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Real-space electronic structure approach to transport in alloys
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We present a method for calculating dc and ac conductivities of alloys in the framework of a tight-binding
description of their electronic structure. The method is entirely derived in real space, and thus requires no
spatial symmetry of the underlying lattice on which the alloy is based. It also allows a calculation of conduc-
tivity in alloy cases where the chemical randomness is treated within the coherent potential approximation.
Applications to simple model systems are given to illustrate the basic features, the advantages, and the range
of applicability of the method.
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I. INTRODUCTION
It has long been recognized that chemical disorder affe

a majority of the physical properties of alloys, and in partic
lar electronic transport. In many systems chemical disorde
the main source of static disorder, and can be the m
source of scattering for electrons even at room temperat
In this case an estimate of transport properties can be
tained by calculating the transport coefficients within the
herent potential approximation~CPA! on the underlying pe-
riodic lattice.1–5

However, many systems of current interest cannot
treated along these lines. For systems with nonperiodic
tices such as quasicrystals, bulk amorphous alloys, or
tems with reduced symmetries exhibiting extended defe
such as interfaces or surfaces, the solution of the CPA e
tions ~inhomogeneous CPA! is a difficult task with standard
k-space methods. Furthermore the electron scattering
also be affected by the topology of the lattice itself. The
systems require the development of methodologies cap
of treating at the same time chemical disorder and the lac
structural periodicity. Under these circumstances, real-sp
approaches are best suited for dealing with such situatio

The purpose of this paper is to present a methodol
which allows a calculation of the optical conductivity in mu
ticomponent alloys. The chemical disorder is treated wit
the inhomogeneous CPA~since all sites are not necessar
equivalent!, and, since the solutions of the self-consiste
CPA equations are obtained with a real-space approach
translational symmetry of the underlying lattice is require

We aim to compute the Kubo-Greenwood formula6 for
conductivity generalized to a nonzero frequencyv. The real
part of the diagonal part of the conductivity tensor in t
eigenfunction representation is given by

Rsxx~v!5
2pe2\

V E dE
f ~E!2 f ~E1\v!

\v

3^Fxx~E,E1\v!& ~1.1!

where\5h/2p, with h being the Planck’s constant,e is the
electronic charge,V is the volume of the system, and
0163-1829/2001/64~7!/075113~9!/$20.00 64 0751
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Fxx~E,E8!5Tr@vxd~E2H !vxd~E82H !#, ~1.2!

where Tr stands for a sum over the sites of the lattice and
orbitals centered on these sites, and the factor 2 in Eq.~1.1!
has been explicitly included to account for spin degenera
The ^•••& indicates a thermodynamical average over
configurations of the alloy. As is known, the imaginary pa
of the conductivity is obtained from the real part by th
Kramers-Krönig relation. This formula applies to static dis
order only ~chemical and/or structural!, and the only tem-
perature dependence is through the Fermi-Dirac distribu
function f (E). In Eq. ~1.2!, vx is the usual velocity operator
andH is the Hamiltonian that describes the electronic str
ture of the system. For simplicity, here we consider the c
where the so-called vertex corrections3,5 are negligible. This
amounts to rewritinĝFxx(E,E81\v)& as

^Fxx~E,E8!&.Tr vx^d~E2H !&vx ^d~E82H !&. ~1.3!

It is well known that this approximation is valid when sca
tering is isotropic, and when weak-localization contributio
are also negligible, i.e., sufficiently far from the Anders
transition. In a forthcoming publication we shall show ho
vertex corrections can be included exactly as in the stand
scattering formalism of the CPA.5

The paper is organized as follows. In Sec. II we descr
the formalism, and in particular the CPA equations and th
tight-binding representation and solution, the real-space
scription of conductivity, and the extension to alloys that a
characterized by more general disorder. Then, in Sec. III,
present the results of a few model calculations, discuss a
tional properties pertaining to the expansion on which
expression for conductivity is based, and show the effec
off-diagonal disorder on electronic density of states a
transport in the case of ad-band description of a Cu-Pd alloy
Finally, the advantages and the range of applicability of
methodology are summarized in Sec. IV, together with so
concluding remarks.

