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Symmetry-adapted excited states for theT1u‹hg Jahn-Teller system
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Jahn-Teller~JT! systems typically contain a set of equivalent-energy wells in the lowest adiabatic potential-
energy surface~APES!. Quantum-mechanical tunneling between these wells~the dynamic JT effect! must be
allowed for by taking appropriate symmetrized combinations of oscillator-type states associated with the wells.
It is important to be able to describe the excited states of such systems for a number of reasons. One particular
reason is that they are required for the calculation of second-order vibronic reduction factors, which in turn are
useful for modeling experimental data using effective Hamiltonians. In this paper, projection-operator tech-
niques are used to obtain general expressions for the symmetry-adapted excited states of the icosahedralT1u

^ hg JT system for the case ofD5d minima in the APES. Analytical expressions for the states and their energies
for one-phonon excitation are given explicitly. The energies of a selection of states with two-phonon excita-
tions are also obtained and plotted. The results obtained in this paper are applicable to the C60

2 molecule.
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I. INTRODUCTION

The electron-phonon interaction plays an important r
in unraveling the properties of ionized C60 molecules in both
the isolated molecular and solid forms. In the past few ye
many papers1–10 have been published on the effects of th
interaction in icosahedral systems in order to provide mod
for real C60 molecules. These and other publications are d
cussed in the book of Chancey and O’Brien.11 From a theo-
retical point of view, icosahedral systems are of much in
est due to the appearance of threefold, fourfold, and five
irreducible representations~irreps.!. The lowest unoccupied
molecular orbitalT1u of the free C60 molecule is threefold
orbitally degenerate. Therefore, aT1u^ hg Jahn-Teller~JT!
interaction with the fivefold degenerate vibrational modeshg
will be dominant in the negatively charged state C60

2 . Thus
this JT system is the key to the understanding of the e
tronic structure of this real system.

When aT1u orbital state couples linearly to a vibration
hg mode, the lowest adiabatic potential-energy surfa
~APES! is found to consist of a minimum-energy troug
having an accidental symmetry higher than icosahedral
this case, states of the system must take account of vibra
across the trough and rotations around the trough. All po
at the bottom of the trough are equivalent, so the total st
must involve an integral over all these points. In real s
tems, higher-order terms such as quadratic coupling
warp the trough. As long as the higher-order terms are la
enough, this will generate wells in the APES. Rather th
including the continuum of points at the bottom of th
trough, only the points at the bottom of the wells then ne
be included. For theT1u^ hg problem, there are either te
wells of D3d symmetry or six wells ofD5d symmetry, de-
pending upon the strengths of the coupling constants. In
finite coupling, states in these wells could be used as st
of the system as a whole. This situation is often referred to
the static JT effect. However, in finite coupling, dynamic
tunneling between the wells will take place. Mathematica
this can be accounted for by taking appropriate symmetri
linear combinations of the ground states in each of
0163-1829/2001/64~7!/075102~10!/$20.00 64 0751
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equivalent lowest-energy wells. This restores the icosahe
symmetry of the system, resulting in aT1u ground state. At
first sight, the well problem may appear more complica
than the linear case due to the presence of higher-o
terms. However, considerable advantages arise from o
needing to consider six or ten distinct points and from n
having to evaluate multidimensional integrals when det
mining overlap factors and energy matrix elements.

Dunn and Bates6 gave a detailed analytical treatment
the ground state of theT1u^ hg JT system when quadrati
coupling terms are included in the vibronic Hamiltonia
Further studies12,13 have described the effects of anisotro
in the potential wells and its effect on the ground stat
Anisotropy alters the shape of the minima and correspo
ingly removes some of the degeneracies associated with
phonon frequencies.14,15 This is particularly important for
systems, such asT1u^ hg , in which wells are only intro-
duced by higher-order terms. Not only will the barriers
shallower in the direction~s! around the well, but the fre-
quencies in these directions will be much lower than in
perpendicular directions. The effect of anisotropy in icosa
dral systems has been further discussed by Chancey
O’Brien.11

JT effects in molecules and solids are often obser
through an analysis of the parameters appearing in effec
Hamiltonians.16–18 Effective Hamiltonian approaches pro
vide a simple means of modeling experimental data as
effect of the vibronic coupling is ‘‘transferred’’ into simple
numerical factors multiplying electronic perturbations.
one level, these factors can be treated simply as fitting
rameters. However, this view hides much of the underly
physics as it is not possible then to know whether the val
obtained for the parameters have any physical significan
At a deeper level, the numerical factors can be describe
terms of vibronic~or Ham! reduction factors~RFs!. Calcula-
tions can be made relating all of the RFs~and hence all of the
fitting parameters! to a smaller set of variables, namely th
vibronic coupling strength~s! and vibrational frequencies.

