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Real-space electronic structure approach to transport in alloys
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We present a method for calculating dc and ac conductivities of alloys in the framework of a tight-binding
description of their electronic structure. The method is entirely derived in real space, and thus requires no
spatial symmetry of the underlying lattice on which the alloy is based. It also allows a calculation of conduc-
tivity in alloy cases where the chemical randomness is treated within the coherent potential approximation.
Applications to simple model systems are given to illustrate the basic features, the advantages, and the range
of applicability of the method.
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. INTRODUCTION Fi(E,E")=Trv0(E-H)v,8(E'=H)], (1.2

It has long been recognized that chemical disorder affectsh T ds he si f the latti dth
a majority of the physical properties of alloys, and in particu-VNere Tr stands for a sum over the sites of the lattice and the

lar electronic transport. In many systems chemical disorder i rbitals centergq on these sites, and the factqr 2 in(Ea)
the main source of static disorder, and can be the maj as been explicitly included to account for spin degeneracy.

source of scattering for electrons even at room temperaturd "€ (- - -) indicates a thermodynamical average over the

In this case an estimate of transport properties can be ofzonfigurations of the alloy. As is known, the imaginary part

tained by calculating the transport coefficients within the co-0 the conductivity is obtained from the real part by the
Kramers-Kranig relation. This formula applies to static dis-

herent potential approximatioi€CPA) on the underlying pe-
P PP o ) ying p order only (chemical and/or structurgaland the only tem-

riodic lattice! > , e e
ferature dependence is through the Fermi-Dirac distribution
a -

However, many systems of current interest cannot b . ) i
unctionf(E). In Eq.(1.2), v, is the usual velocity operator,

treated along these lines. For systems with nonperiodic | : ~ ; X
tices such as quasicrystals, bulk amorphous alloys, or Sysa_ndH is the Hamiltonian that describes the electronic struc-

tems with reduced symmetries exhibiting extended defecti!re Of the system. For simplicity, here we consider the case
such as interfaces or surfaces, the solution of the CPA equifNere the so-called vertex C(?"eCt'aﬁSire negligible. This
tions (inhomogeneous CPAs a difficult task with standard amounts to rewritingF,(E,E' +% w)) as
k-space methods. Furthermore the electro_n s.cattering can (Fi(E.EN=Tru(S(E—H))vy (S(E'—H)). (1.3
also be affected by the topology of the lattice itself. These
systems require the development of methodologies capabléis well known that this approximation is valid when scat-
of treating at the same time chemical disorder and the lack d€ring is isotropic, and when weak-localization contributions
structural periodicity. Under these circumstances, real-spacd® also negligible, i.e., sufficiently far from the Anderson
approaches are best suited for dealing with such situationstransition. In a forthcoming publication we shall show how
The purpose of this paper is to present a methodologyertex corrections can be included exactly as in the standard
which allows a calculation of the optical conductivity in mul- Scattering formalism of the CPA.
ticomponent alloys. The chemical disorder is treated within The paper is organized as follows. In Sec. Il we describe
the inhomogeneous CP@&ince all sites are not necessarily the formalism, and in particular the CPA equations and their
equivalen}, and, since the solutions of the self-consistenttight-binding representation and solution, the real-space de-
CPA equations are obtained with a real-space approach, feription of conductivity, and the extension to alloys that are
translational symmetry of the underlying lattice is required. characterized by more general disorder. Then, in Sec. IlI, we
We aim to compute the Kubo-Greenwood fornfufar ~ Present the results of a few model calculations, discuss addi-
conductivity generalized to a nonzero frequensyThe real  tional properties pertaining to the expansion on which the
part of the diagonal part of the conductivity tensor in theexpression for conductivity is based, and show the effect of

