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A nonperturbative approach to the single-band attractive Hubbard model is presented in the general context
of functional-derivative approaches to many-body theories. As in previous work on the repulsive model, the
first step is based on a local-field-type ansatz, on enforcement of the Pauli principle and a nhumber of crucial
sumrules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle
self-consistency has been achieved. In the second step of the approximation, an improved expression for the
self-energy is obtained by using the results of the first step in an exact expression for the self-energy, where the
high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required
vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem
for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical conse-
guences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accom-
panying papeffollowing this one.
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[. INTRODUCTION been developed in one dimension. Recently, dynamical
mean-field theory has become the method of cHofoe

In the mid to late 1950’s, quantum-field theoretical meth-higher dimensions. This method, however, is in fact based on
ods that had been developed first in the context of quanturan expansion about infinite dimension. In two dimensions in
electrodynamics, began to have widespread applications iparticular, the momentum dependence of the self-energy can-
condensed-matter physitéOne can, roughly speaking, dis- not be neglected and this method becomes less accurate.
tinguish two types of approaches, the diagrammatic methods The purpose of this paper is to extend to the attractive
of Feynman and the functional methods of the SchwingeHubbard model a nonperturbative approach developed previ-
school®* Both points of view on many-body theory are ously for the repulsive modé? =12 This method was an ex-
equivalent. In particular, perturbation theory can be formu-tension of the LFA work of Singwét al.” for the electron gas
lated diagrammatically or with functional methods. The twoand of Hedeyati and Vignale for the Hubbard motfelt
approaches in fact complement each other. For example, went further than this work in imposing the Pauli principle, a
calculating response functions, subsets of diagrams are ofterumber of exact sum rules, of conservation laws, and pro-
summed to infinite order. But naive resummations will gen-posing a formula for the self-energy in the paramagnetic
erally break gauge invariance or other exact-symmetry propstate that includes momentum and frequency dependence.
erties unless consistency between self-energy and twodrhe approach also includes an internal check on accuracy
particle irreducible vertices is enforced following a techniquebased on an exact relationship between one- and two-particle
whose most natural formulation employs functional properties. Although the method fails in strong coupling or
derivatives*® very close to a critical point, it gives the most accurate re-

Diagrammatic methods have, nevertheless, become by faults when compared with Monte Carlo simulations in the
the most popular techniques for many-b®dyroblems in  weak-to intermediate coupling regimieThe present paper
condensed matter, but the quest for nonperturbative apmgeneralizes that approach to the attractive Hubbard model
proaches leads, in general, outside the realm of diagramsasing a formal approach that lends itself more easily to vari-
While the Hartree—Fock approximation has a diagrammatious future extensions. The accompanying pipdemon-
interpretation, what seems to be the most accurate approasirates accuracy by comparisons with Monte Carlo simula-
to the electron gas at metallic densit{éscal field approxi- tions, and discusses a problem of importance in the context
mation(LFA)’ ] does not have a simple diagrammatic inter-of high-temperatur@ and organit® superconductors,
pretation. In the case of the Hartree—Fock approximation, aamely, the opening of a pairing-fluctuation induced
variational principle guides the accuracy of the approximapseudogap.
tion. In the LFA, it is a self-consistency requirement at the The structure of this paper is as follows. In Sec. Il we
two-particle level that controls the accuracy. introduce the general many-body formalism to obtain expres-

Nonperturbative approaches have been developed, in pasions for the self-energy and irreducible vertices in the func-
ticular, for the Hubbard modé&l,perhaps the best known tional derivative approach. Although in principle standard,
model for strongly interacting electrons on a lattice. Whilethe functional derivative approach in the particle-particle
the early Green function decoupling schemes have largelghannel is not widely used. It allows us to establish a number
fallen in disfavor because of the#rd hocand uncontrolled of exact results. At this level, all the results could have been
nature, many successful nonperturbative approaches hawbtained with formal diagrammatic expansions in skeleton
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diagrams, but we refrain from doing this since the functional
approach is far more economical in this context. The exact
results that we present form the basis of the two-particle
self-consistenfTPSQ approach and its extensid@8ec. IlI). =Uy’ (L)y_(1)¢l(1). 3
These are nonperturbative approximations that are not dia-

grammatic resummations. A discussion of the various exact \ne will also need the momentum space representation
results that our approach satisfies either exactly or self 1 =(1/JN)S.ek"1c, _and the pair operators
consistently is then presented in Sec. IV. Details of the deri—w"( )= (1N =, ko P P

vation of the exact results, namely, sum rules and high- B i Foan ot +

frequency expansions, are given in Appendix A. Appendix B A= (D (1 AD=¢(Dyr(D) )

h with vari th h d .
compares our approach with various other approaches and. . transformAq=(1/\/N)Ekck,Tc_k+q,L. These

explains the connection with the formalism for the repulsive’ " . . . L .
Hubbard model. A summary of our main results is in Sec y/pair operators do not include the interaction potential in their
' " “definition. The pair operators obey the equations of motion,

5r1,r;+t(1’§) S(m—1)PL(2)

Il. EXACT RELATIONSHIPS BETWEEN GREEN &Aq -1 2 )
FUNCTION, SELF-ENERGY, AND VERTICES 9 N % ekt ekrq™ 2| T 5| Ck1Cokta s
In this section, we derive a number of exact results using (5)
the functional derivative formalism. It is on the basis of these
results, and using again the functional derivative approach, gAtT 1 U\l
that our approximation scheme will be developed in Sec. Ill. A= 2 exte i+ —2<,u— —) ka_,_ CI ,
aT \/N k| a 2 ] q,1 =7k T

(6)

) ) o where the band dispersiar is the Fourier transform of the
We' work with cregtlon-anmhllatlon operf';f[on;@é,(/xl fqr hopping matrix elements t(1,2) = (1/N)3, ek (17 "2)g, .

Wannier states of spio=T, |, located at positiom;, and, in
the Heisenberg representation, imaginary timeThe space
and imaginary time indices are abbreviated by arabic numer-
als. Furthermore, we use the Nambu representatioff1) As in Ref. 3, we work in the grand-canonical ensemble in
=(¢//}L(l),1,//i(l)), where the field operators obey the anti- the presence of auxiliary source fields that are useful in in-
commutation relations {\Ifa(l),\lf};(Z)} 8(my—7)=56(1  termediate steps of the calculations. The source fields are set
—2)3,,5. In this notation, the space part of Dirac delta func-to zero at the end. More specifically, we define the expecta-
tions are Kroenecker deltass(1—2)=¢, ,8(r1—7p). ton value of a general time-ordered opera®by

When numerals are set in boldface, we mean just the space
position[e.g.,t(1,2)] and refer to the Schdinger picture. (TLODe
Adding the convention that indices with an overbar are N P Cw T O 5
summ?ad over space positions and, when appropriate, inte- =z {({e}hTr{e A #IT [e~V (OLATEO]},
grated over imaginary time from 0 18, the Hubbard Hamil- (7)
tonian takes the form

A. Definitions, equations of motion

B. Green function and self-energy

with
A=—t(L2Ly( D2+ Y2 ¥, (D] Z({@)=Tr{e AH-1NT [~V MOLIYAN (g
+U lﬁ%r(T) Y (DYl Dy, (D) @ where T, is the time-ordering operator while the matrix
source field

with t(1,2) the hopping matrix elements.

