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Thermodynamics of d-wave superconductors in a magnetic field
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We investigate the thermodynamic properties of a two-dimensionald-wave superconductor in the vortex
state using a semiclassical approach, and argue that such an approach is valid for the analysis of the experi-
mental data on high-temperature superconductors. We develop a formalism where the spatial average of a
physical quantity is written as an integral over the probability density of the Doppler shift, and evaluate this
probability density for several model cases. The approach is then used to analyze the behavior of the specific
heat and the nuclear magnetic resonance~NMR! spin-lattice relaxation rate in a magnetic field. We compare
our results with the experimental measurements, and explain the origin of the discrepancy between the results
from different groups. We also address the observability of the recently predicted fourfold oscillations of the
specific heat for the magnetic field parallel to the copper oxide planes. We consider both the orbital and the
Zeeman effects, and conclude that at experimentally relevant temperatures Zeeman splitting does not appre-
ciably reduce the anisotropy, although it does change the field dependence of the anisotropic specific heat. We
predict a scaling law for the nonexponentially decaying NMR magnetization, and discuss different approaches
to the effective relaxation rate.
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I. INTRODUCTION

Despite significant recent advances we still lack a co
plete understanding of the physics of low-energy excitati
in the vortex state of unconventional superconductors. Hi
temperature superconductors~HTSC’s! are an example of a
system where theoretical predictions can be checked ag
a large body of experimental evidence. In zero field th
materials have ad-wave superconducting energy gap, wi
nodes along the diagonals of the Brillouin zone, and con
quently a finite density of low-energy excitations.1 Moreover,
it is believed that at temperatures low compared to the tr
sition temperature,T!Tc , these excitations are reasonab
well described by the Landau quasiparticles, even tho
such an approach fails in these materials at higher ener
A variety of experimentally measured quantities such as
electronic specific heat,2–6 effective penetration depth from
muon spin rotation,7 spin-lattice relaxation rate,8,9 and ther-
mal conductivity10–12 are available to test the predictions
theories.

In this work we discuss the influence of the magnetic fi
on the thermodynamic quantities in the vortex state of
unconventional superconductor, and, in particular, add
the question of how these properties depend on the struc
of the vortex state. We concentrate on the behavior of
density of states and the electronic specific heat and the s
lattice relaxation of the nuclear magnetic resonance~NMR!
magnetization. There exist several theoretical approache
the analysis of the thermodynamic quantities in the vor
state of unconventional superconductors. We employ he
semiclassical approach,13,14which has been successful in d
scribing the field dependence of a variety of the physi
quantities.13–15 It is an approximate description, and in th
next section we discuss the region of its validity and
grounds for our belief that it is applicable to the prese
problem. Section III introduces the basic model of the no
0163-1829/2001/64~6!/064513~22!/$20.00 64 0645
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quasiparticles and the idea that the physical quantities in
vortex state can be obtained by calculating the spatial a
age of their local values, computed with the help of the se
classical approach.

Until now such spatial averages have only been done a
lytically in an oversimplified model of a single vortex.13–18

In this paper we introduce a generalization of these
proaches by rewriting the spatial average as an average
the probability density of the Doppler shift of the quasipa
ticle energy in the presence of the superflow. Restating
problem in this language enables us to introduce sev
model distributions of the probability density, discussed
Sec. IV, and investigate how the physical quantities obtai
within the semiclassical framework depend on these dis
butions and on the structure of the vortex state. We obtain
energy and field dependence of the density of states for
geometries with the magnetic field applied both normal
the superconducting planes and in the plane in Sec. V. T
density of states is used to analyze the behavior of the e
tronic specific heat in HTSC’s. We obtain the energy sca
relevant to the high-temperature superconductors in the
tex state, and suggest a resolution to the origin of the
agreement between different experimental groups regar
the magnitude of the field-dependent term in the specific h
and the form of the scaling function; this is the content
Sec. VI. In the same section we address the question of
observability of the oscillations in the specific heat for t
magnetic field applied in the superconducting plane a
function of the angle between the field and the nodal dir
tions. These oscillations have been recently predicted,17,19

but so far have not been observed. Part of the difficulty m
stem from the smallness of the in-plane Doppler ene
scale, as inferred from the experimental measurements; it
recently been argued that the Zeeman splitting reduces
observed oscillations significantly,20 and we investigate its
effect in detail in this work.
©2001 The American Physical Society13-1
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I. VEKHTER, P. J. HIRSCHFELD, AND E. J. NICOL PHYSICAL REVIEW B64 064513
Section VII is devoted to the effect of the nonunifor
density of states on the spin-lattice relaxation time. This n
uniformity leads to a nonexponential decay of the magn
zation and to a field dependence of the effective relaxa
rate;16 here we show that the effective relaxation rate d
pends on the structure of the vortex state, and obtain
approximate form for it. We also predict a scaling law for t
magnetization decay that can be checked directly. The e
of impurities on the density of states is briefly addressed
Sec. VIII. We expect these effects to be very important
the discussion of the transport properties that we defer
later publication. Finally we summarize our findings and d
cuss some open questions.

