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Symmetry-adapted excited states for thel' ;,®@hy Jahn-Teller system
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Jahn-TellerJT) systems typically contain a set of equivalent-energy wells in the lowest adiabatic potential-
energy surfacéAPES. Quantum-mechanical tunneling between these wills dynamic JT effegtmust be
allowed for by taking appropriate symmetrized combinations of oscillator-type states associated with the wells.
It is important to be able to describe the excited states of such systems for a number of reasons. One particular
reason is that they are required for the calculation of second-order vibronic reduction factors, which in turn are
useful for modeling experimental data using effective Hamiltonians. In this paper, projection-operator tech-
nigues are used to obtain general expressions for the symmetry-adapted excited states of the icdsghedral
®hgy JT system for the case Bfsq minima in the APES. Analytical expressions for the states and their energies
for one-phonon excitation are given explicitly. The energies of a selection of states with two-phonon excita-
tions are also obtained and plotted. The results obtained in this paper are applicable ¢g tteoecule.

DOI: 10.1103/PhysRevB.64.075102 PACS nunider71.70.Ej, 71.38-k, 71.20.Tx

I. INTRODUCTION equivalent lowest-energy wells. This restores the icosahedral
symmetry of the system, resulting inTg,, ground state. At
The electron-phonon interaction plays an important rolefirst sight, the well problem may appear more complicated
in unraveling the properties of ionizedsgmolecules in both  than the linear case due to the presence of higher-order
the isolated molecular and solid forms. In the past few yeargerms. However, considerable advantages arise from only
many papers ' have been published on the effects of thisneeding to consider six or ten distinct points and from not
interaction in icosahedral systems in order to provide modelfaving to evaluate multidimensional integrals when deter-
for real Go molecules. These and other publications are dismining overlap factors and energy matrix elements.
cussed in the book of Chancey and O’Briérisrom a theo- Dunn and Batésgave a detailed analytical treatment of
retical point of view, icosahedral systems are of much interthe ground state of th&;,®h, JT system when quadratic
est due to the appearance of threefold, fourfold, and fivefoléoupling terms are included in the vibronic Hamiltonian.
irreducible representatiori@reps). The lowest unoccupied Further studie$'*® have described the effects of anisotropy
molecular orbitalT,, of the free Gy molecule is threefold in the potential wells and its effect on the ground states.
orbitally degenerate. Therefore, Ta,®hy Jahn-Teller(JT)  Anisotropy alters the shape of the minima and correspond-
interaction with the fivefold degenerate vibrational mollgs  ingly removes some of the degeneracies associated with the
will be dominant in the negatively charged statg,C. Thus  phonon frequencie¥:'® This is particularly important for
this JT system is the key to the understanding of the elecsystems, such a$,;,®hg, in which wells are only intro-
tronic structure of this real system. duced by higher-order terms. Not only will the barriers be
When aT,, orbital state couples linearly to a vibrational shallower in the directiais) around the well, but the fre-
hy mode, the lowest adiabatic potential-energy surfacejuencies in these directions will be much lower than in the
(APES is found to consist of a minimum-energy trough, perpendicular directions. The effect of anisotropy in icosahe-
having an accidental symmetry higher than icosahedral. Inlral systems has been further discussed by Chancey and
this case, states of the system must take account of vibratior®'Brien.*t
across the trough and rotations around the trough. All points JT effects in molecules and solids are often observed
at the bottom of the trough are equivalent, so the total statethrough an analysis of the parameters appearing in effective
must involve an integral over all these points. In real sysHamiltonians'®~*® Effective Hamiltonian approaches pro-
tems, higher-order terms such as quadratic coupling wilvide a simple means of modeling experimental data as the
warp the trough. As long as the higher-order terms are largeffect of the vibronic coupling is “transferred” into simple
enough, this will generate wells in the APES. Rather thamumerical factors multiplying electronic perturbations. At
including the continuum of points at the bottom of the one level, these factors can be treated simply as fitting pa-
trough, only the points at the bottom of the wells then needameters. However, this view hides much of the underlying
be included. For the;,®hy problem, there are either ten physics as it is not possible then to know whether the values
wells of D3g symmetry or six wells oDgy symmetry, de- obtained for the parameters have any physical significance.
pending upon the strengths of the coupling constants. In inAt a deeper level, the numerical factors can be described in
finite coupling, states in these wells could be used as statdsrms of vibronic(or Ham reduction factorsRFs. Calcula-
of the system as a whole. This situation is often referred to asons can be made relating all of the R@sd hence all of the
the static JT effect. However, in finite coupling, dynamicalfitting parametersto a smaller set of variables, namely the
tunneling between the wells will take place. Mathematically,vibronic coupling strengits) and vibrational frequencies.
this can be accounted for by taking appropriate symmetrized The effect of an electronic perturbation can be included to
linear combinations of the ground states in each of thdirst or second order in perturbation theory, and the corre-
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sponding numerical factors are known as first- and secondstants[, is the unit operator and, within the pure electronic
order RFs, respectively. If the vibronic coupling is strong, the