II. FORMALISM

In the following we consider a system described by
tight-binding HamiltonianH, and assume that there is chem
©2001 The American Physical Society13-1
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P. E. A. TURCHI AND D. MAYOU PHYSICAL REVIEW B64 075113
cal disorder on the various sites of the lattice with no che
cal correlations between the different sites, in the spirit of
single-site mean-field CPA. In addition, the various sites
the system are not considered equivalent, and can eve
associated with different local concentrations. Our aim is
evaluate the Kubo-Greenwood formula without vertex c
rections within the CPA. This means that the operator^d(E
2H)& entering Eq.~1.3! is simply replaced by the sam
operator calculated for the effective CPA medium, whe
each siten and each orbitall carries a self-energysnl(z).

The approach is based on the combination of a rec
method for solving the CPA equations in real space,7–9 and
of a real-space method for calculating the matrix element
the operator d(E2H) as they appear in the Kubo
Greenwood formula.10,11

A. CPA equations

For the sake of clarity, let us consider a binaryA-B alloy
with only ones orbital located on each site of its underlyin
lattice ~not necessarily periodic!. The generalization to a
multiband case and to multicomponent alloys is straightf
ward, as discussed elsewhere.8 For now we only consider the
case of diagonal disorder. The HamiltonianH for a given
configuration of the alloy is written in the form

H5H01V, ~2.1!

whereH0 is the site off-diagonal part of the Hamiltonian th
is supposed to be independent of the alloy configuration~i.e.,
the off-diagonal disorder is neglected!, and is defined as

H05(
nm

un&tnm^mu, ~2.2!

where tnm is the hopping integral between sitesn and m
which, in the simplest cases examined in the following, w
be equal tot, independent of the site indices, and nonzero
first-nearest-neighbor sites, andV is the random diagona
part of H given by

V5(
n

enun&^nu, ~2.3!

where the on-site energyen depends on the nature of th
chemical species that occupies siten for the alloy configura-
tion under consideration. These on-site energies can be
fined as

en5(
i

pn
i en

i , ~2.4!

where i is an index that refers to the nature of the all
species, andpn

i is an occupation number which takes t
value 0 or 1 depending on the occupancy of siten by an i
species or not. In the following, we will assume thaten

i 5e i

is site independent.
In accordance with the assumption behind the single-

CPA, the medium surrounding a specific site is replaced
an average medium. This medium is described by an ef
tive HamiltonianHeff as follows: the site off-diagonal part o
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Heff is H0, whereas its site-diagonal part is defined by attr
uting a self-energysn(z) to each siten ~note that the orbital
index is omitted for clarity!. This self-energy is calculated b
imposing a self-consistency condition, which shows that
concentration-weighted average Green’s function on siten is
equal to the effective-medium Green’s functionGeff on site
n. This self-consistency condition reads

(
i

ci

z2e i2Dn~z!
5

1

z2sn~z!2Dn~z!
5Gn

eff~z!, ~2.5!

where ci is the composition of speciesi, Dn(z) is the so-
called renormalized interactor that refers to the coupling
the orbital located at siten with the surrounding effective
medium,12 and Gn

eff(z) is the Green’s function associate
with the average~or effective! medium as defined within the
CPA.

If all sites n are equivalent, then the self-energiessn(z)
and interactorsDn(z) are all identical, and equal tos(z) and
D(z), respectively. ObviouslyD(z), that describes the cou
pling of an orbital with the effective medium, is a function o
s(z), and thus Eq.~2.5! can be interpreted as a sel
consistent equation fors(z). If the sites are not all equiva
lent then the self-energiessn(z) depend onn, and the same
is true for the interactorsDn(z). However, it is important to
note in this case that the interactorDn(z), which is deter-
mined by the environment of siten, is a function of all the
self-energiessm(z) for sitesm different fromn. Then the set
of Eqs. ~2.5! for all inequivalent sitesn is a closed set of
equations for the self-energiessm(z) that can be solved in
real space.7–9

