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Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops
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We study the magnetic interaction between two superconducting concentric mesoscopic Al loops, close to
the superconducting/normal phase transition. The phase boundary is measured resistively for the two-loop
structure as well as for a reference single loop. In both systems Little-Parks oscillations, periodic in field, are
observed in the critical temperatufe versus applied magnetic field. In the Fourier spectrum of thg.(H)
oscillations, a weak “low frequency” response shows up, which can be attributed to the inner loop supercurrent
magnetic coupling to the flux of the outer loop. The amplitude of this effect can be tuned by varying the
applied transport current.
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[. INTRODUCTION where¢(0) is the coherence length at zero temperatUgg,
is the critical temperature in zero field , and the integer num-
In 1962, Little and Parksmeasured a mesoscopic super-berN is chosen to maximize the critical temperatig®d).
conducting cylinder in an axial magnetic field. The superconfor each fluxoid quantum numbbs the critical temperature
ducting critical temperaturd@ . (®/d,) showed oscillations T.(®/®P,) has a parabolic shape. The Little-Patk$) os-
periodic in the normalized flux, with the period correspond-cillations appear due to the transitions from the integer value
ing to the superconducting flux quantuin,=h/2e. These N to N+1, at a half integer value cb/®,. For ®/®y=N,
oscillations inT.(®/®) are a straightforward consequence no supercurrent flows in the ring, while fdr/®y=N+1/2,
of the fluxoid quantization constraint, which was introducedthe supercurrent reaches a maximal value and changes sign.
by London? Fluxoid quantization can be easily understoodThe maximum normalized variation of the critical tempera-
by integrating the second Ginzburg-LandéBL) equation ture AT (®/dg)/ Ty is £2(0)/4r?, as can be evaluated from
for the supercurreff Eq. (3). To observe these quantization effects experimentally,
structures with the radius of the loop of the order of the
. 2e R R _ coherence lengtl§(0) should be used.
j= —*|‘lf|2(ﬁV 5—2eA) =2e|V|% (1) Since the pioneering work of Little and Parks, single me-
m soscopic superconducting loops and cylinders has been
. R largely studied. Recently, Zhet al® studied the flux state in
along a closed contour. Herpjs the supercurrent density,  two magnetically coupled mesoscopic normal loops. The
is the Superfluid V9|OCity§ is the phase of the Complex order magnetic Coup”ng of an array of norrﬁa| and
parameter¥’ =|¥|e'®, andA is the magnetic vector poten- superconductingloops has also been studied. In those cases
tial. Integration along an arbitrary closed contour yields thethe loops are electrically isolated from each other and can
following equation: only interact magnetically.
Our work will focus onthe magnetic coupling of two
1 .. concentric superconducting loop¥he modification of the
Pr=d+ oo f# m*v-dl=N®,, (2)  phase boundar§(H) of the outer loop due to magnetic
coupling with the inner loop will be studied. Magnetic cou-
where the fluxoidP’ is quantized in units ofb,=h/2e and  Pling effects between two loops are potentially very impor-
® is the applied flux threading the area inside the contourt@nt since for the two loops made from different materials, a
The integer numbeN is the phase winding number, or also Néw unusual effect of enhancinf;(H) due to a higher
called the fluxoid quantum number, counting the number off c2(H) can be expected. _
flux quanta®, penetrating the enclosed area. When the ap- 1he GL free energy for such a system can be written as
plied flux ® is not equal to integer times the flux quantum follows:
®,, a supercurreni has to be generated in order to fulfill
Eq. (2). _ _
For a superconducting ring of radinsmade of wires of Fs= ItV
vanishing width (w=0), a one-dimensiondlLD) GL model . 2
can be used to describe the onset of superconductivity. The 4, Mo 2
relative T, variations can be written as BVl 2 Vol
C

m*p?