The effect of an electronic perturbation can be included
first or second order in perturbation theory, and the cor
©2001 The American Physical Society02-1
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sponding numerical factors are known as first- and seco
order RFs, respectively. If the vibronic coupling is strong, t
first-order RFs can be very small and the second-order te
then dominate the effective Hamiltonian.16,19 Hence it is im-
portant to be able to calculate the magnitudes of the sec
order RFs as well as the first-order RFs.20,21 First-order RFs
are relatively simple to calculate.16 However, second-orde
RFs are much more difficult to evaluate as they involve c
pling to an infinite set of excited vibronic states. Symmet
adapted excited vibronic states of theT1u^ hg JT system
appropriate to the dynamical JT effect have not yet b
investigated. Although it is possible to make an estimate
the values of second-order RFs by simply taking the infin
coupling well states as the excited states, symmetry-ada
excited states and their energies are needed in order to
more accurate values for the second-order RFs.

The aim of this paper is to derive analytical expressio
for the excited states of theT1u^ hg JT system and thei
corresponding energies, including anisotropic effects. T
number of excited states of a given symmetry~irrep.! asso-
ciated with any numberN of phonon excitations is also use
ful information. These results are derived using grou
theoretical methods. Explicit analytical results will be giv
for states with one-phonon excitation based upon theD5d
minima. Some states with two-phonon excitations are a
calculated and the results are given graphically. Due to
complicated nature of the results, analytical expressions
not given in this case. The method given can be extende
states with higher numbers of phonon excitations, and als
states associated with theD3d minima.

II. THE VIBRONIC HAMILTONIAN AND THE INFINITE
COUPLING EXCITED STATES

The total Hamiltonian for theT1u^ hg JT system includ-
ing quadratic terms can be written as6

H5Hvib1H11H21H3 , ~1!

where the vibrational HamiltonianHvib , the linear interac-
tion HamiltonianH1, and the two quadratic coupling Hami
toniansH2 andH3 are given by

Hvib5
1

2 (
j

S Pj
2

m
1mv2Qj

2D L̂A1
,

H15V1(
j

Qj L̂H j , ~2!

H25V2(
j

Aj L̂H j ,

H35V3(
j

Bj L̂H j ,

and wherem is the reduced mass corresponding to vib
tional modeQj . The indexj is taken over all component
(u, e, 4, 5, and 6! of the hg phonon modes.V1 is the linear
coupling constant andV2 ,V3 are the quadratic coupling con
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stants.L̂A1
is the unit operator and, within the pure electron

basis statesx, y, andz of T1u , the L̂H j are orbital operators
that can be expressed in matrix form,

L̂Hu5
1

2
A3

5S f21 0 0

0 2f 0

0 0 1
D ,

L̂He5
1

2
A1

5S f2 0 0

0 2f22 0

0 0 2A5
D ,

L̂H45A 3

10S 0 0 0

0 0 1

0 1 0
D , ~3!

L̂H55A 3

10S 0 0 1

0 0 0

1 0 0
D ,

L̂H65A 3

10S 0 1 0

1 0 0

0 0 0
D ,

wheref5 1
2 (11A5) is the golden mean. The symmetrize

displacement coordinates are

Au5A1

2
QuQe1A3

8
~Q4

22Q5
2!,

Ae5A1

8
~Qu

22Qe
21Q4

21Q5
222Q6

2!,

A45A1

2
~A3Qu1Qe!Q4 , ~4!

A55A1

2
~2A3Qu1Qe!Q5 ,

A652A2QeQ6 ,

and
2-2
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Bu5A3

8
~Qu

22Qe
2!2A 1

24
~Q4

21Q5
222Q6

2!,

Be52A3

2
QuQe1A1

8
~Q4

22Q5
2!,

B452A1

6
@~Qu2A3Qe!Q412A2Q5Q6#, ~5!

B552A1

6
@~Qu1A3Qe!Q512A2Q4Q6#,

B65A2

3
~QuQ62A2Q4Q5!.

As the Aj and Bj are quadratic in theQj ’s, they can be
written in the form

Aj5(
m,n

amn
j QmQn ,

~6!

Bj5(
m,n

bmn
j QmQn ,

where the sum is over$m,n%5$u,e,4,5,6%.
Minima of D5d ~pentagonal! or D3d ~trigonal! symmetry

generated by the quadratic coupling terms22,23 can be ob-
tained following the unitary transformation and energ
minimization method.24,25 The unitary transformationU has
the effect of displacing the origin of phonon coordinat
from Qk to (Qk2ak\), and the energy minimization fixe
the parametersak to the well positions. As the symmetry
adapted states are rather complicated, this paper is restr
to the consideration of theD5d minima only, although similar
calculations can also readily be undertaken for theD3d
minima. The sixD5d minima will be labeledA to F. The
ground states of the transformed Hamiltonian can be wri
in the formuX(k);0&, whereX(k) is the electronic state in wel
k and ‘‘0’’ represents zero-phonon excitations. The cor
sponding ground stateuX(k)8;0& appropriate to the untrans
formed Hamiltonian is obtained by multiplyinguX(k);0& by
the shift transformation operatorU5Uk for well k, where

Uk5expF(
j

Cj
(k)~bj2bj

†!G , ~7!

