&col5Lmax, Lmax5L0
QÄ0. ~23!
07511
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This is quite a useful result for it implies that if the SM
model defined by the Boltzmann weightsW05(W)2 @Eq.
~21!# is integrable thenLmax can be computed exactly, a
least in the limitN→`. In the case of the ATPA based on th
six-vertex model, the Boltzmann weightsW0 are simply the
square of the original ones, i.e.,

W0~a,b,c!5W~a2,b2,c2!, ~24!

and hence the norm of the ATPA can be computed exactl
the thermodynamic limit.

There is yet another important consequence of the con
vation law~18!. As it is well known in the theory of transfe
matrices, Eq.~18! implies that the row-to-row transfer matri
preserves the sum of all quantum numbers of every row,

Tm,m8
row

50 unless (
i 51

L

mi5(
i 51

L

mi8 . ~25!

Hence all the terms appearing in the sum~12!, giving uc& row ,
must have the same value of ‘‘angular momenta’’ per leg.
the six-vertex model, this implies the vanishing of all co
elators between raising and lowering spin operators am
different rows/legs, i.e.,

^Si ,a
1 Sj ,b

2 &50, if iÞ j , ~26!

whereSi ,a
6 is the raising~lowering! spin operator on theath

site of thei th leg. In other words, the quantum fluctuatio
across the legs of the ATPA are strictly forbidden. In t
six-vertex model the spins may only fluctuate along the le
Using the spinless fermion terminology, the only allow
charge fluctuations occur inside the legs. As mentioned in
introduction, this lack of quantum fluctuations across the le
is reminiscent to that occurring in some models of high-Tc
superconductors~see Sec. VII!.

The previous considerations give us a hint on what sor
Hamiltonians, the ATPA’s may become approximate grou
states. After all, we want to use the ATPA as variation
Ansätze for physically interesting systems. We postpone t
question until next section after a discussion on correla
and density matrices for ATPA’s.

C. Correlators and density matrices

Let Oi ,i 11
d be a diagonal operator acting between the le

i and i 11 that does not change their states and with ma
elementÔmi,mi11

d . A typical example in the six-vertex mode

is provided by the Ising terms i ,a
z s i 11,a

z . The expectation
value ofOi ,i 11

d in the ATPA is be given by,

^cuOi ,i 11
d uc& row

5(
m8s

~Tm1,m2

row !2~Tm2,m3

row !2 . . . ~TmN,m1

row !2Ômi,mi11

d .

~27!

It can be shown that the square of the row-to-row trans
matrix can be written as@recall Eqs.~20! and ~21!#
7-4
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~Tm1,m2

row !25(
Q

T~WQ!m1,m2
, ~28!

and hence the sum~27! becomes

^cuOi ,i 11
d uc& row

5(
m8s

(
Q1 , . . . ,QN

T~WQ1!m1,m2
. . . T~WQN!mN,m1

3Ômi,mi11

d . ~29!

In the thermodynamic limit this sum will be dominated b
the termQ15¯5QN50, just as in the computation of th
norm of the state and hence the expectation value ofOi ,i 11

d

reduces to an expectation value in the SM model with B
zmann weightsW0. This is a property of all diagonal opera
tors that allow their exact evaluation, provided they a
known in the underlying exactly solved model.

In the case of the operators i ,a
z s i 11,a

z , its correlator is
equivalent to the SM expectation value

P[^s i ,a
z s i 11,a

z &ATPA5^si ,asi 11,a&six-vertex, ~30!

wheres51,21 is related to the link variablea50,1 by the
equations5122a. In Appendix B we shall compute thi
quantity using the exact solution of the six-vertex model.

Let us next consider an off-diagonal operatorO i
od acting

on the i th leg with matrix elementsÔmi,mi8
od

5^miuO i
odumi8&.

Its expectation value will be given by,

^O i
od&5Tr~r iÔod!, ~31!

wherer i is the density matrix of thei th leg whose entries
are,

rmi,mi8
5

1

^cuc& (
m8sÞmi or mi8

~Tm1,m2

row !2 . . . Tmi21 ,mi

row

3Tmi21 ,mi8
row

Tmi ,mi11

row Tmi8 ,mi11

row
. . . ~TmN,m1

row !2.