2

a Wi|?+ Bl *+ [Wil? ] +Vo| oWl

FLI2H+ L2+ MLy, ()

with 7, the total free energy in the normal stateand 8 the
(3) expansion coefficientsn* the mass of a Cooper pair ahd
and M the self- and mutual inductanc¥.is the volume of

Teo— Te(P/Dy) 52(0)( CD)Z
=" N ,

TcO r
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FIG. 1. (a) A schematic drawing of samples A, B, and C, and samplg,Rnd|, are the contacts for the transport currévt;andV,
are the voltage probes; anda, are the width of the inner, respectively outer loop, measured from middle to middley @ritie wire width
of the loop and of the connecting wird®) AFM image of the double loogsamples A, B, and Cand of the single loofgsample R.

the loop, ¥ is the order parametew, is the velocity of the
superfluid and is the supercurrent. The indexieando refer

except sample C, are evaporated in the same run. All samples
have been prepared by thermal evaporation of 99.9999%

to the inner and outer loop, respectively. The superfluid vepure Al on a SiQ substrate. The patterns are defined
locities of the two loops are determined from the fluxoidusing electron beam lithography on a bilayer of

guantization constraint:

Vi=

h ( i_q>+|om)!

m*r; @,

©)

h O +1;M
Vo= o .

*
m*r, @,

PMMA/PMMA-coPMMA resist before the deposition of

an aluminum film with a thicknessr=50 nm and 7

=28 nm for samples A, B, and R and for sample C, respec-
tively. After the evaporation, the liftoff was performed using
dichloromethane. In Fig. (&), the geometry and the dimen-
sions of the different structures are shown. The thickness and
the lateral dimensions of the samples have been character-
ized by the x-ray diffraction on a coevaporated plane film
and AFM[see Fig. 1b)], respectively. The wire width of the

To solve this equation, the free energy must be minimizedoop and of the connecting wires has been determined from

with respect to variations iV;, ¥,, |; andl,. The free
energy F; contains in this case the ternMI;l,
«M|W;|?|W,|? responsible for the mixing of the two indi-
vidual order parameterd; and V.

II. EXPERIMENTAL RESULTS AND DISCUSSION

SEM investigations. The superconducting/normal phase
boundaries are obtained from transport measurements, car-
ried out with a transport curremt flowing through the outer
loop. The phase boundary is measured holding the resistance
at a fixed resistive criteriofwe used the criterioR,,/2, with

R, the resistance in the normal stat€his is achieved using

an electronic feedback circuit. Once a required temperature

We present the results of transport measurements Ca”i%‘iability is obtained, the magnetic field is swept at a very

out on two different types of mesoscopic Al structu(egy.

slow rate(with a typical frequency of 2QHz). To improve

1). The first type of sample is composed of two concentriciye signal-to-noise ratio a PAR 124A lock-in amplifier has
loops, with the outer loop being electrically connected to theyeen ysed, operating at 27.7 Hz.
experimental setup in order to perform four-points resistance The width of the wires of the studied superconducting

measurements. Three samples of this type have been studit—:fgc')pS determines the parabolic background of Th¢H)
sample A and sample B with the same thickness and thBhase boundar¥:

same dimensions of the loops and sample C with a smaller

thickness and slightly different dimensions of the loops. The

reference samplésample R is analogous to the first struc-

ture, but without the inner loop. All the samples discussed, Teo 3

Teo—Te(H) 772<W§(0),U«0H)2, ©

= — (I)O
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TABLE |. Material parameters for the measured samples.

Sample R A B C
7 (nm) 50 50 50 28
w (nm) 180 180 180 140
a, (um) 2 2 2 1.9
a; (um) 0.9 0.9 1
Teo (K) 1.324 1.326 1.327 1.363
Ry (Q)=p/T (4.2 K) 0.65 0.72 0.76 1.36
ler (NnmM) 12.3 11 10.6 10.5
£(0) [Eq. (6)] (nm) 103 105 102 117
£(0) Ref. samplglnm) 128 128 128
£(0) dirty limit (nm) 114 112 120 112
L; (pH) 1.6 1.6 1.9
L, (pH) 4.5 4.5 4.5 4.6
M (pH) 22 22 21

wherew is the width of the wires. Equatioi®) also describes
theT.(H) line for a superconducting thin film of thickness
subjected to a magnetic field parallel to the film plane. In
practical situation, the phase boundary of a superconducti
loop of finite wire width will show a parabolic background