where theCj
(k) , which are directly related to the well pos

tions, can be found in Ref. 6. Although there are no phon
excitations contained explicitly in the untransformed grou
states, the presence of phonon creation operators in Eq~7!
implicitly includes phonon excitations. This automatica
gives the untransformed states their required vibronic nat

If each well is considered to be isotropic, with each co
ponent of thehg mode having frequencyv, the vibronic
excited states associated with each well can be express

uFk~nunen4n5n6!&5uX(k)8;unuene4n45n56n6&, ~8!
07510
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whereunu, for example, denotesnu-phonon excitations of the
Qu vibrational hg mode in the wellk and nu1ne1n41n5
1n65N is the total number of the phonon excitations in t
system. This will be written in the shorthand form
uFk($nj%)&, where$nj% is taken to mean dependence up
all phonon excitation numbersnj for j 5$u,e,4,5,6%.

As it is known that the lowest APES contains a trough
the limit of weak quadratic coupling, the wells will be highl
anisotropic, with the frequencies of vibration in the dire
tions that correspond to moving around the trough in
linear coupling limit being much lower than those in th
perpendicular directions. This anisotropy splits thehg mode
into a singletag and two doubletse1g and e2g . The new
modes for wellk are a linear combination of the componen
u, e, 4, 5, and 6 of the isotropichg mode. As the directions
around the trough are different for each wellk, the compo-
nents of thee1g and e2g modes are different for each wel
They will be labeled$u1

k ,e1
k% and$u2

k ,e2
k%, respectively. The

appropriate combinations can be generated from the isotr
hg mode using so-calledS matrices that diagonalize the cu
vature matrix local to each minima. The anisotropic mod
for each well can be written down in terms of the comp
nents of these matrices, so that

zk5(
j

Sz j
k j , ~9!

wherez can be taken as$a,u1 ,e1 ,u2 ,e2% and j is summed
overu, e, 4, 5, and 6. The completeSmatrices can be found
in Ref. 12 forD5d wells and in Ref. 26 forD3d wells. The
localized vibronic excited states for wellk equivalent to Eq.
~8! but including anisotropy become

uFk~nanu1
ne1

nu2
ne2

!&

[uX(k)8;~ak!na~u1
k!nu1~e1

k!ne1~u2
k!nu2~e2

k!ne2&, ~10!

which will be written in the shortened formuFk($nz%)&,
where thenz refer to the symmetrized phonon excitatio
na , nu , etc. It can be seen that the local modes depend u
the well k in a rather complicated manner.

III. SYMMETRY-ADAPTED EXCITED STATES

A. Projection operators

In finite coupling, the vibronic well states~10! are not
good eigenstates of the total Hamiltonian of the system
they are neither mutually orthogonal nor do they reflect
actual icosahedral symmetry of the system. To overco
these difficulties, we look for those linear combinations
the untransformed vibronic states that have a specified s
metry within I h and are such that states of different symm
tries are orthogonal. This can be achieved using project
operator techniques,27,28 as used previously for the groun
states6 of the T^ h system. If an arbitrary well state is acte
upon by a projection operator of a specific irrep.,
symmetry-adapted state will be generated if the chosen
state is a component of the symmetrized state. If it is not,
result will be zero.
2-3



ic
p
on
in
bi
te
o

t-

on
e-

tio
lie

ta

he
i

ni

in
e

m
ou
s-
ill
a
tio

io
e
ar
em

tes
cal
ach
The

if-
ero

d

s

ors.

pli-
per-
se
ra-

e-
era-
ted
at

t be
the

Q. C. QIU, J. L. DUNN, AND C. A. BATES PHYSICAL REVIEW B64 075102
The application of projection operators to the vibron
excited states in an icosahedral system is far more com
cated than that in cubic systems where an excitation in
well transforms in a simple manner into an excitation
another well under the symmetry operations of the cu
group, and much tedious work is required. We will illustra
the method by applying projection operators composed
the 60 rotational elements of theI h group to the state
uFA($nz%)& obtained from Eq.~10! for well k5A. We find
that when the matrixSA given in Ref. 29 is used, the resul
ant states can be written in the form of eitheruFk

i ($nz%)& or
muFk

i ($nz%)&, wherem5(21)nu1
1nu2 is a phase factor andi

is an index arising from the application of the projecti
operators.i can take values from 1 to 5, reflecting the fiv
dimensional nature of the vibrations. The phase factorm
arises from the symmetry of the matrixSA . Note that differ-
ent phase factors may be obtained if an alternative defini
of SA is used, and when the projection operators are app
to different wells.

For the projection operator ofT1 symmetryr̂11
T1 , we can

write the excited state generated by application to the s
uFA($nz%)& in the form

ucT1x~$nz%!&5
1

40 (
k,i

bkiuFk
i ~$nz%&), ~11!

where thebki are coefficients. These include a part from t
projection operator itself; these coefficients are given
Table I in terms ofm and m5f21. The coefficients also
include a geometrical factor that reflects the way the vibro
states are mixed together, which is absorbed through the
troduction of the index labeli in Eq. ~10!. For T1 symmetry,
we have nine projection operators that can be classified
three sets corresponding to the three components of thT1
irrep.

