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Pairing fluctuations and pseudogaps in the attractive Hubbard model
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1Département de Physique and Centre de Recherche sur les Proprie´tés Électroniques de Mate´riaux Avance´s,
Universitéde Sherbrooke, Sherbrooke, Que´bec, Canada J1K 2R1

2Institut Canadien de Recherches Avance´es, Universite´ de Sherbrooke, Sherbrooke, Que´bec, Canada J1K 2R1
~Received 2 October 2000; revised manuscript received 2 March 2001; published 31 July 2001!

The two-dimensional attractive Hubbard model is studied in the weak-to-intermediate-coupling regime by
employing a nonperturbative approach. It is shown that this approach is in quantitative agreement with Monte
Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the
single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature
T* , also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical
pairing fluctuations in the low-temperature renormalized classical regime (\v,kBT) of the two-dimensional
system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it, and the
pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes
around T* can modify the spectral weight over frequency scales much larger than temperature. Several
qualitative results for thes-wave case should remain true ford-wave superconductors.
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I. INTRODUCTION

For the past several years pseudogap phenomena fou
the underdoped high-temperature superconductors1 and or-
ganic superconductors2 have attracted considerable attenti
among condensed-matter physicists. For these material
low-frequency spectral weight begins to be strongly s
pressed below some characteristic temperatureT* that is
higher than the transition temperatureTc . In the high-
temperature superconductors, this anomalous behavior
been observed through various experimental probes suc
photoemission,3,4 specific heat,5 tunneling,6 NMR,7 and opti-
cal conductivity.8 Although various theoretical scenario
have been proposed, there is no consensus at pre
These proposals include spinon pair formation witho
Bose-Einstein condensation of holons,9–11 stripes,12–15

hidden d-density-wave order,16 strong superconducting
fluctuations,17–25 amplitude fluctuations with dimensiona
crossover,26 and magnetic scenarios near the antiferrom
netic instability.27,28

Although the above theories for the origin of th
pseudogap are very different in detail, those that do not
on spatial inhomogeneities can be divided, roughly speak
in two broad categories: weak-coupling and strong-coup
explanations. In the strong-coupling approaches, the sin
particle spectral weight is shifted to high energies. There
no weight at zero frequency at half-filling. That weight, ho
ever, increases as one dopes away from half-filling, as qu
tatively expected from the physics of a doped Mott insula
Recent angle-resolved photoemission spectroscopy~ARPES!
experiments29,30 find, in the superconducting state, a qua
particle behavior consistent with this point of view. If w
consider instead a weak-coupling approach, either in
strict sense or as an effective model for quasiparticles,
only known way of obtaining a pseudogap is through co
pling to renormalized classical fluctuations in two dime
sions. In the repulsive two-dimensional~2D! Hubbard model
in the weak-to-intermediate-coupling regime, analytic
arguments31,32 and detailed Monte Carlo simulations33
0163-1829/2001/64~7!/075116~15!/$20.00 64 0751
in

the
-

as
as

nt.
t

-

st
g,
g
e-
is

li-
r.

-

e
e
-
-

l

strongly suggest that indeed antiferromagnetic fluctuati
can create a pseudogap in the renormalized classical re
of fluctuations. This mechanism has been confirmed rece
by another approach34 but earlier studies had not found th
effect.35,36

The present paper focuses on superconducting fluc
tions and the attractive Hubbard model in weak-
intermediate coupling. The purpose of the paper is twofo
First, in Sec. II, we validate, through comparisons w
Monte Carlo simulations, a nonperturbative many-bo
approach37 that is an extension of previous work on the r
pulsive model.31,32 Formal aspects of this method are pr
sented in the accompanying paper.37 Then, in the second par
of the present paper~Sec. III! we study the mechanism fo
pseudogap formation due to superconducting fluctuation38

More extensive references on pseudogap formation in
attractive Hubbard model may be found in Sec. III. Earl
Monte Carlo work39,37 and analytical arguments32,39 have
suggested the appearance of a pseudogap in the renorma
classical regime of pairing fluctuations. We study the appe
ance of the pseudogap in both the density of states and
single-particle spectral weightA(kWF ,v), showing that, in
general, they occur at different temperatures. General c
ments on the relation to pseudogap phenomena in h
temperature superconductors may be found in the conclu
paragraphs.

II. A NONPERTURBATIVE MANY-BODY APPROACH
COMPARED WITH MONTE CARLO RESULTS

In the first subsection, we present our approach in sim
terms. More formal arguments are given in the accompa
ing paper.37 In the second subsection, we show that our a
proach is in quantitative agreement with Monte Carlo sim
lations for both single-particle and two-particle quantities

A. A nonperturbative sum-rule approach

We consider the attractive Hubbard model for electro
on a two-dimensional square lattice
©2001 The American Physical Society16-1
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H5(
kW ,s

«kWckW ,s
†

ckW ,s1
U

N (
kW ,pW ,qW

ckW ,↑
†

ckW1qW ,↑cpW ,↓
†

cpW 2qW ,↓ , ~1!

where«kW522t(coskx1cosky), U is the on-site attractive in
teraction (U,0), and N is the number of lattice sites
Throughout the calculations, the constantst, \, kB , and lat-
tice spacing are taken to be unity. The indexs represents
spin. This Hamiltonian is not a valid model ford-wave su-
perconductors, but it is the simplest model for which it
possible to check the accuracy of approximate many-b
results against Monte Carlo simulations. Once the accur
of the many-body technique has been established, it ca
generalized to thed-wave case. Furthermore, many qualit
tive results do not depend on whether one hass-wave or
d-wave pairing.

The nonperturbative approach to the attractive Hubb
model presented in the accompanying paper is an exten
of the approach used in the repulsive case.32 In the first step
~which was called the zeroth-order step in the repuls
model case!, the self-energy is obtained by a Hartree-Foc
type factorization of the four-point function with theaddi-
tional constraint that the factorization is exact when a
space-time coordinates coincide. It is important to note t
this additional constraint, analogous to the local-field a
proximation of Singwiet al.40 and Vilk et al.,41 leads to a
degree of consistency between one- and two-particle qua
ties that is absent from the standard Hartree-Fock factor
tion. Functional differentiation, as in the Baym-Kadano
approach,42 then leads to a momentum- and frequenc
independent particle-particle irreducible vertex th
satisfies43

Upp5U
^~12n↑!n↓&
^12n↑&^n↓&

. ~2!

With this approximation, the particle-particle susceptib
ity, which obeys the Bethe-Salpeter equation illustrated
the first line of Fig. 1, can now be written as

xp
(1)~q!5

x0
(1)~q!

11Uppx0
(1)~q!

, ~3!

where the irreducible particle-particle susceptibility is d
fined as

x0
(1)~q!5

T

N (
k

Gs
(1)~q2k!G2s

(1) ~k!. ~4!