Since we will work in the grand-canonical ensemble, it is O(1,2)= 0 0(1,2) )
convenient to takéd — uN as the time evolution operator in (1,2= 6*(1,2 0
the Heisenberg representation, withthe chemical potential _ .
andN the number operator. The corresponding equations dphysically corresponds to Cooper pair sources,
motion for the field operators then are - -
TH(1)O(1,2)¥(2)=0(1,2) (1) ] (2)
J — — * (1 2\ or (1)l 2)
(a—ﬁ—u) 8y 12 |8(r1 = 72)4,(2) HeL2n M@, 10

. The Nambu Green'’s function is then a functional of the aux-
==Uy_ (D¢ ,(1) (1), (2 liary field ® defined by
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G(1,2{0}) Using the equations of motiof2) and following the alge-
bra of Ref. 17, one finds that
=—(T[¥(D)¥'(2)])e
(T @ul@De (TLyDu2)De craz{ep=cl1a-212(6)-61d.
(TL(VYl2De (TLH[(D¥(2)])e)

where in Matsubara frequen¢¥k,=(2n+1)7T] and Fou-
(1) rier space K), the noninteracting Green function takes its

The quantities that appear at the end of the calculation willusual form with diagonal terms onlyik,,— (e,— )]~ * and

in analogy with the Green function, be defined in zero sourcgik,+ (e,— «)] %, while the effects of interactions are con-

field, namely,G(1,2)=G(1,2;,0)= —(T.[¥(1)¥'(2)]). tained in the self-energy matrix defined by

|
—(T L[y, (D (D2 e —(TLe]AH (DY (DY (2)])e
(TLY(AD DYVl (TIHAH (DD (2)e |

3(1,3{0})G(3,2;{0})=U (13

The notation T indicates that the imaginary time is infini- This is basically what we want. The self-energy will be writ-

tesimally larger tharry(or smaller for I°). ten in terms of a response function in the particle-particle
channel.
C. Self-energy and pair susceptibility To continue more generally, we step back and define the

. susceptibility matrix
The self-energy, as should be clear from the last equation, P y

depends on four-point functions that may be calculated in

different channels. For the repulsive Hubbard model, charge

and spin fluctuation channels are dominant, so approxima- X(1,2,3,4{0})=
tions for the four-point functions are written down in these

channels. However, in the nearest-neighbor attractive model ] ] )
away from half-filling, it is the pair fluctuations that are Whered/60(3,4) is a matrix operator in Nambu space
dominant, even in the paramagnetic state. As a preliminary

remark, we can suggest how the self-energy will be related to

")
- WG(LZ;{@}), (15

the pair-correlation function by making the key observation 0 o

that the diagonal terms can be written as functional deriva- B 56+ (3,4

tives with respect to thé field. First, note that when is set 560034 (16)
to zero in Eq(13), it becomes diagonal arl, simplifies to ' S

21y(1,2)= = U(T,[¢](1 )y (1) (1)9](3)1)G11(3,2). o034

The operators located in the middlé, (1)#(1), can be
obtained from a functional derivative with respectfo(1,1)  such that[ 6/ 50(3,4)]0(1,2)=5(1—-3)5(2—4)l, wherel
before this field is set to zero. Hence, taking the functionals the identity matrix in Nambu space. Note that the suscep-
derivative and setting off-diagonal terms to zero afterwardstibility X is still a matrix in Nambu space with only two
one is left with matrix indices(four matrix elements With this notation, the
two-point function that we will need to compute the self-
_ energy from Eq.13), is the following special case of Eq.
Gi1(3,2. (14  (15: X(1,2,1%,17;{@®}). Evaluating the functional differen-
0=0 tiation explicitly, we have

8G,(17,3;{0®))

1,2=-U
211(1,2 56*(1.0)

(TLe W A2 De (T Ly (L), (1) (1) 5, (2) e

X(1,2,17,17:{@}) = — o
( ten (<TT[¢T(1)¢1(1+)¢1(1+)¢}f(2)]>@ (TLo (DA (AN 9 (2)])e

—F(17,17;,{0})G(1,2;{0}), (17)
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where we defined a function F that con-
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The above equations simplify greatly when the functional

tains only the anomalous pieces of the full Green func-derivative is evaluated in the normal, zero source field case,

tion, F(17,17:{0})=—(T [4(1)¢(17)]))e and

Fou(17,15{00) = —(T.L¢[(1 ") ¢l(1) e.

where particle number conservation implies the vanishing of
anomalous correlation functions. We are left with

Using rotational invariance and our general result for the

self-energy, Eq(13), we finally find the following key rela-
tion between self-energy and susceptibility:

3(1,2{0})=UX(1,317,17;{0})G1(3,2;{0})

+UF(17,17:{®@}) 8(1—-2)L. (18

D. Bethe-Salpeter equation for the three-point susceptibility
and relationship between irreducible vertices and self-
energy

50722 oy N 80722 |y,
(22

8622 gy 780022 |-,
(23)

In this section, we derive the Bethe-Salpeter equation for
the susceptibility using the functional derivative scheéme.
This equation allows us to define the two-particle irreducibleUsing the latter results in Eq19), multiplying it by G(5,3),
vertex that plays for the susceptibility a role analogous tcand then integrating over the point 5, we find, with the help
that of the self-energy for the Green function. In deriving theof Egs.(20) and (21),
Bethe-Salpeter equation, we will recover the well-known re-
lation between self-energy and particle-particle irreducible
vertices. Since the susceptibility is the functional derivative
of G, while the self-energy is trivially related 61, it is
natural to start fromG(1,4,{®})G 1(4,5;{0})=86(1-5)I
and to take the functional derivative of this equation. One

1)

0=0

finds
4 e 17 E.
MG(lA{@}) G *(4,5{0})
__ 7R -1 c.
0'+G(1,4)( 50 (2.2 G (4,5,{@}))
—O'G(ZI.,_)(ae(2 2 G_l(Z,S;{@})), (19

where (@) ;= 16j, and (o_); j= 6, 26; 1. Using the ex-
pression for the inverse Green functipleg. (12)] and the
chain rule to take into account the dependenc& a {®}
througH® G, one obtains

-1 .
56* (2,2 GT5H8n

—8(2-5)8(2—4)o_

53(4,5{0}) 5G(6,7,{O})

- — (20
S5G(6,7,{0})  56*(2,2
3022 G 1(4,5{0})
=—-8(2-5)8(2—4) o,
B 62(4,5;{6)}) SGH(GJ;{@}) 21)

5Gr(6,7:{0})  96(2.2)

=0,.G(1,20_G(2,3+0_G(1,20,.G(2,3

P 0 )] Y R A )]
561(6,7) |4 00%(22 |4,
><G(§,3)+a,e(12)52(4’—5;_{9})
8G1A6,7) |q_,
5G1A6,7:{0))| _ —
5022 ®=OG(5,3). (24)

