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Pairing fluctuations and pseudogaps in the attractive Hubbard model
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The two-dimensional attractive Hubbard model is studied in the weak-to-intermediate-coupling regime by
employing a nonperturbative approach. It is shown that this approach is in quantitative agreement with Monte
Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the
single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature
T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical
pairing fluctuations in the low-temperature renormalized classical regime<(kgT) of the two-dimensional
system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it, and the
pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes
around T* can modify the spectral weight over frequency scales much larger than temperature. Several
qualitative results for the-wave case should remain true fdtwave superconductors.
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[. INTRODUCTION strongly suggest that indeed antiferromagnetic fluctuations
For the past several years pseudogap phenomena found¢an create a pseudogap in the renormalized classical regime
the underdoped high-temperature superconductms or- of fluctuations. This mechanism has been confirmed recently
ganic superconductdriiave attracted considerable attentionPY another approachbut earlier studies had not found this
among condensed-matter physicists. For these materials tﬁg?l%' . ducting f
low-frequency spectral weight begins to be strongly sup;, e p:jes:terl]”nt pat[taer t.ocusgsb%n 3upercdor} ucting llicttua—
pressed below some characteristic temperaftirethat is tons an € atlractive  Hubbard model In weak-lo-
higher than the transition temperatufie.. In the high- ::nteimgdlz;te coILIJpImg. TT% p?[urp?r]se ofr;[he Paper 1S twofqtlg.
temperature superconductors, this anomalous behavior h st I Sec. T, we valdate, througn comparisons wi

. ) onte Carlo simulations, a nonperturbative many-body
been observed through various experimental probes such @Pproach’ that is an extension of previous work on the re-

photoemissiori;* specific heat, tunneling® NMR,” and opti- pulsive modePl32 Formal aspects of this method are pre-
cal conductivit® Although various theoretical scenarios sented in the accompanying papéfhen, in the second part
have been proposed, there is no consensus at preseptthe present papeiSec. Il) we study the mechanism for
These proposals include spinon pair formation withoutpseudogap formation due to superconducting fluctuafidns.
Bose-Einstein condensation of holohs} stripesi®*>  More extensive references on pseudogap formation in the
hidden d-density-wave ordef? strong superconducting attractive Hubbard model may be found in Sec. Iil. Earlier
fluctuations,’~*> amplitude fluctuations with dimensional Monte Carlo work®3” and analytical argumerie®® have
crossovef® and magnetic scenarios near the antiferromagsuggested the appearance of a pseudogap in the renormalized
netic instability?"® classical regime of pairing fluctuations. We study the appear-
Although the above theories for the origin of the ance of the pseudogap in both the density of states and the
pseudogap are very different in detail, those that do not re%ingle-particle spectral Weigh@\(lz,: ,w), showing that, in
on spatial inhomogeneities can be divided, roughly speakingyenera) they occur at different temperatures. General com-
in two broad categories: weak-coupling and strong-couplingants on the relation to pseudogap phenomena in high-

explanations. In the strong-coupling approaches, the singlggmnerature superconductors may be found in the concluding
particle spectral weight is shifted to high energies. There IS aragraphs.

no weight at zero frequency at half-filling. That weight, how-

ever, increases as one dopes away from half-filling, as quali- ||, A NONPERTURBATIVE MANY-BODY APPROACH

tatively expected from the physics of a doped Mott insulator. COMPARED WITH MONTE CARLO RESULTS

Recent angle-resolved photoemission spectros¢ARPES

experiment&*° find, in the superconducting state, a quasi- In the first subsection, we present our approach in simple
particle behavior consistent with this point of view. If we terms. More formal arguments are given in the accompany-
consider instead a weak-coupling approach, either in théd paper:’ In the second subsection, we show that our ap-
strict sense or as an effective model for quasiparticles, thBroach is in quantitative agreement with Monte Carlo simu-
only known way of obtaining a pseudogap is through coudations for both single-particle and two-particle quantities.
pling to renormalized classical fluctuations in two dimen-
sions. In the repulsive two-dimensior@D) Hubbard model

in the weak-to-intermediate-coupling regime, analytical We consider the attractive Hubbard model for electrons
argument$*? and detailed Monte Carlo simulatiols on a two-dimensional square lattice

A. A nonperturbative sum-rule approach
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wheree = — 2t(cosk,+cosk,), U is the on-site attractive in-
teraction U<0), and N is the number of lattice sites.
Throughout the calculations, the constants, kg, and lat-
tice spacing are taken to be unity. The indexrepresents
spin. This Hamiltonian is not a valid model forwave su- @ ]
perconductors, but it is the simplest model for which it is 1--" 2 )
possible to check the accuracy of approximate many-body
results against Monte Carlo simulations. Once the accuracy
of the many-body technique has been established, it can be FIG. 1. The first line is a skeleton diagram representation of the
generalized to the-wave case. Furthermore, many qualita- Bethe-Salpeter equation for the susceptibility in the particle-particle
tive results do not depend on whether one bagave or  channel[Eq. (25 of the accompanying papéRef. 37] and the
d-wave pairing. second line is the corr.espondlng equation for the self-enggy

The nonperturbative approach to the attractive Hubbar 6) of the accompanying papéRef. 3.7)]' In the I—_|ubbard model,
model presented in the accompanying paper is an extensiffl (T ST TECR 2 SR 00 AR BT e the
?vi/;?ceha\?vgsagglgge?h:an ;Z?ort?\?glzlt\a/re g?;spmi:]higgs:;;ifsivecontact interactiord. The box and attached lines are the particle-

. - particle susceptibility, while the ellipse is the irreducible particle-
Qggigﬁ?osﬁz;?;:eg?l‘rl‘eer?oyu:sp?)?r:?lfrllji?:t?gnaw?ﬁrgre;j-dFiOCk-pamde vertex. The particle-particle susceptibility is obtained by
tional constraintthat the factorization is exact when all 'dentifying points 1 and 3 in the Bethe-Salpeter equation.
space-time coordinates coincide. It is important to note thabapei”
this .addti'tiona:c gqnstr_ai?t, Igonalodgc\)/ltlli t‘?[ tlhffl Iloczl—fi(tald 8Pmation for3 (M since it allows the first-moment sum rule for
proximation of Singwiet al.™ and Vilk et al,”* leads to a ; o fi 37
degree of consistency between one- and two-particle quantw € pair susceptiblity to be satisfic:
ties that is absent from the standard Hartree-Fock factoriza- U Uy (1—n)
tion. Functional differentiation, as in the Baym-Kadanoff 2(1)25_PF’T_
approach? then leads to a momentum- and frequency-
independent particle-particle irreducible vertex that

that the following should provide a useful approxi-

©)

At this first level of approximation, only the double occu-

(ofind3
satisfie$ pancy @=(n;n,)) is needed to obtain the irreducible vertex
((1-npn)) Upp and hence the pairing fluctuations. The valugmfn)
pp=U m—— . (20  can be borrowed from some exact calculations or approxi-
(1=n;Xn)) mate estimates but, as in the repulsive case, we found that

accurate results are obtained wienn, ) is determined self-
r%:onsistently from the following “local-pair sum rule,” a con-
sequence of the fluctuation-dissipation theorem for the
s-wave pairing susceptibility

