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Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops
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We study the magnetic interaction between two superconducting concentric mesoscopic Al loops, close to
the superconducting/normal phase transition. The phase boundary is measured resistively for the two-loop
structure as well as for a reference single loop. In both systems Little-Parks oscillations, periodic in field, are
observed in the critical temperatureTc versus applied magnetic fieldH. In the Fourier spectrum of theTc(H)
oscillations, a weak ‘‘low frequency’’ response shows up, which can be attributed to the inner loop supercurrent
magnetic coupling to the flux of the outer loop. The amplitude of this effect can be tuned by varying the
applied transport current.

DOI: 10.1103/PhysRevB.64.064516 PACS number~s!: 74.25.Dw, 74.60.Ec, 73.23.2b
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I. INTRODUCTION

In 1962, Little and Parks1 measured a mesoscopic supe
conducting cylinder in an axial magnetic field. The superc
ducting critical temperatureTc(F/F0) showed oscillations
periodic in the normalized flux, with the period correspon
ing to the superconducting flux quantumF05h/2e. These
oscillations inTc(F/F0) are a straightforward consequen
of the fluxoid quantization constraint, which was introduc
by London.2 Fluxoid quantization can be easily understo
by integrating the second Ginzburg-Landau~GL! equation
for the supercurrent3,4

jW5
2e

m*
uCu2~\¹W d22eAW !52euCu2vW ~1!

along a closed contour. Here,jW is the supercurrent density,vW
is the superfluid velocity,d is the phase of the complex orde
parameterC5uCueid, andAW is the magnetic vector poten
tial. Integration along an arbitrary closed contour yields
following equation:

F8[F1
1

2e R m* vW •d lW5NF0 , ~2!

where the fluxoidF8 is quantized in units ofF05h/2e and
F is the applied flux threading the area inside the conto
The integer numberN is the phase winding number, or als
called the fluxoid quantum number, counting the number
flux quantaF0 penetrating the enclosed area. When the
plied flux F is not equal to integer times the flux quantu
F0, a supercurrentj has to be generated in order to fulfi
Eq. ~2!.

For a superconducting ring of radiusr, made of wires of
vanishing width (w50), a one-dimensional~1D! GL model
can be used to describe the onset of superconductivity.
relativeTc variations can be written as

Tc02Tc~F/F0!

Tc0
5

j2~0!
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wherej(0) is the coherence length at zero temperature,Tc0
is the critical temperature in zero field , and the integer nu
ber N is chosen to maximize the critical temperatureTc(F).
For each fluxoid quantum numberN, the critical temperature
Tc(F/F0) has a parabolic shape. The Little-Parks~LP! os-
cillations appear due to the transitions from the integer va
N to N11, at a half integer value ofF/F0. For F/F05N,
no supercurrent flows in the ring, while forF/F05N11/2,
the supercurrent reaches a maximal value and changes
The maximum normalized variation of the critical temper
tureDTc(F/F0)/Tc0 is j2(0)/4r 2, as can be evaluated from
Eq. ~3!. To observe these quantization effects experimenta
structures with the radius of the loop of the order of t
coherence lengthj(0) should be used.

Since the pioneering work of Little and Parks, single m
soscopic superconducting loops and cylinders has b
largely studied. Recently, Zhuet al.5 studied the flux state in
two magnetically coupled mesoscopic normal loops. T
magnetic coupling of an array of normal6 and
superconducting7 loops has also been studied. In those ca
the loops are electrically isolated from each other and
only interact magnetically.

Our work will focus on the magnetic coupling of two
concentric superconducting loops.The modification of the
phase boundaryTc(H) of the outer loop due to magneti
coupling with the inner loop will be studied. Magnetic co
pling effects between two loops are potentially very impo
tant since for the two loops made from different materials
new unusual effect of enhancingTc1(H) due to a higher
Tc2(H) can be expected.