Since we consider the normal phase, the off-diagonal Green
functions vanish and we are left with only two equations that
come from the diagonal components of the above matrix
equation. The off-diagonal parts just tell us that two of the
irreducible vertices vanish. Finally then

8G2,(1,3{0})

= 2 2
522 G2A1,2G1(2,3

0=0

— 65,51(4,5,{0})
G 1,4 —_—
FeAIN S 6

y 5G,1(6,7;{0})
860* (2,2
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5G15(1,3{0}) lim X(k,ikp)=U(n)o,. (32
W ®=O—Gll(1,2)G22(2,3) |kn—>oc
An expression where this asymptotic behavior is explicit,
may easily be obtained from the general formula for the self-
=0 energy specialized to zero external field, namely, @®)
with ®=0. Returning to our general discussipq. (14)]
— will help understand the point we were making. In zero ex-

+ 611(12)—5212(4’5{_@})
5G1(6,7)

5G146,7;{0})

56(2,2) o0 2245,3). ternal field, we have
(26) 3(1,2=UX(13,1%,15)G 43,2
E. An exact expression for the self-energy where low- and 1) = -
high-frequency behaviors are separated == UWG(L&{@}) G (3,2
! 0=0

The high-frequency limit of the self-energy is given by
the Hartree-Fock result, as can be shown from sum rules. For (33
latter purposes in our approximative scheme, it is useful t%r, looking only at the nonvanishing elements,
have at hand an exact expression for the self-energy, where
the high-frequency behavior appears explicitly. In this sec- L=
tion, we derive such an expression in the case where the _ 0G4 (17,3;{0})

. X . 211(1,2)=—-U—""——"—"—
auxiliary field ® vanishes. 56*(1,1)
First, let us recall the sum rules that fix the high-

frequency behavior of the self-energy. In the absence of ex-

G132, (34
0=0

i 5G14(1,3,{O _
ternal field S 12— U 5102((1+ 1{+)}) G132. (39
Gk, k) fdw Atke) o
kg = =—-
" 27 ikp—w Substituting the Bethe-Salpeter equatid@s) and (26) in

where the single-particle spectral weigh(k,») for the the last two expressions, we have the equivalent expressions

Nambu Green function is given by S (1.2 = —~UGu(1* 1)8(1—2)
1\44e— 22 ’ -

[ {ekq(t),cl b 0 20
A(k,w)zf dt e""t( ! 0 ol deh ey —UG,y(17,4) 5221(4,i{i9})
k(05 Cx g @ 8G(6,7) |-,
The high-frequency expansion of the Green function is then « 8G1(6,7;{0}) 36
56* (1,1 ’
G(kiik,) 1fde(k o fdw A(K, @)+ HE o
k=71 s=AKkw)+ —— | s—wAkw)+---,
iknJ 27 (iky)?) 2m 301,20 = —UGy(1,17)8(17—2)
(28) _
where the frequency moments #éf(k,w) are easily com- —UG11(1Z)6212(4—,2—;{—®})
puted from equal-time commutators 0G126,7)  |g_
do 5G1A6,7:{®
| Seatke-, (29 (LB THOP] @7
2m 36(17,1%) |4,
do (ny) 0 One may easily check that the terms proportionalsta
j 27 @Ak e)=(e = m)ozt Ul —(ny)’ —2) in these two exact expressions are precisely the
(30)  Hartree-Fock contribution, E¢32).
) ) The skeleton diagram representation of the Bethe-Salpeter
Comparing with equation(25) and of the self-energyEqg. (36)] appear in Fig.
1 of the accompanying pap¥rThis skeleton diagram repre-
. 1 1 . sentation is not necessary to understand the rest of the paper
G(kiikn) = ml + (ik )2[(8k_“)‘72+2(k"kn)]+ o but may be useful for physical understanding. The nonper-
" (31) turbative approach developed in the following section does
not directly correspond to the summation of an infinite subset
it is clear, using spin-rotational invariance, that of diagrams.
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Ill. A SYSTEMATIC NONPERTURBATIVE APPROACH simple form that, because of the anticommutation relations,
depends on whether21" or 2— 1. More specifically, we

A brief reminder of how Hartree-Fock theory is derived in
have the exact results

the functional derivative approach will motivate the two-
particle self-consistent approach. At this first level of ap- o
proximation(TPSQ, one hasz™™), 3 in the presence ®  3(1,3;{0})G(3,1";{0O})
and the corresponding irreducible vertices and susceptibili-

ties are obtained from the functional derivative approach. :U(<nT(1)nl(1)>® G1A1,1{0}) ) a1)
The only unknown quantity, double occupangyn,), may 0 (N (D[N (1)—1])e/’

be obtained self-consistently by using what we will call the

local-pair sum rule. The local-pair sum rule is a simple con- _

sequence of the fIuctuation-dissipatgz)theorem. An im=(1,3{0}HG(3,17;{0})

proved approximation for the self-energy,”’, will be found _

in Sec. 1l D. We conclude with a discussion of an internal ~ — ((nl(l)[m(l) e 0 ) (42)
accuracy check that, as in the repulsive case, helps delineate —Gx(1,5{0})  (ni(D)n;(1))e

the domain of validity of the approach.
In zero field, the difference of these two exact results is

A. A perspective: Conserving approximations
and Hartree-Fock theory 2(1,3)G(3,1+)—2(1,3)6(3,1_)=0'ZU<I']1>. (43)

In conserving approximations, the self-energy is obtained
from a functional derivative of the Luttinger-Ward Given what we have said in Sec. Il E about the exact high-
functional® that is computed from skeleton diagrams. Irre- frequency behavior of the self-energy, the reader will not be
ducible vertices for response functions are then obtainedurprised to learn that the Hartree-Fock approximation does
from appropriate functional derivatives. The Hartree-Focksatisfy the relatiorfEq. (43)]. Indeed, this exact relation is
approach is a special case of conserving approximation. Thgensitive only to the high-frequency limit of the self-energy,
more standard way to derive the Hartree-Fock approach is tas may be proven by writing down explicitly the 1,1 compo-
treat the general equation for the self-energy @8) in the  nent of Eq.(43) in Fourier-Matsubara space as follows:
presence of the auxiliary field as if Wick’s theorem applied to
the right-hand side of that equation. More specifically, Eq. ( 3 (k,ik,) U(nQ)

n

13) becomes, in the Hartree—Fock approximation — - - - —
(13 PP N % & K= (o) —S(Kiky) ik,

SHF(1,3,{@})GHF(3,2;{0}) (e~ Tkn0 — g=iks0")

U —GH (1%,1{6}) G (1,1{e}) T UMD o ot
- GHF(1140)  —GUF(L1"(e)) +N; ; . (e k0" —e7kn0") [ =U(n ). (44)
X G"F(1,240)). (38

In this expression, the first sum vanishes because we have
Multiplying from the left by G"F) ! gives3"F. The cor-  added and subtracted a term that makes it convergent without
responding irreducible vertices for the Bethe-Salpeter equane need for convergence factazs*n®” . Hence, only the
tion governing the pair fluctuations, E@4), are last sum survives. The result is a direct manifestation of the
anticommutation relations in the asymptotic behavior of the
B 52§1F(1,2?{®})‘ Green function.