The vertices and the Green functions inxp
(1)(q) are at the

same level of approximation in the sense that the irreduc
vertexUpp is obtained from the functional derivative of th
self-energy enteringG(1). The vertexUpp5(dS/dG) is a
constant andS (1) in zero external field is also a constan
leading to a Green function that has the same functional f
as the noninteracting Green functionG0(k), where k

5( ikn ,kW ) stands for both the fermionic Matsubara frequen
ikn and the wave vectorkW . The constant self-energyS (1) can
be absorbed in the chemical potential by working at cons
filling. If needed, we have argued in the accompany
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paper37 that the following should provide a useful approx
mation forS (1) since it allows the first-moment sum rule fo
the pair susceptibility to be satisfied:37

S (1).
U

2
2

Upp~12n!

2
. ~5!

At this first level of approximation, only the double occu
pancy (D[^n↑n↓&) is needed to obtain the irreducible verte
Upp and hence the pairing fluctuations. The value of^n↑n↓&
can be borrowed from some exact calculations or appro
mate estimates but, as in the repulsive case, we found
accurate results are obtained when^n↑n↓& is determined self-
consistently from the following ‘‘local-pair sum rule,’’ a con
sequence of the fluctuation-dissipation theorem for
s-wave pairing susceptibility

T

N (
q

xp~q!exp~2 iqn02!5^D†D&5^n↑n↓&. ~6!

Substitutingxp
(1) Eq. ~3! for the pair susceptibility and Eq

~2! for the irreducible vertexUpp leads to an equation tha
determines double occupancy, and henceUpp , self-
consistently:

T

N (
q

x0
(1)~q!

11U@^~12n↑!n↓&/^12n↑&^n↓&#x0
(1)~q!

3exp~2 iqn02!5^n↑n↓&. ~7!

This first part of the calculation is referred to as the tw
particle self-consistent~TPSC! approach.44

Once the pair susceptibility has been found, as above,
next step of the approach consists of improving the appro
mation for the single-particle self-energy by starting from
exact expression where the high-frequency Hartree-Fock
havior is singled out. This expression is represented by s

FIG. 1. The first line is a skeleton diagram representation of
Bethe-Salpeter equation for the susceptibility in the particle-part
channel@Eq. ~25! of the accompanying paper~Ref. 37!# and the
second line is the corresponding equation for the self-energy@Eq.
~36! of the accompanying paper~Ref. 37!#. In the Hubbard model,
the Fock contribution is absent, but in general it should be th
Solid lines are Green’s functions and dashed lines represent
contact interactionU. The box and attached lines are the partic
particle susceptibility, while the ellipse is the irreducible partic
particle vertex. The particle-particle susceptibility is obtained
identifying points 1 and 3 in the Bethe-Salpeter equation.
6-2
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PAIRING FLUCTUATIONS AND PSEUDOGAPS IN THE . . . PHYSICAL REVIEW B 64 075116
eton diagrams on the second line of Fig. 1. The piece of
exact self-energy that is added to the Hartree-Fock beha
represents low-frequency corrections. These involve Gr
functions, vertices, and pair susceptibility for which we
ready have good approximations from the first step of
calculation. One thus substitutes in the exact expression
irreducible low-frequency vertexUpp as well as all the othe
quantities at the same level of approximation, nam
Gs

(1)(k1q) andxp
(1)(q) computed above, obtaining in Fou

rier space

Ss
(2)~k!5Un2s2U

T

N (
q

Uppxp
(1)~q!G2s

(1) ~q2k!, ~8!

where q5( iqn ,qW ) stands for both the bosonic Matsuba
frequency and the wave vector. HereT is the absolute tem
perature. The resulting self-energySs

(2)(k) on the left-hand
side is at the next level of approximation so it differs fro
the self-energy entering the right-hand side. Physically, it
self-energy coming from taking cooperons into account.
stressed previously,32,33 it is important that the irreducible
vertexUpp ~or G (1)) as well asGs

(1)(k1q) andxp
(1)(q) all be

at the same level of approximation otherwise some result
particular with regard to the pseudogap, may come out qu
tatively wrong.

The particle-particle irreducible vertexUpp may be re-
garded as the renormalized interaction strength contain
vertex corrections. Note that in the expression for the s
energyS (2), Eq. ~8!, one of the vertices is bare while th
other one is dressed with the same45 particle-particle irreduc-
ible vertex functionUpp that appears in the pairing susce
tibility. In other words, we do not assume that a Migd
theorem applies. If this had been the case, the self-en
would have, among other things, been proportional toU2

instead ofUUpp . In T-matrix theory the bareU is used
everywhere, which, in particular, leads to a finit
temperature phase transition at the mean-field~MF! tempera-
ture. In our case, as described below, we proceed differe
avoiding altogether a finite-temperature phase transition
two dimensions.

We briefly summarize some of the constraints satisfied
the above nonperturbative approach.37 In Eq. ~6!, D is the
local s-wave order parameterci↓ci↑ . Anticommutation rela-
tions, or equivalently the Pauli principle, imply tha
^@D,D†#&512n. This in turn means that the convergen
factor exp(2iqn0

2) in the local-pair sum rule is necessa
becausê @D,D†#&512n implies that, except atn51, one
needs to specify ift501 or t502 in the imaginary-time
pair susceptibility. Either one of these limits, however, lea
to the same value ofUpp since our approach37 satisfies ex-
actly this consequence of the Pauli principle:46 ^@D,D†#&
512n. In complete analogy with the repulsive case d
cussed in Ref. 41, one can invoke the 2D phase space fa
2pqdq, and the Ornstein-Zernicke form of the pairing co
relation function near a critical point to show the followin
Deep in the renormalized classical regime, where the c
acteristic frequencync of the retarded pairing susceptibilit
satisfiesnc&T, the superconducting correlation lengthj in-
07511
e
or
n

e
he

y

a
s

in
li-

g
f-

l
gy

ly,
in

y

s

-
tor,

r-

creases exponentiallyj;exp(C/T) with decreasing tem-
perature. In the latter expression,C may be temperature de
pendent. This behavior is the one expected in the O(n5`)
universality class47 and not in theXY, or O (2),universality
class, wherejBKT;exp@C/(T2TBKT)1/2#, whereTBKT is the
Berezinskii-Kosterlitz-Thouless~BKT! temperature. The
precise dependence on temperature of the correlation le
in the temperature range between the beginning of
renormalized-classical regime and the actual critical reg
is not known analytically. In the regime that we explore, t
pseudogap begins to open at a temperatureT that is quite a
bit larger thanTBKT . The latter was estimated to be at mo
of order of 0.1t for uUu54 by Moreo and Scalapino.48 As in
the repulsive case, we will see below that the pseudo
appears inA(kWF ,v) if the pairing correlation length grows
faster with decreasing temperature than the single-par
thermal de Broglie wavelengthj th5vF /T.