B. Tight-binding representation of the effective CPA medium

As shown in previous papers,7–9 there is an exact equiva
lence between the effective medium determined by attrib
ing a self-energysn(z) to each siten and a standard tight
binding model where a semi-infinite chain is associated w
each orbital located at each siten. This equivalence is sche
matically recalled in Fig. 1. When the chain parameters
properly chosen, these chains exactly simulate the effec
the self-energy. The parameters of the chain although

FIG. 1. Equivalent representations of the effective Hamilton
describing chemical~diagonal! disorder within the CPA, here for a
binary alloy based on an infinite linear chain~thick solid line!.
3-2



in
e

e

ice
e

ea
f
e

t

s
is
ti
e
r-

no
m

nt

he
’’

o
e

is

p
th
a

er

aps
an

se-
late
ht-

his
and
the
tri-
t it
the
uat-

ng

e
ake
the

r

r is
al-
o-
ero

sed
nd

on

the

the
r

REAL-SPACE ELECTRONIC STRUCTURE APPROACH TO . . . PHYSICAL REVIEW B 64 075113
tially unknown can be calculated starting from the beginn
of the chains and moving progressively toward high
indices7,8 with a standard recursion procedure.13,14This leads
to expressions for the coefficients$Ap ,Bp% that are associ-
ated with each semilinear chain representation of the s
energy~see Fig. 1! in terms of the coefficients$aq ,bq% ob-
tained by performing a recursion on the extended latt
This ‘‘dressed’’ lattice is defined by a combination of th
real lattice on which the alloy is based plus the semilin
chains~in principle, one per orbital! attached to each site o
the lattice that represent the local self-energies. In the cas
a binary alloy, these relations become8

A05eS5cAeA1cBeB

B15U5AcAcB~eA2eB!

A15eAS5cBeA1cAeB

•••

Bp5bp21 , p>2,

Ap5ap21 , p>2 ~2.6!

if one assumes that at the end of the first step of recursion
coefficientsb1 anda1 are known~with a05eA or eB). If one
stops the procedure at a levelN of recursion, the system ha
a finite lengthN along the chains but, like for clusters, it
possible to extract valuable information on the asympto
properties of the ‘‘exact’’ infinite system provided that th
cluster is large enough.15,16 Real-space methods, and in pa
ticular the recursion method and other orthogonal poly
mial methods, are well adapted to solve this kind of proble

More precisely, if one is interested in the matrix eleme
of the Green’s operator̂nuGeff(z)um& within the CPA, then
one has exactly

^nuGeff~z!um&5^nuGS~z!um&, ~2.7!

where GS(z) is the Green’s operator associated with t
tight-binding HamiltonianHS that describes the ‘‘dressed
lattice defined above. Within the CPA, the average value
the operatord(E2Heff) can be expressed in terms of th
Green’s operatorGeff(z) according to

^d~E2Heff!&5
1

2ip
@Geff~E2 ih!2Geff~E1 ih!#,

~2.8!

whereih is a small positive imaginary part. Then, from th
expression, one deduces

^nu^d~E2Heff!&um&5^nud~E2HS!um&. ~2.9!

From the above equality, one has a way to calculate trans
properties if one assumes for now no contribution from
so-called vertex corrections, since one has only to evalu
the matrix elements of the operatord(E2Heff) by simply
performing calculations for a tight-binding system charact
ized by the extended HamiltonianHS.
07511
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C. Real-space calculation of conductivity

A major advantage of the above approach is that it m
the CPA Hamiltonian that is energy dependent onto
energy-independent tight-binding Hamiltonian. As a con
quence, all the methods that have been devised to calcu
matrix elements of the Green’s operator for a general tig
binding Hamiltonian are now applicable. For example, t
principle was used in Ref. 8 to calculate the band energy
the effective pair interactions that describe the energy of
chemically random state of an alloy and the ordering con
bution to the total energy, respectively. Here we show tha
can be used efficiently to calculate the matrix elements of
off-diagonal Green’s operator that are necessary for eval
ing the Kubo-Greenwood formula.