a 56?1':(3,4;{(5)})‘@:0

534 (1,240})
6Gr(3,4{0})

0=0
B. Two-particle self-consistency and irreducible vertex
We will call the two exact result$Egs. (41) and (42)]
(39  T[3G] for a short cut. They are simply related to the po-
which leads to the simpledtmatrix type approximation. In tential energy(and hence to double occupancy crucial
the final calculations, we only need the self-energy in zerdluantity for the Hubbard Hamiltonian. Furthermore, they can

=Ud(1-2)6(1-3)86(1—4),

field. There it is purely diagonal and given by be considered as initial conditions for the true expression that
defirEs the _self—energy in the most general case,
3HR(1,2=0,U(n))8(1-2). (400  2(1,3{0})G(3,2;{0}), where point 2 has moved away

from point one. Hence, in the first step of the approximation
Returning momentarily to the original equation that wasthat we propose, we perform, as in conserving approxima-
approximated, Eq(13), it is important to realize that the tions, a Hartree-Fock-like factorization in an external field,
Hartree-Fock approximation satisfies an exact result. Firsbut we add the constraint that the factorization becomes ex-
note that the four-point function becomes simple when poinact when 2-1% or 2—1~. More specifically, in analogy
2 becomes the same as 1. In that case, this quantity takesaath the factorizatior{ Eq. (38)], we start from theansatz
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>(1(1,3:{0)HG1(3,2{0}) The irreducible vertexd ,, is still local, as in the Hartree-
" w Fock approximation, but, contrary to Hartree-Fock, the bare
-Gt e  G6H,1{e)) vertex is dressed. The function that dresses the vertex is sim-
= (1) ) ~(L)q a4 ply related to double occupancy. It can be determined from
Gor(1,11{0}) Gir(1,1:{0}) the Bethe-Salpeter equation itself by using the fluctuation-
XA({OHGH(1,2{0}), (45) dissipation theorem, allowing us to close the system of equa-
tions.

where the matrixA({®}) is obtained by requiring that the
exact relationgEqgs. (41) and (42)] be satisfied® Setting

alternatively 2-1" or 2—1~ in the last expression, and
requiring equality with the respective exacf{ IIG] expres- o S
sion, we find, using spin-rotational invariance, that in eitner 1he self-energy enterinG*) in zero external field is di-

case there is a unique solution for the off-diagonal element@gonal. There is however an apparent paradox. Indeed, sub-
stituting the TPSC factorizatiofEq. (45)] on the left-hand

C. An approximate expression for2® in the two-particle
self-consistent approach

>(1,240}) side of the two Tr2G] equationg Egs. (41) and (42)], all

12(4e ; ) : :
for @=0, seems to give two different solutions for the diag-

(N1 (1-n)))eGH(1,1{0}) 8(1-2) onal value ofA({®}), and hence for the correspondiBg®.

= Let us uses(® with a + or — index depending on whether
<nT>@<1_ni)ﬁ’_G(112)(1'1;{6)})6(211)(1’1;{@}) they are the solution of Eq$41) or (4p2). In gither case,
(46) 2((11))(1—2) is proportional(l)to 8(1-2), so that using
+y — -\ —
with the analogous expression when the Nambu matrix indi-crilelz(nléi) )Oué”géézi) ag:ffli;%(sl’l ) 1+(n;(1)) and
ces 1 and 2 are inverted. It should be clear from this resuﬁ 9 22
that the functional dependence A{{®}) on the external (1) _ 5 —(1— _ _
field is only throughG™)(1,1%:{@®}) ;nd} double occupancy 215 (1,2= =25 (1,2 = (U=Upg(1=n,)) 81 2)(’48)
(nn;)e. Nevertheless, this establishes a strong self-
consistency relation between one- and two-particle quantities 1 . 1 .
that is abgent from any standard diagran?matic gpproach. 2 (12= -2 (12=Up(n)o(1-2). (49
That is why we called this portion of the approach two- From these results, keeping the filling fixed, we have
particle self-consistenfTPSQ. It is important also to note
that. thg StZJperscrlpt (1) refers to what, in egrller 28}’(1,3)69)(3,?)—2(_1)(1,3)6(_1)(3,1‘)=ozU<nT(1)>.
publicationst? we called the zeroth step of the approxima- (50)
tion. As we will see in a moment, at this level of approxima-
tion the diagonal part o&® is a constant whe®=0.  This suggests that the antisymmetric combinatizff’
Hence, in this limit,G!) is equal to a bare propagator once —E(f) is related to the high-frequency asymptotic behavior
the chemical potential is adjusted to obtain the proper filling.of the self-energy, as in the Hartree—Fock case. The symmet-
That is why we had referred to this level of approximationric combination on the other hand should not depend on
with superscript (0) in earlier publications. It is important to convergence factors, as can be seen by using arguments
notice however that(® (or (¥ in the former notationmay  analogous to those of E¢44). This quantity should then be
have a dependence on external magnetic field, for example, measure of the low-frequency behavior of the self-energy.
that is absent in the noninteracting case. With n=(n)+(n;), the quantity
The particle-particle irreducible vertices appearing in the
Bethe-Salpeter equation®6) and (25) are obtained from 1 (1—n)
functionalpdifferenciiation of the self-enerd¥q. (46)] as in 5(2&1)(1,2)+2(1)(1,2))=02(5— ppT 6(1-2)
any conserving approximation. Since wh@®n=0 all off di- (51)
agonal functions such a&{3(1,1)G5)(1,1) or &n (1 _ . )
—nT)>®/5G<112>(1,1;{®}) and the like vanish, we are left W€ expect, plays the role of a chemical potential shift

with — Ko, With respect to the noninteracting valyg. We use
the notationu* with a superscript (1) to note thgé;is is the
1 ) 1 ) chemical potential corresponding to the self-en . We
52(12)(1’2'{6)}) — 52(21)(1’2'{(9})‘ will give additional supporting evidence for this conjecture
5GY(3,44{0}) 00 56211)(3,4;{@})‘@:0 in Sec. IV that discusses exact results satisfied by our ap-
proach and in Appendix A . In actual calculations the chemi-
_An(1-ny)) cal potential used in the Green function occurring at this step
- (n;){(1-ny) of the calculation is determined from the condition

X 8(1—2)8(1—3)8(1—4) GL(1 1) =(ny(1)) with
=U,,0(1-2)5(1-3)8(1—4). GOk ik.) = 1
(47) ) R 3@k ik

(52)
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>U(k,ik,,) in the combinationu® —3{}(k,ik,) is a con-  for the particle-particle susceptipility t_hat is irreducible with
stant so thatu(l)—E(lll)(k,ikn) equals the noninteracting fespect toJ,,, the above equation will take the form
chemical potentialg.