B. Comparisons with Monte Carlo calculations

In this section we show, by comparing with Monte Car
calculations, that the present nonperturbative approach i
accurate approximation. The calculations are performed
the same lattice size as the corresponding Monte Carlo
culations. It is important to note that at half-filling the Lieb
Mattis canonical transformationci↓→exp(2iQW "rW i)ci↓

† , with

QW 5(p,p), maps the attractive model onto the repulsive o
pair fluctuations at wave vectorqW being mapped onto trans
verse spin fluctuations at wave vectorqW 1QW . With the pro-
viso that in the attractive model at half-filling one woul
need, because of symmetry,33,49 to take into account the
charge fluctuations, we can state that the comparisons d
in the repulsive case32,33apply for the canonically equivalen
attractive case. We note in particular that it was shown t
the convergence to the infinite-size limit is similar in th
Monte Carlo and in the nonperturbative approach.33 We re-
strict our discussion to cases away from half-filling. T
quantum Monte Carlo~QMC! simulations50,51 that we per-
formed were done using a Trotter decomposition with inc
ment Dt51/10 in imaginary time and the determinant
approach.52 Typically, about 105 or more Monte Carlo
sweeps of the space-time lattice are performed.

We begin with double occupancy. Figure 2~a! shows that,
for both densities studied, the solid line starts to deviate fr
the Monte Carlo data aroundb,5. As in the repulsive case
this occurs because the self-consistent expression for dou
occupancy Eq.~7! fails once we enter the renormalized
classical regime where a pseudogap appears. Following
53, we expect that the pseudogap inA(kWF ,v) opens up as a
precursor of Bogoliubov quasiparticles in the BCS grou
state. Since this ground state starts to control the physics,
natural to expect that a high-energy quantity such asD
should, in the pseudogap region, take the zero-tempera
BCS value. The value ofD obtained with this approach i
plotted as a dotted line in Fig. 2~a!, where it is apparent tha
the agreement with Monte Carlo calculations is excellent
fact, for uUu.3, the agreement is always at the few perce
level. For smalleruUu, deviations occur, probably becaus
6-3
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at small coupling the order parameter atqW 50W
no longer dominates the sum over all wave vectors
(1/N)(qW^D(qW )†D(2qW )&5^D†D&5^n↑n↓&. In fact, as we
shall see below, a good estimate of double occupancy
also be obtained at smallU just from second-order perturba
tion theory. Now consider the temperature dependence
double occupancy. The dependence predicted by the fin
temperature BCS result is on a scaleT51 at uUu54. That
temperature dependence is clearly wrong for our prob
since aboveTMF the BCS approach would give us back t
noninteracting value. Hence the BCS result may be u
only in the following way. ForuUu.3 we can use theT
50 value of ^n↑n↓& in the pseudogap region and the se
consistent value Eq.~2! above it. In the general case,^n↑n↓&
does depend on temperature in the pseudogap regime
that dependence should be relatively weak, as discusse
the repulsive case.32

We stress, however, that deep in the pseudogap reg
our approach becomes eventually inaccurate when we ob
^n↑n↓& from the self-consistent equation~7!. The reason for
the loss of accuracy is analogous to that found atn51 in the
repulsive32 case: In the presentU,0 case,̂ n↑n↓&→^n↓& as
T→0 to prevent a finite-temperature phase transition. T
approach also eventually becomes less accurate in
pseudogap regime when we take^n↑n↓& from BCS, but the
fact that a more physically reasonable value of^n↑n↓& may
be obtained in that case atT50 helps extrapolate a little bi
deeper in the pseudogap regime. The internal accuracy c
discussed at the end of this section helps quantify the re
of validity of the approach.

Before moving on with the comparisons, a few comme
on the actual renormalized interaction strengthuUppu result-
ing from the two-particle self-consistent calculation. In F
2~b! uUppu ~denoted as stars! is plotted for T50.222 as a
function of bareU by using the self-consistent expressio
Eqs.~2! and ~7!. For this temperature,Upp approaches bare
U for uUu<1 while in the intermediate-coupling regime
<uUu,bandwidth one notices a strong deviation from t
bare uUu. This deviation ofUpp from U makes a drastic
difference, in particular in the two-particle functionxp(qW ),

FIG. 2. ~a! Double occupancyD calculated from the ansat
~solid curves!, from the BCS ground state~dashed lines!, and from
the QMC simulations~circles! for uUu54 at n50.5 and 0.8.~b!
Renormalized interaction strengthuUppu as a function of bareuUu
for T50.222 atn50.5. The dashed line isUpp5U.
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which ultimately governs the particle dynamics, includin
the pseudogap behavior. The saturation ofuUppu in Fig. 2~b!
signals the onset of the strong-coupling regime inaccess
in our approach that does not take into account the str
frequency dependence of vertices and self-energy prese
this limit.

Our approach gives a very accurate result for double
cupancy, but what about correlation functions? Another tw
particle quantity related to the susceptibility is the pair stru
ture factor. In Fig. 3 the calculateds-wave pair struc-
ture factor ~filled triangles! S(qW ,t50)[^D(qW )D†(2qW )
1D(qW )†D(2qW )&, where D(qW )†5(1/AN)(kWcqW 2kW ,↑

†
ckW ,↓

† , is
compared with our QMC results~circles! for uUu54 at n
50.5 ~top panel! and 0.8~bottom panel! on a 838 lattice.
As the temperature decreases, theqW 50W mode becomes more
singular in both results, a characteristic feature for grow
s-wave pairing fluctuations. In most of the Brillouin zon
the agreement is excellent, in particular, forn50.5 where the
maximum difference is less than 10%@Fig. 3~a!#. For n
50.8 our calculated structure factor overestimates QMC
sults at most by 20%.

At the first level of approximation, we can also estima
the interaction-induced shift in chemical potential by starti
from our approximate expression for the self-energyS (1),
Eq. ~5!. Let us call the corresponding chemical potent
m (1)5m01S (1). Our best estimate of single-particle quan
ties is obtained from the self-energy at the second leve
approximation, Eq.~8!. The corresponding chemical poten
tial m (2) is calculated by requiring that the filling be the sam
as the one used at the first level of approximation. This p
cedure is identical to that for the repulsive model54 and was
suggested by Luttinger. It is discussed also in Sec. IV C

FIG. 3. Calculateds-wave pairing structure factorS(qW ,t50)

~filled triangles! and QMCS(qW ,t50) ~circles! for uUu54 and vari-
ous temperatures.~a! at n50.5 and~b! at n50.8 on a 838 lattice.
The dashed lines are to guide the eye.
6-4
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the accompanying paper.37 Figure 4 illustrates how the two
estimates for the chemical potential on a 838 lattice con-
verge towards the value obtained from QMC calculations
the same size lattice. Consider the data for fillingn50.6, in
the upper part of the figure. The open squares, represen
m (2)2m0, agree, within the error bars, with the QMC da
represented by open circles. The first estimate for the che
cal potential shiftm (1)2m0 ~open diamonds! starts to deviate
from both the QMC data~open circles! and fromm (2)2m0

~open squares! at the temperature where the pseudogap op
up ~see Fig. 11 below!. Below this temperature, the sel
energy becomes strongly frequency and momentum de
dent, a feature captured by our improved estimateS (2) for
the self-energy, but not by our first estimate,S (1). The filled
squares (m (2)2m0) and filled diamonds (m (1)2m0) were
obtained for a 64364 lattice. They illustrate that one shou
compare finite-size QMC calculations to many-body calcu
tions done on same size systems. They also illustrate tha
second estimate for the chemical potential shift~squares! is
more sensitive to system size. This is expected from the
that it is only at the second level of approximation that t
pseudogap appears for large correlation lengths. Let us
move to the lower part of Fig. 4, where results closer
half-filling are plotted. The chemical potential there is ve
close to its exact temperature-independent half-filling val
U/2; hence there is not much room to see the differe
between the first and second estimate for the chemical
tential. Nevertheless, even forn50.95, the second estimat
~open squares! is closer to the QMC data~open circles! than
the first estimate~open diamonds!.