II. SEMICLASSICAL APPROXIMATION

HTSC’s are extreme type II superconductors~the ratio of
the London penetration depthlL to the coherence lengthj0
is large,lL /j0;100), and are in the mixed state over t
range of applied fieldsH, from a few hundred gauss to we
in excess of 50 T in YBa2Cu3O72d ~YBCO! and
Bi2Sr2CaCu2O81d ~Bi-2212 or BSCCO! near optimal dop-
ing. In the mixed state the magnetic field penetrates the b
of the superconductor in the form of vortices, which cons
of the cores, where the superconducting order paramet
suppressed, and circulating supercurrents around them.
vortex core size is of the order of the coherence lengthj0
;15 Å ,21,22 while the average intervortex distance can
estimated by imposing the requirement of one flux quant
F05hc/2e per vortex, ord/25R5AF0 /pB, whereB is the
internal field. At typical experimentally accessible fiel
~1–20 T! lL@d@j0, the magnetization due to the vorte
lattice is small, and the internal field can be replaced by
applied fieldH so thatdAH;500 Å T1/2. The actual distance
differs from the average valued by a numerical factor of the
order of unity, which depends on the structure of the vor
state; the vortices in HTSC’s may form a regular lattice~as
they do in YBCO and in Bi-2212 at low fields23,24! or be
moderately disordered~as in Bi-2212 at higher fields22!.

In the experimentally relevant fields,Hc1!H!Hc2,
whereHc1 (Hc2) is the lower~upper! critical field, there may
exist two types of low-energy excitations. First, as in co
ventional,s-wave materials with an isotropic gap, there m
be a branch of low-energy fermionic excitations bound to
vortex cores.25 Theoretical studies of the Bogoliubov
deGennes equations, however, suggest that there are no
bound states in the vortex cores of ad-wave
superconductor.26,27 Experimental evidence also indicate
that there is at most one such state in the vortex core
YBCO and Bi-2212.23,22 Therefore the properties of th
mixed state ofd-wave superconductors are dominated by
‘‘extended’’ quasiparticle states in the bulk. These states
formed when quasiparticles with momenta close to the p
tion of the nodes of the gap,Dk , in the momentum spac
~and therefore with a small gap! interact with the supercur
rents in the vortex state. Most of the theoretical work h
explored the properties of these states.

Very significant progress has been made by utilizing
semiclassical approach, which treats the momentum and
06451
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position of the quasiparticle as commuting variables. It
valid when the wave function of a quasiparticle can be
placed by its envelope on the length scales exceeding
coherence length, i.e., whenkfj0@1, wherekf is the inverse
Fermi wavelength. In that method the effect of the superc
rents is accounted for by introducing a Doppler shift into t
quasiparticle energy spectrum,28,29,13,14 E8(k,r )5E(k)
1e(k,r ). Here E(k) is the energy of a quasiparticle wit
momentumk in the absence of the field measured with r
spect to the chemical potential. In a two-dimensionald-wave
superconductor this spectrum is conical~massless aniso
tropic Dirac spectrum!: E(k)'6Av f

2k'
2 1vD

2 ki
2, where the

Fermi velocity v f is associated with the dispersion of th
quasiparticles in the direction normal to the Fermi surfa
~componentk' of the momentum!, while vD;D0 /kf is the
slope of the gap at the node associated with the dispersio
the quasiparticles along the Fermi surface (ki). The Doppler
shift, e(k,r )5vs•k depends on the quasiparticle momentu
and the local value of the supervelocity,vs(r ). This shift in
the energy is an exact result for a uniform supercurren30

where it reflects the pairing of the electrons with a fin
center-of-mass momentum. In the simplest picture such
approach remains valid for a nonuniform current for as lo
as the spatial variations ofvs are slow on the scale of th
spatial extent of the Cooper pair,j0. In superconductors with
nodes in the energy gap, the Doppler shift may exceed
local ~in the momentum space! gap, and leads to an increas
in the density of the unpaired quasiparticles: even atT50
for some positive energiesE the shifted energyE8 is nega-
tive so that the corresponding states become occupied. In
context ofd-wave superconductors this was emphasized
Yip and Sauls,29 who investigated the effect of the screenin
currents in the Meissner state on the superfluid dens
These currents vary on the scale of the penetration de
lL@j0, so that the Doppler shift description is appropria
and result in a linear dependence of the effective penetra
depth on the applied field for certain experimen
geometries.29 However, so far the predicted dependence h
not been confirmed experimentally.31