It is important to keep in mind the following. The ap- W
proximate analytical expressidiq. (51)] for () and the Xp (@)=
corresponding chemical potentjal!) are useful for analyti-
cal arguments and numerical estimatesdowever, more .
fundamentally, the chemical potential is a thermodynamic To c_Iose the set of equations, we need to solve for the
guantity that can be computed in a consistent way, alonéfredUCIbIe vertex
with all other thermodynamic quantities. In diagrammatic
methods, the Luttinger—Ward functional provides a system- Y (n(1-ny)) (59
atic method to obtain such thermodynamically consistent PP (n ) (1—ny)°
results'® Since our approach is nonperturbative, another ap-
proach must be used. At this poipt*) is a first estimate for That may be done by using either of the two exact limits 2
the true chemical potential. A better estimateui®), corre- —1" and 2-1~ of Egs.(53) and (55):
sponding toX(?), the next level of approximation for the
self-energy. xS(1,15)=(nny), (60)

xP(q)

_— (58
1+U,ppxM(a)

D. Two-particle self-consistent plus improved approximation xél)(l,l‘)= 1-n+({nn,). (61)
for the self-energy
Let us summarize what we have up to now. In this Tpscrhe Ieft—han_d side of the latter two equations,_ that one could
approach for the attractive Hubbard model, there is only on&2!l local-pair sum rules, can be transformed into the follow-
particle-particle irreducible verteW,, [Eq. (47)]. In addi- ing two.sg.m rules when our approximation is used for the
tion, the two pair susceptibilities that we need, namely, ~ Susceptibility

8G(2,2{0}) . T CLCI .
—— | =~ (Tl e2)4]2)]), XL =(nn)= 5 > — T —r——e 0,
50*(1,1) 00 1 T ! T p I N q 1+Upr|(|El)(q) (62)
(53
5G15(2,2;{0}) (1)
- =R @u@D Oa1 1ot nnye = S XD gt
s0(1Y) g, Xp 5 N (1) '
(54) a 1+Uprir (a)
(63)
are quite easily related by the operation-2, and anticom- o ) )
mutation i, (2)(2)= — ,(2)4:(2). So wedefine We will discuss in Sec. IV why, in our approach, both sum
! ! ! ! rules are consistent and so give exactly the same result for
5G,1(2,2{0}) 8G1(1,1{0}) U,p. Monte Carlo simulation confirm that the pair sus-
Xp(1,2=— I — =— W . ceptibilities, calculated with Eq€59), (62), (57), and (52)
66* (1,1 = ' 0=0 are excellent approximations from weak to intermediate cou-
(55  pling.

The equality of these two functions is a reflection of the fact AS We saw above, at this stage the se_lf-en@éﬁ) enter-
that for on-site pairing, the Pauli principle makes the tripletNd the calculation is a constant determined in such a way
channel vanish. Hence, substituting the particle-particle irreth@t we have the proper filling. At high frequency, the exact

ducible verteEq. (47)] in one of the Bethe—Salpeter equa- limit of the self-energy is the Hartree-Fock result and the
tions [Eq. (26)], and expressing the result in terms of the corresponding irreducible vertex is the bare interaction. In
’ D(1,2) our section on exact results, we have found an expression for

ordinary Matsubara Green functiord{"(1,2)=G{ )
andG{Y(1,2)= —G$Y(2,1), we find theTpair susceptibility at Ihe self-e?er?y, Eq{(hS?)_ant(;I] (3?.’ :]h?t is the Sl|J_|m ?f twlg «
the first level of approximatiory{}(1,2): erms, a first one mhat 1S the high-irequency Hartree-roc
p behavior, and a second one that only involves the low-
(1) _~(1) (1) frequency behavior of Green functions, of irreducible verti-
Xp (1,2 =Gi(1,26G17(1.2) ces and of susceptibilities. As we have seen above, our ap-
.y G(l)(lz))((l)(Z,Z)G(l)(lyi). (56) proximate expressions for_thes_e guantities are consis_tent a_\nd
PP=1 P l are low-frequency approximations. Hence, we substitute in
In Fourier space and with the definitiong=(q,iq,), gn Egs.(36) and(37) the resulf{Eq. (56)] for the susceptibility

=2n7T, k=(k,ik,), k,=(2n+1)=#T, and — 8G5(2,2{0})/86* (1,1)] 9=0=x'"(1,2), and the corre-
- sponding results[Eq. (47)] for the irreducible vertex
(1) . (1) . .
W= — > Okt a1 —k 5 8357(1,24{0O})/ 6G57(3,4{0O})|¢= and Green function
A= 2 6P acii-k 57 G5! One is left with
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2%2)(1,2)=UGil)(1,1+)5(1—2) most a_few percent discrepancy between both calcullations,
. . except in the pseudogap regime. Note that the chemical po-
—UU,,GM2,xV(1,2). (64)  tential »(®) enteringG{?) must be obtained from the number

Appendix B 1 discusses the relation to the corresponding forconservation equation. We refer to Ref. 23 for a discussion of

mula in the repulsive case. Note that all the terms on th&uttinger's theorem in this context.

right-hand side of this equation, including the irredUCiblecor!n'atz)rqcapflca)rroglllngitrlOerllaI%rntpencrpgr?y-'b()dgacprr](')glzrk?léfLIJ:l:)r
vertexU,,, are at the same level of approximation. In par- SIS y refation functions I1s u Iev ’

ticular, the irreducible vertel ,, that appears explicitly, is example, In conserving approxmaﬂéﬁs one starts from
the functional derivative of the field-depend&ift) that en- dlagram§ for the Luttinger-Ward functional and for' the cor-
ters G and y. This is crucial for the quality of the responding free energy. Then a self-energy and irreducible
approximatiorilxz'zz .This type of consistency is absent in vertices are obtained from functional differentiation. These

; uantities may then be used in the Bethe-Salpeter equation to
many modern self-consistent treatments whose self-ener N y P d

. . . i Bbtain the pair susceptibility. From that pair susceptibility,
cont_am% ren.ormallzed Greens funct|ons. but with only bareone can compute double occupancy through the exact result
vertices? Going to Fourier space and using the full expres-

) - [Eg.(60)]. The latter double occupancy is in general different
sion for the susceptibilityEq. (58)], we have from the one obtained fro(1,2)G(2,1") since it does not
Y(q) contain the same set of diagrams. So if the double occupancy
2 ¥ obtained from the susceptibiliffEq. (60)] is integrated over
1+ Uppx{(q) a coupling constant to obtain the free energy, the result will,

65 in general, be different from the original free energy. Con-

Spin-rotational invariance gives us the result for down spinsS€'Ving approximations are not self-consistent at the two-
Note that one of the vertices is bare while the other igParticle level. Other criticisms of these approaches appear in

dressed, contrary to the case where there is a Migdal thed?€fs- 12 and 22.

T
2P(k=Un-Uy % UppG(—k+0)

rem.
The superscript (2) on the last expression for the self- IV. EXACT RESULTS SATISFIED BY OUR
energy, indicates that it is the next level of approximation. To NONPERTURBATIVE APPROACH
improve the susceptibility calculation we would need the ir- _ ) _ _ _
reducible vertices correspondingiézz)(1,2;{@)}), which we We briefly discuss exact relations and consistency require-

do not have. Hence the calculation stops at this level. Physfhents that are satisfied by our approach. Details of some of
cally, the collective modes are less sensitive to details of thée proofs may be found in Appendix A.

quasiparticles, so they can be computed first with simple

Green functions. The Self-energy on the other hand is sensi- A. Sum rules on single-particle spectral weight

tive to the collective mode&hey have zero-frequency Mat-
subara contributions contrary to fermionic quantitiesd
hence we have to take these modes into account when
want a better approximation for the self-energy.