first-order RFs can be very small and the second-order tern%als'S states, y, andz of Ty, theLy; are orbital operators
then dominate the effective Hamiltonidh'® Hence it is im-  that can be expressed in matrix form,
portant to be able to calculate the magnitudes of the second-
order RFs as well as the first-order RS! First-order RFs 6t 0 0
are relatively simple to calculat®. However, second-order 1 /3
RFs are much more difficult to evaluate as they involve cou- ng—\[g
pling to an infinite set of excited vibronic states. Symmetry-
adapted excited vibronic states of tfig,®hy JT system
appropriate to the dynamical JT effect have not yet been
investigated. Although it is possible to make an estimate of #? 0 0
the values of second-order RFs by simply taking the infinite- 1 1
coupling well states as the excited states, symmetry-adapted [ HE__\/:
excited states and their energies are needed in order to get 2 V5
more accurate values for the second-order RFs.

The aim of this paper is to derive analytical expressions
for the excited states of th&,,®hy JT system and their
corresponding energies, including anisotropic effects. The

number of excited states of a given symme(iryep.) asso- [ = \/E 0 0 1 3)
ciated with any numbeN of phonon excitations is also use- Ha 10 0 0 '

ful information. These results are derived using group-

theoretical methods. Explicit analytical results will be given

for states with one-phonon excitation based upon Dhag 0 0 1

minima. Some states with two-phonon excitations are also
calculated and the results are given graphically. Due to the
complicated nature of the results, analytical expressions are
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not given in this case. The method given can be extended to 1
states with higher numbers of phonon excitations, and also to
states associated with tii®;4 minima.

0

II. THE VIBRONIC HAMILTONIAN AND THE INFINITE
COUPLING EXCITED STATES
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The total Hamiltonian for thé’1u®h JT system includ-
ing quadratic terms can be written®as
where ¢=1(1+/5) is the golden mean. The symmetrized

H="Hyip+Hy+Hz+Ha, (1)  displacement coordinates are
where the vibrational Hamiltoniai,;,, the linear interac-
tion Hamiltonian,, and the two quadratic coupling Hamil- 1 3 .
toniansH, and 5 are given by As=\5QQc+ \5(Qs—Qs5),
1 =5
=3 2 —’+/m2Q,)LA1 1
A= \/;@5— QZ+Qi+QE-2Q)),
H1:V1§j: QjI:Hja 2
1
A= \[5< V3Q+QQu, @
szvzz AjLnj,
V3-8
H3:V32 BJLHJ! A5_ E(_ 3Q0+Q6)Q5!
]
and whereu is the reduced mass corresponding to vibra-
tional modeQ);. The indexj is taken over all components As= \/EQEQG’

(0, €, 4, 5, and 6 of the hy phonon modesV, is the linear
coupling constant and,,V; are the quadratic coupling con- and
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3 1 where ", for example, denotes,-phonon excitations of the
By= g(Q%-QE)— ﬂ(Qfﬁ Q2-2Q)), Qy vibrational hy mode in the wellk and n,+n +n,+ns
+ne= N is the total number of the phonon excitations in the
3 1 system. This will be written in the shorthand form
B.=— \[EQoQﬁ \[g(Qi_Qé)’ |®({n;})), where{n;} is taken to mean dependence upon

all phonon excitation numbers; for j={6,¢,4,5,6.
As it is known that the lowest APES contains a trough in
1 the limit of weak quadratic coupling, the wells will be highly
Bs=— \[6[@0_ \/§QE)Q4+2‘/§Q5Q6]' ) anisotropic, with the frequencies of vibration in the direc-
tions that correspond to moving around the trough in the
1 linear coupling limit being much lower than those in the
Bs=— \[E[(Q(pL V3Q,)0Q5+2420Q,Q4], perpendicular directions. This anisotropy splits themode
into a singleta; and two doublete;y and e,;. The new
3 modes for welk are a linear combination of the components
N el _ 0, €, 4, 5, and 6 of the isotropib, mode. As the directions
Be \/;(Q‘)Qe \/§Q4Q5)' around the trough are different ?or each wkllthe compo-
nents of thee,;; ande,; modes are different for each well.
They will be labeled 6%, €} and{ 6%, €}, respectively. The
appropriate combinations can be generated from the isotropic
_ hy mode using so-calle8 matrices that diagonalize the cur-
A,:E ahiQmQn vature matrix local to each minima. The anisotropic modes
mn for each well can be written down in terms of the compo-
(6) nents of these matrices, so that