Similar physics is at play in the dilute vortex limit. A
distances small compared to the penetration depth, supe
rents around an isolated vortex are inversely proportiona
the distance from the center of the vortex,r; for j0!r !lL
the supervelocity field isuvsu5\/2mr, wherem is the quasi-
particle mass. Consequently, the requirement of the slown
of the variation ofvs , which can be written asu¹vsuj0!vs
~two particles comprising the Cooper pair ‘‘see’’ the sam
velocity!, is satisfied atr @j0, justifying the use of the semi
classical approach outside of the core and therefore for
analysis of the extended quasiparticle excitations at ener
low compared to the gap maximum. Such an analysis fo
single vortex ind-wave superconductors was first carried o
in a landmark paper by Volovik,13 who showed that the den
sity of the extended quasiparticles at low temperatureT var-
ies asAH. This result was confirmed first by Moleret al.2

and subsequently by other groups3–5 from the measurement
of the electronic specific heat in an applied magnetic fie
Numerical studies of the tight-binding model are also
3-2
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THERMODYNAMICS OF d-WAVE SUPERCONDUCTORS IN . . . PHYSICAL REVIEW B64 064513
qualitative agreement with this result.32 Moreover Volovik
has shown that the density of the extended quasiparti
dominates that of the states bound to the vortex core eve
the latter set is treated semiclassically, as a quasicontinuu13

~as it would be in a superconductor with a long cohere
length!. Together with the numerical studies of Refs. 26 a
27 this result provided further theoretical support for negle
ing the core states in the analysis of the properties of
vortex state in unconventional superconductors.

The semiclassical approach was incorporated into
Green’s function formalism by Ku¨bert and Hirschfeld,14 and
used in that form to analyze thermodynamic and transp
properties of the high-Tc cuprates in the vortex state.15–17 In
particular, accounting for the impurity scattering in th
framework has significantly improved the agreement
tween the theory and the measurements of the electronic
cific heat,14 and the field dependence of the low-temperat
thermal conductivity10 is in qualitative agreement with th
results of a semiclassical calculation.15 In the semiclassica
approach the effect of the magnetic field is contained in
new energy scale associated with the Doppler shift,EH
5v f /d, and the behavior of the physical properties is de
mined by the competition between this energy, the temp
ture, and the impurity scattering rate. Photoemission m
surements on high-Tc compounds suggest33,34 that v f.(1.5
22.5)3107 cm/s leading toEH;30AH K T21/2.

For a long time, understanding of the low-energy exci
tions in the vortex state beyond this semiclassical picture
proved elusive. The difficulties stem in part from the need
treat on equal footing the applied magnetic field and
superconducting currents~semiclassical approach treats t
supercurrents classically!. Attempts have been made to tak
as a starting point the Landau quantization of the quasip
cle states, and include the effects of supercurre
perturbatively;35,36 however, since the supervelocity field
long ranged and singular at the position of each vortex,
Landau levels are strongly mixed, making a detailed anal
difficult.37

The most significant progress has been made in a re
work by Franz and Tesˇanović,38 who have introduced a
gauge transformation that takes into account both the su
current distribution and the magnetic field. In their approa
the problem is mapped onto that of nodal Dirac fermions
an effective zero average magnetic field interacting with
fective scalar and vector potentials that are periodic in
unit cell of the vortex lattice. Both Franz and Tesanovi38

and Marinelliet al.39 have studied the band structure of t
nodal quasiparticles for perfectly periodic vortex lattices
various values of the anisotropy of the Dirac spectrum,aD
5v f /vD .

There are two reasons for expecting modifications to
semiclassical spectrum. The first is related to the sing
spatial structure of the supervelocity field. One flux quant
associated with a single vortex means that the supercond
ing order parameter, or, equivalently, the wave function o
Cooper pair~charge 2e) is single valued and has a pha
winding of 2p around each vortex. As emphasized in R
38, the semiclassical approach transfers this phase win
equally to each of the quasiparticles forming the Cooper p
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~each having chargee). Consequently, their wave function
change phase byp around a vortex line~Aharonov-Bohm
phase!, leading to the necessity of introducing branch cu
and to the problem of multivalued wave functions in the f
quantum mechanical treatment. However, the semiclass
approximation is only valid for large quantum numbers, th
is for the quasiparticles for which the total phase of the wa
function, accumulated as the electron moves around the
tex, is large. The wave function of an electron circling
vortex at a distancer from the vortex center acquires a pha
2pkfr , compared to an extra Aharonov-Bohm phasep from
the supervelocity field. For the analysis of the extend
states (r @j0) in the semiclassical approach~valid at kfj0
@1), kfr @1, so that if the phase of the wave function
changed byp, it still corresponds to the quasiclassical sta
with essentially the same energy and momentum. Sincej0
;v f /D0, we can rewrite the condition for the applicability o
the semiclassical method,kfj0@1, as aD5v f /vD@1. In-
deed, the work of Refs. 38,39 has shown that for large
isotropy of the Dirac cone the semiclassical approach
mains valid down to the lowest energies. Sincea.14 for
YBCO ~Ref. 10!, anda.20 for Bi-2212~Refs. 40 and 34!
this is the parameter range relevant for the study of HTSC
In a very recent preprint Mel’nikov has shown that th
Aharonov-Bohm phase leads to a different result for the q
siparticle density at distancesr @lL , while in the rangej0
!r !lL the semiclassical results hold.41 Once again, since in
the field range where most experimental measurements
done the intervortex distanced!lL this result suggests tha
the semiclassical approach is adequate for the analysi
these experiments.