FIG. 4. Comparison of the chemical potential shiftsm (1)2m0

~open diamonds! and m (2)2m0 ~open squares! with the results of
QMC calculations~open circles!, all done on a 838 lattice. QMC
error is a few percent, smaller than the open circles. The uppe
of points are forn50.6, and the lower set of points are forn
50.95. Forn50.6, many-body calculations for a 64364 lattice are
also illustrated by filled squares form (2)2m0, and by filled dia-
monds form (1)2m0. In all cases,m (2)2m0 is closer to QMC data
thanm (1)2m0.
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We now compare the momentum distribution, a sta
quantity, obtained from QMC and from our analytical a
proach at the second level of approximationS (2). The
momentum-dependent occupation numbern(kW ) ~solid curve!
is plotted in Fig. 5 along with the QMC calculations~circles!
by Trivedi and Randeria55 for a 16316 lattice, in a regime
where the size dependence is negligible. The momentum
tribution n(kW ) drops rapidly near the Fermi surface, corrob
rating that for uUu54 the electrons are in the degenera
state, instead of in the nondegenerate state of the str
coupling regime or of the preformed-pair scenario. T
agreement between the nonperturbative method and QM
clearly excellent. If we had assumed a Migdal theorem a
takenU2 instead ofUUpp in Eq. ~8! for the self-energy, then
we would have obtained the dotted curve, which in absol
value differs as much from the QMC result as a nonintera
ing Fermi distribution would. Clearly Migdal’s theorem doe
not apply for this problem. In addition, Fig. 5 also show
~long dashes! that a self-consistentT-matrix calculation does
not compare to Monte Carlo data as well as our approa
Similarly, second-order perturbation theory~dot-dash! does
not do well.

In Fig. 6 we present the total density of stat
N21(kWA(kW ,v) for U54 andn50.87 on an 838 lattice and
compare with existing QMC calculations by Moreoet al.56

The many-body nonperturbative calculation is done
Matsubara frequency and analytically continued to real f
quency using the same maximum entropy~ME! technique
that is used for QMC calculations.57 This allows us to
smooth out the results in the same way as in the QMC
culation, namely, by including statistical uncertainties in o

et

FIG. 5. The momentum-dependent occupation numbern(kW ) for

uUu54 andn50.5 atT50.25. The circles denoten(kW ) from QMC
calculations by Trivedi and Kanderia~Ref. 55! on a 16316 lattice.
The solid curve is calculated according to the equations given
this paper, while the dashed one is computed by replacingUpp by U
in the self-energy with all the rest unchanged. The long-dashed
is the result of a self-consistentT-matrix calculation, and the dot
dashed line the result of second-order perturbation theory.
6-5
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imaginary-time data. This procedure was discussed in R
33. The uncertainties in the QMC data56 that are presented in
Fig. 6 were not quoted. Hence, we chose the statistical
certainties in the corresponding many-body calculations
such a way that the calculations presented in Fig. 6~d! have
the same degree of smoothness as the corresponding Q
data. More specifically, these uncertainties are of order 0.
on the absolute value of the imaginary-time Green functio
which is typical of Monte Carlo calculations. AtT51/2 the
density of states is similar to that for the noninteracting s
tem. At T<1/4, however, the spectral weight near the Fer
energy begins to be suppressed significantly with decrea
temperature, leading to a pseudogap. The small shoulde
the intermediate-frequency regime forT51/6 and 1/8 come
from the finite-size effect. When we use a 64364 lattice,
these shoulders completely disappear.

In the case of the single-particle spectral weight, the la
QMC calculations33 at n51 included studies of the finite
size effects, of the imaginary-time discretization, and of
uncertainties induced by the size of the Monte Carlo sam
They have shown that, at half-filling, there is indeed
pseudogap, in contrast to earlier findings.36 Detailed com-
parisons with the many-body approach analog to the pre
one have been done. Although these studies were for
repulsive model, at half-filling the results apply for the a
tractive model since they are canonically equivalent an
51. One only needs to generalize the many-body appro
to include the presence of the SO~3! symmetry, as done in
Ref. 33. Slightly away from half-filling, namely forn
50.95, QMC simulations49,58 have found that a simila

FIG. 6. The single-particle density of states foruUu54 andn
50.87 at different temperatures on a 838 lattice. ~a! T51/2, ~b!
T51/4, ~c! T51/6, and~d! T51/8. Both the solid line obtained
from many-body calculations and the dashed line taken from
QMC calculations of Ref. 56 are obtained by analytic continuat
of imaginary-time data using maximum entropy. The absolute e
chosen for the maximum entropy continuation of the imagina
time many-body Green function for panels~a! to ~d! is, respectively,
0.003,0.004,0.003,0.001.
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pseudogap opens up forU524 at a temperature larg
enough that the SO~3! symmetry present at half-filling is
barely broken (TX@m).

Here we present results forA(kW ,v) and for the total den-
sity of statesN(v)5N21(kWA(kW ,v) at n50.8, U524, and
T50.25 in the pseudogap regime. For that filling, finite-si
studies are complicated by the fact that the available w
vectors do not necessarily coincide with the noninteract
Fermi surface. The closest such wave vector,kW5(0,3p/4), is
the one chosen for comparisons ofA(kW ,v). The results of
QMC calculations are shown in Figs. 7~a! and 7~b! as dashed
lines and those of the many-body approach as dotted l
for the same 838 system size.

The imaginary-time data corresponding to panels~a! and
~b! appear, respectively, as panels~c! and~d!. It is clear that
all the main features of the Monte Carlo method are rep

e
n
r
-

FIG. 7. Total density of statesN(v) @panel ~a!# and single-
particle spectral weightA(0,3p/4,v) at wave vector (0,3p/4)
@panel~b!# are shown forU524, n50.8, andT50.25. The lattice
size is 838. Dashed lines are the result of maximum entropy co
tinuation of QMC data, and dotted lines the result of maximu
entropy continuation of many-body results with the same err
added in. The number of measurements done is 1.23105. The ab-
solute statistical error on the imaginary-time data is of order
31023. Singular values less than 1023 are dropped in the maxi-
mum entropy inversion. The density of states@panel~c!# and spec-
tral weight@panel~d!# are extracted from imaginary-time data. Err
bars are shown only for the Monte Carlo data but the same erro
the Monte Carlo data has been explicitly added to the analyt
data.
6-6



-

‘‘Many

PAIRING FLUCTUATIONS AND PSEUDOGAPS IN THE . . . PHYSICAL REVIEW B 64 075116
TABLE I. Internal consistency check, for variousU and T at n50.5, on a 64364 lattice. The three
columns labeledMany bodygive, respectively, the value ofU^n↑n↓& obtained at the first level of approxi
mation with the TPSC approach, that obtained at the second level of approximation from Tr@S (2)G(2)# and
the absolute value of the difference between the two results. The following column is Tr@SG# obtained from
second-order perturbation theory, and the last three columns are analogous to the corresponding
body’’ columns but they start from theT50 BCS estimate ofU^n↑n↓&.