As the A; and B; are quadratic in the&);’s, they can be
written in the form

Bj:mE,n b#anan, ) ‘-
=2 sfi, ©)
where the sum is ovem,n}={6,¢,4,5,§. !
Minima of Dsq (pentagonalor D3y (trigona) symmetry  where/ can be taken a&a, 6 ,€;,6,,€,} andj is summed
generated by the quadratic coupling teffriS can be ob-  overg, ¢, 4, 5, and 6. The comple@matrices can be found
tained following the unitary transformation and energy-in Ref. 12 forDs4 wells and in Ref. 26 foD 4 wells. The

minimization method:"* The unitary transformatiot has  |ocalized vibronic excited states for wédlequivalent to Eq.
the effect of displacing the origin of phonon coordinates(g) put including anisotropy become

from Qi to (Qx— o), and the energy minimization fixes
the parametersy, to the well positions. As the symmetry- |®,(n,n, n.nyn.))

. . . . 1 1 Y2 %2
adapted states are rather complicated, this paper is restricted
to the cqn3|derat|on of the 54 minima only, although similar =|X®": (ak)"a( ali)ngl( eli)nél( eg)ngz( E;)n@, (10)
calculations can also readily be undertaken for g,
minima. The sixDsq minima will be labeledA to F. The  which will be written in the shortened forrd,({n})),
ground states of the transformed Hamiltonian can be writtenvhere then, refer to the symmetrized phonon excitations
in the form|X®;0), wherex is the electronic state in well n,, n,, etc. It can be seen that the local modes depend upon
k and “0” represents zero-phonon excitations. The corre-the wellk in a rather complicated manner.

sponding ground stateX(®¥';0) appropriate to the untrans-
formed Hamiltonian is obtained by multiplying(?;0) by lIl. SYMMETRY-ADAPTED EXCITED STATES
the shift transformation operattr=U, for well k, where o
A. Projection operators

In finite coupling, the vibronic well state€l0) are not
good eigenstates of the total Hamiltonian of the system as
they are neither mutually orthogonal nor do they reflect the
where theCJ(k), which are directly related to the well posi- actual icosahedral symmetry of the system. To overcome
tions, can be found in Ref. 6. Although there are no phononhese difficulties, we look for those linear combinations of
excitations contained explicitly in the untransformed groundthe untransformed vibronic states that have a specified sym-
states, the presence of phonon creation operators iff7q. metry withinl,, and are such that states of different symme-
implicitly includes phonon excitations. This automatically tries are orthogonal. This can be achieved using projection-
gives the untransformed states their required vibronic natureperator technique;?® as used previously for the ground

If each well is considered to be isotropic, with each com-state§ of the T@ h system. If an arbitrary well state is acted
ponent of theny mode having frequencw, the vibronic  upon by a projection operator of a specific irrep., a
excited states associated with each well can be expressed ssainmetry-adapted state will be generated if the chosen well

state is a component of the symmetrized state. If it is not, the
|®(ngnngnsng))=|XK'; gnoeneama5"s6s)  (8)  result will be zero.

uk=exp[§_) cM(b;—b)) |, @)
]
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TABLE I. The coefficientsb*' of the excited state in Eq11).  atic method is required for both deriving the excited states
and for checking their form. In particular, because the local

k i=1 i=2 i=3 i=4 i=5 vibrational modes are defined in a different manner for each

A 2+ ém ptom  p(l+m) —d—pm —p—2m well, we need_to decompose thenj into a c_om_mon_basis. The
B T e general vibrational modg* containingn, excitations in well

B p(=1+m) 2=¢m —p-¢m ftum - $+2m k is expanded as a binomial series in the form

C 1 $(l+m) —¢—m m —1—¢m

D —¢—m 1 —¢—m m ¢(1+m)

E  1+um —um w+m —1-m —u (o= > ng[ngvig'jg'kgllg]' (12

F mm " 1+m —pw—m —1—pum kg

Wherel"'zi[ng Jig.j¢.Kesl ] is afunction determined from the

L . ) ._projection operators. The indicgs;,j,,k;,l,} are summed
The application of projection operators to the vibronic ¢om 0o to{n,,i;.j; .k}, respectively.