With this approximation, the particle-particle susceptibil-
ity, which obeys the Bethe-Salpeter equation illustrated o
the first line of Fig. 1, can now be written as

(1)
B X0 (q) T
Xél)(q)_—uuppxg“(q)’ 3) N}q} xp(@exp —ig,07)=(ATA)=(n;n)).  (6)

where the irreducible particle-particle susceptibility is de'SubstitutingXE}) Eq. (3) for the pair susceptibility and Eq.

fined as (2) for the irreducible vertexJ,, leads to an equation that
T determines double occupancy, and hentk,, self-
X§(a)=1 2 6P(a-62 k). (4)  consistently:
k
1
The vertices and the Green functions ¥ff(q) are at the T D x6)(@)
same level of approximation in the sense that the irreducible NG 1+ U[<(l_”T)”1>/<1_”O(”O]Xgl)(Q)

vertexU,, is obtained from the functional derivative of the S

self-energy enterings*). The vertexU,,=(82/35G) is a xXexp(—iga,07)=(nn). (7)
constant and&®? in zero external field is also a constant
leading to a Green function that has the same functional forrBarticle self-consisterPSQ approach?

as . the» noninteracting Green f.un(?t|o@°(k), where k Once the pair susceptibility has been found, as above, the
= (ikp, k) stands for both the fermionic Matsubara frequencynext step of the approach consists of improving the approxi-
ik, and the wave vectdt. The constant self-ener@") can  mation for the single-particle self-energy by starting from an

be absorbed in the chemical potential by working at constangxact expression where the high-frequency Hartree-Fock be-
filling. If needed, we have argued in the accompanyinghavior is singled out. This expression is represented by skel-

' This first part of the calculation is referred to as the two-
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eton diagrams on the second line of Fig. 1. The piece of thereases exponentiall§~exp(C/T) with decreasing tem-
exact self-energy that is added to the Hartree-Fock behavigerature. In the latter expressiadd,may be temperature de-
represents low-frequency corrections. These involve Greependent. This behavior is the one expected in tha=6¢)
functions, vertices, and pair susceptibility for which we al- yniversality clas¥ and not in thexY, or O (2),universality
ready have good approximations from the first step of theslass, where g~ exd C/(T— Tgr) Y2, whereTgr is the
calculation. One thus substitutes in the exact expression thgerezinskii-Kosterlitz-Thouless(BKT) temperature. The
irreducible low-frequency verteid ,, as well as all the other precise dependence on temperature of the correlation length
quantities at the same level of approximation, namelyin the temperature range between the beginning of the
G{P(k+q) and x{"(g) computed above, obtaining in Fou- renormalized-classical regime and the actual critical regime
rier space is not known analytically. In the regime that we explore, the
pseudogap begins to open at a temperalutieat is quite a
T bit larger thanTgk. The latter was estimated to be at most
3@ k)=un_,~U N 2 Upx(@)G®(a—k), (8  of order of 0.1 for |U|=4 by Moreo and Scalapirfi.As in
q the repulsive case, we will see below that the pseudogap
appears irA(IZF ,w) if the pairing correlation length grows
faster with decreasing temperature than the single-particle
thermal de Broglie wavelengty,=vg/T.

where q=(iq,,,q) stands for both the bosonic Matsubara
frequency and the wave vector. Hefas the absolute tem-
perature. The resulting self-energy?)(k) on the left-hand
side is at the next level of approximation so it differs from
the self-energy entering the right-hand side. Physically, it is a B. Comparisons with Monte Carlo calculations

self-energy coming from taking cooperons into account. As |n this section we show, by comparing with Monte Carlo
stressed previousfy;** it is important that the irreducible calculations, that the present nonperturbative approach is an
vertexU,,, (or 'W) as well asG M (k+q) andxgl)(q) allbe  accurate approximation. The calculations are performed for
at the same level of approximation otherwise some results, ithe same lattice size as the corresponding Monte Carlo cal-
particular with regard to the pseudogap, may come out qualieulations. It is important to note that at half-filling the Lieb-

tatively wrong. Mattis canonical transformatioo;, —exp(—iQ-r;)c/| , with

The particle-particle irreducible verted,, may be re- = . .
garded as the renormalized interaction strength containingf(w’w)’ maps the attractive model onto the repulsive one,

vertex corrections. Note that in the expression for the selfPalr fluctuations at wave vectay being milpped onto trans-
energy(?, Eq. (8), one of the vertices is bare while the verse spin fluctuations at wave vectpi Q. With the pro-
other one is dressed with the sdfhparticle-particle irreduc-  viso that in the attractive model at half-filling one would
ible vertex functionU,, that appears in the pairing suscep- need, because of symmetd/® to take into account the
tibility. In other words, we do not assume that a Migdal charge fluctuations, we can state that the comparisons done
theorem applies. If this had been the case, the self-energy the repulsive casé**apply for the canonically equivalent
would have, among other things, been proportionalUfo  attractive case. We note in particular that it was shown that
instead ofUU,,. In T-matrix theory the bareJ is used the convergence to the infinite-size limit is similar in the
everywhere, which, in particular, leads to a finite- Monte Carlo and in the nonperturbative approdtie re-
temperature phase transition at the mean-figlf) tempera- ~ Strict our discussion to cases away from half-filling. The
ture. In our case, as described below, we proceed differentlguantum Monte Carl¢QMC) simulations®>* that we per-
avoiding altogether a finite-temperature phase transition iformed were done using a Trotter decomposition with incre-
two dimensions. ment A7=1/10 in imaginary time and the determinantal
We briefly summarize some of the constraints satisfied bypproact?? Typically, about 18 or more Monte Carlo
the above nonperturbative approdétn Eq. (6), A is the  sweeps of the space-time lattice are performed.
local swave order parametes; c;; . Anticommutation rela- We begin with double occupancy. FiguréaPshows that,
tions, or equivalently the Pauli principle, imply that for both densities studied, the solid line starts to deviate from
([A,A™])=1—n. This in turn means that the convergencethe Monte Carlo data aroun@<5. As in the repulsive case,
factor exp(ig,07) in the local-pair sum rule is necessary this occurs because the self-consistent expression for double-
because([A,AT]>=1—n implies that, except ab=1, one occupancy Eq(7) fails once we enter the renormalized-
needs to specify iff=0" or =0~ in the imaginary-time  classical regime where a pseudogap appears. Following Ref.
pair susceptibility. Either one of these limits, however, leads$3, we expect that the pseudogapN(iZ,: ,w) opens up as a
to the same value dfl,, since our approach satisfies ex- precursor of Bogoliubov quasiparticles in the BCS ground
actly this consequence of the Pauli principfe{[A,AT])  state. Since this ground state starts to control the physics, it is
=1-n. In complete analogy with the repulsive case dis-natural to expect that a high-energy quantity suchDas
cussed in Ref. 41, one can invoke the 2D phase space factahould, in the pseudogap region, take the zero-temperature
2m7qdg, and the Ornstein-Zernicke form of the pairing cor- BCS value. The value oD obtained with this approach is
relation function near a critical point to show the following. plotted as a dotted line in Fig(&, where it is apparent that
Deep in the renormalized classical regime, where the chathe agreement with Monte Carlo calculations is excellent. In
acteristic frequency, of the retarded pairing susceptibility fact, for |U|>3, the agreement is always at the few percent
satisfiesy,<T, the superconducting correlation lengthn- level. For smallerlU|, deviations occur, probably because
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FIG. 2. (a) Double occupancyD calculated from the ansatz ’c%‘ % g =
(solid curve$, from the BCS ground stat@ashed lines and from g._ 4 " YA
the QMC simulationgcircles for |U|=4 atn=0.5 and 0.8.(b) @n
Renormalized interaction strengft,,| as a function of bar¢U| sl i
for T=0.222 atn=0.5. The dashed line i ,,=U. -
—a—a—a R
0 |
at small coupling the order parameter ag=0 ©0.0) () (Om) (0.0