Neglecting vertex corrections, we aim at computi
Fxx(E,E8) which, from Eqs.~1.3! and ~2.9!, can be written
as

Fxx~E,E8!.TrL@vxd~E2HS!vxd~E82HS!#, ~2.10!

where the notation TrL means a partial trace only over th
sites that describe the real lattice, excluding those that m
up the semilinear chains for a complete description of
tight-binding HamiltonianHS. With this Hamiltonian, the
matrix elements of thex component of the velocity operato
are defined according to

vx,nm5
i

\
Hnm

S ~xm2xn! ~2.11!

wherexn is the x coordinate of the atom located at siten.
Note that this expression implies that the position operato
diagonalized by the localized orbital basis functions
though, in principle, this is only true in the case of an orth
normal basis of functions, as is assumed here, with z
overlap between orbitals located on neighboring sites.

The matrix element ofd(E2HS) can be calculated by the
method presented in Refs. 10 and 11. This method is ba
on a development in terms of orthogonal polynomials, a
starts from the general expression

d~E2H !5n~E!(
p

Pp~E!Pp~H !, ~2.12!

wheren(E) is a reference density of states that is nonzero
the whole spectrum of the given HamiltonianH, and the
Pp(E) are the orthogonal polynomials associated with
densityn(E). Introducing the above expression in Eq.~2.10!,
one obtains

Fxx~E,E8!5(
n

8 ñn~E!nn~E8!(
p,q

P̃p
n~E!Pq

n~E8!cpq
xx,n ,

~2.13!

where the sum over the site indexn is indicated with a prime
to mean that it is a restricted sum over only the sites of
real lattice~a restriction similar to the one that pertains to TL
discussed above!. Also, note that the tilde onñ(E) means
3-3
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P. E. A. TURCHI AND D. MAYOU PHYSICAL REVIEW B64 075113
that it is the density of states associated with the orthogo
polynomialP̃. The coefficientscpq

xx,n in the above expressio
are defined as

cpq
xx,n5^nuP̃p

n~HS!vxPq
n~HS!un&, ~2.14!

and are calculated as explained in Ref. 11, i.e.,

cpq
xx,n5 ñ$puvxuq%n , ~2.15!

where two sets of vectors have been defined according

up% ñ5 P̃p
n~HS!un&5Pp

n~HS!vxun&,

uq%n5Pq
n~HS!un&. ~2.16!

The orthogonal polynomials satisfy the three-term recurre
relation

HPp
n~H !5ap

nPp
n~H !1bp

nPp21
n ~H !1bp11

n Pp11
n ~H !,

~2.17!

where the coefficientsap
n andbp

n depend only on the chose
local density of statesnn(E) at siten, and are the coefficient
of the continued fraction of the Hilbert transform ofnn(E).
Hence one obtains similar recurrence relations for the
sets of vectors, i.e.,

HSup% ñ5ãp
nup% ñ1b̃p21

n up21% ñ1b̃p
nup11% ñ , ~2.18!

and, similarly,

HSuq%n5aq
nuq%n1bq21

n uq21%n1bq
nuq11%n , ~2.19!

with the initial conditions

u0% ñ5vxun&,

u0%n5un&. ~2.20!

This shows that for each inequivalent siten ~and, in the
general case, for each orbital! two recursions need to be pe
formed with the starting vectors given in Eq.~2.20!. Then the
known values of the coefficients (ãp

n ,b̃p
n) and (aq

n ,bq
n) can be

used to progressively calculate the vectorsup% ñ and uq%n ,
respectively. Finally, one can deduce the coefficientscpq

xx,n for
each lattice siten, and therefore the optical conductivity a
all frequencies according to Eq.~1.1!, and at any Fermi en
ergy as described in Ref. 11~see Appendixes A and B! with-
out further involved calculations. In the most general ca
i.e. multisite and mutiorbital, two sets of recursion per siten
and per orbitall have to be performed to evaluate one co
ponent of the conductivity tensor from the coefficients
recursion and thecpq

xx,nl , which are given by
07511
al

e

o

,

-
f

cpq
xx,nl5(

im
^nluvxPp

nl~HS!u im&^ imuvxPq
nl~HS!unl&

5
1

\2 (
im

S (
j ,n

~xn2xj !Hn j
S,ln^ j nuPp

nl~HS!u im& D
3S (

k,n
~xi2xk!Hik

S,mn^knuPq
nl~HS!unl& D , ~2.21!

where we made use of two closure relations and the de
tion of the velocity operator given by Eq.~2.11!, and the
summations overj andk are limited to the nearest neighbo
of n and i, respectively, which involve nonzero matrix ele
ments of the Hamiltonian.