excited states in an icosahedral system is far more compli- Suppose that is a sequence number distinguishing dif-

cated than that in cubic systems where an excitation in 0Ng,rent excited states. The most general form for the nonzero
well transforms in a simple manner into an excitation 'nsymmetry—adapted excited states having symmétryith

another well under t_he symmelry operations OT t_he Cub'ct:omponents)/ is then written in terms of nonsymmetrized
group, and much tedious work is required. We will 'IIUStratePhonon states as

the method by applying projection operators composed o
the 60 rotational elements of thlg, group to the state . . »
|®A({n,})) obtained from Eq(10) for well k=A. We find [, "({n ) =N, ({nz}) Ek a | P({nh), (13
that when the matriss, given in Ref. 29 is used, the result- {kongt
ant states can be written in the form of eittén({n,})) or
m|®}({n.})), wherem=(—1)"%" ", is a phase factor arid
is an index arising from the application of the projection
operatorsi can take values from 1 to 5, reflecting the five- 5 )
dimensional nature of the vibrations. The phase factor af:k}:_z bf‘b;:k}. (14
arises from the symmetry of the mati84 . Note that differ- 1=t !
ent phase factors may be obtain.ed !f an alternative definiti.oQ is summed over all six We"ml;: N—3,i,, and the values
g gﬁflesr;:te\?véﬁg_d when the projection operators are appllefjor nl; _nlfu né, andn'g are given by sums over of i, (i,
o AT, =0, (=Ko, (kg—1,), andl, respectively. The constants

For the projection operator df, Symmetryp,;, We can  pki gre g generalized form of tHe' given in Table | for the

write the excited state generated by application to the statg. state, and are determined by the projection operators.

whereNE({n{}) is a normalization constadepending upon
all five values ofn,) and where

|Pa({n.})) in the form b?r']k} is the coefficient for that particular combination mf
1 i phcj)nons in welk, given by
[wT(inh)y= 25 2 B0, @Ay
| | b =T1 X TSIngisickeld, (15
where theb"' are coefficients. These include a part from the % ikl y GRelene

%%Ecﬁloirr; ?eeﬁ]rgtg;n:tzﬂg ;h:e:ﬁ 1cofﬁécfgé?fica;;itgglesno Ir‘Where the indicesmﬁ-< are each taken from zero d and are

include a geometrical factor that reflects the way the vibronicSUbJeCt fo the conditions given above. . .
The general results obtained are necessarily very compli-

states are mixed together, which is absorbed through the ir}:—ated However. thev are easier to understand when per-
troduction of the index labelin Eq. (10). For T, symmetry, forméd explicitl ’for yiven cases. For example, for the cage
we have nine projection operators that can be classified intg phcitly Tor g : pe,

three sets corresponding to the three components of the Of a single-phonon excitation, there'are 60 prolectlo.n opera-
irep tors of groupl to operate on the five nonsymmetric one-

Although it is clear from Eq(10) and Table | that the phonor_1 excited states Iocate_d in a given well. These opera-
excited states are very complicated, nevertheless the norméiggi?e%w;;;gg;g’%';j?r:%l'ﬂ%eggggfnnl}cshygmeeggeilg?ﬁid
ization and calculation of the energies can still be carried out ' ' 9 '

analytically. In the following and to retain generality, all pos- r — T

sible phonon excitations will be considered first. This will |47+(01000)=[4"+(00100), (16)
make it easier to extend the method to other JT systems at a | T%(00010)=| 4 +(00003).

later date. The specific case of just one-phonon excitation

will then be taken as an illustrative example. These equivalences are expected because positiprs

For cubic systems, it was possible to apply projectionboth havee,;y symmetry and positions,, e, both havee,,
operators to excited well states and determine a complete segmmetry, and hence the members of each pair cannot be
of excited states “by inspection.” However, as the results aralistinguished. Nevertheless, this forms a useful check on the
much more complicated in icosahedral symmetry, a systenealculations. This important result can be extendedNto
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phonons such that all the independent states must satisfysing results from the group theory of the symmetric group,
inequalities such as, <n. andn, <n. to avoid over- as given in Hammermesh, for exampled symmetrical ten-
counting and specifying states that are not linearly indepensor of rankN acting on a vector witlp components has
dent. dimension N+p—1)!/N!(p—1)!. For our problem of
h-type phononsp=5. Also, we have six wells and thus an
B. The normalization factors orbital degeneracy of 6. Therefore, the total number of states

IS
The normalization COﬂStamF n for N-phonon exci-
v 14 p

tations can now be evaluated. After much algebra, we find 1
that Z(N+1)(N+2)(N+3)(N+4). (23

-12

NE({”é}): E; | a{v:k}a{vr:!}Tgkl)G(kl) ., (@7 However, it is also useful to divide these total numbers of
gm0 states into the number of possible excited states of a given
where7{=(x®|x"y is the overlap between the electronic Symmetry. This is a much more complicated group-
statesx® andX®, nk andn' are summed ove#, e, 4, 5, theoretical calculation, involving finding the number of ir-
and 6, whilek and| aJre surr%med over the sBisy wells, reps. that are generated from the reducible representations
constructed from the infinite coupling excited states. The ba-
sic method has been applied previouslyTtpsymmetry?’+32