[see EQ.(6)]. The suppression of . can be written as the
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FIG. 2. Calculated phase boundafy(H) of the inner(solid
line) and outer loofgdashed, dotted, and dashed-dotted)lfioe two
periods of the inner loop, without magnetic interaction, using the
dimensions of samples A and B. The phase boundary of the outer
loop is shown for three different transport currehts I,=0 uA
dashed linel;=0.3 xA dotted line, and;=0.9 nA dashed-dotted
a]ine. The coherence leng§(0)=103 nm is taken. The shift of the
<(H) curves with increasing} are estimated from Refs. 10 and 11:
le=1co(Teo— Te)¥? with | o~550 uA.

sum of two components: an oscillatory term as described byonducting state, and a supercurrent will flow in both loops

Eg. (3), and a monotonic termiEq. (6)]. The coherence

in order to satisfy the respective fluxoid quantization con-

length£(0) of the samples can be determined from the parastraints[Eq. (2)]. Under these conditions, due to the mutual
bolic _background of the phase boundary, since the width ofnductance between the two current logsse Eqs(4) and
the wiresw is a known parameter. A second method to evalu{5)], an influence of the fluxoid quantization in the inner loop

ate the coherence length is to determi(@) from the slope

on the measured (H) phase boundary of the outer loop is

of T,(H) of a coevaporated macroscopic reference film. Aexpected.

third method is based on the dirty limit of the GL thedry,
where from the known value of the elastic mean free path
the coherence length(0)=0.86\/&,l is obtained, using the
clean limit value¢y=1.6 um for Al. The results of the three

To extend the flux interval for which the inner loop re-
mains superconducting, a higher transport curteman be
applied to the outer loop. The phase boundBg{d) of the
outer loop is schematically presented in Fig. 2 by the dotted

methods are summarized in Table I. The difference betwee(l,=0.3 uA) and the dashed-dotted ;0.9 uA) lines.
the £(0) values calculated with the three different methodswe now follow through the fixed magnetic field lines follow-
can be partially explained by the rather broad error margingng the pointsX— X" andY—Y” by increasing the transport

on the wire widthw.

currentl,. The point on the phase boundary of the outer

In Fig. 2, the theoretical phase boundaries are shown folbop, with the same magnetic field valueXagor 1,=0, will
the two single Iopps When they are not coupled magneticallycross the phase boundary of the inner loop in pdihtby
one using the dimensions of the inner loop to calculate théncreasingl,. For a highest transport current, the inner loop

phase boundarysolid line), and the other using the size of
the outer looflowest dashed linethus corresponding to the
reference sample; this has been calculated from(&aqusing

will be superconducting for each point on the phase bound-
ary of the outer loop(dashed-dotted line The inner loop
will be deeper in the superconducting state, following the

the dimensions of the loops summarized in Table I. It shouldshift from Y to Y” while increasing the transport current. As
be mentioned that an increase along the vertical axis correx result, an increase bf will not only broaden the interval in

sponds to a decreasing temperature. The amplitude of the
oscillations is the larger the smaller the loop sjzee Eq.
(3)]. The period of theT;(H) oscillations for the inner and
outer loop is given byujAH,=d,/S;, and ugAH,
=d,/S,, respectively withS =a? andS,=a2 the enclosed
areaqsee Fig. 1 PointsX andY in Fig. 2 are situated at two
fixed applied magnetic field values on theH phase bound-
ary for the outer loop. In the case of polt the inner loop

Lihich the inner loop is superconducting, but also increase
the supercurrent in the inner loop.

Zhanget al® have calculated the self-flux for a typical
mesoscopic ring. From these calculations, we can find the
self-flux and the additional flux in the outer loop due to the
presence of the inner loop. The self-flux for the inner and
outer loop will not be larger than 0.4% of the applied flux for
T/T.>0.99. The additional flud1; in the outer loop will be

is in the normal state, thus the inner loop carries no supeiless than 4% in this temperature interval but can be higher
current. In this situation, no flux is coupled to the outer loop.than 20% forT/T.<0.95. All the measurement presented in
For pointY, on the contrary, the inner loop is in the super-this paper are in the regioi/ T.>0.99. A possibility to fur-
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0.3 pA

\-T(H)IT,,

FIG. 3. Measured phase bounddiy®) after subtraction of the
parabolic background caused by the finite wire width of the loops.
The phase boundary is plotted in normalized units of the flux
=S, uoH threading the outer loop. Within each oscillation period, a
parabolic function is fitted through the data points in between the
transition to a different fluxoid quantum numbi. The phase
boundary of sample A[{l), sample B (), sample C {),
and sample R ) is compared for the same transport current —
1;=0.3 nA. 0.005 |

0.015 -

0010 2

T(H)T,

ther increase the supercurrent in the inner ldbppnd thus
the magnetic coupling between the two loops would be the oo [
use of a material with a highdr, for the inner loop.