D. Extension to alloys characterized with off-diagonal disorder

When the difference between the bandwidths of the al
components cannot be neglected, the hopping integralstnm
which enter Eq.~2.2! must depend on the site occupanc
Following the original idea of Shiba,17 one can write a rea-
sonable approximation for the hopping integrals as

tnm5antnm
0 am , ~2.22!

wheretnm
0 is a hopping integral that does not depend on

nature of the species located at sitesn andm, and reflects the
properties of the underlying ‘‘empty’’ lattice. The scala
quantityan , given by

an5(
i

pn
i a i , ~2.23!

takes the valueaA ~or aB) if site n is occupied by anA ~or a
B) species, sincepn

i is an occupation number whose defin
tion was given in Sec. II A. This so-called multiplicativ
off-diagonal disorder leads to the well-known geometric
average of a hopping integral coupling anA site to aB site
according totnm

AB5(tnm
AA tnm

BB)1/2.
Within Shiba’s approximation, one can show that the se

consistency condition given by Eq.~2.5! becomes18

(
i

c̃i

z2e i2a i
2Dn~z!

5
1

z2sn~z!2a2Dn~z!
5G̃n~z!

~2.24!

wherec̃i5cia i
2/a2, anda25( icia i

2 . Note that in Eq.~2.24!

we define an auxiliary Green’s functionG̃ that differs from
the average CPA Green’s function. Indeed, the physical p
jected density of states for speciesi located at siten is ob-
tained from the partial Green’s function according to

nn,i~E!52
I

p
lim

h→01

1

E1 ih2e i2a i
2Dn~E1 ih!

52
I

p
lim

h→01

Gn,i~E1 ih!, ~2.25!
3-4
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REAL-SPACE ELECTRONIC STRUCTURE APPROACH TO . . . PHYSICAL REVIEW B 64 075113
and the true average Green’s functionGn
eff(z) is merely

given byGn
eff(z)5( iciGn,i(z), which obviously differs from

G̃n(z).
It can be shown that the self-energy is now represented

a branched semilinear chain,18 and therefore the auxiliary
Green’s functionG̃n(z) is equivalent to the representatio
given in Fig. 2. The coefficients of this chain are now giv
by

Ã05 ẽS5 c̃AeA1 c̃BeB

B̃15Ũ5Ac̃Ac̃B~eA2eB!

Ã15 ẽAS5 c̃BeA1 c̃AeB

B̃25b1
AS5aAaBb1 /a

V5b1AcAcB~aA
22aB

2 !/a

•••

B̃p5bp21 , p>3,

Ãp5ap21 , p>2, ~2.26!

which are identical to the set of equations~2.6! when aA
5aB5a.

Going back to the definition of the functionF(E,E8),
given by Eq.~2.10!, one has to evaluate the following qua
tity:

F~z!5TrL^vxG~z!vxG~z!&. ~2.27!

Keeping in mind the definition of the restricted trace and t
of the velocity operator given by Eq.~2.11!, this function is
proportional to

FIG. 2. Schematic representation of the auxiliary Green’s fu

tion G̃(z) discussed in the text in the case of a binary alloy w
diagonal and off-diagonal disorder described within the CPA.
07511
y

t
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nklm

~xn2xk!tnk^kuG~z!u l &~xl2xm!t lm^muG~z!un&L ,

~2.28!

after insertion of two closure relations of the typ
(kuk&^ku5I , where I is the identity operator in Eq.~2.27!.
Within Shiba’s approximation, this last expression is rewr
ten as

(
nklm

~xn2xk!~xl2xm!^tnk
0 akGkl~z!a l t lm

0 amGmn~z!an&.

~2.29!

It is important to note that since the orbitals that are ac
upon by the velocity operator are centered on different s
of the lattice, site occupancies become uncorrelated. Th
the very same property that characterizes Shiba’s approx
tion, since the random variables that describe off-diago
disorder are the occupation numberspn

i ’s which are site vari-
ables, and hence local.