G(kl)zsu(kl)H Fj(kl)(n}( :”Ij (18) but the results need to be generalized to apply to the fourfold
. and fivefold degeneracies that occurl jpsymmetry.
is the matrix element between the stwéléén'i. ..} for well The infinite coupling vibronic excited states form a reduc-
k and an equivalent state for a wélbf the operatotJfu,,  ible representation that can be written as the direct product of
and the orbital and phonon representations,
° (— 1)p(DJ(kl))2p+a_b A= Aorbi® AR, (24

F((a,b)=\alb! .
(&b p—max(ob—a) P!(P—b+a)!(b—p)! ) . ,
(19) where A" =A,®A,®--- to N factors is the symmetrical

D) - ~ product® and the subscriptH or h) denotes the type of
S is the phonon overlap between any two wells, whichymgges. Explicitly,A (), ,.Can be written as the direct addi-
can be evaluated using techniques described in Ref. 25, withyy of the irrepsI",, in the form
the result m
(N) —n(N) (N) (N)
1 Areducible_ ny F169nl" F2®"'®nr r,, (25)
ka'>=<0|UIu||0>=exr{—§ 2 (Df“’)?}, (20 1 i !
' wheren(FN) is an integer expressing the number of times the
where DM=c®—c() & substituting appropriate values : " A (N) e -
: o _ fl . i 41 forkel wh irep. T, appears INA feducible Which is equivalent to the
givesS;"/=S§, for k#I an ork=I, where number of multiplets of symmetnd”, that occur for
B'K,\2 N-phonon excitations. According to group theon{) can
"
S,—ex;{ 2( ) }

(21)  be calculated using the reduction formula

hw
whereB’ =6/(5—42V,/nw? andK;= -V VA2 pw. o 1 i )
For one phonon, the excited states and the normalization T h RZ XrM(R)Xreduciblé R), (26)
€lh

factors simplify considerably from the general expressions
given in Eq.(17), with the normalization factor for theth

whereh (= 60) is the order of the group,, R is the rota-
vibronic excited statéwith one-phonon excitatiorgiven by ( ) group,

tional operator ofl,, XFM(R) is the character of the group

-12 elementr, andx M), R) is the character oA (M), e The
r _ kl) o(kl) i kmy, | ki Kl d reducibl > - reducible:
Nv({ng})—[k% ] 760800} (Sma— DD ))} : latter can be calculated using the relation
@2 (N) (N)
Xreducibid R) = Xorit( R) x (R), (27

Although the notation used here is slightly different, these

expressions are found to agree with those given in Ref. 29 (N) . .
. - ; Where R) is the character of the symmetrical product
once they are evaluatefNote that in Ref. 29, thaVa{? in Xi (R) y P

O ik AN and yomi(R) is the character of\ o,;. As the orbital
Eq. (4.2 should be replaced by!)a}%aj"ai™ ] electronic states localized in tHas4 wells form reducible
representations of; andT, symmetriesA ,,,;; Should be the
direct addition ofT; andT,. Thus the charactepg,,i(R) for
It is relatively simple to determine the total number of the rotational operationR=C,, C,, Cj, Cs, andcé, re-
excited states with a given number of phonon excitatidns spectively, of thd, group are easily found from the charac-

C. The number of excited states
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TABLE II. The number of multiplets\(’) of a given symmetry

I' and number of phonon excitatiohs : [Hka]ZUk; ﬁ“’cj(k)[cj(k)_(b;urbj)]_ZKltHJCJ(k)
(N) idi
ny Validity range . ) )
+2, Lyyj(Kpal,,+Ksbl ){2cic®
A, (N=1)(N+1)(N+3)(N+7)/240 N odd 24 Lrj(KaBmn+Kabmn {2Cm Cy
(N=21)(N+2)(N+4)(N+6)/240 N even
(N+5)(N3+5N2—5N+15)/240 N/5 odd —[Cc®(b! +by)+Cl(bl+by)1}|, (29)
N(NZ3+10N?+ 20N —40)/240 N/5 even
, whereK =AVs/2pow (s=2,3) and{j,m,n} are all summed
Ti=To (N+1)(N+3)(N*+6N+13)/80 N odd over{#,¢,4,5,§. Finally, after much algebraic work, the gen-
(N+2)(N+4)(N*+4N+8)/80 N even eral expression for the energy of the vibronic symmetry-
(N+5)(N*+5N?+15N—5)/80+1  N/5 odd adapted states fd¥-phonon excitations is found to be
N(N3+ 10N2+ 40N+ 80)/80+ 1 N/5 even
E]“ :NF 2 vk vl
G, N(N+5)(N?+ 5N+ 10)/60 N/5 integer v =N, ({nz}) {k% o BenlySenl)
(N+1)(N+2)(N+3)(N+4)/60 All otherN B
1
I K[ T ol ~()2
H, (N+1)2(N+3)(N+5)/48 N odd XZ [G( WMo 5+n+C| )
N(N+2)(N+4)%/48 N even
2K, CO 2| 1 GH (K 7K 0 7D )