In Fig. 3, the phase boundaries of the samples A, B, C,(b)
and R (J: sample A;O: sample B;A: sample C}V: sample
R) are shown for a ac transport currépt=0.3 A rms after
Subtr.a(_:tlon.of the monot_onlc parabolic background due tC?rhe phase boundary is plotted in normalized units of the flux
the finite W'd.th of the stripsEq. (6)] Further on, the flux =S,uoH threading the outer loop. Within each oscillation period, a
@ =SouoH will refer to the flux threading the surface of the parapnolic function is fitted through the data points in between the
outer loop. TheT .(®) part below 5P is not shown because  transition to a different fluxoid quantum numiég . The results for
the experimental data were rather noisy in the low field re+three different ac transport curreitg(0:0.3 uA; A: 0.5uA; V:
gion for some measurements. The curves corresponding @7 wA) are presenteda) for sample A andb) for sample R.
different samples are arbitrarily shifted in Fig. 3. The varia-
tion of the critical temperature with increasing transport cur{see Eq.3)]. But the coherence lengths are comparable for
rent can be estimated from Refs. 10 and 11 for zero fieldall four different samplegsee Table)l
le=1co(Teo— Te)¥2 with 1,0~550 pA and | ,o~240 uA The phase boundaries of the double loop sample A and for
for samples A, B, and R and for sample C, respectively. Thehe reference sample R are also measured for different trans-
critical temperatures of the different samples after extrapolaport currentsl;. The results for three different ac transport
tion of the experimental results to=0 are given in Table I. currentsl; (O: 0.3 uA; A: 0.5 uA; V: 0.7 A rms) are
For1,=0.3 uA, the shift of the zero field critical tempera- shown in Figs. 4a) and 4b) for sample A and sample R,
ture AT, (used in Fig. 2is 7 mK (12 mK for sample ¢ for  respectively. From these experimental data, clear differences
0.5 ©A: 9 mK and for 0.7 uA: 12 mK. Within each oscil- between sample A and sample R are seen. First of all, the
lation period, a parabolic function is fitted through the dataamplitude of thel .(®) oscillations is stronger in sample R,
points in between the transition to a different fluxoid quan-secondly the phase boundary of the single 10Bj. 4(b)]
tum numberN,—N,+1 [Eqg. (3)]. The value for the self- matches very well with the fitted parabolic curvésolid
and mutual inductanéé for the different samples are sum- curves, while the oscillations of sample [fFig. 4(@)] are not
marized in Table I. parabolic at all, since the cusps ih.,(®) are always

In Fig. 3, a smaller amplitude of the oscillations is ob- rounded.
served for sample C, compared to the other samples. This The rounding of the cusps ifi.(®), observed for sample
smaller amplitude is to be expected because of a smallek, are not reproduced in samples B andsge Fig. 3. These
thickness of the film, what would lead to a reduced meanounded cusps cannot be attributed with all certainty to the
free path and a smaller coherence length value for sample @agnetic interactions with the inner loop, but may be also

FIG. 4. Measured phase bounddiy®) after subtraction of the
arabolic background caused by the finite wire width of the loops.
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0.0020 — T 1 T For the double loogsamples A, B, and £ supplementary
Iperfection magnirade=0 [a0.] ; peaks are clearly distinguished in between the harmonics
[see inset in Figs. (@), 6(b), 6(c), and 7a)], which are con-
siderably weaker in the reference sample R. These peaks can
be due to the coupling with the supercurrent in the inner
loop. Comparing the insets of Fig(l§ and Fig. &d), we
note that the supplementary peaks are substantially sharper
and higher for sample B than for sample R.