eigenfunction representation is given by off-diagonal disorder on electronic density of states and
transport in the case ofdxband description of a Cu-Pd alloy.
2 . Finally, the advantages and the range of applicability of the
Rogo( @)= 2me’h H(E)~T(E+hw) methodology are summarized in Sec. |V, together with some
Q ho concluding remarks.
X(Fx( BB+ o)) (1.9 Il. FORMALISM
wheref =h/2a, with h being the Planck’s constarg,is the In the following we consider a system described by a
electronic chargef) is the volume of the system, and tight-binding HamiltoniarH, and assume that there is chemi-
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cal disorder on the various sites of the lattice with no chemi- B; Bs Bs By
cal correlations between the different sites, in the spirit of the As As Az Az
single-site mean-field CPA. In addition, the various sites of B, B, By By
the system are not considered equivalent, and can even be At Aq Aq Aq
associated with different local concentrations. Our aim is to B, B B4 B,
evaluate the Kubo-Greenwood formula without vertex cor- SA;r &

rections within the CPA. This means that the operdi&(E A A7 A" Ag”
—H)) entering Eq.(1.3) is simply replaced by the same ozZ) ofz) €aor€s o2 o)
operator calculated for the effective CPA medium, where - O—@—0O—0

each siten and each orbitak carries a self-energy,,(2). _ _ ) o
The approach is based on the combination of a recent FIG. 1. Equivalent representations of the effective Hamiltonian

method for solving the CPA equations in real spé‘é’eand describing chemicaldiagona) disorder within the CPA, here for a

of a real-space method for calculating the matrix elements ofina"y alloy based on an infinite linear chathick solid line.

the operator S(E—H) as they appear in the Kubo-

Greenwood formula®* Hef is Ho, whereas its site-diagonal part is defined by attrib-
uting a self-energyr,(z) to each siten (note that the orbital
A. CPA equations index is omitted for clarity. This self-energy is calculated by

For the sake of clarity, let us consider a bin#s alloy imposing a self-consistency condition, which shows that the
with only ones orbital located on each site of its underlying concentration-weighted average Green’s function onrsige
lattice (not necessarily periodic The generalization to a edqual to the effective-medium Green's functi@i" on site
multiband case and to multicomponent alloys is straightforn. This self-consistency condition reads
ward, as discussed elsewhé&reor now we only consider the
case of diagonal disorder. The Hamiltonighfor a given
configuration of the alloy is written in the form 2 Ci 1

— _ eff
¥ e A2 oD Agm on P @9

H=Hy+V, (2.0

whereH, is the site off-diagonal part of the Hamiltonian that ) - o )
is supposed to be independent of the alloy configurdiien, ~ Wherec; is the composition of specids A,(2) is the so-

the off-diagonal disorder is neglecle@nd is defined as called renormalized interactor that refers to the coupling of
the orbital located at site with the surrounding effective

medium?? and Gﬁﬁ(z) is the Green’s function associated

Ho= % M) tam(ml, (2.2 with the averagéor effectivé medium as defined within the
CPA.
where t,, is the hopping integral between sitesand m If all sites n are equivalent, then the self-energies(z)

which, in the simplest cases examined in the following, will gnd interactord\ ,(z) are all identical, and equal i®(z) and
be equal td, independent of the site indices, and nonzero forA (z), respectively. ObviouslyA(z), that describes the cou-
first-nearest-neighbor sites, andis the random diagonal pling of an orbital with the effective medium, is a function of
part ofH given by o(z), and thus Eq.(2.5 can be interpreted as a self-
consistent equation far(z). If the sites are not all equiva-
VZE ean)(n|, (2.3 !ent then the s_elf-energiesn(z) depend orjn,.ar_1d the same
n is true for the interactord ,(z). However, it is important to
note in this case that the interactar(z), which is deter-
mined by the environment of sitg is a function of all the
8_elf-energie$rm(z) for sitesm different fromn. Then the set
of Egs. (2.5 for all inequivalent sitesh is a closed set of
equations for the self-energies,(z) that can be solved in
real spacé®

where the on-site energy, depends on the nature of the
chemical species that occupies sitéor the alloy configura-
tion under consideration. These on-site energies can be d
fined as

€n= 2 pinein , (2.9

wherei is an index that refers to the nature of the alloy B. Tight-binding representation of the effective CPA medium
species, and,, is an occupation number which takes the  As shown in previous papefs? there is an exact equiva-

value 0 or 1 depending on the occupancy of sitby ani lence between the effective medium determined by attribut-
species or not. In the following, we will assume tlegt= ¢; ing a self-energyr,(z) to each siten and a standard tight-
is site independent. binding model where a semi-infinite chain is associated with