With the definition ofG̃ extended to off-diagonal in-site
elements given bŷakGkla l&5G̃kl , Eq. ~2.29! becomes

(
nklm

~xn2xk!~xl2xm!tnk
0 G̃kl~z!t lm

0 G̃mn~z! ~2.30!

This last expression shows that, within Shiba’s approxim
tion and the neglect of the vertex corrections,F(E,E8) is
given in terms of the auxiliary Green’s functionG̃ and not
the average Green’s functionGeff. This makes the implemen
tation of the recursion scheme relevant and straightforwa

III. APPLICATIONS

In this section we apply the method outlined above to
simple single-band model. For the sake of clarity we co
sider the case where all sites are equivalent, and show re
for the densities of states, and for the dc and ac conduc
ties. At the end of this section we also discuss some techn
aspects of the method, and present an application to the
tiorbital case. In all the computations we use as a refere
density of statesn(E) the average CPA density with th
coefficientsap andbp calculated as explained in Refs. 7 an
8. The calculations have been performed up top545, and
this ensures an excellent convergence of all the calcula
quantities as will be shown.

A. Model

For the present purpose, we first consider a binary a
based on a simple cubic lattice with ones orbital per site
~single-band model!. Since all sites are equivalent, we wi
consider the diagonal disorder in its simplest form, with t
on-site energies taking only two valueseA or eB . The hop-
ping integralt, which is nonzero between nearest neighb
only, will be taken as constant throughout (t51/6, so that
half the bandwidth of the density of states for the pure me
w is equal to 1!. Finally, if not specified otherwise, the con
centrations of the two chemical species are equal to 0.5,
the number of exact steps of recursion is equal to 45.

-

3-5
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B. Density of states

In Fig. 3 we show the total density of states for two valu
of the parameterDe5eA2eB ~with eA52eB) equal to 2
and 4, which is a measure of the amplitude of the diago
disorder. ForDe54, the difference between the two on-si
energies is sufficient to create a pseudogap in the middl
the density of states.

C. dc Conductivity

In Fig. 4 we report the normalized dc conductivity vers
Fermi energy curves forDe50.5 andcA50.1, 0.4. These
results are in excellent agreement with those of Levinet al.19

~see their Fig. 6 for comparison!, thus proving the validity of
the real-space method for evaluating the conductivity.

Figure 5 displays the dc conductivity~i.e., conductivity at
zero frequency! as a function of the Fermi energyEF . A
decrease of the conductivity in the middle of the spectrum
noticeable even forDe52, and becomes more pronounc
as the diagonal disorder parameter increases. The result
be qualitatively interpreted as follows. The dc conductivity

FIG. 3. Density of states forDe52 ~solid line! and 4~dashed
line! calculated with 45 exact levels of continued fraction, for
model alloy based on a simple cubic lattice.

FIG. 4. Normalized dc conductivity as a function of the Fer
energy for De50.5 and cA50.1 ~solid curve! and 0.4 ~dashed
curve!, calculated with 45 exact levels of continued fraction, fo
model alloy based on a simple cubic lattice.
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equal, according to Einstein’s formula, tos(EF ,v50)
5e2n(EF)D(EF), whereD(EF) is the so-called diffusivity
defined at the Fermi energy. In the middle of the spectru
both the densities of statesn(EF) and D(EF) are reduced,
thus leading to a more pronounced effect on the conducti
than on the density of states alone.

FIG. 5. dc conductivity as a function of the Fermi energy f
De52 ~solid line! and 4~dashed line!, associated with its respec
tive density of states displayed in Fig. 3.

FIG. 6. ac conductivity as a function of frequency,\v for dif-
ferent values of the Fermi energy~0–5!, and forDe52 ~a! and 4
~b!, associated with its respective density of states displayed
Fig. 3.
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D. ac Conductivity

Figure 6 represents the real~dissipative! part of the ac
conductivitysxx(EF ,v), as a function of frequency for vari
ous values of the Fermi energy and for two diagonal disor
parameters. ForDe52, one observes essentially a Drud
like peak ~close to a Lorentzian shape with a full width
half maximum proportional to\t21, wheret is the transport
relaxation time! as expected for electrons in the weak sc
tering limit. Conversely, forDe54, there is a hump in the
evolution of the ac conductivity with a frequency arou
\v54, and forEF sufficiently close to the middle of the
spectrum. This hump can be attributed to interband tra
tions between bands associated with speciesA and B, and
which are separated byDe54. This hump will be observed
if states below the middle of the spectrum are occupied,
those above it are not, which implies that the Fermi energ
not too far from the center of the spectrum.