The period of the LP oscillations for the outer loop is
MmoAH,=d,/S,=0.525 mT andugAH,=0.550 mT for
samples A, B, and R and for sample C, respectively, corre-
sponding to the first harmonic peak ab(®,) '=1. The
periodicity of the T.(®) oscillations for the inner loop
(samples A and Bis ugAH;=®,/S=2.6 mT, which is

o/, approximately 5 times larger tharyAH,, since the surface
of the inner loop is approximately 5 times smaller than the
FIG. 5. The calculated phase boundary is shown for one perlog_) ne of the outer loop. This periodicity is in good agreement
Qith the measurement on sample[Big. 6b)], where four
eaks are indeed observed between the first and the second
armonic, thus indicating a five times smaller frequency
compared to the frequency of tiig(®) oscillations of the
related to the presence of scattering imperfections in theuter loop. Thel(®) measurements on sample A show two
outer loop of sample A, as has been shown theoretically ironounced peaks between each harm¢higs. Ga) and
Ref. 13. A possible source of such imperfections could be thé(@]. This suggests a period for the inner logAH;
variation of the strip width along the loops written by e-beam~3uoAH, which is in disagreement with the dimensions of
lithography. Using the micronet approatdt®the GL equa- sample A. For sample C, which has a slightly different size,
tion can also be solved when imperfections are present in the periodicity of the inner loop oscillations ifi.(®) is
loop. A single period of the phase boundary calculated fromuoAH;=®y/S=2.1 mT=4u,AH,. This periodicity is in
this micronet approacf is presented in Fig. 5 for different agreement with the measurements where three peaks are
magnitudes of imperfections. Notice that the stronger the imelearly observed before the first harmofisee Fig. €&)].
perfection the more the oscillation amplitude is damped. The reason for the disagreement between the periodicity

It is clear from our experiments and from Ref. 9 that theof the oscillations and the peaks in the Fourier spectrum of
influence of the inner loop on the measured phase boundasample A can be a different effective surface. To calculate the
is quite small. To detect traces of the periodicity comingperiodicity of the oscillations of the inner and outer loop, the
from the T.(®) oscillations of the inner loop, a fast Fourier average size of the loofd¢hrough the middle of the wirgs
transform analysis of the phase boundaries is carried out uas been used. It is possible that we have to take a slightly
ing 2% equally spaced points in an interval between 5 and 24maller or larger effective surface for sample A. The dimen-
®/d, for sample A, B, and R and between36 and 49 sions of samples A and B may also be not exactly the same.
®/d, for sample C, but with approximately the same num-But the effective surface has to be taken larger than the larg-
ber of data points. In order to remove most of the contribu-€st dimensions of the inner loop to obtain a value of
tion arising from the fluxoid quantization in the outer loop, noAH;=3ueAH,. We therefore think that the smaller
the parabolas fitted in Figs. 3(a}, and 4b) (solid line) are  peaks might be hidden, and not clearly seen however in the
subtracted from the experimental data, prior to taking the-ourier spectrum. In that case, a value for the periodicity of
Fourier transform. The resulting spectra are presented if times the periodicity of the inner loop is more realistic for
Figs. Ga) for sample A, b) for sample B, 6c) for sample C, sample A. Coming back to Fig. 2, we can see that the interval
and @d) for the single loogsample R, for an external trans- (between 5 and 24p/®,), where a Fourier transform was
port current ofl,=0.3 wA. The Fourier spectra of sample A performed for samples A, B, and R, corresponds only to 3 or
and sample R fot;=0.5 uA are shown in Figs. (@ and 4 periodsuyAH;. The resolution of the Fourier spectrum in
7(b), respectively. the low frequency regime will therefore be low, thus present-