~32!

Using again Eq.~28! in the thermodynamic limit we can
write r i as

rmi,mi8
5

1

Lmax
2 (

mi21 ,mi11

vmi21

l Tmi21 ,mi

row Tmi21 ,mi8
row

3Tmi ,mi11

row Tmi8 ,mi11

row vmi11

r ~33!

where vm
l /r are the left and right eigenvectors with highe

eigenvalueLmax of the transfer matrixT(W0). Equation~33!
shows that the regions located above or below of a given
behave as if they were in a single coherent state, which
some cases can be identified with the ground state of
underlying quantum-mechanical model. This is indeed
case if we assume thatT(W0) is a symmetric matrix, which
is achieved in the six-vertex model if the Boltzmann weig
07511
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a andb are equal. From now on we shall assume the la
condition, which implies thatvm

l 5vm
r 5vm .

The computation of Eq.~31! is in general quite difficult
depending on the operator in question. An approximation
however be made using the following result. IfO i

od is a
positive definite operator then

^O i
od&<^vuÔoduv&. ~34!

The proof of Eq.~34! uses the Perron-Frobenius theore
and the Schwartz inequality and it is similar to the one giv
in Appendix A to prove Eq.~23!. For diagonal operators
acting on a leg, Eq.~34! becomes an equality.

V. THE SIX-VERTEX ATPA

The considerations made above suggest that an AT
based on the six-vertex model should be a reasonable
proximation to the ground state of the following Ham
tonian:

H5H leg1H rung,

H leg52
1

2 (
i 51

N

(
a51

L

~s i ,a
x s i ,a11

x 1s i ,a
y s i ,a11

y

1D0s i ,a
z s i ,a11

z !, ~35!

H rung5
1

2
J8(

i 51

N

(
a51

L

s i ,a
z s i 11,a

z ,

which is a combination of the XXZ Hamiltonian along th
legs and an Ising one along the rungs. The latter choic
motivated by the absence of quantum fluctuations across
legs. This model has also been studied in Ref. 32 us
bosonization techniques. Using the Hellman-Feynman th
rem and Eqs.~30! and~34!, one can find the following lower
bound of the energy per site of the ATPA

E~D,D0 ,J8!5E0~D!1~D02D!
]E0

]D
1

1

2
J8 P~D!,

~36!

whereD is the anisotropy parameter associated to the B
zmann weightsW0, i.e.,

D5
a0

21b0
22c0

2

2a0b0
,

a05a2,b05b2,c05c2. ~37!

P(D) is the expectation value defined in Eq.~30!, andE0(D)
is the GS energy per site of the XXZ model with anisotro
D.

The problem is: fixingD0 andJ8, find the value ofD that
minimizes the total energy~36!, i.e.,

D5D~D0 ,J8!. ~38!

It is easy to see that ifJ850 thenD5D0.
7-5
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In the antiferromanetic region~AF! of the XXZ model,
i.e.,D,21, the parametrization of the Boltzmann weights
given by,21

D52coshl, l.0,

a05r sinh
l2v

2
,

~39!

b05r sinh
l1v

2
,

c05r sinhl,

wherer is an overall factor andv is the spectral paramete
that is set to zero in order to have a symmetric transfer
trix.

The total energy and its derivative in the AF region can
found from the BetheAnsätz solution and they read,21

E05
1

2
cosh l2sinhl24 sinhl (

m51

`
1

e2ml11
, ~40!

]E0

]D
52

1

2
1

1

tanhl
1

4

tanhl

3 (
m51

`
1

e2ml11
28 (

m51

`
m e2ml

~e2ml11!2
. ~41!

The matrix elementP in this region is derived in Appen
dix B and it reads,

P5212
2

sinh2~l/2!
1

4

tanh~l/2! (
m51

`
sinhml

cosh2 ml
.

~42!