ter table of thd, group, givingxomi( R)=6, —2, 0, 1, and

1, respectively. After much algebra and by carefully studying + 2 Ti(kl)(Kzaianr Ksbimn)[Rm)
the irreps. ofH symmetry, a general expression for the char- mn

acter)(,gN)(R) has been obtained in terms of the recurrence

formula, +4G(k|)Cg])Cg)—2(C%|)G$|)+C%)ngl))]] ’
(N) 1 % (N—m) (30
R)=— R™ “(R), 28 A
X (RI= g 2 xn(ROx(R) 28 with 7{)=(X®|[,;|XM). The sum indices are as for the

normalization factorsG{" and R() are matrix elements
wherex(?)(R) =1 has been presumed. It should be noted thaheween the stateg™e™. - -) for well k and an equivalent
this formula is valid not only for the irreps. &1 symmetry,  siate for a welll of the operatorsU{U,(b! +b,) and

but for all degenerate vibronic systems. This includes tthTUI(bT+b )(bT+b ), respectively. When these expres-
representatioi® of the |, group and theéE and T, represen- si(k)ns are evn;Iua?ed nw'e find that

tations of theTy group. It is a more general form of the

recursion formulas given in Ref. 33 for the characters of the GMI=RID[ J(nT +1)FED(nk nl +1)
symmetrical product representations for twofold- and
threefold-degenerate cases. + Nl F®D(nk ! —1)] (31

Having found the number of multiplets transforming as a q
given irrep.I’,,, the total number of statg®f any symme- an

try) with N-phonon excitations can be calculated by sum- iy _ o) \/—|—|— (Kl kAl [
, _ : = + + +2)+
ming the expressions for the numbers of stat@¥ with Rmm=Rm V(M 1) (N + 2) P (M Ny +2) + (210

each symmetry’, given in Table II, after multiplyina by the +D)FK (K ny+ ynl(nl+ D)FK(nk nl —2)]
appropriate dimensionalities of the irreps. After much alge- (32

bra, it is found that the total number of states agrees with that
given in Eq.(23). for m=n and

R = Pl VPR (ngy np— D FEP(ng np— 1)
\/—v—v— (KD pk (K ¢k ol
In order to evaluate the energies of the symmetry-adapted TN M+ DF (M, M+ DFR (000

excited states, we must calculate the expectation values of +1)+ n T+ 1)FX (K nl —1)FKD(pK ! 4 1)
the total Hamiltoniar?{ in Eq. (1) between the excited vi- men momem nonen

bronic states ¢/}, ”({n,})). The calculation is most conve- +ynp(np+ D FK(nk nk + D) FK (0K np—1)]
niently carried out by writing the Hamiltonian in second

quantized formt3 It is also helpful to use the commutation

relation for m#n, where

IV. ENERGIES OF THE SYMMETRY-ADAPTED STATES

(33
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ir
. 7 o
Rgf'):sfk')nLIm FID(nk,ny), H= 2 S| sho+Kwe+dT ), (38)

(34) where

Pan=s" TI F{ng.ny). o pih
s#m.n 1t 2t _ plt 2 b® b
blti= —p2l1=p 2:_bt2:_?:?:_1,
The energies of all excited symmetry-adapted states can

be evaluated directly from E30). This procedure includes 1

setting up projection operators, finding out the excited states cti+7f=12fw?+ = B’ (12w?—103),

and their normalization factors, calculating the various over- 3

laps, and finally the matrix elements. Due to their complex-

ity, the analytical results will only be given here for the one- c2i— 2f =224 f=2fW2+ Eﬂ’(WZ— 14) (39)
phonon case, although in principle the formula can be used 3 ’

to obtain all excited states. The one-phonon energies can be

expressed as cl94 3f=c204f=— §fw _ _,3 ( 17)'

it it

Ti_ Hi+Hp 1 )

' 1+ cih+2f= c2h+f———fw ——,8( SW2— 8)
it it

T, Hii—Hi; and

i it
1-5 dMi=—6K5(3+ 13w — 12w*) + 6K 5(3— 13w2+ 12w?),

o (35
HE—(—1)'HS 2= — 6K, (6+W?— 2w4) + BK4(2— 7w — 2w,
1 (D'

d?'2=3K,(15+ 10w+ 4w*) — 3K 5(1— 6W?+ 4w?),
Hi— (- D'H
1-(-1's

H_
Q=

19= K1 (9—6w2—8w?) — K4(7+38w2+8w?), (40)