In Figs. 6a), 6(c), and Ta), a peak is clearly seen at ing an additional difficulty in interpreting the intermediate
(P/dy) 1=1 corresponding to the frequency of the LP os-peaks in the Fourier spectra. The phase boundafp) of
cillations for the outer loop; the second to the sixth harmon-sample C is measured over a broader intefbatween—36
ics of this base frequency are also seen. In the case of the 49 ®/®;). This interval corresponds to more than 20
sample R[Figs. §d) and 7b)] and of sample BFig. 6(b)], = periodsuoAH;, which results in a better resolution of the
the first harmonic is strongly reduced. This reduction is quite~ourier spectrum in the low frequency regime.
reasonable because of the subtraction procedure applied be-In a first approximation, with the currentsandl, inde-
fore the Fourier transformation. The lower scale for the Foupendent from each other, the mutual inductaiecan be
rier spectrum for sample {Fig. 6(c)] is probably due to a evaluated from the amplitude of the additional peaks in the
smaller amplitude of the oscillations in the phase boundaryFourier spectrum. The additional energy due to the mutual

0.0016

3 0.0012

/T,

1-TC(H)

0.0008

0.0004

0.0000
090

imperfection(Ref. 13. The different curves correspond to different
magnitudes of the scattering imperfection: from zero magnitude fo
the upper curve to a large magnitude for the lowest curve.

064516-5



MORELLE, BRUYNDONCX, JONCKHEERE, AND MOSHCHALKQOV PHYSICAL REVIEW B4 064516

3.0

LI N RSN R —F v v T T T T T T

2.0 T . 05 T T

25 1+ Sample A 151 17 . Sample C
arm.

1* Harm. 2™ Harm.

Amplitude

20

2" Harm.

1.5

Amplitude

<t
=
2 10 4 \
g -
: /
: ) k/\/w
3
&
g
<

(a) (c)

25| Sample R 15 1 7
3
3 E 1of E
| 20 | ! B
2.0 = u 0 g
) “ g < ]
2 sk 1 Z
= 1" Harm.  pu g a ]
z / g
1.0 \ —
0.5 -
-1 -1
(b) (o/@,) (d) (@/®)

FIG. 6. Fourier transform of the phase boundary after subtraction of the fitted parabolas within each oscillation period, for a transport
currentl,=0.3 uA for (a) sample A,(b) sample B,(c) sample C, andd) sample R. The inset shows a zoom of the plot for the low
frequency region.

inductance in Eq(4) (M1;1,) has to be of the same order of temperature dependent currents, only the order of magnitude
magnitude as the amplitude of the oscillatidggA T ping  Of the mutual inductance can be evaluated from our measure-
due to coupling in the phase boundary of the outer loop. Thenents.
value for the mutual inductance can then be evaluated with For high (,=0.9 A for sample A and 1.0uA for
the formula sample @ transport current, the peaks between the harmon-
ics completely disappe#&not shown. This vanishing may be
KsAT coupling due to increasing shift of () with the applied transport
”W () current. The highest current corresponds to the case of the
upper curvgdashed-dotted linan Fig. 2. Hence, for all flux

with kg the Boltzmann constant. This givéé~17 pH, 13 values, the inner loop is in the superconducting state at
pH, and 14 pH for samples A, B, and C, respectively. Thelc(®) of the outer Ioop, and the phase boundaries of the two
average of the supercurrents and |, is calculated from |00ps are not intersecting each other. There will be no sharp
Refs. 7 and 9, fot,=0.3 wA and with the criterion foiT,,  interruption of the supercurrent of the inner loop going from
at 90% of R,, which correspond to a typical temperature the superconducting to the normal state. Therefore, the shape
interval of 3 mK between this criterion and the 50% criterion Of the phase boundary of the outer loop can be less sensitive
used for the measurements of the phase boundary. It is quite the presence of the inner loop. On the other hand, once the
clear that the supercurrents, and thus also the mutual indu@ner loop is deep in the superconducting state, a higher su-
tance are strongly dependent of this chosen criterion. Thpercurrent in the inner loop would be present, and this higher
values calculated from Eq7) are comparable to the calcu- supercurrent would require a higher coupling. If the transport
lated mutual inductances from Table I. Due to the strongcurrentl; is high enough, the inner loop will be always su-