no longer dominates the sum over all wave vectors in q

(1/N)2&<A(q)TA(—q))z(AT.A)Z(nTnQ. In fact, as we FIG. 3. Calculateds-wave pairing structure facto®(q,=0)
shall see below, a good estimate of double occupancy mayijed triangles and QMCS(q, 7=0) (circles for |U| =4 and vari-
also be obtained at small just from second-order perturba- oys temperature€a) atn=0.5 and(b) atn=0.8 on a 8<8 lattice.
tion theory. Now consider the temperature dependence ofne dashed lines are to guide the eye.

double occupancy. The dependence predicted by the finite-
temperature BCS result is on a scdle1 at|U|=4. That . . . o .
temperature dependence is clearly wrong for our problen‘fvhICh ultimately governs the pa”'c"? dy”a”_“csz including
since aboveT,,: the BCS approach would give us back thethe pseudogap behavior. The saturat[omegme F.'g' 2b) .
noninteracting value. Hence the BCS result may be usealgnals the onset of the strong—coupl!ng regime inaccessible
only in the following way. For|lU|>3 we can use th@ :cn our app(rjoach éhat dois not take |3t0 :l::cccount the strong
—0 value of(n;n,) in the pseudogap region and the self- requency dependence of vertices and self-energy present in

: : this limit.
consistent value Ed2) above it. In the general cas@g)n,) .
does depend on temperature in the pseudogap regime, but Our approach gives a very accurate result for double oc-

. . i i ? -
that dependence should be relatively weak, as discussed ffypancy, but \_/vhat about correlation fu.nc.:'qon.s. Another two
the repulsive cas¥ particle quantity related to the susceptibility is the pair struc-

We stress, however, that deep in the pseudogap regin{[gre factor. In Fig. 3 the calculateg-wave pair struc-

our approach becomes eventually inaccurate when we obtafi'e factor (filled triangleg S(q, 7=0)=(A(q)A’(—q)
(n;n,) from the self-consistent equati@f). The reason for +A(q)"A(—q)), where A(q)*z(ll\/N)EgctflszcE’l, is
the loss of accuracy is analogous to that found-atl inthe  compared with our QMC result&ircles f0r1U|=4 atn
repulsivé? case: In the presett<0 case{n;n;)—(n;) as  =0.5(top panel and 0.8(bottom panelon a 8x8 lattice.

T—0 to prevent a finite-temperature phase transition_. Theyg the temperature decreases,&aeﬁ mode becomes more
approach also eventually becomes less accurate in thgngular in both results, a characteristic feature for growing
pseudogap regime when we taf®n ) from BCS, but the swave pairing fluctuations. In most of the Brillouin zone,
fact that a more physically reasonable valugfn;) may  the agreement is excellent, in particular, for 0.5 where the
be obtained in that case &t=0 helps extrapolate a little bit aximum difference is less than 109kig. 3@)]. For n
deeper in the pseudogap regime. The internal accuracy checkg g our calculated structure factor overestimates QMC re-
discussed at the end of this section helps quantify the regiogits at most by 20%.
of validity of the approach. . At the first level of approximation, we can also estimate
Before moving on with the comparisons, a few commentshe interaction-induced shift in chemical potential by starting
on the actual renormalized interaction strenbﬂk,gp| result-  from our approximate expression for the self-eneRfy,
ing from the two-particle self-consistent calculation. In Fig. Eq. (5). Let us call the corresponding chemical potential
2(b) |Upy| (denoted as stargs plotted forT=0.222 as a (W=, 451 Our best estimate of single-particle quanti-
function of bareU by using the self-consistent expressionsties is obtained from the self-energy at the second level of
Egs.(2) and (7). For this temperaturd),, approaches bare approximation, Eq(8). The corresponding chemical poten-
U for [U|<1 while in the intermediate-coupling regime 1 tja| ,( is calculated by requiring that the filling be the same
<|U|<bandwidth one notices a strong deviation from theas the one used at the first level of approximation. This pro-
bare [U]. This deviation ofU,, from U makes a drastic cedure is identical to that for the repulsive mddeind was
difference, in particular in the two-particle functiop,(q), suggested by Luttinger. It is discussed also in Sec. IV C of
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FIG. 4. Comparison of the chemical potential shift§"— FIG. 5. The momentum-dependent occupation nunmigky for

(open diamondsand u®— u, (open squargswith the results of  |U|=4 andn=0.5 atT=0.25. The circles denote(k) from QMC
QMC calculationgopen circley all done on a & 8 lattice. QMC  calculations by Trivedi and Kander{&ef. 59 on a 16< 16 lattice.
error is a few percent, smaller than the open circles. The upper sqthe solid curve is calculated according to the equations given in
of points are forn=0.6, and the lower set of points are far this paper, while the dashed one is computed by repladingoy U
=0.95. Fom=0.6, many-body calculations for a 8464 lattice are  in the self-energy with all the rest unchanged. The long-dashed line
also illustrated by filled squares fqr®— o, and by filled dia- s the result of a self-consistefitmatrix calculation, and the dot-
monds(lf)oru(l)—uo. In all casesu'®— pu, is closer to QMC data  dashed line the result of second-order perturbation theory.

than u'* — uo.

_ _ _ We now compare the momentum distribution, a static
the accompanying pap&r.Figure 4 illustrates how the two quantity, obtained from QMC and from our analytical ap-
estimates for the chemical potential on x 8 lattice con- proach at the second level of approximati@i?). The

verge towards the value obtained from QMC calculations formomentum-dependent occupation numth)ﬁ?) (solid curve

the same size lattice. Qonsider the data for fillmg 0.6, in _is plotted in Fig. 5 along with the QMC calculatiofisrcles

the upper part of the figure. The open squares, representing Trivedi and Randerfa for a 16x 16 lattice, in a regime
w®— o, agree, within the error bars, with the QMC data where the size dependence is negligible. The momentum dis-

represented by open circles. The first estimate for the chemiripution n(k) drops rapidly near the Fermi surface, corrobo-
cal potential shiffu")— x, (open diamondsstarts to deviate rating that for|U|=4 the electrons are in the degenerate
from both the QMC datdopen circles and fromu(®—u,  state, instead of in the nondegenerate state of the strong-
(open squargsat the temperature where the pseudogap opensoupling regime or of the preformed-pair scenario. The
up (see Fig. 11 beloy Below this temperature, the self- agreement between the nonperturbative method and QMC is
energy becomes strongly frequency and momentum depeitearly excellent. If we had assumed a Migdal theorem and
dent, a feature captured by our improved estini&{® for  takenU? instead ofUU,, in Eq.(8) for the self-energy, then
the self-energy, but not by our first estimats?). The filled  we would have obtained the dotted curve, which in absolute
squares = o) and filled diamonds £"— ) were value differs as much from the QMC result as a noninteract-
obtained for a 6% 64 lattice. They illustrate that one should ing Fermi distribution would. Clearly Migdal's theorem does
compare finite-size QMC calculations to many-body calculanot apply for this problem. In addition, Fig. 5 also shows
tions done on same size systems. They also illustrate that tH¥ng dashesthat a self-consistenft-matrix calculation does
second estimate for the chemical potential stéfjuaresis ~ NOt compare to Monte Carlo data as well as our approach.
more sensitive to system size. This is expected from the facdimilarly, second-order perturbation theoigot-dash does
that it is only at the second level of approximation that thenot do well.