Consider first the single-particle properties. These should
calculated withG®® that contains the self-enerdyq.
(65] and the corresponding chemical potential. One can ex-
tract the moments of the corresponding spectral weight

A@(k,w) from the high-frequency expansion 6f2)(k,ik,)

in analogy with Eq(29). In the self-energy®. ®)(k,ik,), Eq.
Either by returning to the derivatiodEq. (34)] of (65), the Hartree—Fock contribution appears explicitly so

2%2)(1,2), which involves a four-point function E¢G3) re-  that the exact high-frequency limfEq. (32)] is satisfied.

lated to the pair susceptibilityEgs. (56) and (55)] and This means that the normalization and first moment of

double-occupanclEg. ( 60)], or by starting from the Fourier A®)(k,w) satisfy the exact resulf&q. (29) and (30)].

space expressiditq. (65)] and using the local-pair sum rule

[Eq. (62)] for x{" and the corresponding sum rule fgf",

one finds that E@64) satisfies

E. Internal accuracy check

B. Sum rules on pair spectral weight

Concerning two-particle properties, more specifically the

_ _ T . pairing susceptibility, there are a number of exact results that
2%2)(1,2)(3%1)(2,1”: N Ek 2%2)(k)G%1)(k)e tkn0 our approach satisfies. First there are the two local-pair sum
rules [Egs. (62) and (63)] that are a consequence of the
=U(n;n;). (66) fluctuation-dissipation theorem. The value Wf,, obtained

) ) o from either one of them is the same. This is demonstrated in
U(n;n;) entering this equation is exactly the same as thajppendix A.

computed from the local-pair sum rule E§2). This result is The other exact properties we shall consider concern the
argfl)logous to that found m_the repulglve. model. Note thabair spectral weight. Using the definition of the pair field
G} enters thg ab_ove equation. An |_nd|cat|on of the accurac\ [Eq. (4)] and of the pair susceptibilityEgs. (55), (53),

of our approximations may be obtained by checking by howgng (54)] the latter may be written asye.(1,2)
much {?(1,2)G{?(2,1%) differs from U(n n;) obtained =(T,A(1)AT(2)). The subscripexstresses that we are, for
from the local-pair sum rule. We have checked that there is atow, considering properties of the exact pair susceptibility.
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The Lehmann representation, and the periodicity in imagifor the chemical potential appearing on the right-hand side.

nary time, allow one to show that This is consistent with the fact that the quantities entering the
right-hand side of this equation must pertain to the single-

. do xel(d,o) particle Green functions used in the calculationxg(q,w)
XexGiGn)= | — To—igq, (67)  on the left-hand side. Since the chemical potential entering

G® should beu™®= uy+ =™ to obtain the correct filling,

where the time Fourier transform of the pair spectral weightise of the approximatiofEq. (51)] for %) leads to tlhe
Xe(0,0) is defined byxs,(q,t)=3([A4(t),A{(0)]). From  aboveresullEq. (70)]. Recall however that E451) for 2
the latter definition and the equations of mot|&gs.(5) and 1S not rigorous. Nevertheless, away from the renormalized

(6)] one can show that the quantigf,(q,») obeys the fol- classical regime, where the self-energy is weakly frequency
lowing sum rule: dependent, the chemical potential obtained from this formula

differs little from the one obtained at the second level of
do approximations () or from Monte Carlo simulations in the
f —ng(q,w)=<[Aq(0),Ag(0)]>=1—n, (69) weak to intermediate coupling regimi&éThe resul{Eq. (69)]
m can also be considered as a type of consistency condition
between one- and two-particle quantities analogous to

wheren is th_e filling tha_t is obtained from the single-particle the relation between TEG) and U(n,n,) discussed in
Green functions entering the calculation gf(q,w). We Sec. Il E.

show in Appendix A that our approximate expression for the
susceptibility Eq(58) satisfies this manifestation of the Pauli

principle exactly, for all wave vectoig. That is why we can C. Miscellaneous

use either of the two local-pair sum-rul¢ggs. (62) and The Mermin-Wagner theorem is satisfied by our ap-
(63)] to find self-consistently the value ¢h;n,). proach. That theorem states that classical fluctuation effects
Proceeding to the first moment of the pair spectral weightprohibit continuous symmetry breaking in two dimensions.
it is shown in Appendix A, that The proof follows the steps of Appendix A.3 Ref. 12. The
Kosterlitz-Thouless-Berezinskfi transition, on the other

dow 1 U hand, involves algebraic order and large-scale vortex struc-
f —wxXeldw)=5 E sk+s_k+q—2(,u— —” tures that are absent from the present approach. This transi-
T N % 2 o . . - .
tion is thus inaccessible to us. Far from the critical point, on

X (1= {Mp) = {N_tqp) the other hand, one can show, following the steps of Ref. 25

a in analogy with the repulsive case, that there is Kanamori-
Brueckner (quantum-fluctuation type screening ofU,,
which is given by the approximate formula

1
:[N Ek: (8k+8,k+q)(l_2<nkT>)

U U T 1
—Z(M—i)(l—n). (69) Unp=T_2U" A:ng [P ()12
(71)
Like the previous sum rule, this result is valid fall wave ) o . )
vectorsg. It is a generalization of thésum-rule to the case  Finally, it is important to notice that all calculations are
of the attractive Hubbard model, a sort of off-diagohsiim- done at constant denS|ty. In partl_cular, the Green function
rule. It is a generalized Ward identity that relates two-particleG' . entering the calculation & ®) in Eq. (65) is evaluated
quantities on the left-hand side with quantities obtained fronftt the same density as the final reggff). This is motivated
the one-particle Green function on the right-hand side. APY the existence of Luttmger’s_theorem, which states that the
half-filling, x—(U/2)=0, where there is an exact canonical Volume enclosed by the Fermi surfaceTat0 depends only
transformation from the attractive to the repulsive Hubbard®" density, not on interaction. It would be unphysical to it-
model, the above result reduces precisely toftsem-rule  erate from=®) to 3() starting from aG™*) whose Fermi
for the repulsive case. Again, the above expresgim (69)] surface associated smgulan'ues are at locations in the Bril-
relates a two-particle quantity, on the left-hand side, to douin zone that never intersect 'ghose@ﬁ‘z). The constant-
single-particle property, on the right-hand side. Neither thedensity constraint ensures maximum overlap. This point of
pair susceptibility nor the single-particle Green function areView is motivated by Luttinger’s approach. It is discussed
known exactly in our approach. Nevertheless, as shown jfurther in Ref. 26. L.utt|n_ger’.s theorem should be satisfied to
Appendix A, when our approximatio;@él) for the pair sus- & Very good approximation in our approach, as for the repul-
ceptibility is substituted on the left-hand side of E89), and ~ Sive modek.
our expression for the corresponding single-particle Green
function G is substituted on the right-hand side, the equa- V. CONCLUSION

tion is satisfied exactly as long as one uses In this paper we have presented a generalization of the