The GL free energy for such a system can be written
follows:

Fs5Fn1Vi S auC i u21buC i u41
m* v i

2

2
uC i u2D 1VoS auCou2

1buCou41
m* vo

2

2
uCou2D 1Li I i

21LoI o
21MI i I o , ~4!

with Fn the total free energy in the normal state,a andb the
expansion coefficients,m* the mass of a Cooper pair andL
and M the self- and mutual inductance.V is the volume of
©2001 The American Physical Society16-1
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FIG. 1. ~a! A schematic drawing of samples A, B, and C, and sample R.I 1 and I 2 are the contacts for the transport current;V1 andV2

are the voltage probes.ai andao are the width of the inner, respectively outer loop, measured from middle to middle, andw is the wire width
of the loop and of the connecting wires.~b! AFM image of the double loop~samples A, B, and C! and of the single loop~sample R!.
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the loop,C is the order parameter,v is the velocity of the
superfluid andI is the supercurrent. The indexesi ando refer
to the inner and outer loop, respectively. The superfluid
locities of the two loops are determined from the fluxo
quantization constraint:

v i5
\

m* r i
S Ni2

F1I oM

F0
D ,

vo5
\

m* r o
S No2

F1I iM

F0
D . ~5!

To solve this equation, the free energy must be minimiz
with respect to variations inC i , Co , I i and I o . The free
energy Fs contains in this case the termMI i I o
}M uC i u2uCou2 responsible for the mixing of the two indi
vidual order parametersC i andCo .

II. EXPERIMENTAL RESULTS AND DISCUSSION

We present the results of transport measurements ca
out on two different types of mesoscopic Al structures~Fig.
1!. The first type of sample is composed of two concen
loops, with the outer loop being electrically connected to
experimental setup in order to perform four-points resista
measurements. Three samples of this type have been stu
sample A and sample B with the same thickness and
same dimensions of the loops and sample C with a sma
thickness and slightly different dimensions of the loops. T
reference sample~sample R! is analogous to the first struc
ture, but without the inner loop. All the samples discuss
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except sample C, are evaporated in the same run. All sam
have been prepared by thermal evaporation of 99.999
pure Al on a SiO2 substrate. The patterns are defin
using electron beam lithography on a bilayer
PMMA/PMMA-coPMMA resist before the deposition o
an aluminum film with a thicknesst550 nm and t
528 nm for samples A, B, and R and for sample C, resp
tively. After the evaporation, the liftoff was performed usin
dichloromethane. In Fig. 1~a!, the geometry and the dimen
sions of the different structures are shown. The thickness
the lateral dimensions of the samples have been chara
ized by the x-ray diffraction on a coevaporated plane fi
and AFM @see Fig. 1~b!#, respectively. The wire width of the
loop and of the connecting wires has been determined f
SEM investigations. The superconducting/normal ph
boundaries are obtained from transport measurements,
ried out with a transport currentI t flowing through the outer
loop. The phase boundary is measured holding the resist
at a fixed resistive criterion~we used the criterionRn/2, with
Rn the resistance in the normal state!. This is achieved using
an electronic feedback circuit. Once a required tempera
stability is obtained, the magnetic field is swept at a ve
slow rate~with a typical frequency of 20mHz). To improve
the signal-to-noise ratio a PAR 124A lock-in amplifier h
been used, operating at 27.7 Hz.

The width of the wires of the studied superconducti
loops determines the parabolic background of theTc(H)
phase boundary:8

Tc02Tc~H !

Tc0
5

p2

3 S wj~0!m0H

F0
D 2

, ~6!
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wherew is the width of the wires. Equation~6! also describes
theTc(H) line for a superconducting thin film of thicknessw
subjected to a magnetic field parallel to the film plane. In
practical situation, the phase boundary of a superconduc
loop of finite wire width will show a parabolic backgroun
@see Eq.~6!#. The suppression ofTc can be written as the
sum of two components: an oscillatory term as described
Eq. ~3!, and a monotonic term@Eq. ~6!#. The coherence
lengthj(0) of the samples can be determined from the pa
bolic background of the phase boundary, since the width
the wiresw is a known parameter. A second method to eva
ate the coherence length is to determinej(0) from the slope
of Tc(H) of a coevaporated macroscopic reference film
third method is based on the dirty limit of the GL theory3

where from the known value of the elastic mean free patl,
the coherence lengthj(0)50.86Aj0l is obtained, using the
clean limit valuej051.6 mm for Al. The results of the three
methods are summarized in Table I. The difference betw
the j(0) values calculated with the three different metho
can be partially explained by the rather broad error marg
on the wire widthw.