In accordance with the assumption behind the single-siteach orbital located at each siteThis equivalence is sche-
CPA, the medium surrounding a specific site is replaced bynatically recalled in Fig. 1. When the chain parameters are
an average medium. This medium is described by an effegroperly chosen, these chains exactly simulate the effect of
tive HamiltonianH®™ as follows: the site off-diagonal part of the self-energy. The parameters of the chain although ini-
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tially unknown can be calculated starting from the beginning C. Real-space calculation of conductivity

of the chains and moving progressively toward higher A major advantage of the above approach is that it maps
indices® with a standard recursion procedufé’ This leads  he CPA Hamiltonian that is energy dependent onto an
to expressions for the coefficients, B} that are associ- gnergy.independent tight-binding Hamiltonian. As a conse-
ated with each semilinear chain representation of the selfq,ence, all the methods that have been devised to calculate
energy(see Fig. 1in terms of the coefficientsay,bq; 0b-  matrix elements of the Green’s operator for a general tight-
ta|r_1ed by perform|r_1g a recursion on the ex_ten_ded IattICebinding Hamiltonian are now applicable. For example, this
This “dressed” lattice is defined by a combination of the \yjnciple was used in Ref. 8 to calculate the band energy and
real lattice on which the alloy is based plus the semilineatne effective pair interactions that describe the energy of the
chains(in principle, one per orbitalattached to each site of cpemically random state of an alloy and the ordering contri-
thellattlce that represent the local self-energies. In the case @{,tion to the total energy, respectively. Here we show that it
a binary alloy, these relations becdine can be used efficiently to calculate the matrix elements of the
off-diagonal Green’s operator that are necessary for evaluat-
ing the Kubo-Greenwood formula.
o Neglecting vertex corrections, we aim at computing
B;=U=CaCa(en~€s) F.(E,E") which, from Eqgs.(1.3 and(2.9), can be written

as

A0: €g— CA6A+ CBEB

A]_: [N CB€A+ CAEB
Fu(E,E")=Tr [0, 8(E—H%u,8(E'—H®)], (2.10

where the notation Trmeans a partial trace only over the

sites that describe the real lattice, excluding those that make

up the semilinear chains for a complete description of the

Ap=8p-1, Pp=2 (2.6 {ight-binding HamiltonianHS. With this Hamiltonian, the

if one assumes that at the end of the first step of recursion tH@atrix elements of th& component of the velocity operator

coefficientsb, anda, are known(with a,= e, or €g). If one  are defined according to

stops the procedure at a lewlof recursion, the system has _

a finite lengthN along the chains but, like for clusters, it is I s

possible to extract valuable information on the asymptotic vxv”m:%Hnm(Xm_X“) (.13

properties of the “exact” infinite system provided that the

cluster is large enought:*® Real-space methods, and in par- wherex, is the x coordinate of the atom located at site

ticular the recursion method and other orthogonal polynoNote that this expression implies that the position operator is

mial methods, are well adapted to solve this kind of problemdiagonalized by the localized orbital basis functions al-
More precisely, if one is interested in the matrix elementsthough, in principle, this is only true in the case of an ortho-

of the Green’s operatdmn|G®™(z)|m) within the CPA, then normal basis of functions, as is assumed here, with zero

Bp:bp_l, p>2,

one has exactly overlap between orbitals located on neighboring sites.
" < The matrix element o6(E —HS) can be calculated by the
(n[G*(2)[m)=(n|G>(2)|m), (2.7 method presented in Refs. 10 and 11. This method is based

on a development in terms of orthogonal polynomials, and

where G5(z) is the Green’s operator associated with the )
starts from the general expression

tight-binding HamiltonianHS that describes the “dressed”
lattice defined above. Within the CPA, the average value of

the operator§(E—H®™ can be expressed in terms of the S(E—H)=n(E)>, P,(E)P,(H) (2.12
Green’s operato6°%(z) according to v P P

off off ) off ) wheren(E) is a reference density of states that is nonzero on
(S(E-H))=5—[G*(E—in) -G (E+in)], the whole spectrum of the given Hamiltoniah and the
(2.9 P,(E) are the orthogonal polynomials associated with the