Although it is clear from Eq.~10! and Table I that the
excited states are very complicated, nevertheless the nor
ization and calculation of the energies can still be carried
analytically. In the following and to retain generality, all po
sible phonon excitations will be considered first. This w
make it easier to extend the method to other JT systems
later date. The specific case of just one-phonon excita
will then be taken as an illustrative example.

For cubic systems, it was possible to apply project
operators to excited well states and determine a complet
of excited states ‘‘by inspection.’’ However, as the results
much more complicated in icosahedral symmetry, a syst

TABLE I. The coefficientsbki of the excited state in Eq.~11!.

k i51 i 52 i 53 i 54 i 55

A 21fm m1fm m(11m) 2f2mm 2f22m
B m(211m) 222fm 2m2fm f1mm f12m
C 1 f(11m) 2f2m m 212fm
D 2f2m 1 2f2m m f(11m)
E 11mm 2mm m1m 212m 2m
F mm m 11m 2m2m 212mm
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atic method is required for both deriving the excited sta
and for checking their form. In particular, because the lo
vibrational modes are defined in a different manner for e
well, we need to decompose them into a common basis.
general vibrational modezk containingnz excitations in well
k is expanded as a binomial series in the form

~zk!nz5 (
i z j zkz l z

Gz i
k @nz ,i z , j z ,kz ,l z#, ~12!

whereGz i
k @nz ,i z , j z ,kz ,l z# is a function determined from the

projection operators. The indices$ i z , j z ,kz ,l z% are summed
from 0 to $nz ,i z , j z ,kz%, respectively.

Suppose thatn is a sequence number distinguishing d
ferent excited states. The most general form for the nonz
symmetry-adapted excited states having symmetryG with
componentsg is then written in terms of nonsymmetrize
phonon states as

ucn
Gg~$nz%!5Nn

G~$nz%! (
$k,nj

k%

a
$nj

k%
nk uFk~$nj%!&, ~13!

whereNn
G($nz%) is a normalization constant~depending upon

all five values ofnz) and where

a
$nj

k%
nk

5(
i 51

5

bn
kib

$nj
k%

ki
. ~14!

k is summed over all six wells,nu
k5N2(zi z , and the values

for ne
k , n4

k , n5
k , andn6

k are given by sums overz of i z , (i z

2 j z), ( j z2kz), (kz2 l z), andl z , respectively. The constant
bn

ki are a generalized form of thebki given in Table I for the
T1x state, and are determined by the projection operat
b

$nj
k%

ki
is the coefficient for that particular combination ofnj

k

phonons in wellk, given by

b
$nj

k%
ki

5)
z

(
i z j zkz l z

Gz i
k @nz ,i z , j z ,kz ,l z#, ~15!

where the indicesnj
k are each taken from zero toN and are

subject to the conditions given above.
The general results obtained are necessarily very com

cated. However, they are easier to understand when
formed explicitly for given cases. For example, for the ca
of a single-phonon excitation, there are 60 projection ope
tors of groupI to operate on the five nonsymmetric on
phonon excited states located in a given well. These op
tions give a set of 30 linearly independent symmetry-adap
excited states.30 One result, found after much algebra, is th

ucGg~01000!&[ucGg~00100!&,
~16!

ucGg~00010!&[ucGg~00001!&.

These equivalences are expected because positionsu1 ,e1
both havee1g symmetry and positionsu2 ,e2 both havee2g
symmetry, and hence the members of each pair canno
distinguished. Nevertheless, this forms a useful check on
calculations. This important result can be extended toN
2-4



tis

e

fin

ic

ch
w

s

tio
n

s
2

of
s

up,

n
tes

of
iven
p-
r-
tions
ba-

fold

c-
t of

l
f
i-

the

p

ct

c-

SYMMETRY-ADAPTED EXCITED STATES FOR THET1u . . . PHYSICAL REVIEW B 64 075102
phonons such that all the independent states must sa
inequalities such asnu1

,ne1
and nu2

,ne2
to avoid over-

counting and specifying states that are not linearly indep
dent.

B. The normalization factors

The normalization constantNn
G($nz%) for N-phonon exci-

tations can now be evaluated. After much algebra, we
that

Nn
G~$nz%!5F (

$k,l ,nj
k ,nj

l %

a
$nj

k%
nk

a
$nj

l %
n l

t0
(kl)G(kl)G21/2

, ~17!

wheret0
(kl)5^X(k)uX( l )& is the overlap between the electron

statesX(k) andX( l ), nj
k andnj

l are summed overu, e, 4, 5,
and 6, whilek and l are summed over the sixD5d wells,

G(kl)5SI
(kl))

j
F j

(kl)~nj
k ,nj

l ! ~18!

is the matrix element between the stateuunu
k
ene

k
•••& for well

k and an equivalent state for a welll of the operatorUk
†Ul ,

and

F j
(kl)~a,b!5Aa!b! (

p5max(0,b2a)

b
~21!p~D j

(kl)!2p1a2b

p! ~p2b1a!! ~b2p!!
.