In Fig. 2, the theoretical phase boundaries are shown
the two single loops when they are not coupled magnetica
one using the dimensions of the inner loop to calculate
phase boundary~solid line!, and the other using the size o
the outer loop~lowest dashed line!, thus corresponding to th
reference sample; this has been calculated from Eq.~3! using
the dimensions of the loops summarized in Table I. It sho
be mentioned that an increase along the vertical axis co
sponds to a decreasing temperature. The amplitude of th
oscillations is the larger the smaller the loop size@see Eq.
~3!#. The period of theTc(H) oscillations for the inner and
outer loop is given by m0DHi5F0 /Si , and m0DHo

5F0 /So , respectively withSi5ai
2 andSo5ao

2 the enclosed
areas~see Fig. 1!. PointsX andY in Fig. 2 are situated at two
fixed applied magnetic field values on theT-H phase bound-
ary for the outer loop. In the case of pointX, the inner loop
is in the normal state, thus the inner loop carries no su
current. In this situation, no flux is coupled to the outer loo
For point Y, on the contrary, the inner loop is in the supe

TABLE I. Material parameters for the measured samples.

Sample R A B C

t ~nm! 50 50 50 28
w ~nm! 180 180 180 140
ao (mm) 2 2 2 1.9
ai (mm) 0.9 0.9 1
Tc0 ~K! 1.324 1.326 1.327 1.363
Rh (V)5r/t ~4.2 K! 0.65 0.72 0.76 1.36
l el ~nm! 12.3 11 10.6 10.5
j~0! @Eq. ~6!# ~nm! 103 105 102 117
j~0! Ref. sample~nm! 128 128 128
j~0! dirty limit ~nm! 114 112 120 112
Li ~pH! 1.6 1.6 1.9
Lo ~pH! 4.5 4.5 4.5 4.6
M ~pH! 22 22 21
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conducting state, and a supercurrent will flow in both loo
in order to satisfy the respective fluxoid quantization co
straints@Eq. ~2!#. Under these conditions, due to the mutu
inductance between the two current loops@see Eqs.~4! and
~5!#, an influence of the fluxoid quantization in the inner loo
on the measuredTc(H) phase boundary of the outer loop
expected.

To extend the flux interval for which the inner loop re
mains superconducting, a higher transport currentI t can be
applied to the outer loop. The phase boundaryTc(F) of the
outer loop is schematically presented in Fig. 2 by the dot
(I t50.3 mA) and the dashed-dotted (I t50.9 mA) lines.
We now follow through the fixed magnetic field lines follow
ing the pointsX→X9 andY→Y9 by increasing the transpor
current I t . The point on the phase boundary of the ou
loop, with the same magnetic field value asX for I t50, will
cross the phase boundary of the inner loop in pointX8 by
increasingI t . For a highest transport current, the inner lo
will be superconducting for each point on the phase bou
ary of the outer loop~dashed-dotted line!. The inner loop
will be deeper in the superconducting state, following t
shift from Y to Y9 while increasing the transport current. A
a result, an increase ofI t will not only broaden the interval in
which the inner loop is superconducting, but also incre
the supercurrent in the inner loop.

Zhang et al.9 have calculated the self-flux for a typica
mesoscopic ring. From these calculations, we can find
self-flux and the additional flux in the outer loop due to t
presence of the inner loop. The self-flux for the inner a
outer loop will not be larger than 0.4% of the applied flux f
T/Tc.0.99. The additional fluxMI i in the outer loop will be
less than 4% in this temperature interval but can be hig
than 20% forT/Tc,0.95. All the measurement presented
this paper are in the regionT/Tc.0.99. A possibility to fur-

FIG. 2. Calculated phase boundaryTc(H) of the inner~solid
line! and outer loop~dashed, dotted, and dashed-dotted line! for two
periods of the inner loop, without magnetic interaction, using
dimensions of samples A and B. The phase boundary of the o
loop is shown for three different transport currentsI t : I t50 mA
dashed line,I t50.3 mA dotted line, andI t50.9 mA dashed-dotted
line. The coherence lengthj(0)5103 nm is taken. The shift of the
Tc(H) curves with increasingI t are estimated from Refs. 10 and 1
I c5I c0(Tc02Tc)

3/2, with I c0'550 mA.
6-3
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ther increase the supercurrent in the inner loopI i and thus
the magnetic coupling between the two loops would be
use of a material with a higherTc for the inner loop.