Quantum mechanical treatment is nevertheless nee
for accurate description of the states at very low energ
Kopnin and Volovik42 have considered the effect of the ma
netic field on the nodal quasiparticles perturbatively, a
found that the spacing between quantum mechanical le
of the near-nodal quasiparticles, for which the spatial ext
of the wave function is comparable to the intervortex d
tance, isEKV5vD /d5EH /aD . Therefore they have argue
that below this energy scale the semiclassical approach
comes invalid. Fora;15 this energy scale is of the order o
a few kelvin per square root of tesla. However, the speci
heat measurements show no crossover to a novel behav
that scale,5 and the measurements of the thermal conductiv
below 0.5 K in fields of up to 8 T are in agreement with th
semiclassical calculations.10

This crossover was recently investigated by Marine
et al.39 and Knappet al.43 by comparing numerically the
quantum mechanical and semiclassical results for the den
of states. The picture that emerges from their analysis is
small differences between the two approaches begin to
pear below the Kopnin-Volovik crossover scale. These
rather minor, and the qualitative difference between the t
results does not appear down to a much smaller cross
scale, exponentially small inaD .43,44 Since in real samples
the presence of impurity scattering and the disorder in
vortex lattice always smear out the energy structure on sm
scales, we therefore expect that for the purposes of comp
son with the measurements of the thermodynamic quanti
3-3
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the semiclassical description is adequate.
Therefore for the parameter range relevant to the stud

most real unconventional superconductors, the semiclas
approach reproduces the energy spectrum of the near-n
quasiparticles in the vortex state to a high degree of ac
racy. Moreover, presently it remains the only approach tha
capable of including the effect of impurity scattering into t
analysis, and we use it hereafter.

III. SEMICLASSICAL APPROACH TO THE VORTEX
STATE

A. Nodal approximation

The semiclassical approximation takes as its starting p
a Fermi-liquid description of the nodal quasiparticles, so t
in the absence of a magnetic field the Green’s function in
particle-hole ~Nambu! space is given by the Bardeen
Cooper-Schrieffer form with an anisotropic gap,

G~k,vn!52
ivnt̂01Dkt̂11zkt̂3

vn
21zk

21Dk
2

. ~1!

Here t̂ i for i 50•••3 are the Pauli matrices (t̂0 is the unit
matrix!, vn5pT(2n11) is the Matsubara frequency, andzk
is the energy of a quasiparticle with momentumk measured
relative to the chemical potential. We consider a tw
dimensional Fermi surface with an energy gap ofdx22y2

symmetry given byDk5D0(kx
22ky

2)/k2. Low-energy prop-
erties depend only on the nodal quasiparticles, and are
functions of the parameters entering the linearized disper
near nodes at positionkn . As zk'vf•(k2kn), andDk'vD

•(k2kn) near a node, the poles of the Green’s function a
analytic continuation to the real axis,ivn→v1 id, are lo-
cated at energies

E~k!56Azk
21Dk

2'6Av f
2k'

2 1vD
2 ki

2, ~2!

wherek' andki are the components ofk2kn normal to and
along the Fermi surface respectively. We parametrize
Fermi surface near each of the four nodes not by the
mentak' andki , but by the quasiparticle energyE and the
angleQ defined as

v fk'5E sinQ, ~3!

vDki5E cosQ. ~4!

The energy cutoff is chosen to preserve the volume of
Brillouin zone of the crystal lattice, so that for a square l
tice with the periodicitya, it is set atE05Apv fvD/a.45 By
making this choice we extend the conical dispersion law
yond the maximal gap value,D0. This leads to logarithmic
in E0 /D0, corrections to the quantities that depend on
cutoff energy. SincevD;D0 /kf and kf;p/a, we obtain
E0;AEfD0, whereEf is the Fermi energy. In the high-Tc
materialsEf;3210D0, and, consequently, the choice ofE0
as the cutoff energy does not affect the results significan
Therefore near each node the Green’s function at real
quencies can be written as
06451
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Ĝ~E,u;v!5
ṽt̂01E cosQt̂11E sinQt̂3

ṽ22E2
. ~5!