209 _ In2 2 ’ 2 4
where the label=1 or 2 distinguishes different sets of states d 2KWH(15+4w7) +Kg(8+2w"—8w?),

of the same symmetry. The required overlaps are
ymmetry g P 4t = — 2K JW2(3+ 2w?) + K4(8— 2202 — 4w?),

1
Si'=gS(12w?-1), d?"=K5(9—18w2 —4w?) + K5(7—4w?),

1 whereK = (4/2/9)K, and K§=%\/gK3. These results agree
S*=-5/(1-2w?), with the preliminary results given in Ref. 29.
S To understand either the general analytical results or the
(36) specific results of E(35), it is necessary to plot the energies
S?=18,(3+4w2), obtained as a function of the Iingar and _quadratic coupling
5 strengths. However, the quadratic coupling paramekers
and K; are not free; they must obey the additional
restrictions? — 15\2% w/16< 5K 3<3K,<15\2%w/16 to
ensure that th®gy extrema are the lowest-energy wells in
) ) the APES. We will choose the valués,= —K;=0.0% w,
with w=K;8'/fiw. TheH?; are “diagonal” matrix elements  yhich satisfy the above inequalities, although results can be
given by obtained for any values. Results will also be given for zero
quadratic couplingK,=K3;=0). Although theD 54 extrema
Hltlza_ ﬂz will not be wells in this case, it is useful to illustrate the
5 "2 effect of the quadratic coupling.
(37) The energies of the symmetry-adapted excited stajes
J2 2 relative to the ground state are plotted in Fig. 1 as a function
5 Ko+ §K3' of the linear coupling<, for all of the states witiN=1 and
for a selection of states witN=2. Figures 2—4 give the
with a=fiw+Kyw(—f+38')—(8V2/3)K,w? and where  equivalent results for th@,, G, andH states, respectively.

f=2+/2. TheH'., are “off-diagonal” matrix elements of the The tunneling IeveE;2 is also included in Fig. 2 in order to
form show the effect oK, andK3, as this was not given in Ref. 6.

1
S'=—gS(3+2w?),

2t 2t G
H2=H22=H$=H =a+

075102-7
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2.0

1.5

Energy /hw
Energy /hw

1.0

0.5 ! ! ! !

K /hw

K, /hw

FIG. 2. As Fig. 1 but for thd ,, excited states. Th€&,, tunnel-

FIG. 1. Energy relative to th€,, ground state of the symmetry-
ing levels (N=0) are also shown.

adapted excited states ©f, symmetry withN=1 and a selection
of states withN=2, as a function of the coupling strendth. The
dotted lines are foK,=K3;=0 and the solid lines foK,=—K3
=0.0% w.

whereE'? is the energy of the zero-phonon tunneling level.

Although these limits explain the results shown in the fig-

ures, it should be noted that when the linear coupling param-

It is found that the energy gaps between the excited andter is very small, the quadratic coupling parameters would

ground states increase as the absolute values of the parae expected to be even smaller, approaching zet¢,aap-

eterskK, andKj increase. This is especially the case in theproaches zero. In this case, the one-phonon states all attain

weak and intermediate ranges of the coupling strength.  the limit #w, as expected. Similarly, the energies converge
Figures 1-4 show that there are significant deviationgapidly to the expected value df% w in the strong-coupling

from 72w of the energies of the one-phonon states relative tdimit when K, andK 5 approach zero.

the ground state in strong coupling due to the inclusion of At first sight, it would seem that the two quadratic cou-

quadratic coupling. There are also some deviations in weakling coefficients are almost independent of each other. The

coupling. The deviations depend directly upon the values opositions and energies of tiie,4 wells only depend upoW,

the quadratic coupling parametefs andKs. It is possible  while the D54 wells only depend upoiV;. However, the

to calculate these deviations analytically by taking appropristrong- and weak-coupling limits for th@s4 wells are af-

ate limits of the formula given in the preceding section. It isfected as much by, as they are by/,. This shows that both

found that, relative to th&,, ground state, th&,, andT,,  types of quadratic coupling must be included in the vibronic

states labeled bi=1 attain the Iimit[l—(4\/§/5)K2]ﬁw in problem.

strong coupling. All other states attain the limjtl

+(\/§/5)K2+ @ngﬁw. In weak coupling, V. DISCUSSION

The results given in the preceding section provide a rea-
sonable approximation to the true excited states and energies
of the dynamicall,,®hgy JT system in the presence of qua-
dratic coupling. However, some inaccuracies have inevitably
been introduced in our desire to produce analytical results of
use for further calculations. Although excited states belong-
ing to different symmetries are orthogonal to each other,
states having the same symmetries may not be mutually or-
thogonal. For example, the 30 excited states containing one-