o o . ~ densityn(E). Introducing the above expression in E2.10),
wherei 7 is a small positive imaginary part. Then, from this gne obtains

expression, one deduces

pa
From the above equality, one has a way to calculate transport (2.13
properties if one assumes for now no contribution from the
so-called vertex corrections, since one has only to evaluate@here the sum over the site indaxs indicated with a prime
the matrix elements of the operatétE—H®") by simply  to mean that it is a restricted sum over only the sites of the
performing calculations for a tight-binding system character+eal lattice(a restriction similar to the one that pertains tg Tr
ized by the extended Hamiltonia#®. discussed aboyeAlso, note that the tilde om(E) means

(nl{8(E=H)Im)=(n[s(E-H)m). (2.9 Fol(EEN=2" Ny(E)ny(E") X PRE)PIE")CH"
n p.q
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that it is the density of states associated with the orthogonal = LS s
polynomialP. The coefficientss" in the above expression  “pa :% (N o PR (H) [ )i vy PG (HZ)[n\)
are defined as

1
-3 (2 (X X HSM (| P (HS) )

Cya"=(nIPR(HS)u,PY(HS)n), 219
and are calculated as explained in Ref. 11, i.e., x| 2 (X'_Xk)HiM<kV|PM(HS)|m\>) 220
i i q ’ ’
k,v
XX,N _ ~
Cpg =niPlvxa}n, (219 Wwhere we made use of two closure relations and the defini-

. ) tion of the velocity operator given by E¢2.11), and the
where two sets of vectors have been defined according to symmations ovey andk are limited to the nearest neighbors
of n andi, respectively, which involve nonzero matrix ele-
Ipln= pE(H3)|n>: PB(HS)Ux|n>v ments of the Hamiltonian.

D. Extension to alloys characterized with off-diagonal disorder

|atn=PR(HS)|n). (216 , _
When the difference between the bandwidths of the alloy
The orthogonal polynomials satisfy the three-term recurrenc€omponents cannot be neglected, the hopping integygls
relation which enter Eq.(2.2) must depend on the site occupancy.
Following the original idea of ShibY,one can write a rea-
sonable approximation for the hopping integrals as
HPB(H)=ang(H)+b” o (H)+bg+1Pg+1(H)(,

prp-1 51
' thm= antgma’mr (2.22

where the'coefficientag and b‘,l. depend only on the chosen wheret?, is a hopping integral that does not depend on the
local density of states,(E) at siten, and are the coefficients nature of the species located at sitesndm, and reflects the

of the continued fraction of the Hilbert transform 0f(E).  properties of the underlying “empty” lattice. The scalar
Hence one obtains similar recurrence relations for the tw@uantity «,,, given by
sets of vectors, i.e.,

~ ~ ~ @ =E pi a, (2.23

Hp}r=aplp}r+bp_1lp—La+bplp+1}7, (2.18 noa T

and, similarly, takes thg valu_ezA (or ap) if siten i§ occupied by ai\ (or a
B) species, since,, is an occupation number whose defini-
tion was given in Sec. Il A. This so-called multiplicative

S _ AN n _ n
Ha}n=ag|a}n+bg-ald—1}nt+bgla+1}n, (2.19 off-diagonal disorder leads to the well-known geometrical

average of a hopping integral coupling Arsite to aB site

with the initial conditions according totﬁﬁz (tmtﬁﬁ)”?
Within Shiba’s approximation, one can show that the self-
|0}5=04|n), consistency condition given by E¢R.5 become¥
0},=I). @20 v & - ~&,(2)
U Z-€g—aiAy(2) z—on(2)— aZAn(Z)
This shows that for each inequivalent site(and, in the (2.249

general case, for each orbitévo recursions need to be per- 5
formed with the starting vectors given in B@-20. Thenthe  wherec; =c;a?’/a?, anda®=3,c;a? . Note that in Eq(2.24

known values of the coefficientag,bg) and (ag ,bg) canbe we define an auxiliary Green’s functid that differs from
used to progressively calculate the vectfp$;, and |q},, the average CPA Green’s function. Indeed, the physical pro-
respectively. Finally, one can deduce the coefficie@ﬁé‘ for  jected density of states for speciebcated at siten is ob-
each lattice siten, and therefore the optical conductivity at tained from the partial Green’s function according to

all frequencies according to E¢L.1), and at any Fermi en-

ergy as described in Ref. 18ee Appendixes A and)Bvith- I 1

out further involved calculations. In the most general case, Np,i(E)=—— lim : > :