~19!

SI
(kl) is the phonon overlap between any two wells, whi

can be evaluated using techniques described in Ref. 25,
the result

SI
(kl)5^0uUk

†Ul u0&5expF2
1

2 (
i

~Di
(kl)!2G , ~20!

where Di
(kl)5Ci

(k)2Ci
( l ) .6 Substituting appropriate value

givesSI
(kl)5SI for kÞ l and 1 fork5 l , where

SI5expF22S b8K1

\v D 2G , ~21!

whereb85A6/(524A2V2 /mv2) andK152V1A\/2mv.
For one phonon, the excited states and the normaliza

factors simplify considerably from the general expressio
given in Eq.~17!, with the normalization factor for thenth
vibronic excited state~with one-phonon excitation! given by

Nn
G~$nz%!5F (

k,l ,m,n
t0

(kl)SI
(kl)bn

kmbn
ln~dmn2Dm

(kl)Dn
(kl)!G21/2

.

~22!

Although the notation used here is slightly different, the
expressions are found to agree with those given in Ref.
once they are evaluated.@Note that in Ref. 29, theal

( j )an
(k) in

Eq. ~4.2! should be replaced byan
( j )an

(k)al
(n j )an

(nk) .#

C. The number of excited states

It is relatively simple to determine the total number
excited states with a given number of phonon excitationN
07510
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using results from the group theory of the symmetric gro
as given in Hammermesh, for example.31 A symmetrical ten-
sor of rank N acting on a vector withp components has
dimension (N1p21)!/N!( p21)!. For our problem of
h-type phonons,p55. Also, we have six wells and thus a
orbital degeneracy of 6. Therefore, the total number of sta
is

1

4
~N11!~N12!~N13!~N14!. ~23!

However, it is also useful to divide these total numbers
states into the number of possible excited states of a g
symmetry. This is a much more complicated grou
theoretical calculation, involving finding the number of i
reps. that are generated from the reducible representa
constructed from the infinite coupling excited states. The
sic method has been applied previously toTd symmetry,27,32

but the results need to be generalized to apply to the four
and fivefold degeneracies that occur inI h symmetry.

The infinite coupling vibronic excited states form a redu
ible representation that can be written as the direct produc
the orbital and phonon representations,

L reducible
(N) 5Lorbit^ LH

(N), ~24!

whereLH
(N)5Lh^ Lh^ ••• to N factors is the symmetrica

product33 and the subscript (H or h) denotes the type o
modes. Explicitly,L reducible

(N) can be written as the direct add
tion of the irreps.Gm in the form

L reducible
(N) 5nG1

(N)G1% nG2

(N)G2% •••% nGg

(N)Gg , ~25!

wherenGm

(N) is an integer expressing the number of times

irrep. Gm appears inL reducible
(N) , which is equivalent to the

number of multiplets of symmetryGm that occur for
N-phonon excitations. According to group theory,nGm

(N) can

be calculated using the reduction formula

nGm

(N)5
1

h (
RPI h

xGm
* ~R!x reducible

(N) ~R!, ~26!

whereh ~5 60! is the order of the groupI h , R is the rota-
tional operator ofI h , xGm

(R) is the character of the grou

elementR, andx reducible
(N) (R) is the character ofL reducible

(N) . The
latter can be calculated using the relation

x reducible
(N) ~R!5xorbit~R!xH

(N)~R!, ~27!

wherexH
(N)(R) is the character of the symmetrical produ

LH
(N) and xorbit(R) is the character ofLorbit . As the orbital

electronic states localized in theD5d wells form reducible
representations ofT1 andT2 symmetries,Lorbit should be the
direct addition ofT1 andT2. Thus the charactersxorbit(R) for
the rotational operationsR5C1 , C2 , C3 , C5, andC5

2, re-
spectively, of theI h group are easily found from the chara
2-5
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ter table of theI h group, givingxorbit(R)56, 22, 0, 1, and
1, respectively. After much algebra and by carefully study
the irreps. ofH symmetry, a general expression for the ch
acterxH

(N)(R) has been obtained in terms of the recurren
formula,

xH
(N)~R!5

1

N (
m51

N

xH~Rm!xH
(N2m)~R!, ~28!

wherexH
(0)(R)51 has been presumed. It should be noted t

this formula is valid not only for the irreps. ofH symmetry,
but for all degenerate vibronic systems. This includes
representationG of the I h group and theE andT2 represen-
tations of theTd group. It is a more general form of th
recursion formulas given in Ref. 33 for the characters of
symmetrical product representations for twofold- a
threefold-degenerate cases.