In the critical region (C), i.e., 21,D,1, the parametri-
zation of the Boltzmann weights is given by,21

D52cosm, 0,m,p,

a05r sin
m2v

2
,

~43!

b05r sin
m1v

2
,

c05r sinm.

The GS energy per site and its derivative read21

E05
1

2
cosm2

sinm

m F2 log 222pE
0

`

dx
log coshmx

sinh2 px
G ,

~44!
07511
a-

e

]E0

]D
52

1

2
1

2p

m E
0

`

dx
x tanhmx

sinh2 px

1S 1

m tanm
2

1

m2D F22 log 212pE
0

`

dx
log coshmx

sinh2 px
G

~45!

andP is given by~see Appendix B!,

P512
4p

m tan~m/2!
E

0

`

dx
sinh2 mx

coshmx sinh2 px
. ~46!

Figure 1 shows the phase diagram of the Hamiltonian~35!
obtained by minimization of the energy~36!. We recall that
Eq. ~36! is a lower bound of the energy of the ATPA, an
hence does not yield an upper bound of the exact GS en
of Eq. ~35!.

The region denoted AF in Fig. 1 corresponds to the ca
whereD(D0 ,J8) lies inside the antiferromagnetic regimeD
,21. The regionC describes the critical regime, i.e.,21
,D,1, while the regionF denotes the cases whereD51.
The phase boundaries between these regions have diffe
properties. The AF/C boundary lineab corresponds toD5
21, and hence the transition between the AF andC phases
seems to be continuous. Below the pointa the value ofD,
near the line AF/F but on the AF side, is smaller than21,
indicating that the AF/F boundary is discontinuous. Th
C/F line ad is also discontinuous, meaning thatD jumps
across it. Finally, there is no discontinuities across theC/F
boundary above the pointd.

In Ref. 32 the Hamiltonian~35! was studied using
bosonization, mean-field and renormalization-group~RG!
methods. Disregarding the interleg forward scattering a
umklapp terms, that arise upon bosonization, the main c
clusion of Ref. 32 is the existence of an AF region whene
uJ8u.2D0 ~mean-field result! or uJ8u.4D0 ~RG result!. Fur-
thermore, the interchain forward scattering terms can
taken into account33 using the sliding-Luttinger liquid ap-

FIG. 1. Phase diagram of the Hamiltonian~35! obtained using
the six-vertex ATPA. The pointa corresponds toD0524.6 and
J8522.17, b is a generic point on the line AF/C above the point
a, and finallyd corresponds toD051 andJ850.
7-6
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proach of Refs. 26,27. In33 it was shown that the effect of th
inter-chain forward scattering is to modify the phase bou
aries separating the AF and C regions in an asymmetric w
Indeed the AF region appears whenJ8.C1D0 ~if J8.0)
and 2J8.C2D0 ~if J8,0), with C1ÞC2 . Hence the re-
sults of Refs. 32,33, which should be valid in the weak co
pling regimeuD0u,uJ8u!1, suggest that the system should
in an AF phase whenever the legs are antiferromagnetic,
D0,0. This is in contradiction with the ATPA result wher
there exist critical region withD0,0. On the other hand the
ATPA agrees with the aforementioned works on the existe
of large regions in the phase diagram where the system
critical, which we identify with the sliding or smecti
Luttinger-liquid fixed points of Ref. 26,27.

VI. THE EIGHT-VERTEX ATPA

An ATPA closely related to the six-vertex model one th
can be built from the Baxter’s eight-vertex model, who
Boltzmann weights are those of the six-vertex model p
two new weightsW00

115W11
005d.21 The conservation law~18!

now becomes,

Wa,j
b,h50 unless a1j5b1h, ~mod 2!. ~47!

The transfer matrixT col also breaks into block matrice
TQ with the difference thatQi only takes two values 0 and 1
sinceQi52151(mod 2).

The eight-vertex ATPA can be taken as the anAnsatzfor
the GS of the following Hamiltonian:

H5H leg1H rung,

H leg52
1

2 (
i ,a

~Jxs i ,a
x s i ,a11

x 1Jys i ,a
y s i ,a11

y 1Jzs i ,a
z s i ,a11

z !,

~48!