pseudogap appears for large correlation lengths. Let us now N Fig. 6 we present the total density of states
move to the lower part of Fig. 4, where results closer toN‘lng(IZ,w) for U=4 andn=0.87 on an & 8 lattice and
half-filling are plotted. The chemical potential there is very compare with existing QMC calculations by Mored al>®
close to its exact temperature-independent half-filing valueThe many-body nonperturbative calculation is done in
U/2; hence there is not much room to see the differencéMatsubara frequency and analytically continued to real fre-
between the first and second estimate for the chemical pajuency using the same maximum entroyE) technique
tential. Nevertheless, even for=0.95, the second estimate that is used for QMC calculation’é. This allows us to
(open squaress closer to the QMC datéopen circlesthan  smooth out the results in the same way as in the QMC cal-
the first estimatéopen diamonds culation, namely, by including statistical uncertainties in our
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FIG. 6. The single-particle density of states farf|=4 andn = =
=0.87 at different temperatures on &8 lattice.(a) T=1/2, (b) 0.2+ f T 02+ —
T=1/4, (c) T=1/6, and(d) T=1/8. Both the solid line obtained = - o
from many-body calculations and the dashed line taken from the —: K L= %%; 4
QMC calculations of Ref. 56 are obtained by analytic continuation 7 5 -
of imaginary-time data using maximum entropy. The absolute error-0.4 = . _ . . — 04 —
chosen for the maximum entropy continuation of the imaginary- _— m;c ' = =
time many-body Green function for panéss to (d) is, respectively, . 7 T T
0.003,0.004,0.003,0.001. Lolalalalalalalyl Lolalalalalililal
_06 1 1 1 1 1 1 1 1 1 1 _06 1 1 1 1 1 1 1 1 1 1
T T

imaginary-time data. This procedure was discussed in Ref.
33. The uncertainties in the QMC dattahat are presented in

. d h h istical article spectral weightA(0,37/4,0) at wave vector (0,3/4)
Fig. 6 were not quoted. Hence, we chose the statistica UMpanel(b)] are shown folJ = — 4, n=0.8, andT =0.25. The lattice

certainties in the corresponding many-body calculations injze is 8<8. Dashed lines are the result of maximum entropy con-

such a way that the calculations presented in Fid) Bave  tinuation of QMC data, and dotted lines the result of maximum

the same degree of smoothness as the corresponding QM@itropy continuation of many-body results with the same errors

data. More specifically, these uncertainties are of order 0.008dded in. The number of measurements done ix 1®. The ab-

on the absolute value of the imaginary-time Green functionssolute statistical error on the imaginary-time data is of order 2.0

which is typical of Monte Carlo calculations. At=1/2 the ~ *10"°. Singular values less than 1dare dropped in the maxi-

density of states is similar to that for the noninteracting sys/Mum entropy inversion. The density of stafeanel(c)] and spec-

tem. At T<1/4, however, the spectral weight near the Fermitral weight[panel(d)] are extracted from imaginary-time data. Error

energy begins to be suppressed significantly with decreasirﬁ’lrs are shown only for the Monte Ca_rlc_> data but the same error as
. e Monte Carlo data has been explicitly added to the analytical

temperature, leading to a pseudogap. The small shoulders

the intermediate-frequency regime for=1/6 and 1/8 come

from the finite-size effect. When we use a>6@4 lattice, pseudogap opens up fdd=-—4 at a temperature large

FIG. 7. Total density of statebl(w) [panel ()] and single-

these shoulders completely disappear. enough that the S@) symmetry present at half-filling is
In the case of the single-particle spectral weight, the latedparely broken x> u). )
QMC calculation®® at n=1 included studies of the finite- Here we present results féy(k,») and for the total den-

size effects, of the imaginary-time discretization, and of thesity of statedN(w)= NflEgA(IZ,w) atn=0.8,U=—-4, and
uncertainties induced by the size of the Monte Carlo samplel =0.25 in the pseudogap regime. For that filling, finite-size
They have shown that, at half-filing, there is indeed astudies are complicated by the fact that the available wave
pseudogap, in contrast to earlier findif§Detailed com- Vectors do not necessarily coincide with Ehe noninteracting
parisons with the many-body approach analog to the presehiermi surface. The closest such wave vedter(0,37/4), is

one have been done. Although these studies were for thige one chosen for comparisons &€k, »). The results of
repulsive model, at half-filling the results apply for the at- QMC calculations are shown in Figs(ay and 7b) as dashed
tractive model since they are canonically equivaleninat lines and those of the many-body approach as dotted lines
=1. One only needs to generalize the many-body approacfor the same & 8 system size.

to include the presence of the 8D symmetry, as done in The imaginary-time data corresponding to par(@jsand
Ref. 33. Slightly away from half-filling, namely fon (b) appear, respectively, as panéts and(d). It is clear that
=0.95, QMC simulatiorf§"*® have found that a similar all the main features of the Monte Carlo method are repro-
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TABLE I. Internal consistency check, for variol$ and T at n=0.5, on a 6464 lattice. The three
columns labeledMany bodygive, respectively, the value af(nn) obtained at the first level of approxi-
mation with the TPSC approach, that obtained at the second level of approximation fiBf8'&(?)] and
the absolute value of the difference between the two results. The following columiBi& Tobtained from
second-order perturbation theory, and the last three columns are analogous to the corresponding “Many
body” columns but they start from th€=0 BCS estimate otJ(n;n ).

Many body Many body Many body second order BCS BCS BCS
U T  Uniny) TI2@GA] (% dif.| TG]  U(n;n) TIZ®GA] [% diff.|
-2 01 -0.1887 —0.1838 2.63 —0.1728 —0.1376 —0.1366 0.74
-2 02 -—0.1892 —0.1861 1.61 —0.1743 —0.1376 —0.1371 0.39
-2 03 -0.1913 —0.1888 1.29 -0.1762 —0.1376 —0.1372 0.26
-2 04 -0.1939 —0.1917 1.15 -0.1787 —0.1376 —0.1373 0.19
-2 05 -0.1963 —0.1942 1.08 —-0.1812 —0.1376 —0.1374 0.16
-2 1.0 -—0.1988 —0.1970 0.88 —-0.1875 —0.1376 —0.1375 0.10
-4 01 -0.6160 —0.5152 16.37 —0.4355 —0.5404 —0.4785 11.46
-4 0.2 —0.5427 —0.5067 6.64 —0.4412 —-0.5404 —0.5050 6.55
-4 03 -0.5374 —0.5083 5.42 —0.4487 —0.5404 —0.5107 5,51
-4 04 —0.5406 —0.5131 5.08 —0.4578 —0.5404 —0.5129 5.08
-4 05 —0.5440 —0.5172 4.92 —0.4669 —0.5404 —0.5143 4.83
-4 1.0 -0.5385 —0.5168 4.03 —0.4897 —0.5404 —0.5184 4.07

duced by the many-body approach. The relative size of théhe theory is becoming less accurate at very low temperature

split peaks at the Fermi surface is very sensitive to the actudecause, there agaitl(n;n;) and T{=®G®@] begin to

location of the Fermi wave vector. differ more and more. This internal accuracy check, how-
We conclude this section with the accuracy check deever, cannot tell us which approach is more accurate com-

scribed in the accompanying papeand in previous work?  pared with QMC.