) g S : . T o+ Etin—e—aifA(E+in)

i.e. multisite and mutiorbital, two sets of recursion per site 7—0 I %i%n

and per orbitah have to be performed to evaluate one com- 5

ponent of the conductivity tensor from the coefficients of =——1lim G, ;(E+in), (2.29

XX, N\

bg » which are given by ot

recursion and the
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az as
05, %5: %% 2 (%=X tKIB@N 4~ Xm)tim( G (2)|) ),

(2.28
after insertion of two closure relations of the type
S ky(k|=1, wherel is the identity operator in Eq2.27).
Within Shiba’s approximation, this last expression is rewrit-
ten as

n%n (Xn=Xi) (X1 = X){tP kGt (2) @it @mGrnn(2) ) -
(2.29

It is important to note that since the orbitals that are acted
upon by the velocity operator are centered on different sites
of the lattice, site occupancies become uncorrelated. This is
the very same property that characterizes Shiba’s approxima-
FIG. 2. Schematic I’epresentation of the aUXiIiary Green'’s funC"[lon, Slnce the random Vanables that descrlbe Off_dlagonal

tion G(z) discussed in the text in the case of a binary alloy with disorder are the occupation numbpt,és which are site vari-
diagonal and off-diagonal disorder described within the CPA. ables, and hence local.

With the definition ofG extended to off-diagonal in-site
elements given bya,Ga))=Gy, Eq.(2.29 becomes

and the true average Green's functiGﬁﬁ(z) is merely
given byGﬁﬁ(z) =2¢{G, i(2), which obviously differs from
Gn(2).

It can be shown that the self-energy is now represented by
a branched semilinear chaif,and therefore the auxiliary
Green’s functionG,(z) is equivalent to the representation This last expression shows that, within Shiba’s approxima-
given in Fig. 2. The coefficients of this chain are now givention and the neglect of the vertex correctioR{E,E’) is

n%n (X=X (X = Xt G Dt Gmn(2)  (2.30

by

’AOZES:EAGA‘FEBEB
B1=U= VcaCg(€a— €a)

A]_: [N CB€A+ CAEB
Bzz b?S: aAaBbl/a

V= bl \ CACB( af\— aé)/a

By=by_1, p=3,

Ay,=a,_;, p=2, (2.26
which are identical to the set of equatiof6) when ap
=ag=a.

Going back to the definition of the functioR(E,E"),

given in terms of the auxiliary Green’s functidd and not
the average Green'’s functi@*". This makes the implemen-
tation of the recursion scheme relevant and straightforward.

lIl. APPLICATIONS

In this section we apply the method outlined above to a
simple single-band model. For the sake of clarity we con-
sider the case where all sites are equivalent, and show results
for the densities of states, and for the dc and ac conductivi-
ties. At the end of this section we also discuss some technical
aspects of the method, and present an application to the mul-
tiorbital case. In all the computations we use as a reference
density of statesn(E) the average CPA density with the
coefficientsa, andb, calculated as explained in Refs. 7 and
8. The calculations have been performed upte45, and
this ensures an excellent convergence of all the calculated
quantities as will be shown.

A. Model

For the present purpose, we first consider a binary alloy
based on a simple cubic lattice with oseorbital per site
(single-band modgl Since all sites are equivalent, we will

given by Eq.(2.10, one has to evaluate the following quan- consider the diagonal disorder in its simplest form, with the

tity:

F2)=Tr (v«G(2)v,G(2)). (2.27

on-site energies taking only two valueg or eg. The hop-
ping integralt, which is nonzero between nearest neighbors
only, will be taken as constant throughout=(1/6, so that
half the bandwidth of the density of states for the pure metal

Keeping in mind the definition of the restricted trace and thatwv is equal to 1. Finally, if not specified otherwise, the con-

of the velocity operator given by E@2.11), this function is

proportional to

centrations of the two chemical species are equal to 0.5, and
the number of exact steps of recursion is equal to 45.
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Energy Energy

FIG. 3. Density of states fahe=2 (solid line) and 4 (dashed
line) calculated with 45 exact levels of continued fraction, for a
model alloy based on a simple cubic lattice.