In writing Eq. ~5! we have replaced the bare frequencyv

by the renormalized frequencyṽ to include the effect of
impurity scattering. We account for isotropic strong~phase
shift p/2) impurity scattering in the framework of a sel
consistentT-matrix approximation, and consider a particl
hole symmetric system, so that the only nonvanishing co
ponent of the self-energy is proportional tot̂0.46 Therefore
the effect of impurities is to replace in the Green’s functi
v by its renormalized value,ṽ5v2S(ṽ), with the self-
consistency condition

S~ṽ!52niF(
k

G11~ṽ !G21

, ~6!

whereni is the impurity concentration. In the nodal approx
mation the integral over the Brillouin zone can be written
a sum over the nodal regions

(
k

G115 (
nodes

1

v fvD
E

0

E0EdE

2p E
0

2pdQ

2p

ṽ

ṽ22E2
. ~7!

Writing ṽ5v11 iv2, we obtain forE0@uṽu

(
k

G1152
2

p

v11 iv2

v fvD
F ln

E0

Av1
21v2

2
1 i arctan

v1

v2
G .

~8!

The well-known relationships for the density of states in t
pure limit (v250,v15v), and for the residual density o
states in the presence of impurities (v150,v25g) follow
easily ~cf. Ref. 45! from

N~v!52
1

p (
k

Im G11~k,v!, ~9!

to give

N~v!5
uvu

pv fvD
, pure limit ~10!

N~0!5
2

p2

g

v fvD
ln

E0

g
, unitarity. ~11!

The self-consistency conditionv11 iv25v2S(ṽ) for the
latter case is~cf. Ref. 47!

g25
p

2
niv fvDF ln

E0

g G21

. ~12!

B. Doppler shift

In the semiclassical approach to the vortex state the p
ence of a superflow is accounted for by introducing the D
pler shift into the energyv→v1e(k,r ),13,14 where
3-4
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e~k,r !5vs~r !•k, ~13!

andvs(r ) is the supervelocity field at a positionr due to all
vortices. It was demonstrated by Ku¨bert and Hirschfeld14

that to very high accuracy the Doppler shift at the nodekn
can be used to approximate the Doppler shift for the en
nodal region. Therefore the Green’s function near each n
can be written as

ĝ~E,Q;v;r !5Ĝ„E,Q;v1en~r !…, ~14!

whereĜ is given by Eq.~5!, n labels the nodes, anden(r )
5vs(r )•kn . For ad-wave superconductor there are two pa
of nodes such thatk152k3 andk252k4, so that the pos-
sible values for the Doppler shift are6e1 and6e2.

In principle now all the physical quantities can be co
puted with the help of this Green’s function. Several co
ments have to be made about the assumptions implic
present in such calculations. First, we neglect all inela
processes. Second, there is no additional quasiparticle da
ing due to the presence of the vortices: in the absenc
impurities the lifetime of a quasiparticle defined by the po
of the Green’s function in Eq.~14! is infinite. The scattering
of the nodal quasiparticles by vortices depends strongly
the nature of the vortex cores; in the high-Tc materials this is
an unresolved problem.48,49 If the point of view is taken that
the core is identical to that of a BCS-like superconductor,
neglect of vortex scattering is reasonable for a vortex lat
with long-range order, and it remains valid when only sho
range order exists provided that the lifetime is restricted
the impurity scattering rather than vortex disorder. The r
of disorder in the vortex lattice is especially important f
transport properties, where there is a competition betw
the increase in the density of quasiparticles and the chang
the transport lifetime in an applied field; several authors h
analyzed its consequences,15,51,52and some questions rema
unresolved.50,52,53Scanning-tunneling spectroscopy measu
ments suggest that the vortex lattice is ordered in YBCO23

and that short-range order is present in Bi-2212,22 therefore
in that case the assumption is justified. We note that ther
dynamic quantities, such as the density of states, depend
single energy scale,EH5v f /d even in a disordered vorte
state in the absence of strong pinning, and this depend
appears to be nearly identical for the ordered and disord
vortex lattices.50 Therefore we expect that the results o
tained within the semiclassical approach remain at le
qualitatively valid even for a strongly disordered lattice.

Third, in the analysis of the impurity scattering this a
proach assumes that the positions of vortices and of imp
ties are uncorrelated. The self-energy given by Eq.~6! is
obtained after averaging over the positions of impurities, a
solving this equation with the Doppler shift included in th
Green’s function implies that the impurity average and
spatial average are taken independently.

Finally, in the discussion so far we have neglected
Zeeman splitting altogether; this is justified when the Do
pler energy scale exceeds the Zeeman shift. In the absen
spin-orbit coupling the Zeeman shift ismH'0.67H K T21,
while the Doppler shift isEH.30AH K T21/2; consequently
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the two become comparable only atHcross;103 T, and
hence the Zeeman splitting is irrelevant. On the other ha
for the field applied in the plane, the coefficient in the Do
pler shift is much reduced,17 and the Zeeman splitting is
relevant for some experimental geometries.20 Consequently,
we will revisit this question in the analysis for this config
ration.