The question here is whether it is possible to find the domain

of validity of the approach even in the absence of Monte

Carlo data. The answer is given by Table I, where all results  1Il. PSEUDOGAP FORMATION IN THE DENSITY

were computed for a 6464 lattice. One should focus on the OF STATES AND IN A(kg ,w)

three columns labeleany body.In the first of these, one

finds the value otU(n;n ) computed with TPSC, i.e., from

Eqg. (2) and the local-pair sum rule Eq7). That number is

In the first subsection below, we summarize previous
work on pseudogap in the attractive Hubbard model. In the
the same as that which would be obtained fromsecond subsection, we use the approach of Sec. Il A to study

T[S @GM]. However, finding by how much it differs from the conditions under which a pseudogap appears in the den-

TS@G®@]7, listed in the second column labelddany Sity of states and iA(kg , ).
body, gives an indication of how much the theory is inter-
nally consistent. The third column label&tany bodygives

the absolute value of the relative difference between the first
two Many bodycolumns and it helps one to discover where The effect of superconducting fluctuations on the density
the theory fails. Clearly, as temperature decreases and omé states was studied long agoTo elucidate further the
enters the renormalized classical regime, the theory becomgdysics of pseudogap formation, especially in the single-
invalid since the difference betweerJ(n;n)) and particle spectral weight, many theoretical studies have fo-
T2 G starts to increase rapidly. As expected also, thecused on the attractive Hubbard model. An exhaustive re-
theory is better at smaller coupling. Instead of computingview may be found in Ref. 38. Although the attractive
U(n;n,) with the TPSC approach equatitf), one may also Hubbard model is clearly not a realistic model for cuprates
take it from the zero-temperature BCS value as describedince it predicts as-wave instead of d-wave superconduct-
above. Comparing with the correspondibtany bodycol-  ing ground state, it is an extremely useful paradigm. Indeed,
umns, it is clear the BCS estimate of double occupancy doesxcept for the lack of a cutoff in the interaction, it is analo-
not compare as well with the TPSC result at small couplinggous to the BCS model and is the simplest many-body
as explained above. In fact, in this region, second-order pelHamiltonian that leads to superconductivity with a possible
turbation theory compares better. This is partly because therossover from the BCS limit at weak coupling to the Bose-
Hartree-Fock contribution to double occupancy is dominantEinstein limit at strong couplinff A key point, as far as we
The worse results for perturbation theory are for quarter fill-are concerned, is that it also represents the only Hamiltonian
ing atU = —4. Near half-filling it is known that second-order for which QMC simulations are available now as a means
perturbation theory works well again. Note also that even ifof checking the accuracy of approximate many-body
we start from the BCS result fdd(n;n ), one can tell that calculations.

A. Overview of some recent work
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The conventional pictur® based on mean-field ideas, is questions that should be answered is precisely the size of the
that in the weak-coupling regimel/t|<1) pairing and fluctuating region where a pseudogap is likely to occur.
phase coherence happen at the same temperature while in theln contrast with the abov&-matrix calculations, self-
strong-coupling regime|U/t|>1) phase coherence may oc- consistentT-matrix approaches do have a large fluctuation
cur at T, much lower thanT*, where pair formation hap- region, but they assume a Migdal theorem. The latter means
pens. In the latter case, the Fermi surface is destroyed wethat they do not take vertex corrections into account in the
before the superconducting transition occurs. Since theelf-energy formula while using self-consistent Green func-
ARPES experiments suggest a relatively well-defined Fermiions. Analytical arguments based on “diluteness” as an ex-
surface, it has been sugge<te®%2that at intermediate cou- pansion parameter suggest that this type of self-consistency
pling it is possible to retain aspects of both the Fermi surfacdails to describe the behavior of the system in the strong-
of weak coupling and the preformed-pair ideas of strong coueoupling limit and is uncontrolled from the point of view of
pling. These possibilities have been extensively studied bgxpansion paramete$3In addition, we expect that, as in the
several groups using a number of approaches that we wittase of repulsive interactiofi$3® the failure to treat vertex
crudely divide in two types: numerical and many-body ap-corrections and fluctuations at the same level of approxima-
proaches. tion may lead to incorrect conclusions concerning

Previous numerical QMC workers charted the phase diapseudogaps it\(Kg ,w). Self-consistent calculations have in
gram of the attractive Hubbard mod&>*~**They have also  fact lead to the claifi¥ that only d-wave superconductivity
investigated the pseudogap phenomenon from intermediapﬁay have precursor effects (kg ,w) above the transition
to strong coupling®~°*We stress that the physics in strong temperature while Monte Carlo calculatidhé® have exhib-
coupling is different from the weak-to-intermediate-couplingijied this pseudogap even in tbavave case. Recently, it has
limit we will stuc_jy be_low. On the weak-coupling side of the_: been pointed out using a different appro¥cthat in the
BCS to Bose-Einstein crossover, there have been ”Umer'cﬁltermediate-coupling regime and when the filling is low, it

; /36,65 ; SR
studlgs of BKT superconductivity*°as \{vell as seyeral dis- .becomes possible to have a boupd 0 pair. This physics
cussions of pseudogap phenomena in the spin properties

(susceptibility and NMR relaxation ratand in the total den- 1€2ds to a pseudogap iA(k,») but it requires strong
sity of states at the Fermi levB155% we have studied, particle-hole symmetry breaking and is not specific to two
through QMC simulations, the formation of a pseudogap irdimensions. This result is discussed further in the following