FIG. 5. dc conductivity as a function of the Fermi energy for
Ae=2 (solid line) and 4(dashed ling associated with its respec-
tive density of states displayed in Fig. 3.

B. Density of states
. . equal, according to Einstein’'s formula, to(Eg,0=0)
In Fig. 3 we show the total density of states for two values_" > . . e
of the parameten e— e, — ey (With ex——eg) equal to 2 e’n(Eg)D(Eg), whereD(Eg) is the so-called diffusivity
and 4, which is a measure of the amplitude of the diagonag
disorder. ForAe=4, the difference between the two on-site
energies is sufficient to create a pseudogap in the middle

the density of states.

efined at the Fermi energy. In the middle of the spectrum,
oth the densities of state§Eg) and D(Eg) are reduced,
thus leading to a more pronounced effect on the conductivity
%han on the density of states alone.

C. dc Conductivity

In Fig. 4 we report the normalized dc conductivity versus
Fermi energy curves foAe=0.5 andc,=0.1, 0.4. These
results are in excellent agreement with those of Letial 1°
(see their Fig. 6 for comparisgrthus proving the validity of
the real-space method for evaluating the conductivity.

Figure 5 displays the dc conductivitye., conductivity at
zero frequencyas a function of the Fermi enerdye. A
decrease of the conductivity in the middle of the spectrum is
noticeable even foAe=2, and becomes more pronounced
as the diagonal disorder parameter increases. The results ca
be qualitatively interpreted as follows. The dc conductivity is

Re o(Eg;0)/o(Eg;0=0)

12 T
10
08 |-

0.6 |-

o(E;0=0)/c""(E;0=0)

04

Re o(Eg;0) /o(Eg;0)

02 |-

15
Energy hof2n

FIG. 4. Normalized dc conductivity as a function of the Fermi  FIG. 6. ac conductivity as a function of frequendyy for dif-
energy forAe=0.5 andc,=0.1 (solid curve and 0.4 (dashed ferent values of the Fermi energ@-5), and forAe=2 (a) and 4
curve), calculated with 45 exact levels of continued fraction, for a (b), associated with its respective density of states displayed in
model alloy based on a simple cubic lattice. Fig. 3.
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D. ac Conductivity 1.0

LI e B L L Lt L L B L

Figure 6 represents the re@issipative part of the ac
conductivity o, (Er , ), as a function of frequency for vari-
ous values of the Fermi energy and for two diagonal disorder
parameters. FoAe=2, one observes essentially a Drude-
like peak(close to a Lorentzian shape with a full width at
half maximum proportional té 7~ 1, wherer is the transport
relaxation time as expected for electrons in the weak scat-
tering limit. Conversely, forAe=4, there is a hump in the
evolution of the ac conductivity with a frequency around
hw=4, and forEg sufficiently close to the middle of the
spectrum. This hump can be attributed to interband transi-
tions between bands associated with spedéiesnd B, and
which are separated hye=4. This hump will be observed o
if states below the middle of the spectrum are occupied, anc %v°0<>::o°°‘0~008200 .
those above it are not, which implies that the Fermi energy is -0 -l la LT 22 RBRRR604 L

15 20 25 30 35 40
not too far from the center of the spectrum. q

o

.8

0.6

J{ajal,

0.2

LU S R S S B IO BN B B BN

[=]
(3]
Y
o

E. Convergence of the expansion of,,(E,E") FIG. 7. Total weight of the norm of the recursion vedig},, in

It is interesting to consider some typical behavior of theral spacei.e., on the initial state of the semilinear chaires a
two recursion vectorgpl; and|ql,, and of the coefficients function of the stepq of the recursion procedure for the simple
o associated with a given sitefrom which the recursion cubic lattice model and\e=2, 4, and 6. Note that when disorder
; tartin the following, when no ambiguity exist increases, the vectors spread more and more rapidly in the chains,
thciﬁcsjséxsnawill be % ngrg d tr%erefoere irr?pla;/inggtﬁaétl tﬁeslz;,- as expected due to the shortening of the lifetimand mean free
. . N . L ath .
tice on which the alloy is based is periodidhese charac- path¢

teristics will help to understand how the expansion ofgyhected, these coefficients tend more rapidly toward zero