Many body Many body Many body second order BCS BCS BCS
U T U^n↑n↓& Tr@S (2)G(2)# u% diff. u Tr@SG# U^n↑n↓& Tr@S (2)G(2)# u% diff. u

22 0.1 20.1887 20.1838 2.63 20.1728 20.1376 20.1366 0.74
22 0.2 20.1892 20.1861 1.61 20.1743 20.1376 20.1371 0.39
22 0.3 20.1913 20.1888 1.29 20.1762 20.1376 20.1372 0.26
22 0.4 20.1939 20.1917 1.15 20.1787 20.1376 20.1373 0.19
22 0.5 20.1963 20.1942 1.08 20.1812 20.1376 20.1374 0.16
22 1.0 20.1988 20.1970 0.88 20.1875 20.1376 20.1375 0.10
24 0.1 20.6160 20.5152 16.37 20.4355 20.5404 20.4785 11.46
24 0.2 20.5427 20.5067 6.64 20.4412 20.5404 20.5050 6.55
24 0.3 20.5374 20.5083 5.42 20.4487 20.5404 20.5107 5.51
24 0.4 20.5406 20.5131 5.08 20.4578 20.5404 20.5129 5.08
24 0.5 20.5440 20.5172 4.92 20.4669 20.5404 20.5143 4.83
24 1.0 20.5385 20.5168 4.03 20.4897 20.5404 20.5184 4.07
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duced by the many-body approach. The relative size of
split peaks at the Fermi surface is very sensitive to the ac
location of the Fermi wave vector.

We conclude this section with the accuracy check
scribed in the accompanying paper37 and in previous work.32

The question here is whether it is possible to find the dom
of validity of the approach even in the absence of Mo
Carlo data. The answer is given by Table I, where all res
were computed for a 64364 lattice. One should focus on th
three columns labeledMany body.In the first of these, one
finds the value ofU^n↑n↓& computed with TPSC, i.e., from
Eq. ~2! and the local-pair sum rule Eq.~7!. That number is
the same as that which would be obtained fro
Tr@S (2)G(1)#. However, finding by how much it differs from
Tr@S (2)G(2)#, listed in the second column labeledMany
body, gives an indication of how much the theory is inte
nally consistent. The third column labeledMany bodygives
the absolute value of the relative difference between the
two Many bodycolumns and it helps one to discover whe
the theory fails. Clearly, as temperature decreases and
enters the renormalized classical regime, the theory beco
invalid since the difference betweenU^n↑n↓& and
Tr@S (2)G(2)# starts to increase rapidly. As expected also,
theory is better at smaller coupling. Instead of comput
U^n↑n↓& with the TPSC approach equation~7!, one may also
take it from the zero-temperature BCS value as descri
above. Comparing with the correspondingMany bodycol-
umns, it is clear the BCS estimate of double occupancy d
not compare as well with the TPSC result at small coupli
as explained above. In fact, in this region, second-order
turbation theory compares better. This is partly because
Hartree-Fock contribution to double occupancy is domina
The worse results for perturbation theory are for quarter
ing atU524. Near half-filling it is known that second-orde
perturbation theory works well again. Note also that even
we start from the BCS result forU^n↑n↓&, one can tell that
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the theory is becoming less accurate at very low tempera
because, there again,U^n↑n↓& and Tr@S (2)G(2)# begin to
differ more and more. This internal accuracy check, ho
ever, cannot tell us which approach is more accurate c
pared with QMC.

III. PSEUDOGAP FORMATION IN THE DENSITY
OF STATES AND IN A„kF ,v…

In the first subsection below, we summarize previo
work on pseudogap in the attractive Hubbard model. In
second subsection, we use the approach of Sec. II A to s
the conditions under which a pseudogap appears in the
sity of states and inA(kWF ,v).

A. Overview of some recent work

The effect of superconducting fluctuations on the dens
of states was studied long ago.59 To elucidate further the
physics of pseudogap formation, especially in the sing
particle spectral weight, many theoretical studies have
cused on the attractive Hubbard model. An exhaustive
view may be found in Ref. 38. Although the attractiv
Hubbard model is clearly not a realistic model for cupra
since it predicts ans-wave instead of ad-wave superconduct
ing ground state, it is an extremely useful paradigm. Inde
except for the lack of a cutoff in the interaction, it is anal
gous to the BCS model and is the simplest many-bo
Hamiltonian that leads to superconductivity with a possi
crossover from the BCS limit at weak coupling to the Bos
Einstein limit at strong coupling.60 A key point, as far as we
are concerned, is that it also represents the only Hamilton
for which QMC simulations are available now as a mea
of checking the accuracy of approximate many-bo
calculations.
6-7
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B. KYUNG, S. ALLEN, AND A.-M. S. TREMBLAY PHYSICAL REVIEW B 64 075116
The conventional picture,60 based on mean-field ideas,
that in the weak-coupling regime (uU/tu!1) pairing and
phase coherence happen at the same temperature while
strong-coupling regime (uU/tu@1) phase coherence may o
cur at Tc much lower thanT* , where pair formation hap
pens. In the latter case, the Fermi surface is destroyed
before the superconducting transition occurs. Since
ARPES experiments suggest a relatively well-defined Fe
surface, it has been suggested61,55,62that at intermediate cou
pling it is possible to retain aspects of both the Fermi surf
of weak coupling and the preformed-pair ideas of strong c
pling. These possibilities have been extensively studied
several groups using a number of approaches that we
crudely divide in two types: numerical and many-body a
proaches.

Previous numerical QMC workers charted the phase
gram of the attractive Hubbard model.48,63–65They have also
investigated the pseudogap phenomenon from intermed
to strong coupling.66–68 We stress that the physics in stron
coupling is different from the weak-to-intermediate-coupli
limit we will study below. On the weak-coupling side of th
BCS to Bose-Einstein crossover, there have been nume
studies of BKT superconductivity56,65 as well as several dis
cussions of pseudogap phenomena in the spin prope
~susceptibility and NMR relaxation rate! and in the total den-
sity of states at the Fermi level.61,55,66 We have studied,
through QMC simulations, the formation of a pseudogap
A(kF ,v) in the weak-to-intermediate-coupling regime of i
terest here.39,49 The present work is in agreement with o
earlier results, as will be discussed in the next subsectio

The many-body techniques that have been applied to
attractive Hubbard model in the weak-to-intermediate c
pling regime are mostlyT-matrix and self-consistent~fluc-
tuation exchange approximation! T-matrix approaches.69–72