A(ke @) in the weak-to-intermediate-coupling regime of in- SUbPSection. - _ ,
terest heré®“® The present work is in agreement with our _ S0mMe authorS~*"**have included phenomenologically a

earlier results, as will be discussed in the next subsection. BKT fluctuation region irT-matrix-like calculations, through
The many-body techniques that have been applied to thlubbard-Stratonovich transformation, or otherwié@hese
attractive Hubbard model in the weak-to-intermediate coufalculations allow for phase fluctuations in the presence of a
pling regime are mostlyi-matrix and self-consister(fluc- ~ NONZ€ro expectation value for the magnitude of the order
tuation exchange approximatioi-matrix approache®-72  Pparameter. In such a case, there is generally a real gap in
Let us consider the pseudogap problem in the nonsupercoM(kr,w), and additional effects must be included to fill in
ducting state. At low densit’~’® or with additional the gap to transform it into a pseudogén the approach
approximations® a pseudogap may be found. By contrast,that we take, any S@&2) theory would give qualitatively

when theq=0 superconducting mode is relaxational, self-the same result above eithgyr for n=2 or aboveT=0
consistent T-matrix calculation§ have failed to show a for n>2. In addition, in our approach, it is when both am-
pseudogap in the one-particle spectral functii(k ,w) pI|tud_e and _ phase fluctuations enter_ the renormalized-
= —2ImGR(ks ,w) when the momentum dependence of theClassical regime, i.e., become quasistatic, that a pseudogap
self-energy is neglecte@vhich should be valid in infinite M3y Open up.
dimension. In two dimensions, an absence of the pseudogap
would be in sharp contrast with various QMC restit§ and
with general physical arguments inspired by studies of the
repulsive casé>’® which have already stressed that space In this section, we focus on the physics of fluctuation-
dimension is crucial in the physics of pseudogap formationinduced pseudogap in the single-particle spectral weight of
In the non-self-consistent version of tienatrix approxi-  the two-dimensional attractive Hubbard model. This physics
mation, a pseudogap can be foulid® Nevertheless, since has been discussed in previous QW¢>58and analytical
the T-matrix approximation takes into account the Gaussiarwork®® but the present quantitative approach, based on the
(first nontrivial) fluctuations with respect to the “mean-field equations of Sec. Il A, allows us to do calculations that are
state,” one important pathology of thEmatrix approxima- essentially in the thermodynamic limit and that can be done
tion in two dimensions is that the Thouless criterion for thesufficiently rapidly to allow us to address other questions
superconducting instability occurs at a finite mean-field temsuch as the crossover diagram in the temperature-filling
peratureT = . In the very-weak-coupling regime, this is con- plane.
sidered inconsequential since the relative difference between Since the cuprates are strongly anisotropic and may be
Tue and the Berezinskii-Kosterlitz-Thoulédstemperature  considered as quasi-2D systems, it is important to understand
(BKT) Tgkr is of ordeP? Tye/Er. In the intermediate- in detail the limiting case of two dimensions. Mean-field
coupling regime, however, this argument fails and one of théheory leads to finite-temperature phase transitions even in

B. Pseudogap formation in weak-to-intermediate coupling
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o The analytic continuation from Matsubara to real frequencies
.............. o1 (b) are performed via Padapproximant$® In order to detect
R T X LR any spurious features associated with this numerical analyti-
| cal continuation, we also performed real-frequency calcula-
tions. The results are identical, except for the fact that the
Padetechnique smooths out some of the spiky features of the
real-frequency formulation that are remnants of finite-size
effects when the small imaginary pawtin retarded propa-
gators is very small.

In Fig. 8 we show, for various temperatures, the total den-
sity of state§Fig. 8a)] as well as the spectral functigfig.

8(b)] A(IZF ,w) for the Fermi surface point crossing the
(0,0)—(,0) line forU=—4 and quarter-fillingh=0.5.

FIG. 8. (a) The density of states ar{®) the spectral function at For T=0.364(dot-dashed curyehe density of states, on
the Fermi surface foflU|=4 andn=0.5 at different temperatures. the left panel, is similar to that for noninteracting electrons.
The solid, dotted, dashed, long-dashed, and dot-dashed curves caffith decreasing temperature beloW=0.32, the low-
respond toT =0.143, 0.182, 0.211, 0.308, and 0.364, respectivelyfrequency spectral weight begins to be suppressed, leading to
except for pane{b) where the long-dashed line was calculated with g pseudogap in the density of states. The condition for the

a 2560< 2560 lattice to illustrate that size effects are small. appearance of a pseudogap in the spectral fun@t(&lﬁ ),

. . , . on the right panel, is more stringent than that in the total
low-dimensional systems where breaking of continuous SYMgensity of states. Although the pseudogap in the density of
metries is strictly forbidderj at finite_tempgratur(eb&ermin— states is well developed far=0.211(dashed curve it dis-
Wagner theoreﬁ?)_. Thus in low dimensions, mean-field 5550415 in the spectral function for the same temperature. It
theory, or fluctuation theory based on the mean-field stat€g gagier to form a pseudogap in the total density of states
leads to qualitatively wrong results at finite temperatureSpecq e of its cumulative nature: It suffices that scattering
One of the particular features of two dimensions that is cappecomes stronger at the Fermi wave vector than at other

tured py our app_roach, as we w'iII see below, is that the, 5 e vectors to push weight away from=0. Hence, a
mean-field transition temperature is replaced byacrossoveijrseudogap may occur in the density of states even if

temperature below which the characteristic energy of fluc- K . . ab—=0_ This is what .
tuations is less than the temperature. This is the so—calle’é( Fo) remains maximum ab==. 1hiS IS w ag %CC“f? in
LEX (fluctuation exchange-type calculation§®'? It is

renormalized-classical regime. In this regime, the correlatiorf o - . )
length (¢) increases exponentially until, in the superconduct-more difficult to create a pseudogapAiikr , ) itself since,
ing case, one encounters the BKTopological phase tran- at this wave vector, transforming a maximumeat0 to a
sition. As a result we find that whef®uv ¢ /T, the electronic  Minimum requires the imaginary part of the self-energy to
system simulates the broken-symmetry ground stétex) grow very rapidly asT decreases’ _T_he general!ty of thgse
at temperatures that are low but not necessarily very close @fguments suggests thatwave pairing fluctuations, which
the transition temperature, leading to precursors of BogoliuWere considered in Refs. 78 and 90, for example, should also
bov quasiparticleS above T.. Recent dimensional- lead to a pseLidogap in the density of states before a
crossover studies using an analogous apprdauive sug- pseudogap iM\(kg,w). This feature is consistent with the
gested how the pseudogap will disappear when coupling teecent experimental observatidnsn high-temperature su-
the third dimension is increased. perconductors where pseudogap phenomena appear at higher
The results of this section for two-particle properties, suctemperatures in tunneling experiments than in ARPES ex-
as the pairing susceptibility and the characteristic pairingoeriments. Note also that with increasing temperature the
fluctuation scale#, are all computed for an effective 2560 pseudogap in both the density of states and the spectral func-
X 2560 lattice. The one-particle properties are calculated intion appears to fill instead of closing. This behavior is also in
stead for a 6% 64 lattice in momentum space. Fast Fourierqualitative agreement with tunnelihgand with ARPES
transforms(FFT’s) were used in that case to speed up theexperiments:* All the above results are consistent with
calculations. The solid and long-dashed lines in Fin)8 Monte Carlo simulations? In addition to having found a
obtained respectively for a 6464 and a 2568 2560 lattice, ~pseudogap in the density of statésig. 6, the more recent
illustrate that for single-particle properties a>684 lattice ~ Monte Carlo simulations done in the present and earlier
suffices. This lattice size, for the temperatures we consider, iBapers”*? have also shown that a pseudogap may occur in
large enougf’ compared to&,, [panel in Fig. 10b)] that  A(kg,») even inswave superconductors, contrary to the
single-particle properties are essentially the same as theylaims of Ref. 85.
would be in the infinite-size limit. References 31 and 33 Figure §b) also shows one otheualitativeresult, which
discuss how single-particle properties become rather insensis a clear signature of intermediate-to-strong-coupling sys-
tive to system size even whe>L, as long as the condition tems, analogous to the signatures seen in optical spectra of
En<<L<¢ is satisfied. This is discussed further in Ref. 88. Inhigh-temperature superconductdt$n changingT by about
the calculations, Eq(7) is solved iteratively, then the self- 0.03, from 0.21 to 0.18, the spectral weight rearranges over a
energy equation8) is obtained in Matsubara frequencies. frequency scale of order one, i.e., over a frequency scale