2
E;z,EIz_)( 1— 2K, + \[gKg)ﬁw,

T 1 i 3
E. 1 l__K2+(_1)I_K3 ﬁw,

| V2 V10

ET2 B 3 L .
s =1 \/§K2+—K3 o, phonon excitation belong to four symmetries, namely,
V10 T,, G, andH. Each symmetry contains two different sets of
(41 states. There is nothing in our procedure to ensure that the
1 1 pairs of states of the same symmetry are orthogonal. In fact,
ES—| 1+ —KZ——K3> ho, it can be deduced that only the two sets of states pertaining
\/E 2\/ﬁ) to T, symmetry are orthogonal to each other. If this lack of
nonorthogonality is a problem, it will increase rapidly lds
1 3 increases. Nevertheless, Figs. 1-4 do not show any notice-
ES—> 1+ =Ko,——=K;3 | o, able differences between the; states and the remaining
\/E \/E states. Therefore, we do not believe that the nonorthogonality

EPH

1 -3
1+ =K, +(—1)—=K;3 | fo,
\/E 2 ( ) \/1—0 3)

introduces significant errors. The properties of symmetry-
adapted excited states of like symmetries in cubic symmetry
were discussed previously in Refs. 27 and 34. Also, anisot-
ropy in the potential-energy minima in the APES has been

075102-8
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Energy /hw

Energy /hw

0'0 * ! * ! * ! * ! * 1 1 n 1 1
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FIG. 3. As Fig. 1 but for thes excited states. ) )
FIG. 4. As Fig. 1 but for théd excited states.

included via the effect upon the frequencies but, due to thgjx_dimensional integrals. This will not be considered further
complications of icosahedral symmetry, the effect of anisothere.

ropy in the phonon overlaps has been neglected, as have

second-order anisotropic corrections to the well stites. VI. CONCLUSIONS
It would be possible to obtain more accurate analytical

results, for example by orthogonalizing symmetry-adapte

states of the same symmetry and/or by including anisotrop

to second-order in perturbation theory. However, despite th ; . .

details of the calculations presented here being complicate e system so that the JT system is essentially static. When

due to the icosahedral symmetry, the results obtained have 4R¢ coupling is not so strong, the barriers between the

analytical form that can be written down and computed relaMinima are not high enough to prevent tunneling between

tively easily. They also apply across the full range of cou-:hethm'r.'éma afnd the JI sys;en][ t;jecpbmes_ dy?e}tmlc.Tths Ielads
pling strengths. The results can be used in further calcul 0 the 1dea of symmelry-adapted vibronic states. 1he caicu-

tions, such as of second-order RFs or in determining th ations have shown that, despite the heavy algebraic details

effects of additional perturbations, without it being necessar)'/nvowed' analytical expressions for the excited symmetry-

to repeat any derivations. Further enhancements to the mod@gapt.ed vibronic states and their Energies can be obtained
presented would result in even more cumbersome states. vering the whole range .Of cpuplmg strengths. The results
more accurate results are required, then alternative numerica ow_the _expected behawor in both the weak- and strong-
approaches should be sought. However, it would be mucﬁOUpIIng limits. In this paper, results have only _beerj given
more difficult to cover all coupling strengths in one modeI.for the case when thBs4 points are absolute minima in the
Also, the results would be harder to extend and use in furthepPES. However, the methods presented can easily be ex-

calculations, as well as showing much less clearly the effectgended toD 34 wells in theT.1U®h9 system, or indeed to JT
of anisotropy and tunneling between potential wells. systems of other symmetries. We have also shown that pre-

Another approach to the dynamicay,@h, JT system vious work in cubic symmetry cannot be applied directly to

would be to consider linear coupling only, in which the low- Icosahedral symmetry.

est APES consists of a two-dimensional trodyfithe trough The impo_rtgnce Of the symm_etry-adapte_d excited states,
pm which it is possible to obtain more reliable values for

can be mapped onto the surface of a sphere, with each poif‘LI . .
fixed by angless, ¢, and y. Appropriate states can be con- the second-order RFs, will form the basis of future work.

structed taking into account vibrations across the trough and
rotations around the trough, including all points at the bot-
tom of the trough via an integral ovér ¢, andy. However, Q.C.Q. would like to thank the U.K. Committee of Vice-
the disadvantage of this method is that, in order to evaluat€hancellors and Principals and the University of Nottingham
the energies of the resultant states, it is necessary to evaludte support.

The calculations described in this paper are based on the
amework that in the strong-coupling limit, vibronic states
onfined within minima in the APES are good eigenstates of
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