Let us consider the pseudogap problem in the nonsuper
ducting state. At low density,73–75 or with additional
approximations,76 a pseudogap may be found. By contra
when theqW 50 superconducting mode is relaxational, se
consistentT-matrix calculations77 have failed to show a
pseudogap in the one-particle spectral functionA(kF ,v)
522ImGR(kF ,v) when the momentum dependence of t
self-energy is neglected~which should be valid in infinite
dimension!. In two dimensions, an absence of the pseudo
would be in sharp contrast with various QMC results39,49and
with general physical arguments inspired by studies of
repulsive case,53,78 which have already stressed that spa
dimension is crucial in the physics of pseudogap formati

In the non-self-consistent version of theT-matrix approxi-
mation, a pseudogap can be found.79,80 Nevertheless, since
the T-matrix approximation takes into account the Gauss
~first nontrivial! fluctuations with respect to the ‘‘mean-fiel
state,’’ one important pathology of theT-matrix approxima-
tion in two dimensions is that the Thouless criterion for t
superconducting instability occurs at a finite mean-field te
peratureTMF . In the very-weak-coupling regime, this is co
sidered inconsequential since the relative difference betw
TMF and the Berezinskii-Kosterlitz-Thouless81 temperature
~BKT! TBKT is of order82 TMF /EF . In the intermediate-
coupling regime, however, this argument fails and one of
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questions that should be answered is precisely the size o
fluctuating region where a pseudogap is likely to occur.

In contrast with the aboveT-matrix calculations, self-
consistentT-matrix approaches do have a large fluctuati
region, but they assume a Migdal theorem. The latter me
that they do not take vertex corrections into account in
self-energy formula while using self-consistent Green fu
tions. Analytical arguments based on ‘‘diluteness’’ as an
pansion parameter suggest that this type of self-consiste
fails to describe the behavior of the system in the stro
coupling limit and is uncontrolled from the point of view o
expansion parameters.83 In addition, we expect that, as in th
case of repulsive interactions,84,33 the failure to treat vertex
corrections and fluctuations at the same level of approxim
tion may lead to incorrect conclusions concerni
pseudogaps inA(kWF ,v). Self-consistent calculations have
fact lead to the claim85 that only d-wave superconductivity
may have precursor effects inA(kF ,v) above the transition
temperature while Monte Carlo calculations39,49 have exhib-
ited this pseudogap even in thes-wave case. Recently, it ha
been pointed out using a different approach86 that in the
intermediate-coupling regime and when the filling is low,
becomes possible to have a boundqW 50W pair. This physics
leads to a pseudogap inA(kW ,v) but it requires strong
particle-hole symmetry breaking and is not specific to t
dimensions. This result is discussed further in the followi
subsection.

Some authors19–21,24have included phenomenologically
BKT fluctuation region inT-matrix-like calculations, through
Hubbard-Stratonovich transformation, or otherwise.22 These
calculations allow for phase fluctuations in the presence o
nonzero expectation value for the magnitude of the or
parameter. In such a case, there is generally a real ga
A(kWF ,v), and additional effects must be included to fill
the gap to transform it into a pseudogap.38 In the approach
that we take, any SO(n>2) theory would give qualitatively
the same result above eitherTBKT for n52 or aboveT50
for n.2. In addition, in our approach, it is when both am
plitude and phase fluctuations enter the renormaliz
classical regime, i.e., become quasistatic, that a pseudo
may open up.

B. Pseudogap formation in weak-to-intermediate coupling

In this section, we focus on the physics of fluctuatio
induced pseudogap in the single-particle spectral weigh
the two-dimensional attractive Hubbard model. This phys
has been discussed in previous QMC39,49,58 and analytical
work53 but the present quantitative approach, based on
equations of Sec. II A, allows us to do calculations that
essentially in the thermodynamic limit and that can be do
sufficiently rapidly to allow us to address other questio
such as the crossover diagram in the temperature-fil
plane.

Since the cuprates are strongly anisotropic and may
considered as quasi-2D systems, it is important to unders
in detail the limiting case of two dimensions. Mean-fie
theory leads to finite-temperature phase transitions eve
6-8
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PAIRING FLUCTUATIONS AND PSEUDOGAPS IN THE . . . PHYSICAL REVIEW B 64 075116
low-dimensional systems where breaking of continuous s
metries is strictly forbidden at finite temperatures~Mermin-
Wagner theorem87!. Thus in low dimensions, mean-fiel
theory, or fluctuation theory based on the mean-field st
leads to qualitatively wrong results at finite temperatur
One of the particular features of two dimensions that is c
tured by our approach, as we will see below, is that
mean-field transition temperature is replaced by a cross
temperature below which the characteristic energy of fl
tuations is less than the temperature. This is the so-ca
renormalized-classical regime. In this regime, the correla
length (j) increases exponentially until, in the supercondu
ing case, one encounters the BKT81 topological phase tran
sition. As a result we find that whenj@vF /T, the electronic
system simulates the broken-symmetry ground state (j5`)
at temperatures that are low but not necessarily very clos
the transition temperature, leading to precursors of Bogo
bov quasiparticles53 above Tc . Recent dimensional
crossover studies using an analogous approach78 have sug-
gested how the pseudogap will disappear when couplin
the third dimension is increased.

The results of this section for two-particle properties, su
as the pairing susceptibility and the characteristic pair
fluctuation scalej, are all computed for an effective 256
32560 lattice. The one-particle properties are calculated
stead for a 64364 lattice in momentum space. Fast Four
transforms~FFT’s! were used in that case to speed up
calculations. The solid and long-dashed lines in Fig. 8~b!,
obtained respectively for a 64364 and a 256032560 lattice,
illustrate that for single-particle properties a 64364 lattice
suffices. This lattice size, for the temperatures we conside
large enough33 compared toj th @panel in Fig. 10~b!# that
single-particle properties are essentially the same as
would be in the infinite-size limit. References 31 and
discuss how single-particle properties become rather inse
tive to system size even whenj.L, as long as the condition
j th,L,j is satisfied. This is discussed further in Ref. 88.
the calculations, Eq.~7! is solved iteratively, then the self
energy equation~8! is obtained in Matsubara frequencie

FIG. 8. ~a! The density of states and~b! the spectral function a
the Fermi surface foruUu54 andn50.5 at different temperatures
The solid, dotted, dashed, long-dashed, and dot-dashed curves
respond toT50.143, 0.182, 0.211, 0.308, and 0.364, respectiv
except for panel~b! where the long-dashed line was calculated w
a 256032560 lattice to illustrate that size effects are small.
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The analytic continuation from Matsubara to real frequenc
are performed via Pade´ approximants.89 In order to detect
any spurious features associated with this numerical ana
cal continuation, we also performed real-frequency calcu
tions. The results are identical, except for the fact that
Padétechnique smooths out some of the spiky features of
real-frequency formulation that are remnants of finite-s
effects when the small imaginary parth in retarded propa-
gators is very small.

In Fig. 8 we show, for various temperatures, the total d
sity of states@Fig. 8~a!# as well as the spectral function@Fig.
8~b!# A(kWF ,v) for the Fermi surface point crossing th
(0,0)2(p,0) line for U524 and quarter-fillingn50.5.