Fu(E,E"), made of a double series, converges. when the diagonal disorder increases. There is also a simple
First let us consider the recursion vectfa$, . Note that g,y ryle that can be checked out. Indeed, by integrating Eq.

in the simple example selected hgre,_these vectors are ind@z_w over the energy, for the integrated diffusivity one ob-
pendent ofn, apart from a translation in real space, and are,;ing

calculated by using the reference densiff) equal to the

average CPA density of states shown in Fig. 3. By

constructiorf the vectors are calculated for a system where J dE Dy (E)= J dE
semilinear chains are attached to each site of the simple cu-

bic lattice, and have nonzero components on the real lattic§here the orthonormality relation between the polynomials,
(first site of each semilinear chaiand also along the chains.

As explained in Sec. Il B, these chains simulate the effect of

the self-energiess,(z). The imaginary part of the self- f dEN(E)PpPy= 64, (3.2
energies is related to the finite lifetime of the states, or

equivalently to the mean free path of the electrons § 2.0 o T
=uv 7, wherev is a characteristic velocity for the electrons in I
the perfect structuje In the tight-binding representation of " )
the CPA medium, this means that, after a distasheet, any sl i
vector will spread essentially on the chains. Thus we expec i 1
as a rule that the recursion vectops; and|q},, have a small
vanishing weight in real space after a number of steps of thexg 1, [ o ]

Uxx(E) _
n(E)

% X, (3.

recursion process, such that they spread on a distance grea [, e

than a few timeg. This is shown in Fig. 7, where the norm - 00 e,

of the recursion vectojg}, is plotted versus the number of s °°a ]
steps of recursion for different values of the diagonal disor- L ateoo, ]
der parameter. Hence we conclude from this analysis that i :

is sufficient to have a real-space cluster of extension equalt o [ o o 1 . "7°2°75823888800000an0000sa0 000
a few ¢ in order to have an accurate estimate of the conduc 0 10 20 o 30 40 50
tivity.

The behavior of the recursion vectors implies that the co- g s. Diagonal elements®% as a function ofp for several
efficients ¢y, that are defined. thrOUgh_ scalar products ofdiagonal disordersXe=2, 3, and 4. The coefficients decrease
these vectors also decrease withndq. Figure 8 shows the rapidly with p, and the convergence is more rapidly achieved when

behavior of the diagonal terms;;; as a function ofp. As  the diagonal disorder increases.
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FIG. 9. Variation oprc;; with a measure of diagonal disorder. L i ]
As explained in the text, one expects that, in the weak scattering 7+ (b) .
limit, this sum is proportional tot(A€)?. Actually this scaling is r ; 1

well satisfied for a broad range of diagonal disorder.

has been used, with being the usual Kronecker symbol. In
the weak-scattering limit, the density of states tends toward
the zero-disorder limit, whereas the conductivity(E), at a
given Fermi energy, scales lik¢/(A €). Hence, in the weak-
scattering limit, we expect

Re o(E;0=0) (in 10° Q".m™)
F-9
1

t 2 F

S ol 5] @s oL
Energy (eV)
Figure 9 shows a plot oE ,cy, versus {/A€)?, which con- N o
firms this pred|ct|on down to a small value df/A 6)2. Fi- FlGll Densities of State@) and dc COI’ldUCtI\{ItIeib).VS
nally, the off-diagonal elements mfl;)é tend rapidly toward energy in the case of a fcc-basedsgBLt,O aIon.descrlbed with a
zero, as illustrated in Fig. 10, and more so when the diagonzﬂ'band mod(_el that accounts for d|ag_onal dlsqrder ofdgtted
disorder increases. These properties can be advantageounge)’ and diagonal and off-diagonal disordésslid curve.
invoked for practical calculations to assign preasymptotic
values to these coefficients without having to calculate them;
in the same way, the behavior of the coefficients of the con- I this section we show the applicability of the method to
tinued fraction @,,b,) leads to a well-defined analytic ex- the multiorbital case and the treatment of off-diagonal disor-
pression for the termination of the continued fraction thatder within the Shiba approximation. We consider the well-
expresses the one-electron Green'’s fun(ﬁm_ documented case of fcc-based Cu-Pd described here with a
d-band tight-binding model that makes use of the Slater-