If we know how to express a physical quantityF in terms
of the Green’s function we can now compute its local va
F(r ) with the local Green’s function given by Eq.~14!. We
then approximate the field-dependent measured valueF(H)
by the spatial average ofF(r )14,15

F~H !5
1

AE d2rF„e1~r !,e2~r !…, ~15!

where the integral is taken over the part of a unit cell of t
vortex lattice~with the areaA) in real space where the Dop
pler shift is much smaller than the gap maximum. Theref
the integration is to be cut off at distances of the order ofj0
from the center of each vortex. In practice in many cases
contribution of the core region (r<j0) is small due to the
geometric effect~integrals are weighted with the surface ar
rdr ) and the integral can be extended to the entire unit c
We note that the averaging procedure is often nontrivial
response functions; for the thermal conductivityk, for ex-
ample,k(r ) or 1/k(r ) are averaged depending on the relati
orientation of the magnetic field and the heat current.15,51

The average in Eq.~15! depends on the distribution of vor
tices. In practice, this spatial average has been comp
analytically only for the supervelocity field corresponding
an isolated flux line, cut off at the average intervort
distance,13–17 and numerically for the pancake liquid state52

The starting point of our approach, which simplifies ca
culations and makes possible a generalization of the se
classical method to an arbitrary configuration of vortices is
rewrite the average as the integral over theprobability dis-
tribution of the Doppler shift for a particular vortex configu
ration. There are, in general, two types of local quantiti
and therefore of averaging procedures, which are requi
The density of states in the absence of impurity scatter
for example, is a direct sum of the contributions from ea
node,

N~v,r !52
1

2p
ImH(

k
Tr Ĝ~k,v!J

'2
1

2p
ImH (

a56
n51,2

E dEdQ

4p2v fvD

3Tr Ĝ„E,Q;v1aen~r !…J, ~16!

and can consequently be expressed as an integral ove
probability density of the Doppler shiftat a single node,

N~v,H !5
1

2 (
a56

E
2`

1`

deN~v1ae!P~e!, ~17!
3-5
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where

P~e!5
1

AE d2rd~e2vs~r !•kn!. ~18!

Such an approach has been recently used to analyze th
havior of the interlayer conductivity in the vortex liqui
state,52 where the functionP was determined from numerica
simulations. A similar method~although with an unrealistic
distribution, see below! has been used in the analysis of t
thermal conductivity.54,50

However, in general the functionF depends on the value
for the Doppler shift at two inequivalent nodes,e1 and e2,
and the corresponding average can be written as

F~H !5E
2`

1`

de1de2F~e1 ,e2!L~e1 ,e2!, ~19!

L~e1 ,e2!5
1

AE d2rd~e12vs~r !•k1!d~e22vs~r !•k2!,

~20!

wherek1 andk2 label two nearest nodes. This is the case,
example, for the density of states in the presence of impu
scattering, since the self-energy@implicitly present in the
Green’s function in Eq.~16!# contains the sum over th
nodes, see Eq.~6!, and therefore depends on bothe1 ande2.
In general, the functionL has to be even in bothe1 ande2,
and symmetric under the interchangee1↔e2; in all the cases
considered below it depends on a single variablee1

21e2
2.

Now all the relevant information about the structure of t
vortex state is contained in the functions

L~e1 ,e2!5L8~e1
21e2

2!

and

P~e!5E de1L~e,e1!, ~21!

and therefore to analyze the field dependence of the phy
quantities we first focus on determining these probabi
densities.

IV. PROBABILITY DENSITY FOR THE DOPPLER SHIFT

The distributionsP andL can be determined numericall
for an arbitrary configuration of vortices. Here we are int
ested in making progress analytically, and therefore cons
several model configurations for which the distributions c
be found exactly. Moreover, we propose that the distributi
that we consider give the maximal and the minimal poss
weight to the low-energy Doppler shift, and therefore can
used to obtain the upper and the lower limits of the exp
mentally accessible quantities.

A. Single vortex, Hi ĉ

The simplest of these models is that of a velocity field
an isolated vortex, cut off at the distance equal to the in
vortex distance; since the experiments are in the dilute vo
06451
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limit such an approach gives an adequate description of
vortex state. The supervelocity isvs(r )5\û/2mr, whereu is
the winding angle of the vortex in real space,m is the effec-
tive mass, andr is the distance from the center of the vorte
We now write the Doppler shift in terms of the energy sca
EH5v f /(2R), whereR is the radius of the unit cell of the
vortex lattice, taken to be circular,R5AF0 /pH ~Refs.
14,16!,

vs~r !•k f5
\kf

2mr
sinu5

EH

r
sinu. ~22!