approach developed in Ref. 12 to the attractive Hubbard
ey o+ B_ h’(l—n) (70) model. We first established a number of exact results that
K Ko™ 2 form the basis of the approximation method that we intro-
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duced in Sec. lll. The first level of approximatidiwo-  wavelength limit and treat thE O(2) symmetry exactly.
particle self-consistehis based on a Hartree-Fock like fac-  In summary then, in its simplest form, our generalization
torization ansatzfor the self-energy in the presence of anof Ref. 12 to the attractive Hubbard model is expressed by
external off-diagonal field, Eq45). Thatansatzdiffers from  the three simple equations, E¢S9), (62), and(65) plus the

the standard Hartree-Fock factorizatipBq. (38)] by the  constant density constraint that determines the chemical po-
presence of a constant matAX®) that forces the factoriza- tential appropriate to the level of approximation. Extensions
tion ansatzto reduce to the unfactorized four-point function Of this approach have also been propo¥eQuestions re-

in the special case where the later involves density-densitiitéd to thermodynamic consistency and calculation of other
correlations(double occupandy Thatansatzleads to the ir-  [€SPonse funct|(_)ns will be presented in a later pubhca_\tlon. In
reducible vertex for pair fluctuations simply through func- th_e accompanying papefour approach is pompgred in de-
tional differentiation. The resulting irreducible vertex, given tail with results of quantum Monte Carlo simulations. In ad-

. ition to achieving quantitative agreement with simulations,
by Eqg. (59), depends on double occupancy, a quantity that, . . :
myay qtéer? bep determined self-cor?sistgntlyq usingy theh's approach predicts the appearance of a pseudogap in the

fluctuation-dissipation theorem derived sum rJEss. (62) single-particle spectral weight when the pair fluctuations en-

4(63)1. Eith fh local-nai | s ter the renormalized classical regime. This is qualitatively
and(63)]. Either one of these local-pair sum rules suffices Oyt rent from the results obtained from the self-consistent

close the system of equations since they are equivalent. That,atrix approximation, or FLEX-type approaches. The role

exact equivalence is satisfied in our approach because thg ihe |ow space dimension, the pair-correlation length, and
normalization sum rule for the pair spectral weight, &8),  single-particle thermal de Broglie wave length, and more
IS Obeyed. This sum rule is a manifestation of the Pauli pr|n'genera”y the mechanism for the Opening of this pseudogap’
ciple. have been discussed in detail in Ref. 12.

The self-energy®(®) entering the single-particle Green
function at that first level of approximation is constant. The
value of this constant is irrelevant for the calculation of the ACKNOWLEDGMENTS
pair susceptibility, since we work at constant filling, which o i ]
means3(®) can be absorbed in the chemical potential. Nev- A--M.S.T is indebted to Y. M. Vilk for numerous invalu-
ertheless, we have argued that E§1) should be a good able d|s_cu55|ons. We are also indebted tq Bumsoo Kyung for
approximation for the value of the constant self-energy af:alculatlpns that allowed the resglts of this work to be com-
that first level of approximation, since it follows from a con- Pared with Monte Carlo calculations, as well as for correc-
sistency requirement between thesatz[Eq. (45)] and the tlon§ and critical reading of the manyscnpt. This wolrk was
two possible values of TEG). In addition, Eq/(51) for 3 partially supportgd by the Natural Sciences and Engineering
formally allows the first-momeritf (dw/ ) wx}5(q,®)] sum Research Council of Cana@dSERQ, by the Fonds pour la
rule on the pair spectral weight to be satisfidgpendix A. Formation d,e Chercheurs et I'Aidela Recherche_(FCAR)_
That sum rule is the off-diagonal generalization of frsaim from the Quéec government and by the Canadian Institute

rule familiar from the particle-hole channel. for Advanced Research.
The rough approximation that the self-energy is a con-
stant, suffices to obtain a good approximation for the low-
frequency pair susceptibility, since collective modes do not APPENDIX A: SUM RULES AND HIGH-FREQUENCY
generally depend strongly on details of the damping of the EXPANSION FOR THE PAIR SUSCEPTIBILITY

underlying fermions. Details of single-particle damping do, | this Appendix we give more details on the derivation of
however, depend strongly on the collective modes. It is poshe results presented in Sec. IV. Let us begin with the high-
sible then to improve our approximation for the self-energysrequency expansion of the pair susceptibility(q,iq,,) for

by using our results for the pair fluctuations in an exact for—any approximation that has a spectral representation such as

mula[Eq. (36)] for X, where the high-frequency limit appears Eq. (67). From that spectral representation, one obtains
explicitely. That gives us a bettécooperon-typg approxi-

mation for the self-energjEq. (65)]. Clearly, that approxi-

mation does not assume that Migdal's theorem is satisfied dow 1

since one of the vertices is dressed. When Migdal’s theorem Xp(Q,ign) =~ —f —Xg(q,w)(i—)

applies, both vertices are bare. As in previous wdrkpe m An

can use the difference betwed{?(1,2)G{*(2,1*) and do 2

U(nn,) as a check on the level of accuracy of h ~ | mexp@e)g) teoe (AD
n; y of approach, as - iqn

discussed in Sec. Il E. Formal comparisons with other ap-

proaches are presented in Appendix B. Note that our ap-

proach is in theSO(N— o) universality class, by arguments Let us now consider the exact susceptibifty(d,iq,). The

similar to those that apply to the repulsive motfeHence, ~moments ofy,,(d,w) that appear as coefficients of the ex-

the Mermin-Wagner theorem is satisfied as it should, bupansion in powers ofi¢,) ~* may be obtained as follows.

algebraic long-range order of the Kosterlitz-Thouless type isThe first one follows for all values af from the equal-time

beyond the accuracy of any microscopic theory that does natommutator in  Eqg. (68). The next coefficient,

use renormalization-group arguments to reach the longf(dw/m)wyxe,(q,®), follows from
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APPENDIX B: COMPARISON WITH OTHER

do d t
f;wxex(q,wF— 5-84(7),44(0) : APPROACHES

° (A2) We first comment on the connection to the formalism for
the repulsive model. This leads us then to a discussion of the
yvidely used self-consistent-matrix approximation and of
another “mixed” approach that has been extensively applied
recently?®

The latter equal-time commutator may be computed afte
(9laT)Ay(7) is rewritten, with the help of the equation of
motion, Eq.(5), leading to the resultq. (69)].