In Fig. 3, the phase boundaries of the samples A, B,
and R (h: sample A;s: sample B;n: sample C;,: sample
R! are shown for a ac transport currentI t50.3 mA rms after
subtraction of the monotonic parabolic background due
the finite width of the strips@Eq. ~6!#. Further on, the flux
F5Som0H will refer to the flux threading the surface of th
outer loop. TheTc(F) part below 5F0 is not shown becaus
the experimental data were rather noisy in the low field
gion for some measurements. The curves correspondin
different samples are arbitrarily shifted in Fig. 3. The var
tion of the critical temperature with increasing transport c
rent can be estimated from Refs. 10 and 11 for zero fie
I c5I c0(Tc02Tc)

3/2, with I c0'550 mA and I c0'240 mA
for samples A, B, and R and for sample C, respectively. T
critical temperatures of the different samples after extrap
tion of the experimental results toI t50 are given in Table I.
For I t50.3 mA, the shift of the zero field critical tempera
tureDTc0 ~used in Fig. 2! is 7 mK ~12 mK for sample C!, for
0.5 mA: 9 mK and for 0.7 mA: 12 mK. Within each oscil-
lation period, a parabolic function is fitted through the da
points in between the transition to a different fluxoid qua
tum numberNo→No11 @Eq. ~3!#. The value for the self-
and mutual inductance12 for the different samples are sum
marized in Table I.

In Fig. 3, a smaller amplitude of the oscillations is o
served for sample C, compared to the other samples.
smaller amplitude is to be expected because of a sm
thickness of the film, what would lead to a reduced me
free path and a smaller coherence length value for samp

FIG. 3. Measured phase boundaryTc(F) after subtraction of the
parabolic background caused by the finite wire width of the loo
The phase boundary is plotted in normalized units of the fluxF
5Som0H threading the outer loop. Within each oscillation period
parabolic function is fitted through the data points in between
transition to a different fluxoid quantum numberNo . The phase
boundary of sample A (h), sample B (s), sample C (n),
and sample R (,) is compared for the same transport curre
I t50.3 mA.
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@see Eq.~3!#. But the coherence lengths are comparable
all four different samples~see Table I!.

The phase boundaries of the double loop sample A and
the reference sample R are also measured for different tr
port currentsI t . The results for three different ac transpo
currentsI t (s: 0.3 mA; n: 0.5 mA; ,: 0.7 mA rms! are
shown in Figs. 4~a! and 4~b! for sample A and sample R
respectively. From these experimental data, clear differen
between sample A and sample R are seen. First of all,
amplitude of theTc(F) oscillations is stronger in sample R
secondly the phase boundary of the single loop@Fig. 4~b!#
matches very well with the fitted parabolic curves~solid
curves!, while the oscillations of sample A@Fig. 4~a!# are not
parabolic at all, since the cusps inTc(F) are always
rounded.

The rounding of the cusps inTc(F), observed for sample
A, are not reproduced in samples B and C~see Fig. 3!. These
rounded cusps cannot be attributed with all certainty to
magnetic interactions with the inner loop, but may be a

.

e

t

FIG. 4. Measured phase boundaryTc(F) after subtraction of the
parabolic background caused by the finite wire width of the loo
The phase boundary is plotted in normalized units of the fluxF
5Som0H threading the outer loop. Within each oscillation period
parabolic function is fitted through the data points in between
transition to a different fluxoid quantum numberNo . The results for
three different ac transport currentsI t (s:0.3 mA; n: 0.5mA; ,:
0.7 mA) are presented~a! for sample A and~b! for sample R.
6-4
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CRITICAL TEMPERATURE OSCILLATIONS IN . . . PHYSICAL REVIEW B64 064516
related to the presence of scattering imperfections in
outer loop of sample A, as has been shown theoreticall
Ref. 13. A possible source of such imperfections could be
variation of the strip width along the loops written by e-bea
lithography. Using the micronet approach,14,15 the GL equa-
tion can also be solved when imperfections are present
loop. A single period of the phase boundary calculated fr
this micronet approach13 is presented in Fig. 5 for differen
magnitudes of imperfections. Notice that the stronger the
perfection the more the oscillation amplitude is damped.