E. Convergence of the expansion ofF xx„E,E8…

It is interesting to consider some typical behavior of t
two recursion vectorsup% ñ and uq%n , and of the coefficients
cpq

xx,n associated with a given siten from which the recursion
process starts~in the following, when no ambiguity exists
the indexn will be ignored, therefore implying that the la
tice on which the alloy is based is periodic!. These charac-
teristics will help to understand how the expansion
Fxx(E,E8), made of a double series, converges.

First let us consider the recursion vectorsuq%n . Note that
in the simple example selected here, these vectors are i
pendent ofn, apart from a translation in real space, and
calculated by using the reference densityn(E) equal to the
average CPA density of states shown in Fig. 3.
construction,8 the vectors are calculated for a system wh
semilinear chains are attached to each site of the simple
bic lattice, and have nonzero components on the real la
~first site of each semilinear chain! and also along the chains
As explained in Sec. II B, these chains simulate the effec
the self-energiessn(z). The imaginary part of the self
energies is related to the finite lifetimet of the states, or
equivalently to the mean free pathj of the electrons (j
5vt, wherev is a characteristic velocity for the electrons
the perfect structure!. In the tight-binding representation o
the CPA medium, this means that, after a distanced.j, any
vector will spread essentially on the chains. Thus we exp
as a rule that the recursion vectorsup% ñ anduq%n have a small
vanishing weight in real space after a number of steps of
recursion process, such that they spread on a distance gr
than a few timesj. This is shown in Fig. 7, where the norm
of the recursion vectoruq%n is plotted versus the number o
steps of recursion for different values of the diagonal dis
der parameter. Hence we conclude from this analysis th
is sufficient to have a real-space cluster of extension equ
a few j in order to have an accurate estimate of the cond
tivity.

The behavior of the recursion vectors implies that the
efficients cpq

xx that are defined through scalar products
these vectors also decrease withp andq. Figure 8 shows the
behavior of the diagonal termscpp

xx as a function ofp. As
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expected, these coefficients tend more rapidly toward z
when the diagonal disorder increases. There is also a sim
sum rule that can be checked out. Indeed, by integrating
~2.13! over the energy, for the integrated diffusivity one o
tains

E dE Dxx~E!5E dE
sxx~E!

n~E!
5(

p
cpp

xx , ~3.1!

where the orthonormality relation between the polynomia

E dE n~E!PpPq5dp,q , ~3.2!

FIG. 7. Total weight of the norm of the recursion vectoruq%n in
real space~i.e., on the initial state of the semilinear chains! as a
function of the stepq of the recursion procedure for the simp
cubic lattice model andDe52, 4, and 6. Note that when disorde
increases, the vectors spread more and more rapidly in the ch
as expected due to the shortening of the lifetimet and mean free
pathj.

FIG. 8. Diagonal elementscpp
xx as a function ofp for several

diagonal disorders (De52, 3, and 4!. The coefficients decreas
rapidly with p, and the convergence is more rapidly achieved wh
the diagonal disorder increases.
3-7
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has been used, withd being the usual Kronecker symbol. I
the weak-scattering limit, the density of states tends tow
the zero-disorder limit, whereas the conductivitysxx(E), at a
given Fermi energy, scales like (t/De)2. Hence, in the weak-
scattering limit, we expect

(
p

cpp
xx}S t

De D 2

. ~3.3!