08 Koster parametrization given in Ref. 20 for comparison pur-

[ ] poses. That is, the nonzero hopping integrals between first
nearest neighbors on the fcc lattice take the valdels;=
—16.20 eV,ddw= +8.75 eV, anddds=0; the on-site ener-

i ; ] gies areeS'= —0.15 eV ande}=0 eV; and the off-diagonal
o1 | . disorder parameters are:,=0.021145 andv3,=0.040194.

r : . ] Figure 11a) displays the densities of states computed within
0oloooao® oo ofogofingHfngotountnuntngnae ] the CPA without and with off-diagonal disorder accounted

r G g v ] for. Note that in the case of diagonal disorder only, the hop-

] ping integrals for like and unlike pairs of atoms have been
multiplied by the same scalar given by the concentration
[ ] weighted average of the?s. All calculations have been
o2l @ e ] performed up to 30 levels of continued fraction. For nearby

0 10 2 q 3 o 50 elements of the periodic table, off-diagonal disorder cannot
be ignored, and accounting for this effect leads to densities
FIG. 10. Variation of typical normalized off-diagonal terms of Of states similar to those obtained withiab initio ap-
Cpiqp/Cop (P=2 and 3 with g, showing that they tend quickly —proaches, such as the tight-binding linear-muffin-tin-orbital
toward zero withp andq, here forAe=4. method in the present case; see Fig(alland Fig. 6

F. Extension tod-band model

[ e BN
0.2 =

Cprae/Cpp

0.1 __ -
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of Ref. 20 for comparison. The impact of off-diagonal disor- size required to perform the recursions with sufficient accu-
der on transport is obviously reflected in the associated dracy is a few times. We found that the method well repro-
conductivity versus Fermi energy, as seen in FigbL1Al- duces departures from the Drude-like behavior of the optical
though the tight-binding parametrization leads to the rightconductivity caused by interband transitions, if any, as ob-
order of magnitude for the dc conductivity, note that &  served experimentally in some alloy cases. We have shown
hybridization and the vertex contributions to transport shouldhat the approach can be easily extended to account for off-
be included for a more accurate evaluation of conductivity. diagonal disorder effects within Shiba’s approximatton.
Additional extensions that include a more general treatment
IV. CONCLUSION of off-diagonal disorder such as the one proposed by Black-
~ manet al,?! as well as of vertex corrections to transport in a
We have presented a methodology to calculate the opticglay strictly equivalent to the one developed within the
conductivity of an alloy for which chemical randomness iST_matrix formalism of the CPA; 5 are possible, and will be
treated within the CPA. In this approach calculations are Pepresented in a forthcoming publicatidhFinally, it should
formed entirely in real space, with an effective tight-binding e emphasized that the real-space approach described here
Hamiltonian. The CPA self-energy is exactly described byproyides a direct estimate of the projected components of the

attaching a semilinear chain to each orbital centered on eagBnsor of conductivity on each site of a lattice, periodic or
lattice site. Since the resulting Hamiltonian is energy indeyot.

pendent and is of a tight-binding form, one can apply to it
methods developed for solving tight-binding problems. In
particular, methods based on orthogonal polynomials are ap-
plicable, and allow an efficient calculation of the conductiv-  This work was performed under the auspices of the U. S.
ity expressed by the Kubo-Greenwood formula as a functioepartment of Energy by the University of California
of energy and frequency. As shown in this study the method.awrence Livermore National Laboratory under Contract
is well suited for studying transport in alloys characterizedNo. W-7405-ENG-48. Partial support from NATO under
by a short electron mean free pathsince the typical cluster Contract No. CRG 941028 is gratefully acknowledged.
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