For T50.364~dot-dashed curve! the density of states, on
the left panel, is similar to that for noninteracting electron
With decreasing temperature belowT50.32, the low-
frequency spectral weight begins to be suppressed, leadin
a pseudogap in the density of states. The condition for
appearance of a pseudogap in the spectral functionA(kWF ,v),
on the right panel, is more stringent than that in the to
density of states. Although the pseudogap in the density
states is well developed forT50.211~dashed curve!, it dis-
appears in the spectral function for the same temperatur
is easier to form a pseudogap in the total density of sta
because of its cumulative nature: It suffices that scatte
becomes stronger at the Fermi wave vector than at o
wave vectors to push weight away fromv50. Hence, a
pseudogap may occur in the density of states even
A(kWF ,v) remains maximum atv50. This is what occurs in
FLEX ~fluctuation exchange! -type calculations.69,72 It is
more difficult to create a pseudogap inA(kWF ,v) itself since,
at this wave vector, transforming a maximum atv50 to a
minimum requires the imaginary part of the self-energy
grow very rapidly asT decreases.32 The generality of these
arguments suggests thatd-wave pairing fluctuations, which
were considered in Refs. 78 and 90, for example, should
lead to a pseudogap in the density of states befor
pseudogap inA(kWF ,v). This feature is consistent with th
recent experimental observations6 on high-temperature su
perconductors where pseudogap phenomena appear at h
temperatures in tunneling experiments than in ARPES
periments. Note also that with increasing temperature
pseudogap in both the density of states and the spectral f
tion appears to fill instead of closing. This behavior is also
qualitative agreement with tunneling6 and with ARPES
experiments.3,4 All the above results are consistent wi
Monte Carlo simulations.58 In addition to having found a
pseudogap in the density of states,56 Fig. 6, the more recen
Monte Carlo simulations done in the present and ear
papers39,49 have also shown that a pseudogap may occu
A(kWF ,v) even in s-wave superconductors, contrary to th
claims of Ref. 85.

Figure 8~b! also shows one otherqualitativeresult, which
is a clear signature of intermediate-to-strong-coupling s
tems, analogous to the signatures seen in optical spect
high-temperature superconductors.91 In changingT by about
0.03, from 0.21 to 0.18, the spectral weight rearranges ov
frequency scale of order one, i.e., over a frequency sc

or-
,
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B. KYUNG, S. ALLEN, AND A.-M. S. TREMBLAY PHYSICAL REVIEW B 64 075116
about 30 times larger than the temperature change, an
times larger than the absolute temperature 0.2. In we
coupling BCS theory, by contrast, spectral weight rearran
over a frequency scale of the order of the temperat
change. The frequency range for spectral rearrangemen
served in Fig. 8~b! would be even larger if the coupling wa
stronger.92 This is a consequence of the fact that wave vec
can be a very bad quantum number for correlated system
that a momentum eigenstate can project on essentially al
true eigenstates of the system. The loss of meaning of
mentum as a good quantum number and the correspon
spectral weight rearrangement over a large frequency s
happens suddenly with temperature in Fig. 8~b! because the
correlation length becomes large at a rather sharp thres
temperature where the system becomes renormalized cl
cal, as we now discuss.

Let us then demonstrate that the opening of the pseudo
in the single-particle density of states occurs when the p
ing fluctuations enter the renormalized-classical regime.39 In
Fig. 9~a! the imaginary part of the pairing susceptibility
qW 50W for T50.19 and the characteristic frequencync for
pairing fluctuations are shown forU524 andn50.5.

Since for the parameters studied here theqW 50W mode is
deep in the particle-particle scattering continuum, it has
characteristic frequency dependence of a relaxational m
1/(12 in/nc), which leads to a maximum in the imagina
part at some characteristic frequencync . Even though we do
not have perfect particle-hole symmetry, the Fermi energ
still large enough compared with temperature such t
Imxpp(0,n)/n is very nearly even@inset in Fig. 9~a!#. For

FIG. 9. ~a! The imaginary part of the pairing susceptibility

qW 50W for T50.19 and~b! the characteristic low energy scale~stars!
for pairing fluctuations at different temperatures foruUu54 andn
50.5. The inset in~a! is the imaginary part of the pairing susce

tibility divided by frequency atqW 50W for T50.19.
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other temperatures the behavior is similar. In Fig. 9~b! nc is
plotted as a function of temperature. At high temperaturesnc

is larger thanT but belowT.0.3120.32 the characteristic
frequencync becomes smaller thanT, signaling that we are
entering the renormalized-classical regime. This pheno
enon was also observed in QMC calculations.39 In this re-
gime, the thermal occupation number for pairing fluctuatio
is larger than unity. Clearly, the appearance of a pseudo
in the density of states in Fig. 8~a! follows very closely the
entrance in the renormalized-classical regime.

The present results should be contrasted with those
Levin and co-workers.86 The pseudogap in their work come
from the presence of aqW 50W resonant pair state in theT
matrix. As the interaction strength decreases or the part
density increases, theqW 50W bound state enters into th
particle-particle continuum, thereby acquiring a finite lif
time. As long as theqW 50W pair state is near the bottom of th
scattering continuum it can remain a resonant state wit
relatively long lifetime. Thus the origin of a pseudogap
their study is analogous to the preformed-pair scenario wh
the qW 50W pair is separated from the scattering continuu
Such a resonance corresponds to strong particle-hole a
metry in the imaginary part of the pair susceptibility. In ord
to have such an asymmetry for moderate-coupling streng
very small particle density is required in this approach.
our case, the pseudogap occurs even when the particle-
symmetry is nearly perfect. Furthermore, in our case, ot
factors such as density and interaction strength do not in
ence the results in any dramatic way. Low dimensionality
the key factor since phase space is behind the existenc
both the renormalized-classical regime and the very str
scattering of electrons on the corresponding fluctuations.
ratio j/j th controls the importance of this scattering31 as we
discuss in the following paragraph.

In Fig. 10 we contrast the onset of the pseudogap in
spectral function on the Fermi surface along different dir
tions, namely the (0,0)2(0,p) and (0,0)2(p,p) directions,
for uUu54 andn50.5. At this density, where the Fermi su
face is nearly circular, the anisotropy happens in a very sm
temperature range aroundT50.19. For T50.19 ~dotted
curves!, the figure shows that the pseudogap occurs o
along the (0,0)2(0,p) direction. This anisotropy of the
pseudogap in the spectral function should be contrasted
the fact that in the superconducting state, the gap is isotro
The anisotropy at the temperature where the pseudo
opens up can be understood following the arguments
Ref. 32. Using the dominant renormalized-classical fluct
tions (iqn50), these authors showed that forj@vF /T the
scattering rate~imaginary part of the self-energy! on the
Fermi surface becomes large, leading to a minimum in
spectral function atv50 instead of the maximum that exis
in the absence of a pseudogap. In the inset of Fig. 10~b! the
pairing correlation lengthj, as well asj th5vF /T along the
(0,0)2(p,p) and (0,0)2(0,p) directions are plotted as
function of temperature. Clearlyj grows exponentially with
decreasing temperature. Furthermore, according to the a
criterion, a pseudogap in the spectral function exists alo
one direction and not along the other whenj ~solid curve! is
6-10
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larger thanj th along (0,0)2(0,p) ~dashed curve! but smaller
than j th along (0,0)2(p,p) ~dotted curve!, namely, in the
temperature range 0.175,T,0.185. We obtain quantitative
agreement with Fig. 10~b! if we usej51.3j th as the criterion
for the appearance of a pseudogap. While the pseudo
anisotropy happens in a narrow temperature range at
density due to the small Fermi velocity anisotropy~about
1.35!, closer to half-filling it occurs in a large temperatu
interval since the Fermi velocity is nearly vanishing close
the (0,p) point.49