Having found the number of multiplets transforming as
given irrep.Gm , the total number of states~of any symme-
try! with N-phonon excitations can be calculated by su
ming the expressions for the numbers of statesnGm

(N) with

each symmetryGm given in Table II, after multiplying by the
appropriate dimensionalities of the irreps. After much alg
bra, it is found that the total number of states agrees with
given in Eq.~23!.

IV. ENERGIES OF THE SYMMETRY-ADAPTED STATES

In order to evaluate the energies of the symmetry-adap
excited states, we must calculate the expectation value
the total HamiltonianH in Eq. ~1! between the excited vi
bronic statesucn

Gg($nz%)&. The calculation is most conve
niently carried out by writing the Hamiltonian in secon
quantized form.13 It is also helpful to use the commutatio
relation

TABLE II. The number of multipletsnGm

(N) of a given symmetry
G and number of phonon excitationsN.

G nG
(N) Validity range

Au (N21)(N11)(N13)(N17)/240 N odd
(N21)(N12)(N14)(N16)/240 N even
(N15)(N315N225N115)/240 N/5 odd
N(N3110N2120N240)/240 N/5 even

T1u5T2u (N11)(N13)(N216N113)/80 N odd
(N12)(N14)(N214N18)/80 N even
(N15)(N315N2115N25)/8011 N/5 odd
N(N3110N2140N180)/8011 N/5 even

Gu N(N15)(N215N110)/60 N/5 integer
(N11)(N12)(N13)(N14)/60 All otherN

Hu (N11)2(N13)(N15)/48 N odd
N(N12)(N14)2/48 N even
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@H,Uk#5Uk(
j

S \vCj
(k)@Cj

(k)2~bj
†1bj !#22K1L̂H jCj

(k)

12(
m,n

L̂H j~K2amn
j 1K3bmn

j !$2Cm
(k)Cn

(k)

2@Cn
(k)~bm

† 1bm!1Cm
(k)~bn

†1bn!#% D , ~29!

whereKs5\Vs /2mv (s52,3) and$ j ,m,n% are all summed
over$u,e,4,5,6%. Finally, after much algebraic work, the gen
eral expression for the energy of the vibronic symmet
adapted states forN-phonon excitations is found to be

En
G~$nz%!5Nn

G~$nz%!2 (
$k,l ,nj

k ,nj
l %

a
$nj

k%
nk

a
$nj

l %
n l

3(
i

H G(kl)F\vt0
(kl)S 1

2
1ni

l1Ci
( l )2D

22K1Ci
( l )t i

(kl)G1Gi
(kl)~K1t i

(kl)2\vt0
(kl)Ci

( l )!

1(
mn

t i
(kl)~K2amn

i 1K3bmn
i !@Rmn

(kl)

14G(kl)Cm
( l )Cn

( l )22~Cn
( l )Gm

(kl)1Cm
( l )Gn

(kl)!#J ,

~30!

with t i
(kl)5^X(k)uL̂Hi uX( l )&. The sum indices are as for th

normalization factors.Gm
(kl) and Rmn

(kl) are matrix elements

between the stateuunu
k
ene

k
•••& for well k and an equivalent

state for a well l of the operatorsUk
†Ul(bm

† 1bm) and
Uk

†Ul(bm
† 1bm)(bn

†1bn), respectively. When these expre
sions are evaluated, we find that

Gm
(kl)5Rm

(kl)@A~nm
l 11!Fm

(kl)~nm
k ,nm

l 11!

1Anm
l Fm

(kl)~nm
k ,nm

l 21!# ~31!

and

Rmm
(kl)5Rm

(kl)@A~nm
l 11!~nm

l 12!Fm
(kl)~nm

k ,nm
l 12!1~2nm

l

11!Fm
(kl)~nm

k ,nm
l !1Anm

l ~nm
l 11!Fm

(kl)~nm
k ,nm

l 22!#

~32!

for m5n and

Rmn
(kl)5Pmn

(kl)@Anm
l nn

l Fm
(kl)~nm

k ,nm
l 21!Fn

(kl)~nn
k ,nn

l 21!

1A~nm
l 11!~nn

l 11!Fm
(kl)~nm

k ,nm
l 11!Fn

(kl)~nn
k ,nn

l

11!1Anm
l ~nn

l 11!Fm
(kl)~nm

k ,nm
l 21!Fn

(kl)~nn
k ,nn

l 11!

1Ann
l ~nm

l 11!Fm
(kl)~nm

k ,nm
l 11!Fn

(kl)~nn
k ,nn

l 21!#

~33!

for mÞn, where
2-6
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Rm
(kl)5SI

(kl) )
nÞm

Fn
(kl)~nn

k ,nn
l !,

~34!

Pmn
(kl)5SI

(kl) )
sÞm,n

Fs
(kl)~ns

k ,ns
l !.

The energies of all excited symmetry-adapted states
be evaluated directly from Eq.~30!. This procedure includes
setting up projection operators, finding out the excited sta
and their normalization factors, calculating the various ov
laps, and finally the matrix elements. Due to their compl
ity, the analytical results will only be given here for the on
phonon case, although in principle the formula can be u
to obtain all excited states. The one-phonon energies ca
expressed as

Ei
T15

H11
i t 11H12

i t 1

11SI
it

,

Ei
T25

H11
i t 12H12

i t 1

12SI
it

,

~35!