It is clear from our experiments and from Ref. 9 that t
influence of the inner loop on the measured phase boun
is quite small. To detect traces of the periodicity comi
from theTc(F) oscillations of the inner loop, a fast Fourie
transform analysis of the phase boundaries is carried ou
ing 210 equally spaced points in an interval between 5 and
F/F0 for sample A, B, and R and between236 and 49
F/F0 for sample C, but with approximately the same nu
ber of data points. In order to remove most of the contrib
tion arising from the fluxoid quantization in the outer loo
the parabolas fitted in Figs. 3, 4~a!, and 4~b! ~solid line! are
subtracted from the experimental data, prior to taking
Fourier transform. The resulting spectra are presented
Figs. 6~a! for sample A, 6~b! for sample B, 6~c! for sample C,
and 6~d! for the single loop~sample R!, for an external trans-
port current ofI t50.3 mA. The Fourier spectra of sample
and sample R forI t50.5 mA are shown in Figs. 7~a! and
7~b!, respectively.

In Figs. 6~a!, 6~c!, and 7~a!, a peak is clearly seen a
(F/F0)2151 corresponding to the frequency of the LP o
cillations for the outer loop; the second to the sixth harm
ics of this base frequency are also seen. In the case o
sample R@Figs. 6~d! and 7~b!# and of sample B@Fig. 6~b!#,
the first harmonic is strongly reduced. This reduction is qu
reasonable because of the subtraction procedure applie
fore the Fourier transformation. The lower scale for the F
rier spectrum for sample C@Fig. 6~c!# is probably due to a
smaller amplitude of the oscillations in the phase bound

FIG. 5. The calculated phase boundary is shown for one pe
using the micronet approach for a loop containing one scatte
imperfection~Ref. 13!. The different curves correspond to differe
magnitudes of the scattering imperfection: from zero magnitude
the upper curve to a large magnitude for the lowest curve.
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For the double loop~samples A, B, and C!, supplementary
peaks are clearly distinguished in between the harmo
@see inset in Figs. 6~a!, 6~b!, 6~c!, and 7~a!#, which are con-
siderably weaker in the reference sample R. These peaks
be due to the coupling with the supercurrent in the inn
loop. Comparing the insets of Fig. 6~b! and Fig. 6~d!, we
note that the supplementary peaks are substantially sha
and higher for sample B than for sample R.

The period of the LP oscillations for the outer loop
m0DHo5F0 /So50.525 mT andm0DHo50.550 mT for
samples A, B, and R and for sample C, respectively, co
sponding to the first harmonic peak at (F/F0)2151. The
periodicity of the Tc(F) oscillations for the inner loop
~samples A and B! is m0DHi5F0 /Si52.6 mT, which is
approximately 5 times larger thanm0DHo , since the surface
of the inner loop is approximately 5 times smaller than t
one of the outer loop. This periodicity is in good agreeme
with the measurement on sample B@Fig. 6~b!#, where four
peaks are indeed observed between the first and the se
harmonic, thus indicating a five times smaller frequen
compared to the frequency of theTc(F) oscillations of the
outer loop. TheTc(F) measurements on sample A show tw
pronounced peaks between each harmonic@Figs. 6~a! and
7~a!#. This suggests a period for the inner loopm0DHi
'3m0DHo which is in disagreement with the dimensions
sample A. For sample C, which has a slightly different si
the periodicity of the inner loop oscillations inTc(F) is
m0DHi5F0 /Si52.1 mT'4m0DHo . This periodicity is in
agreement with the measurements where three peaks
clearly observed before the first harmonic@see Fig. 6~c!#.

The reason for the disagreement between the period
of the oscillations and the peaks in the Fourier spectrum
sample A can be a different effective surface. To calculate
periodicity of the oscillations of the inner and outer loop, t
average size of the loops~through the middle of the wires!
has been used. It is possible that we have to take a slig
smaller or larger effective surface for sample A. The dime
sions of samples A and B may also be not exactly the sa
But the effective surface has to be taken larger than the l
est dimensions of the inner loop to obtain a value
m0DHi'3m0DHo . We therefore think that the smalle
peaks might be hidden, and not clearly seen however in
Fourier spectrum. In that case, a value for the periodicity
6 times the periodicity of the inner loop is more realistic f
sample A. Coming back to Fig. 2, we can see that the inte
~between 5 and 24F/F0!, where a Fourier transform wa
performed for samples A, B, and R, corresponds only to 3
4 periodsm0DHi . The resolution of the Fourier spectrum
the low frequency regime will therefore be low, thus prese
ing an additional difficulty in interpreting the intermedia
peaks in the Fourier spectra. The phase boundaryTc(F) of
sample C is measured over a broader interval~between236
to 49 F/F0). This interval corresponds to more than 2
periodsm0DHi , which results in a better resolution of th
Fourier spectrum in the low frequency regime.