Alk.®)
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30 . PR other temperatures the behavior is similar. In Figh)Y, is
(a) 2 ' T plotted as a function of temperature. At high temperatuges

15| IUl=4,n=05 i 02 A 1 is larger thanT but belowT=0.31-0.32 the characteristic
T-0.19 E frequencyr, becomes smaller thah, signaling that we are

Im %,,(0,v)

(b)
|UJ=4, n=0.5

entering the renormalized-classical regime. This phenom-
enon was also observed in QMC calculatidhsn this re-
gime, the thermal occupation number for pairing fluctuations
is larger than unity. Clearly, the appearance of a pseudogap
in the density of states in Fig(® follows very closely the
entrance in the renormalized-classical regime.

The present results should be contrasted with those of
Levin and co-worker&® The pseudogap in their work comes
from the presence of §=6 resonant pair state in thé
matrix. As the interaction strength decreases or the particle

density increases, théi=6 bound state enters into the

°05 . . ; = L
> « j/, - particle-particle continuum, thereby acquiring a finite life-
T ve=T time. As long as the=0 pair state is near the bottom of the
ot scattering continuum it can remain a resonant state with a
0 ST T , ‘ relatively long lifetime. Thus the origin of a pseudogap in
0 0.1 0.2 0.3 0.4 0.5 their study is analogous to the preformed-pair scenario where
T

the ci=5 pair is separated from the scattering continuum.
Such a resonance corresponds to strong particle-hole asym-
metry in the imaginary part of the pair susceptibility. In order
to have such an asymmetry for moderate-coupling strength, a
very small particle density is required in this approach. In
our case, the pseudogap occurs even when the particle-hole
symmetry is nearly perfect. Furthermore, in our case, other
, factors such as density and interaction strength do not influ-
about 30 times larger than the temperature change, and gyce the results in any dramatic way. Low dimensionality is
times larger than the absolute temperature 0.2. In weakpg key factor since phase space is behind the existence of
coupling BCS theory, by contrast, spectral weight rearrangefo the renormalized-classical regime and the very strong
over a frequency scale of the order of the temperaturgcaitering of electrons on the corresponding fluctuations. The
change. The frequency range for spectral rearrangement ops;iq ¢l ¢,, controls the importance of this scatterfhgs we
served in Fig. &) would be even larger if the coupling was iscuss in the following paragraph.

stronger? This is a consequence of the fact that wave vector In Fig. 10 we contrast the onset of the pseudogap in the

can be a very bad quantum number for correlated SyStems $Qyectral function on the Fermi surface along different direc-
that a momentum eigenstate can project on essentially all the, o namely the (0,0} (0,7r) and (0,0)- (i, ) directions
true eigenstates of the system. The loss of meaning of mqgy, |U|=4 andn=0.5. At this density, where the Fermi sur-

mentum as a good quantum number and the correspondingce is nearly circular, the anisotropy happens in a very small
spectral weight rearrangement over a large frequency scajf

; R Emperature range aroun@i=0.19. For T=0.19 (dotted
happens suddenly with temperature in Figh)&ecause the curves, the figure shows that the pseudogap occurs only
correlation length becomes large at a rather sharp thresho;ﬁJ

h h b lized ol ong the (0,0y-(0,7) direction. This anisotropy of the
temperature w ere the system becomes renormalized ¢ asﬁ'éeudogap in the spectral function should be contrasted with
cal, as we now discuss.

the fact that in the superconducting state, the gap is isotropic.

_ Letus then demonstrate; that the opening of the pseudogapne anisotropy at the temperature where the pseudogap
in the single-particle density of states occurs when the pair.

. ) . > opens up can be understood following the arguments of
ing fluctuations enter the renormalized-classical regitia. P p g g

: : . . o0 Ref. 32. Using the dominant renormalized-classical fluctua-
Iflg.ﬁ9(a) the imaginary part of the pairing susceptibility at tions (ig,=0), these authors showed that & ve /T the
g=0 for T=0.19 and the characteristic frequeney for

scattering rate(imaginary part of the self-energyon the
pairing fluctuations are shown faf=—4 andn=0.5.

an= Fermi surface becomes large, leading to a minimum in the
Since for the parameters studied here ¢fv0 mode is  spectral function at»=0 instead of the maximum that exists

deep in the particle-particle scattering continuum, it has thén the absence of a pseudogap. In the inset of Figh)libe
characteristic frequency dependence of a relaxational modeairing correlation lengtlg, as well aséy,=vg/T along the
1/(1-iv/v.), which leads to a maximum in the imaginary (0,0)— (7, 7) and (0,0)-(0,7) directions are plotted as a
part at some characteristic frequengy. Even though we do function of temperature. Clearly grows exponentially with

not have perfect particle-hole symmetry, the Fermi energy islecreasing temperature. Furthermore, according to the above
still large enough compared with temperature such thatriterion, a pseudogap in the spectral function exists along
Imx,p(0,v)/ v is very nearly everjinset in Fig. 9a)]. For  one direction and not along the other whfsolid curve is

FIG. 9. (8) The imaginary part of the pairing susceptibility at
q="0 for T=0.19 and(b) the characteristic low energy scakars
for pairing fluctuations at different temperatures foj=4 andn
=0.5. The inset in@) is the imaginary part of the pairing suscep-

tibility divided by frequency atj=0 for T=0.19.
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1.2 ——— ; — 0.8 T
Along (0,0)—(0,=) direction -
T=0.174 [U|=4 7
06 q
— 04 F .
-2 -1 0 1 2
1.2 T T T
Along (0,0)—(r,x) direction " T 0.2 - 4
T=0.174 5 i\
0.8 o T=0.190 =10 - = =k
— af Along (0,0)—(n;%) —
sﬁ_ | —— - T=0.211 Along (0,01+0,%) 0 : ‘ ) ‘
s %1 o5 _ o0z 0 0.2 0.4 0.6 0.8 1
0.4 n
FIG. 11. The crossover diagram of the 2D attractive Hubbard
model for|U|=4. The filled triangles and stars denote the tempera-

2 T -1 ‘ ‘ 0 T 1 2 tures where a pseudogap appears in the density of states and the
0 spectral function, respectively. The solid lines are a guide to the
eye. The dashed curve is the BCS mean-field temperatyreand
FIG. 10. Spectral function fotU|=4 andn=0.5(a) along the  the dotted curve is an estimate of the Kosterlitz-Thouless tempera-

(0,0)~(0,m) direction and(b) along the (0,0)-(m,m) direction.  tyre T,; extracted from QMC results by Moreo and Scalapino
The inset in(b) shows the pairing correlation lengtkolid curve, (Ref. 49.