Ei
G5

H11
G 2~21! iH12

iG

12~21! iSI
g

,

Ei
H5

H11
H 2~21! iH12

iH

12~21! iSI
h

,

where the labeli 51 or 2 distinguishes different sets of stat
of the same symmetry. The required overlaps are

SI
1t5

1

5
SI~12w221!,

SI
2t5

1

5
SI~122w2!,

~36!

SI
g5

1

5
SI~314w2!,

SI
h52

1

5
SI~312w2!,

with w5K1b8/\v. TheH11
iG are ‘‘diagonal’’ matrix elements

given by

H11
1t15a2

4A2

5
K2 ,

~37!

H11
2t15H11

2t25H11
G 5H11

H 5a1
A2

5
K21A2

5
K3 ,

with a5 7
2 \v1K1w(2 f 1 5

3 b8)2(8A2/3)K2w2 and where

f 52A 2
3 . TheH12

iG are ‘‘off-diagonal’’ matrix elements of the
form
07510
an

s
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H12
iG5

biG

5
SI S 7

2
\v1K1wciG1diGD , ~38!

where

b1t152b2t15b1t252b2t252
big

3
5

bih

3
521,

c1t117 f 512f w21
1

3
b8~12w22103!,

c2t122 f 5c2t21 f 52 f w21
2

3
b8~w2214!, ~39!

c1g13 f 5c2g1 f 52
4

3
f w22

1

3
b8S 4

3
w2217D ,

c1h12 f 5c2h1 f 52
2

3
f w22

1

3
b8S 2

3
w228D ,

and

d1t1526K28~3113w2212w4!16K38~3213w2112w4!,

d2t1526K28~61w222w4!16K38~227w222w4!,

d2t253K28~15110w214w4!23K38~126w214w4!,

d1g5K28~926w228w4!2K38~7138w218w4!, ~40!

d2g522K28w
2~1514w2!1K38~812w228w4!,

d1h522K28w
2~312w2!1K38~8222w224w4!,

d2h5K28~9218w224w4!1K38~724w4!,

whereK285(A2/9)K2 andK385 1
3A 2

3 K3. These results agre
with the preliminary results given in Ref. 29.

To understand either the general analytical results or
specific results of Eq.~35!, it is necessary to plot the energie
obtained as a function of the linear and quadratic coupl
strengths. However, the quadratic coupling parametersK2
and K3 are not free; they must obey the addition
restrictions12 215A2\v/16,A5K3,3K2,15A2\v/16 to
ensure that theD5d extrema are the lowest-energy wells
the APES. We will choose the valuesK252K350.05\v,
which satisfy the above inequalities, although results can
obtained for any values. Results will also be given for ze
quadratic coupling (K25K350). Although theD5d extrema
will not be wells in this case, it is useful to illustrate th
effect of the quadratic coupling.

The energies of the symmetry-adapted excited statesT1
relative to the ground state are plotted in Fig. 1 as a funct
of the linear couplingK1 for all of the states withN51 and
for a selection of states withN52. Figures 2–4 give the
equivalent results for theT2 , G, andH states, respectively
The tunneling levelEg

T2 is also included in Fig. 2 in order to
show the effect ofK2 andK3, as this was not given in Ref. 6
2-7
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It is found that the energy gaps between the excited
ground states increase as the absolute values of the pa
etersK2 and K3 increase. This is especially the case in t
weak and intermediate ranges of the coupling strength.

Figures 1–4 show that there are significant deviatio
from \v of the energies of the one-phonon states relative
the ground state in strong coupling due to the inclusion
quadratic coupling. There are also some deviations in w
coupling. The deviations depend directly upon the values
the quadratic coupling parametersK2 andK3. It is possible
to calculate these deviations analytically by taking appro
ate limits of the formula given in the preceding section. It
found that, relative to theT1u ground state, theT1u andT2u

states labeled byi 51 attain the limit@12(4A2/5)K2#\v in
strong coupling. All other states attain the limit@1

1(A2/5)K21A 2
5 K3#\v. In weak coupling,

Eg
T2 ,E1

T2→S 12A2K21A2

5
K3D \v,

Ei
T1→S 12

1

A2
K21~21! i

3

A10
K3D \v,

E2
T2→S 12A2K21

3

A10
K3D \v,

~41!

E1
G→S 11

1

A2
K22

1

2A10
K3D \v,

E2
G→S 11

1

A2
K22

3

A10
K3D \v,

Ei
H→S 11

1

A2
K21~21! i

3

A10
K3D \v,

FIG. 1. Energy relative to theT1u ground state of the symmetry
adapted excited states ofT1u symmetry withN51 and a selection
of states withN52, as a function of the coupling strengthK1. The
dotted lines are forK25K350 and the solid lines forK252K3

50.05\v.
07510
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whereEg
T2 is the energy of the zero-phonon tunneling lev

Although these limits explain the results shown in the fi
ures, it should be noted that when the linear coupling para
eter is very small, the quadratic coupling parameters wo
be expected to be even smaller, approaching zero asK1 ap-
proaches zero. In this case, the one-phonon states all a
the limit \v, as expected. Similarly, the energies conve
rapidly to the expected value ofN\v in the strong-coupling
limit when K2 andK3 approach zero.