Figure 9 shows a plot of(pcpp
xx versus (t/De)2, which con-

firms this prediction down to a small value of (t/De)2. Fi-
nally, the off-diagonal elements ofcpq

xx tend rapidly toward
zero, as illustrated in Fig. 10, and more so when the diago
disorder increases. These properties can be advantage
invoked for practical calculations to assign preasympto
values to these coefficients without having to calculate th
in the same way, the behavior of the coefficients of the c
tinued fraction (ap ,bp) leads to a well-defined analytic ex
pression for the termination of the continued fraction th
expresses the one-electron Green’s function.15,16

FIG. 9. Variation of(pcpp
xx with a measure of diagonal disorde

As explained in the text, one expects that, in the weak scatte
limit, this sum is proportional to (t/De)2. Actually this scaling is
well satisfied for a broad range of diagonal disorderDe.

FIG. 10. Variation of typical normalized off-diagonal terms
cp1q,p

xx /cpp (p52 and 3! with q, showing that they tend quickly
toward zero withp andq, here forDe54.
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F. Extension tod-band model

In this section we show the applicability of the method
the multiorbital case and the treatment of off-diagonal dis
der within the Shiba approximation. We consider the we
documented case of fcc-based Cu-Pd described here w
d-band tight-binding model that makes use of the Slat
Koster parametrization given in Ref. 20 for comparison p
poses. That is, the nonzero hopping integrals between
nearest neighbors on the fcc lattice take the values,dds5
216.20 eV,ddp518.75 eV, andddd50; the on-site ener-
gies areed

Cu520.15 eV anded
Pd50 eV; and the off-diagona

disorder parameters areaCu
2 50.021145 andaPd

2 50.040194.
Figure 11~a! displays the densities of states computed with
the CPA without and with off-diagonal disorder account
for. Note that in the case of diagonal disorder only, the h
ping integrals for like and unlike pairs of atoms have be
multiplied by the same scalar given by the concentrat
weighted average of thea2’s. All calculations have been
performed up to 30 levels of continued fraction. For near
elements of the periodic table, off-diagonal disorder can
be ignored, and accounting for this effect leads to densi
of states similar to those obtained withinab initio ap-
proaches, such as the tight-binding linear-muffin-tin-orbi
method in the present case; see Fig. 11~a!, and Fig. 6

g

FIG. 11. Densities of states~a! and dc conductivities~b! vs
energy in the case of a fcc-based Cu50Pd50 alloy described with a
d-band model that accounts for diagonal disorder only~dotted
curve!, and diagonal and off-diagonal disorders~solid curve!.
3-8
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of Ref. 20 for comparison. The impact of off-diagonal diso
der on transport is obviously reflected in the associated
conductivity versus Fermi energy, as seen in Fig. 11~b!. Al-
though the tight-binding parametrization leads to the ri
order of magnitude for the dc conductivity, note that thes-d
hybridization and the vertex contributions to transport sho
be included for a more accurate evaluation of conductivi

IV. CONCLUSION

We have presented a methodology to calculate the op
conductivity of an alloy for which chemical randomness
treated within the CPA. In this approach calculations are p
formed entirely in real space, with an effective tight-bindi
Hamiltonian. The CPA self-energy is exactly described
attaching a semilinear chain to each orbital centered on e
lattice site. Since the resulting Hamiltonian is energy ind
pendent and is of a tight-binding form, one can apply to
methods developed for solving tight-binding problems.
particular, methods based on orthogonal polynomials are
plicable, and allow an efficient calculation of the conduct
ity expressed by the Kubo-Greenwood formula as a func
of energy and frequency. As shown in this study the meth
is well suited for studying transport in alloys characteriz
by a short electron mean free pathj, since the typical cluste
s

ia
h,

s-
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size required to perform the recursions with sufficient ac
racy is a few timesj. We found that the method well repro
duces departures from the Drude-like behavior of the opt
conductivity caused by interband transitions, if any, as
served experimentally in some alloy cases. We have sh
that the approach can be easily extended to account for
diagonal disorder effects within Shiba’s approximation17

Additional extensions that include a more general treatm
of off-diagonal disorder such as the one proposed by Bla
manet al.,21 as well as of vertex corrections to transport in
way strictly equivalent to the one developed within t
T-matrix formalism of the CPA,3–5 are possible, and will be
presented in a forthcoming publication.18 Finally, it should
be emphasized that the real-space approach described
provides a direct estimate of the projected components of
tensor of conductivity on each site of a lattice, periodic
not.
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