and &,=ve /T along (0,0)-(7r,7) direction (dotted curve and

(0.0)=(0,m) direction(dashed curvefor the same parameters. Mermin-Wagner theorem, while the pseudogap temperature

continues to be large, following the trend of the mean-field

larger thanéy, along (0,0)-(0,7) (dashed curvebut smaller  transition temperature instead of that of thg curve. This
than &, along (0,0)- (7, 7) (dotted curvé namely, in the shows that symmetry of the order-parameter space contrib-
temperature range 0.1¥57<0.185. We obtain quantitative utes to enlarge the temperature range where the pseudogap
agreement with Fig. 10) if we useé=1.3¢, as the criterion  occurs, as expected from the corresponding enlargement of
for the appearance of a pseudogap. While the pseudogdpe renormalized-classical regirfie.
anisotropy happens in a narrow temperature range at this
density due to the small Fermi velocity anisotrof@bout
1.39, closer to half-filling it occurs in a large temperature
interval since the Fermi velocity is nearly vanishing close to  |n weak-to-intermediate coupling, the attractive Hubbard
the (Or) point* model can be studied quantitatively with a nonperturbative

Finally in Fig. 11 we present the crossover diagram forapproach’ that directly extends the corresponding method
the pseudogap in the 2D attractive Hubbard model[€F  for the repulsive modét:®132The simple equations of Sec.
=4. The dotted curve is a rough QMTestimate(probably 11 A are all that needs to be solved. This many-body ap-
an upper boundfor the BKT transition temperatur€gyr . proach has an internal accuracy check and no adjustable pa-
For all densities a pseudogap in the one-particle functiongameter and it satisfies several exact sum rtfiasle have
appears in a wide temperature ranbg<T<T*, where  demonstrated the accuracy of this method through detailed
T* is typically several times ofgxt=T,.. The pseudogap comparisons of its predictions with quantum Monte Carlo
occurs earlier in the density of states than in the spectradimulations of both single-particle and two-particle correla-
functions for most of densities. Near half-filling, however, tion functions.
the pseudogap appears more or less at the same temperatureOn the physical side, we studied the fluctuation-induced
in the density of states and the spectral functions. In QMGpseudogap that appears in the single-particle spectral weight,
methods for small systems, there seems to be a difference in agreement with Monte Carlo simulations and in close
the temperatures at which the two pseudogaps opet? up.analogy with the results found before in the repulsive
Performing a calculation with finite second-neighbor hop-case®=3A key ingredient for this pseudogap is the low di-
ping t’, we have confirmed that this almost simultaneousmensionality. Indeed, in two dimensions the finite-
opening of the pseudogaps happens because of the strotemperature mean-field transition temperature is replaced by
influence of the Van Hove singularity, which leads dg@ a crossover to a renormalized-classical regime where the
=0, and not because of nestifigFinally, note that at half- characteristic pairing frequency is smaller than temperature
filling one has perfect () symmetry in this model so that and the pairing correlation length grows faster than the
the transition temperature vanishes, as dictated by thsingle-particle thermal de Broglie wavelenggl,. In this

IV. CONCLUSION
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approach, where vertex corrections and Green functions a@nd Knight shift® suggest that the pseudogap appearing a
taken at the same level of approximation in the self-energyew tens of degrees aboVvk. is indeed a superconducting-
expressiort>33 the renormalized-classical fluctuations and fluctuation-induced pseudogap. The pseudogap that we have
the relatively large phase space available for them in twodescribed should appear in these regimes if an effective
dimensions lead to precursors of the superconductinggap Weak-to-intermediate-coupling attractive-interaction model
Bogoliubov quasiparticlgs in the normal state. This is valid nearT.. In this context, some of the important re-
pseudogap can occur without resonance in the paipults that we found are the following. In the attractive Hub-
susceptibilitf® and it appears not only in the total density of Pard model the pseudogap appears earlier in the density of
states but also in the single-particle spectral weight. Our apstates than in the spectral function that would be measured
proach fails at strong coupling or at low temperature very?Y ARPES, as summarized in Fig. 11. We also found, Fig. 8,
close to the BKT transition. that with increasing temperature, spectral weight appears to

For|U| =4, the pseudogap regime occurs over atemperaf-i" in the pseudogap instead of closing it. Finall_y, we alsq
ture scale that is several times the BKT transition temperaShowed that as the system enters the renormalized-classical

ture. The crossover to the renormalized-classical regime {E9iMe, spectral weight can rearrange over a frequency range
about a factor of 2 lower than the mean-field transition temmuch larger than the temperature scale. This is generally a

perature but it has the same filling dependence, which can bagnature that momentum is becoming a very bad guantum
quite different from that of the real transition temperature,NUmber. Hence, for a given temperature scale, the frequency

which is strongly dependent on the symmetry of the order/@nge over which the spectral weight can rearrange becomes

parameter spacd®.It is clear also that S@) [or U(1)] sym-  |arger with increasing ggg’p"”ﬁ All these features carry
metry is not essential to the appearance of a pseudogap. V€' in thed-wave casé._' Qualitative differences betvyeen
would also appear if there happens to be a hidden continuo¥€ak- and strong-coupling pseudogaps have been discussed
symmetry group*® SO(n) with n=2 describing the high- N Ref. 33.
temperature superconductors.

As stressed earlier in this paper, the attractive Hubbard
model is not directly applicable to the cuprates. Neverthe- A.-M.S.T. is indebted to Y.M. Vilk for numerous impor-
less, it helps in understanding the nature of superconductingant discussions and suggestions. We also thank D. Poulin
fluctuation-induced pseudogaps, if they happen to be preserind S. Moukouri for their maximum entropy code, H.
The pseudogap appearing for thederdopeccompounds at  Touchette for invaluable help with the QMC code, and F.
high temperature in thermodynamic and transport measure-emay for numerous discussions and for sharing the results
ments, or at high energy in tunnelfhgnd ARPES experi- of some of his calculations. The authors would like to thank
ments, is most probablynot of pure superconducting R. Gooding, F. Marsiglio, and M. Capezzali for useful dis-
origin.®>%¢ Nevertheless, close enough to the superconducteussions. A.M.S.T. would also like to thank E. Bickers, W.
ing transition, inboth the underdopedand overdopedre-  Metzner, and P. Hirschfeld for discussions. Monte Carlo
gions, there should be an effective model with attraction desimulations were performed in part on IBM-SP computers at
scribing the low-energy physics. Since even the highthe Center d’Applications du Calcul Paradlele I'Universite
temperature superconductors have a gap to Fermi energie Sherbrooke. This work was partially supported by the
ratio that is small, this effective model could be a weak-Natural Sciences and Engineering Research Council of
coupling one(but not necessarify). Time-domain transmis- CanadaNSERQ, by the Fonds pour la Formation de Cher-
sion spectroscopy experimetitsn the 100 GHz range sug- cheurs et 'Aide aa RecherchgFCAR) from the Quéec
gest that the renormalized classical regime for the BKTgovernment, the Canadian Institute for Advanced Research
transition has been observed underdopedccompounds, 10 and in part, at the Institute for Theoretical Physics, Santa
to 15 K aboveT,. Also, in the overdopedregime, recent Barbara, by the National Science Foundation under Grant
experiments on the magnetic field dependence of NN{F% No. PHY94-07194.
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