H rung5
1

2
J8(

i ,a
s i ,a

z s i 11,a
z .

The phase diagram of this model can be worked out us
the Baxter’s exact solution of the eight-vertex model, as
did for the six vertex one in the previous section. The res
will be presented elsewhere.

VII. THE ATPA AND STRIPES

An interesting feature of the six- and the eight-vertex A
PA’s is their possible connection with the stripes in high-Tc
superconductors, specially when regarded as electronic
uid crystals.26,27,30In this section we shall briefly explore thi
issue that deserves a more detailed study in the future.

The first observation is that the eight-vertex Hamiltoni
~48! @and similarly the six vertex one~35!# can be Jordan-
Wigner transformed onto the following spinless fermi
Hamiltonian,
07511
-
y.

-

e.,

e
is

t

s

g
e
ts

-

q-

H52
1

2 (
i ,a

F ~Jx1Jy!~c i ,a
† c i 11,a1h.c.!1~Jy2Jx!

3~c i ,ac i 11,a1h.c.!12JzS ni ,a2
1

2D S ni 11,a2
1

2D
22J8S ni ,a2

1

2D S ni ,a112
1

2D G , ~49!

which describes the motion of holons along the legs of a
lattice@term (Jx1Jy)], which are coupled by density-densit
interactions~term J8), together with pair tunneling betwee
the legs and the environment@term (Jx2Jy)].

31 Upon
bosonization Eq.~49! has a structure similar, but not ident
cal, to the ‘‘smectic’’ Hamiltonian in the spin-gap case co
sidered in Ref. 26 and the spinless sliding-Luttinger mode
Ref. 27. Indeed, the smectic symmetryfa→fa1aa ,26

wherefa is the boson field of theath leg, is the dual version
of the standardU(1) symmetry of the six-vertex mode
which corresponds toua→ua1aa , where ua is the dual
boson.34 The CDW coupling among the stripes in26,27 corre-
sponds to the termJ8, while the Josephson tunneling
somehow reflected by the pair creation and annihilat
terms. Assuming these correspondences, it is quite natur
conjecture a relationship between the smectic phases of R
26,27 and the corresponding phases of the eight-ve
model. The stripe-crystal phase should correspond to the
tiferromagnetic phase, the smectic-superconducting ph
should correspond to the disordered phase and finally,
smectic metal should be associated to the critical pha
which is the one of the six-vertex model when21,D,1.

VIII. CONCLUSIONS

In this paper we have proposed a new class of ATPA us
the Boltzmann weights of classical statistical-mechanics v
tex models.

We have shown that the computation of the norm a
some observables simplifies enormously, becoming ex
whenever the underlying SM model is exactly solvable.

The strong anisotropy of the ATPA’s is reflected in th
absence of quantum fluctuations across the legs of the
lattice, a property that suggests a possible connection w
some current models of stripes.

We have studied the ATPA based on the six-vertex mod
as a trial state for the ground state of a Hamiltonian given
the sum of XXZ Hamiltonians along the legs of a 2D lattic
which are coupled by an Ising term. Using the exact solut
of the six-vertex model we have proposed the phase diag
of this model and compared it with the one obtain with oth
methods.32,33

We have suggested a connection between the six-ve
and eight-vertex ATPA’s, and their associated 2D Hamil
nians, with the smectic-stripe phases considered in Refs
and 27.

Let us finally comment on the relation between the ATP
and the DMRG. As we explained in Sec. IV, the link var
ables along the legs and the rungs of the SM-vertex mo
can be of different type. For example we can choose the r
7-7
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M. A. MARTÍ N-DELGADO, M. RONCAGLIA, AND G. SIERRA PHYSICAL REVIEW B64 075117
variablesj,h to take only two values, say 0 and 1, as in t
six-vertex model, while the legs variablesa,b can take a
large number of values, say 1,2, . . . ,m, as in the DMRG.
The ATPA so constructed would have a spin 1/2 at each
with strong correlations along the legs. This state would b
sort of anisotropic DMRG state with a stripelike structu
builtin. The problem is to device an algorithm to update t
local weights.
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APPENDIX A: HIGHEST EIGENVALUE OF TQ

In this appendix we shall give a proof of Eq.~23! under
the condition that all the TPA amplitudes are non negati
Let us callL0

Q the largest eigenvalue of the transfer mat
TQ defined in Eq.~22!. The statement is that

L0
Q<L0

Q50 , ;Q. ~A1!