Finally in Fig. 11 we present the crossover diagram
the pseudogap in the 2D attractive Hubbard model foruUu
54. The dotted curve is a rough QMC48 estimate~probably
an upper bound! for the BKT transition temperatureTBKT .
For all densities a pseudogap in the one-particle functi
appears in a wide temperature rangeTBKT,T,T* , where
T* is typically several times ofTBKT5Tc . The pseudogap
occurs earlier in the density of states than in the spec
functions for most of densities. Near half-filling, howeve
the pseudogap appears more or less at the same tempe
in the density of states and the spectral functions. In QM
methods for small systems, there seems to be a differenc
the temperatures at which the two pseudogaps open u58

Performing a calculation with finite second-neighbor ho
ping t8, we have confirmed that this almost simultaneo
opening of the pseudogaps happens because of the s
influence of the Van Hove singularity, which leads tovF
50, and not because of nesting.93 Finally, note that at half-
filling one has perfect O~3! symmetry in this model so tha
the transition temperature vanishes, as dictated by

FIG. 10. Spectral function foruUu54 andn50.5 ~a! along the
(0,0)2(0,p) direction and~b! along the (0,0)2(p,p) direction.
The inset in~b! shows the pairing correlation length~solid curve!,
and j th5vF /T along (0,0)2(p,p) direction ~dotted curve! and
(0,0)2(0,p) direction ~dashed curve! for the same parameters.
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Mermin-Wagner theorem, while the pseudogap tempera
continues to be large, following the trend of the mean-fie
transition temperature instead of that of theTBKT curve. This
shows that symmetry of the order-parameter space con
utes to enlarge the temperature range where the pseud
occurs, as expected from the corresponding enlargemen
the renormalized-classical regime.49

IV. CONCLUSION

In weak-to-intermediate coupling, the attractive Hubba
model can be studied quantitatively with a nonperturbat
approach37 that directly extends the corresponding meth
for the repulsive model.41,31,32The simple equations of Sec
II A are all that needs to be solved. This many-body a
proach has an internal accuracy check and no adjustable
rameter and it satisfies several exact sum rules.37 We have
demonstrated the accuracy of this method through deta
comparisons of its predictions with quantum Monte Ca
simulations of both single-particle and two-particle corre
tion functions.

On the physical side, we studied the fluctuation-induc
pseudogap that appears in the single-particle spectral we
in agreement with Monte Carlo simulations and in clo
analogy with the results found before in the repulsi
case.32,33 A key ingredient for this pseudogap is the low d
mensionality. Indeed, in two dimensions the finit
temperature mean-field transition temperature is replaced
a crossover to a renormalized-classical regime where
characteristic pairing frequency is smaller than tempera
and the pairing correlation lengthj grows faster than the
single-particle thermal de Broglie wavelengthj th . In this

FIG. 11. The crossover diagram of the 2D attractive Hubb
model foruUu54. The filled triangles and stars denote the tempe
tures where a pseudogap appears in the density of states an
spectral function, respectively. The solid lines are a guide to
eye. The dashed curve is the BCS mean-field temperatureTMF and
the dotted curve is an estimate of the Kosterlitz-Thouless temp
ture TKT extracted from QMC results by Moreo and Scalapi
~Ref. 48!.
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approach, where vertex corrections and Green functions
taken at the same level of approximation in the self-ene
expression,32,33 the renormalized-classical fluctuations a
the relatively large phase space available for them in tw
dimensions lead to precursors of the superconducting gap~or
Bogoliubov quasiparticles! in the normal state. This
pseudogap can occur without resonance in the
susceptibility86 and it appears not only in the total density
states but also in the single-particle spectral weight. Our
proach fails at strong coupling or at low temperature v
close to the BKT transition.

For uUu54, the pseudogap regime occurs over a tempe
ture scale that is several times the BKT transition tempe
ture. The crossover to the renormalized-classical regim
about a factor of 2 lower than the mean-field transition te
perature but it has the same filling dependence, which ca
quite different from that of the real transition temperatu
which is strongly dependent on the symmetry of the ord
parameter space.49 It is clear also that SO~2! @or U~1!# sym-
metry is not essential to the appearance of a pseudoga
would also appear if there happens to be a hidden continu
symmetry group94,49 SO(n) with n>2 describing the high-
temperature superconductors.

As stressed earlier in this paper, the attractive Hubb
model is not directly applicable to the cuprates. Nevert
less, it helps in understanding the nature of superconduct
fluctuation-induced pseudogaps, if they happen to be pres
The pseudogap appearing for theunderdopedcompounds at
high temperature in thermodynamic and transport meas
ments, or at high energy in tunneling6 and ARPES experi-
ments, is most probablynot of pure superconducting
origin.95,96 Nevertheless, close enough to the supercond
ing transition, in both the underdopedand overdopedre-
gions, there should be an effective model with attraction
scribing the low-energy physics. Since even the hig
temperature superconductors have a gap to Fermi en
ratio that is small, this effective model could be a wea
coupling one~but not necessarily97!. Time-domain transmis-
sion spectroscopy experiments98 in the 100 GHz range sug
gest that the renormalized classical regime for the B
transition has been observed inunderdopedcompounds, 10
to 15 K aboveTc . Also, in the overdopedregime, recent
experiments on the magnetic field dependence of NMRT1
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and Knight shift99 suggest that the pseudogap appearin
few tens of degrees aboveTc is indeed a superconducting
fluctuation-induced pseudogap. The pseudogap that we h
described should appear in these regimes if an effec
weak-to-intermediate-coupling attractive-interaction mo
is valid nearTc . In this context, some of the important re
sults that we found are the following. In the attractive Hu
bard model the pseudogap appears earlier in the densit
states than in the spectral function that would be measu
by ARPES, as summarized in Fig. 11. We also found, Fig
that with increasing temperature, spectral weight appear
fill in the pseudogap instead of closing it. Finally, we al
showed that as the system enters the renormalized-clas
regime, spectral weight can rearrange over a frequency ra
much larger than the temperature scale. This is general
signature that momentum is becoming a very bad quan
number. Hence, for a given temperature scale, the freque
range over which the spectral weight can rearrange beco
larger with increasing coupling.92 All these features carry
over in thed-wave case.78,90 Qualitative differences betwee
weak- and strong-coupling pseudogaps have been discu
in Ref. 33.
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