Here we have introduced the normalized lengthr[r /R, and
have chosen, without loss of generality,kn along the direc-
tion u5p/2.

The probability distribution at a single node is now eas
obtained from Eq.~18!

P~e!5
1

pE0

2p

duE
0

1

rdrdS e2
EH

r
sinu D

5
EH

2

pe3E
0

2p

du sin2uQS EH

e
sinu DQS 12

EH

e
sinu D ,

~23!

yielding

P~e!55
1

2

EH
2

e3
, if e>EH;

1

p

EH
2

e3 Farcsin
e

EH
2

e

EH
A12

e2

EH
2 G , if e,EH.

~24!

Here we have takene>0, the probability density is even in
e.

It was argued in Ref. 52 that the functionP(e) for any
vortex configuration has two important properties. First,
asymptotic behaviorP(e)5EH

2 /(2e3) holds for D0@e
@EH . Since the vortices repel each other, the vortex co
do not overlap. The large Doppler shifts come from the
gions near the cores, where the superfluid velocity is hi
and consequently are dominated by the single vortex phys
Second, in the absence of strong pinningP(e) has a single
energy scaleEH and depends on the Doppler shift only v
e/EH . Since the probability density is normalized,

E
2`

1`

P~e!de51, ~25!

we can follow Ref. 52 and define a normalized dimensio
less probability density as

P~x!5EHP~e/EH!, ~26!

wherex5e/EH .
The two-node probability distribution function is
3-6
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L~e1 ,e2!5
1

pE0

2p

duE
0

1

rdrdS e12
EH

r
sinu D

3dS e22
e1 sin~u1f0!

sinu D , ~27!

wheref0 is the angle between the nodesk1 and k2 at the
Fermi surface. For the pured-wave symmetry that we con
sider here,f05p/2, and the integral can be evaluated
give

L~e1 ,e2!5
1

p

EH
2

~e1
21e2

2!2
, if Ae1

21e2
2>EH , ~28!

and zero otherwise. The physical reason for the discontin
is that for the nodes at the orthogonal positionse1

21e2
2

5EH
2 /r2>EH

2 , so that the probability of having the Dopple
shifts not satisfying this inequality is identically zero. In a
orthorhombic system, where the nodes are not at anglep/2,
the shape of the distribution is different. In analogy with t
single-node probability density we can also define the
mensionless energies (x,y)5(e1 ,e2)/EH , and introduce the
function

L~x,y!5EH
2 L~e1 ,e2!5

1

p~x21y2!2 , if x21y2>1,

~29!

and zero otherwise.

B. Single vortex, Hiab̂

For the magnetic field applied in the superconduct
plane it has been recently argued that for a relatively thr
dimensional high-Tc material, such as YBCO, the semicla
sical approach still captures the essential features of the
siparticle behavior.17 The approach of Ref. 17 is to take th
supervelocity field from an anisotropic London model, but
introduce the Doppler shift only in the dispersion of the qu
siparticles with the momenta in the plane. After rescaling
c axis to make the unit cell of the vortex lattice isotropic, t
Doppler shift is given by17

vs~r !•k f5
Eab

r
sinu sin~f2a!, ~30!

where the anglef parametrizes the cylindrical Fermi su
face, a is the angle between the direction of the magne
field in the plane and thex-axis, and the in-plane energ
scale is Eab5hEH , where in the London effective-mas
model the anisotropyh5(lab /lc)

1/2. In the nodal approxi-
mation~which provides an excellent agreement with the n
merical results17! the probability distribution of the Dopple
shift at a single node is given by Eq.~24! with EH replaced
by E15Eabusin(p/42a)u and E25Eabucos(p/42a)u, re-
spectively, for the two pairs of nodes. Any effects of t
three dimensionality reduce the effective valueEab rather
severely,17 so that the estimate obtained using the value oh
for the effective anisotropy in the two-dimensional case c
only serve as an upper limit.
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For such a geometry the Doppler shifts at the two nei
boring nodes are related bye25E2e1 /E1; in contrast to the
case of the field applied along thec axis, the Doppler shift at
one of the nodes uniquely determines the value of the D
pler shift at the other node independently of the windi
angle u in real space. Therefore the two-node probabil
distribution is given by

L~e1 ,e2!5P~e1!dS e22
E2

E1
e1D , ~31!

and a single average is always sufficient for computing
physical quantities in the semiclassical approximations
the field applied in the plane.

C. Vortex solids and liquids

We now discuss how the probability densities obtain
above can be generalized to the case of vortex solids or
uids. We first consider the single-node probability dens
P(x). Since this function is normalized, the question is wh
type of the redistribution of the density in Fig. 1 one m
expect for realistic vortex structures. As argued above,
high-energy tail of the distribution is entirely determined
the single vortex physics, and is therefore insensitive to
structure of the vortex state; the redistribution of weight o
curs in the regionx&1 or e&EH .