064516-6



CRITICAL TEMPERATURE OSCILLATIONS IN . .. PHYSICAL REVIEW B64 064516

20 T T T T T IlI. CONCLUSION

AL B A L
15 u T 1
W osea @F _

Sample A

We have measured the normal/superconducting phase
boundary of a superconducting system consisting of two
concentric mesoscopic loops, to study magnetic interactions
between the two loops. The modification of thg d) oscil-
lations of the outer loop is seen in the Fourier spectrum of
theT.(P) line due to the coupling between the outer and the
inner loops. To interpret these observations, we have used
two different models. The first model assumes the presence
of scattering imperfections in the outer loop. This model
cannot explain the observed evolution of the Fourier spec-
trum with the current, although it might be applicable for a
fixed weak current. The second model explains the extra
peaks in the Fourier spectrum by the magnetic coupling of
the two loops. The systematic shift of the,(®) phase
boundary of the outer loop with the applied curréptin-
duces a well defined evolution of the Fourier spectrum which
was indeed found in our experiments. This evolution of the
extra peaks in the Fourier spectrum with the applied current
gives an experimental evidence for the presence of the mag-
netic interaction between the two superconducting loops.

Future magnetic measurements on huge arrays of mag-
netically coupled loops, deeper in the superconducting state,
could be helpful to reveal an enhanced magnetic coupling of
both loops at lower temperatures. An inner loop made from a
different superconductor with a higher critical temperature
would certainly increase the magnetic coupling between the
two loops. An enhanced critical field is expected in this case
for the lowerT, loop, at the expense of sharing the fluxoid

cduantization “burden” with a loop where superconductivity
is stronger.

1 jHarm,

o

08 |

Amplitude

06 |

04
02

00 b

Amplitude

(b) (@/2)"

FIG. 7. Fourier transform of the phase boundary after subtra
tion of the fitted parabolas within each oscillation period, for a
transport current,=0.5 uA for (a) sample A andb) sample R.
The inset shows a zoom of the plot for the low frequency region.

ACKNOWLEDGMENTS

perconducting at ;.(®) of the outer loop. A discontinuity in

the measured phase boundary of the outer loop is expected The authors wish to thank M. Cannaerts, E. Seynaeve,
when the inner loop changes from a fluxoid quantum numbeand K. Temst for the AFM, SEM, and x-ray measurements,
N; to N;*=1. However, we could not see a discontinuity in and H.J. Fink and L. Van Look for useful discussions. This
the measured phase boundaries, corresponding to a sign merk has been supported by the Belgian IUAP, the FWO and
versal of the supercurrent in the inner loop. GOA programs, and by the ESF Program VORTEX.

IW.A. Little and R.D. Parks, Phys. Rev. Lef, 9 (1962; R.D. 8M. Tinkham, Phys. Revl29 2413(1963.
Parks and W.A. Little, Phys. Re®33, A97 (1964). 9X. Zhang and J.C. Price, Phys. Rev5B, 3128(1996.
2F. London,SuperfluidsWiley, New York, 1950. 10¢. strunk, V. Bruyndoncx, C. Van Haesendonck, V.V. Mosh-

3M. Tinkham, Introduction to SuperconductivityMcGraw-Hill, ~chalkov, and Y. Bruynseraede, Phys. Rev 11 332(1996.
New York, 1975. J. Romijn, T.M. Klapwijk, M.J. Renne, and J.E. Mooij, Phys. Rev.

4p . L i B 26, 3648(1982.
P.' G'. de Gennessuperconductivity of Metals and AlloyBen 2. J. Duffin, Electricity and MagnetisniMcGraw-Hill, London,
jamin, New York, 1966.

1998; J. D. JacksonClassical Electrodynamic$Wiley, New

5J.X. Zhu, Z.D. Wang, and Q. Wang, J. Phys. Soc. §#.2602 York, 1999.
(1996. 1BVM. Fomin, J.T. Devreese, V. Bruyndoncx, and V.V. Mosh-
63. Wang, and Z.S. Ma, Phys. Rev.32, 14 829(1995. chalkov, Phys. Rev. B2, 9186(2000.
’D. Davidovic, S. Kummar, D.H. Reich, J. Siegel, S.B. Field, R.C.1H.J. Fink, A. Lgez, and R. Maynard, Phys. Rev. 25, 5237
Tiberio, R. Hey, and K. Ploog, Phys. Rev. Let6, 815(1996); (1982.
Phys. Rev. B55, 6518(1997. 153, Alexander, Phys. Rev. B7, 1541(1983.

064516-7