Choosing two vectorsx and f, with positive entries and
scalar product equal to one,

^xuf&51,

xa5ua
2 , fa5va

2 , ua ,va.0, ~A2!

one has by the definition ofL0
Q ,

^xuTQuf&<L0
Q ~A3!

where the equality holds wheneverx andf are the left and
right eigenvectors ofTQ respectively~recall that, by the
Perron-Frobenius theorem, the eigenvector ofTQ, with high-
est eigenvalue, has all its entries positive!.

FIG. 2. Plot ofP(D)5^si ,asi 11,a&six-vertex in the AF region@Eq.
~42!# and critical region@Eq. ~46!#.
07511
te
a

e

o.

.

Using Eqs.~9! and~22! we can write the LHS of Eq.~A3!
as

^xuTQuf&5(
I

xI
0xI

Q5 (
a,b,m

ua
2vb

2Aa,b
col @m#Aa1Q,b1Q

col @m#,

~A4!

whereI denotes the triple (a,b,m) andxI
Q stands for

xI
Q5uavbAa1Q,b1Q

col @m#, ~A5!

it turns out that

(
I

~xI
Q!2<L0

0 , ;Q. ~A6!

On the other hand, the Schwartz inequality

U(
I

xI
0xI

QU<AS (
I

xI
0xI

0D S (
J

xJ
QxJ

QD ~A7!

implies

u^xuTQuf&u<L0
0 . ~A8!

Hence, choosingx andf the left and right eigenvectors o
TQ one derives the desired result~A1!.

APPENDIX B: THE TWO-POINT CORRELATOR P„D…

In this appendix we indicate how to compute the exp
tation value

P5^si ,asi 11,a&six-vertex, ~B1!

in the six-vertex model with Boltzmann weightsa, b, andc
when a5b, which is the case under study. This quantity
similar, but not identical, to the polarizabilityP05^a1& de-
fined by Baxter.21

The partition function of the six-vertex model can be e
panded as

Z5( an11n2bn31n4cn51n6, ~B2!

wheren1 andn2 are the number of vertices with Boltzman
weight a, etc. The weightsa andb contribute toP with 11
while c does it with21, henceP is given by the formula,

P5 lim
N,L→`

1

NL

1

Z S a
]

]a
1b

]

]b
2c

]

]cDZ

52S a
]

]a
1b

]

]b
2c

]

]cD f ~B3!

wheref is the free energy per site in the unitskBT51. It is
important to realize that the derivatives in Eq.~B3! are per-
formed keeping the remaining ones unchanged. Equa
~B3! assumes thata, b, and c are independent quantities
however ifa5b the formula forP becomes,
7-8
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Pa5b52S a
]

]a
2c

]

]cD f . ~B4!

In the AF region the free energyf is given, in the param-
etrization~39!, by,21

2 f 5 loga1
l1v

2
1 (

m51

`
e2ml sinhm~l1v !

m coshml
~B5!

while in the critical region one has, in the parametrizati
~43!21
n.

at

on

in

no

E.
,

rra
sic

a,

s.

07511
2 f 5 loga1E
2`

` dx

x

sinh~l1v !x sinh~p2m!x

sinhpx coshmx
.

~B6!

Using Eqs.~B4!, ~B5!, ~B6!, ~39!, and~43!, with v set equal
to zero, one can derive Eqs.~42! and ~46! yielding P(D).

In Fig. 2 we plotP(D) in the AF andC regions. In the AF
region one has21,P,21/3, while in theC region21/3
,P,1. At the isotropic pointD521 one findsP521/3,
while in the XY model, i.e.,D50, the result isP50. In all
the ferromagnetic~F! region, i.e.,D.1, one hasP51.
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