In a first approximation, with the currentsI i and I o inde-
pendent from each other, the mutual inductanceM can be
evaluated from the amplitude of the additional peaks in
Fourier spectrum. The additional energy due to the mut

d
g

r
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FIG. 6. Fourier transform of the phase boundary after subtraction of the fitted parabolas within each oscillation period, for a t
current I t50.3 mA for ~a! sample A,~b! sample B,~c! sample C, and~d! sample R. The inset shows a zoom of the plot for the l
frequency region.
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inductance in Eq.~4! (MI i I o) has to be of the same order o
magnitude as the amplitude of the oscillationskBDTcoupling
due to coupling in the phase boundary of the outer loop. T
value for the mutual inductance can then be evaluated w
the formula

M'
kBDTcoupling

^I i I o&
, ~7!

with kB the Boltzmann constant. This givesM'17 pH, 13
pH, and 14 pH for samples A, B, and C, respectively. T
average of the supercurrentsI i and I 0 is calculated from
Refs. 7 and 9, forI t50.3 mA and with the criterion forTco
at 90% of Rn , which correspond to a typical temperatu
interval of 3 mK between this criterion and the 50% criteri
used for the measurements of the phase boundary. It is q
clear that the supercurrents, and thus also the mutual in
tance are strongly dependent of this chosen criterion.
values calculated from Eq.~7! are comparable to the calcu
lated mutual inductances from Table I. Due to the stro
06451
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temperature dependent currents, only the order of magni
of the mutual inductance can be evaluated from our meas
ments.

For high (I t50.9 mA for sample A and 1.0mA for
sample C! transport current, the peaks between the harm
ics completely disappear~not shown!. This vanishing may be
due to increasing shift ofTc(F) with the applied transpor
current. The highest current corresponds to the case of
upper curve~dashed-dotted line! in Fig. 2. Hence, for all flux
values, the inner loop is in the superconducting state
Tc(F) of the outer loop, and the phase boundaries of the
loops are not intersecting each other. There will be no sh
interruption of the supercurrent of the inner loop going fro
the superconducting to the normal state. Therefore, the sh
of the phase boundary of the outer loop can be less sens
to the presence of the inner loop. On the other hand, once
inner loop is deep in the superconducting state, a higher
percurrent in the inner loop would be present, and this hig
supercurrent would require a higher coupling. If the transp
currentI t is high enough, the inner loop will be always s
6-6
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perconducting atTc(F) of the outer loop. A discontinuity in
the measured phase boundary of the outer loop is expe
when the inner loop changes from a fluxoid quantum num
Ni to Ni61. However, we could not see a discontinuity
the measured phase boundaries, corresponding to a sig
versal of the supercurrent in the inner loop.

FIG. 7. Fourier transform of the phase boundary after subt
tion of the fitted parabolas within each oscillation period, for
transport currentI t50.5 mA for ~a! sample A and~b! sample R.
The inset shows a zoom of the plot for the low frequency regio
.C

06451
ed
r

re-

III. CONCLUSION

We have measured the normal/superconducting ph
boundary of a superconducting system consisting of t
concentric mesoscopic loops, to study magnetic interacti
between the two loops. The modification of theTc(F) oscil-
lations of the outer loop is seen in the Fourier spectrum
theTc(F) line due to the coupling between the outer and
inner loops. To interpret these observations, we have u
two different models. The first model assumes the prese
of scattering imperfections in the outer loop. This mod
cannot explain the observed evolution of the Fourier sp
trum with the current, although it might be applicable for
fixed weak current. The second model explains the ex
peaks in the Fourier spectrum by the magnetic coupling
the two loops. The systematic shift of theTc(F) phase
boundary of the outer loop with the applied currentI t in-
duces a well defined evolution of the Fourier spectrum wh
was indeed found in our experiments. This evolution of t
extra peaks in the Fourier spectrum with the applied curr
gives an experimental evidence for the presence of the m
netic interaction between the two superconducting loops

Future magnetic measurements on huge arrays of m
netically coupled loops, deeper in the superconducting st
could be helpful to reveal an enhanced magnetic coupling
both loops at lower temperatures. An inner loop made from
different superconductor with a higher critical temperatu
would certainly increase the magnetic coupling between
two loops. An enhanced critical field is expected in this ca
for the lowerTc loop, at the expense of sharing the fluxo
quantization ‘‘burden’’ with a loop where superconductivi
is stronger.
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