Since our approximate expressiffaq. (58)] for the pair 1 \apping to the repulsive model and comparisons with self-
susceptibility admits a spectral representation, its moments consistentT-matrix approximation
may be obtained from the high-frequency expansion in pow-
ers of (q,) "%, by analogy with the method in Ref. 12. From
our approximate formuldEq. (58)] x{"(q) " *=x{"(q) *
+U,, and the largéq, expansion ofy{*’(q) one finds that

At half-filling, the Lieb-Mattis canonical transformation
Ci1—Ci1, civl—>e'Q'ric;r‘l with Q=(, ), maps the repul-
sive into the attractive Hubbard model. The same canonical
transformation maps spi densityp, and pairing operators
into each other as follows: S(Q+q)— p(Q+q),

lim igax(a,ign) = lim igx{P(a,ign)=—(1-n), S*(Q+q)——A"(q), and S (Q+q)——A(q). For a

iqn— iqn—o° chemical potential different frond/2 (half-filling), the re-

(A3) pulsive model maps into the attractive model at half-filling
but in a finite Zeeman coupled magnetic field. The approach
in agreement with the exact res(iEq. (68)]. Note that the Presented here for the attractive model would, at half-filling,
large iq,, limit of Xi(rl)(q7iqn) must be taken after the sum tr'anslate mécg the transverse-channel calculation for the repul-
over fermionic frequencies in EG57). fongitucinal channel caleuiatiobut using a formal ap-

The first momentoff-diagonalf sum-rulg is given by proach that inspired the present pgpdihe analog calcula-

tion for the attractive Hubbard model would have lead us to
dw (1) two irreducible vertices. One vertex would have been for the
N j o ©Xp (Q,@) charge fluctuations. These are related to pair fluctuations by
the SO(3) symmetry of the model a=1, which implies

= lim [(i90) xS (aign) +iga(1—)] that the corresponding irreducible vertex there is dlsg.
1Gn—2 The other vertex would have been for the nonsingular spin-
= lim [(ig)%Y(q,i 1-U, v®(q,i fluctuation channel. The two vertices would have appeared in
iqnﬁx[( Gn)"Xir (G 16n) ppXir " (GiCln)) a self-energy formula that would replace E64). However,
_ atn=1, the best self-energy formula for the attractive Hub-
+igy(1=n)]. (A4)  bard model would be obtained from the canonical transfor-

mation of that presented in Ref. 22 which preserves crossing
Substituting the exact results for the high-frequency expansymmetry. For problems sufficiently far away from half-
sion of x(M(q,iq,,), one obtains filling (Ty<<u) however, the pair fluctuations suffice.
In the repulsive model case, we have presented general
analytical argument$ as well as detailed comparisons be-
_ tween Monte Carlo simulatior$;?? our approach, and self-
> (st kg (1—2(Ng)) ! .
K consistent Eliashberg-type approachdsuch as the
) fluctuation-exchange approximatjonMost of our general
—2po(1=n)+Upp(1-n)% (AS)  criticism concerning self-consistent approaches in the repul-
sive case apply to self-consistefmatrix plus fluctuation
In this expressiongny,) is computed fronG™), hence is a exchange approaches in the attractive case.
Fermi function, anduo=u"+3® enters the Green func-  More specifically, one of the key qualitative differences
tion G from which () is computed. Since the self-energy between our approach and self-consistent approaches is that
> enteringG™ is a constantu, coincides with the non- the latter do not predict the existence of a fluctuation-induced
interacting chemical potential appropriate for the filling we pseudogap in the single-particle spectral weight in two di-
are considering. Comparing with the exact re§gk. (69)] mensions. We have demonstrated at length, through compari-
we see that the chemical potential at that level of approxisons with Monte Carlo simulatioffs®* and with physical
mation should be given bw(l):MO+[U_Upp(1_n)]/21 arguments? that this is incorrect in both the repulsive and
which coincides with our proposed approximat|@y. (51)].  the attractive cases.
Numerically, we have checked that this approximate chemi- ©
cal potential is quite close to the chemical potenidf) 2. The GG™ approach
obtained with> (?), and that the latter in turn is close to those  An alternate approach based on computing the irreducible
obtained from Monte Carlo simulatiod$as long as we are susceptibility with one bare and one dressed Green function
far from the renormalized classical regime, wh&%®) ac-  has been extensively used lat&lWore specifically, in this
quires a strong frequency dependence. approach

dw 1
(1) N
T pr (qvw)_ N
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NONPERTURBATIVE APPROACH TO THE ATTRACTI¥E . . .

Xp

= =, Bl
Xp 1+ Uk, (BY)
where
~ T 0
Xo=R 2 Gi(KGI(—k+a) (82)
with the self-energy enterinG given by
T ) _
S(k)=< 2 ——=——G%q—k)e @ k0
BYTUN ; 1+ Up(q) i
(B3)
T Xp(9)
=Un?-u? P GXa—k). (B4

N G 1+ UXy(a)

Since there is a single chemical potential for the two Green

functionsG, and G?, there are two different expressions for
the occupation numbers operators, (and nE) and for the
corresponding fillings, { andn®).

A positive aspect of this approach is that it exhibits con-

sistency between one- and two-particle properties in the

sense that the exact resulll/N)S, S (k)G (k)e 0

PHYSICAL REVIEW B 64 075115

fdw Ak, )= Un° B7
77 ® (k,w)=gx—u+UnZ . (B7)

Also, the equation of motion foG gives

do 1
f 77 0T (@AK®) =T 2 (21 )N+ U(nny).
(B8)
The above sum rules are valid for bothand G(©. In the
latter case however, we take the Fermi function for the oc-

cupation number andU=0 on the right-hand side of the
above equations.

We are now ready to check the sum rules}qgr. Using
the spectral representation f& in the expression for the
susceptibility[Eq. (B2)],

Xp(qaiqn)

T do A(k,w) 1
e Parsyont
N % & J 27 ikp—o —iky+ig,— (& _x4q—a)

(B9)

and performing the high-frequency expansion after the sum-

=U(n n;) that follows from the equation of motion, is sat- mation overik,,, one obtains
isfied exactly by the above approximate scheme. Indeed,

starting from the approximate formuld&q. (B3)] for the
self-energy, and using EqB2) for the susceptibility, one
finds that

T Xp(9)
N “G" 1+ Ux,(a)

=U(ATA)=U(n;n)).

T o .
N> 210G (ke " =U e

(B5)

One obtains the last equalities using the fluctuation dissipai-nv
tion theorem. Hence, in this approach, the double occupancy;

obtained from single-particle quantitiéeamely,> G)) is
exactly the same as that found from the pair susceptibility,
two-particle quantity.

On the negative side, the spectral weight corresponding t
the susceptibilitf Eq. (B1)] does not satisfy the sum rules on
the first two moments discussed in E469) and (68). To

show this, we first need a few sum rules on the single-

particle spectral weight. Following the steps in Appendix A
of Ref. 12, the high-frequency expansion@fwith 3, given

by Eq. (B4), gives the following sum rules for the corre-
sponding spectral weight(k,w):

dw
f EA(k,w)Zl, (B6)

lim [iqaxp(Q.ign)]=—1+n+n? (B10)

1qpn—*

with the help of the normalizatiofEq. (B6)] and first mo-
ment sum ruld Eq. (B7)]. This should be compared with the
exact result ¢ 1+n) found in Eq(A3). The difference be-
tween the two fillingsn; and n? is a measure of how much
this approximation violates the Pauli principle.

Pursuing the largéy,, expansion and using spin rotational
ariance and the sum ruld&gs. (B6) to (B8)] on the
gle-particle spectral weight, one obtains for the first mo-
ment of the pair spectral weigkoff-diagonalf sum-rule

a

do
— @xp(0,@)
_ 1
"N

>

k

U 0
Bkte ktq 2| KT o (L= (i) = (N k4qp))

—Unl—U((nTni>—nlnl)+2Un?nl}. (B11)

Even withn,=ny there are deviations from the exact result
Eq. (69 that are linear irJ.
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