At first sight, it would seem that the two quadratic co
pling coefficients are almost independent of each other.
positions and energies of theD5d wells only depend uponV2
while the D3d wells only depend uponV3. However, the
strong- and weak-coupling limits for theD5d wells are af-
fected as much byV3 as they are byV2. This shows that both
types of quadratic coupling must be included in the vibro
problem.

V. DISCUSSION

The results given in the preceding section provide a r
sonable approximation to the true excited states and ene
of the dynamicalT1u^ hg JT system in the presence of qu
dratic coupling. However, some inaccuracies have inevita
been introduced in our desire to produce analytical result
use for further calculations. Although excited states belo
ing to different symmetries are orthogonal to each oth
states having the same symmetries may not be mutually
thogonal. For example, the 30 excited states containing o
phonon excitation belong to four symmetries, namelyT1 ,
T2 , G, andH. Each symmetry contains two different sets
states. There is nothing in our procedure to ensure that
pairs of states of the same symmetry are orthogonal. In f
it can be deduced that only the two sets of states pertain
to T1 symmetry are orthogonal to each other. If this lack
nonorthogonality is a problem, it will increase rapidly asN
increases. Nevertheless, Figs. 1–4 do not show any no
able differences between theT1 states and the remainin
states. Therefore, we do not believe that the nonorthogon
introduces significant errors. The properties of symmet
adapted excited states of like symmetries in cubic symm
were discussed previously in Refs. 27 and 34. Also, anis
ropy in the potential-energy minima in the APES has be

FIG. 2. As Fig. 1 but for theT2u excited states. TheT2u tunnel-
ing levels (N50) are also shown.
2-8
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included via the effect upon the frequencies but, due to
complications of icosahedral symmetry, the effect of anis
ropy in the phonon overlaps has been neglected, as h
second-order anisotropic corrections to the well states.19

It would be possible to obtain more accurate analyti
results, for example by orthogonalizing symmetry-adap
states of the same symmetry and/or by including anisotr
to second-order in perturbation theory. However, despite
details of the calculations presented here being complica
due to the icosahedral symmetry, the results obtained hav
analytical form that can be written down and computed re
tively easily. They also apply across the full range of co
pling strengths. The results can be used in further calc
tions, such as of second-order RFs or in determining
effects of additional perturbations, without it being necess
to repeat any derivations. Further enhancements to the m
presented would result in even more cumbersome state
more accurate results are required, then alternative nume
approaches should be sought. However, it would be m
more difficult to cover all coupling strengths in one mod
Also, the results would be harder to extend and use in furt
calculations, as well as showing much less clearly the effe
of anisotropy and tunneling between potential wells.

Another approach to the dynamicalT1u^ hg JT system
would be to consider linear coupling only, in which the low
est APES consists of a two-dimensional trough.11 The trough
can be mapped onto the surface of a sphere, with each p
fixed by anglesu, f, andg. Appropriate states can be con
structed taking into account vibrations across the trough
rotations around the trough, including all points at the b
tom of the trough via an integral overu, f, andg. However,
the disadvantage of this method is that, in order to evalu
the energies of the resultant states, it is necessary to eva

FIG. 3. As Fig. 1 but for theG excited states.
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six-dimensional integrals. This will not be considered furth
here.

VI. CONCLUSIONS

The calculations described in this paper are based on
framework that in the strong-coupling limit, vibronic stat
confined within minima in the APES are good eigenstates
the system so that the JT system is essentially static. W
the coupling is not so strong, the barriers between
minima are not high enough to prevent tunneling betwe
the minima and the JT system becomes dynamic. This le
to the idea of symmetry-adapted vibronic states. The ca
lations have shown that, despite the heavy algebraic de
involved, analytical expressions for the excited symmet
adapted vibronic states and their energies can be obta
covering the whole range of coupling strengths. The res
show the expected behavior in both the weak- and stro
coupling limits. In this paper, results have only been giv
for the case when theD5d points are absolute minima in th
APES. However, the methods presented can easily be
tended toD3d wells in theT1u^ hg system, or indeed to JT
systems of other symmetries. We have also shown that
vious work in cubic symmetry cannot be applied directly
icosahedral symmetry.

The importance of the symmetry-adapted excited sta
from which it is possible to obtain more reliable values f
the second-order RFs, will form the basis of future work.
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FIG. 4. As Fig. 1 but for theH excited states.
r

v. B

s.:
*Present address: Department of Chemistry, Catholic Universit
Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

1M. Schluter, M. Lannoo, M. Needels, G.A. Baraff, and D. T
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