It is also clear that the single vortex picture describ
above underestimates the number of points where the D
pler shift vanishes. For the supervelocity field of a sing
vortex uvs(r )u.0 everywhere in the unit cell, and the Dop
pler shift vanishes only for the superfluid velocity directio
normal to the nodal directions ink space. In a vortex lattice
there exist points whereuvs(r )u50: the high-symmetry loca-
tions such as midpoints between the centers of two neigh
ing vortices. Consequently, for vortex latticesP(0) is larger
than it is in the single-vortex picture. The weight shifted

FIG. 1. Main panel: probability distributionP(x) in the single-
vortex approximation from Eq.~24! ~solid line!, and for a model
vortex liquid states from Eq.~35! ~dashed line! for liquid I model,
and from Eq.~37! for the liquid II model~dot-dashed line!. Inset:
comparison of the distributions for the model liquid states~same
notations as in the main panel! with the numerically determined
distributions for pancake liquid in BSCCO atT59 K ~narrow dis-
tribution! andT567 K ~broad distribution! from Ref. 48.
3-7
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the vanishing Doppler shift,x50, comes at the price of a
reduction in the peak inP(x) and moving the peak to smalle
x. The actual shape of the function depends on the type o
vortex lattice, the number of nearest neighbors, and on r
tive orientation of the basis vectors of the vortex lattice w
respect to the nodal directions.

As the number of nearest neighbors is increased, so is
value P(0). This value depends not only on the number
zeros, but also on the asymptotic behavior of the super
ocity near a point where it vanishes,vs(r0)50. It is easy to
check that if vs(r2r0)}ur2r0un, the contribution of this
area toP(0) is finite for n,2, is singular but integrable fo
2<n,3, and is nonintegrable~and therefore nonphysica!
for n>3. In a typical vortex distributionvs varies linearly
with the distance fromr0, so thatP(0) remains finite. We
now try to derive analytically an approximate distributio
that gives a large weight to the probability of the vanishi
Doppler shift; we consider it here to model a relatively d
ordered vortex state, such as a vortex liquid, and to provid
lower limit of the magnetic field dependence of the physi
quantities. To make progress we consider a cylindrica
symmetric spatial dependence of the supervelocity, mo
lated compared to the single-vortex distribution. Differe
choices for the modulation of the superfluid velocity are co
sidered in the literature;55,30 in any approach the supervelo
ity near the vortex core should remain nearly unmodifi
compared to the single-vortex velocity field, while at the c
boundaryvs50. Therefore, in the cylindrically symmetri
case, the Doppler shift~for Hi ĉ) can be approximated as

vs~r !•k f5EHS~r!sinu, ~32!

whereS(r→0)}1/r andS(1)50.
Notice that the requirement thatP(0) is finite imposes

restrictions on the decay ofS(r) asr→0. Since in the cy-
lindrically symmetric modelvs vanishes along a line rathe
than at discrete points~as it does for a realistic vortex distr
bution!, the required asymptotic behavior ofS(r) is different
from that ofvs in the system with points of vanishing Dop
pler shift. Nevertheless, as we show below, the appropr
choice ofS(r) allows us to arrive at a probability distribu
tion close to that obtained by numerical simulations of
vortex liquid. In such a liquid the distribution is temperatu
dependent. A detailed calculation therefore would have
take into account the changes in the probability density w
the temperature in a given material. These changes are
well understood beyond simple models, and even then
usually accessible only via numerical simulations of the v
tex dynamics. We therefore take the point of view that fo
qualitative or semiquantitative analysis it is sufficient to co
sider a model temperature-independent distribution.52

Computing the distributionP(e) from Eq. ~18! we obtain

P~x!5
1

pE0

1 rdr

AS2~r!2x2
. ~33!

Clearly, P(0) is finite whenS(r→1)}(12r)h with h,1.
We use here two different models where the superfluid
locity field of a single vortex is modulated to vanish at t
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unit cell boundary in a fashion that allows analytic
progress. In the first, we take the modulating factor to
(12r 2/R2)1/2, which leads toS(r)5A12r2/r. Computing
the probability densities as in the previous section we fin

L~e1 ,e2!5
1

p

EH
2

~e1
21e2

21EH
2 !2

, ~34!

and

P~e!5
1

2

EH
2

~EH
2 1e2!3/2

. ~35!

In this case the measure of Doppler shift zeros is large du
disorder in the positions of vortices,P(0)50.5. The simplic-
ity of this probability distribution makes this choice attra
tive for further analytical work.

Another possible choice isS(r)5A12r/r; it leads to

L~e1 ,e2!5
1

p

EH
4

~e1
21e2

2!3

3H 11
e1

21e2
2

EH
2

2
1

A4
e1

21e2
2

EH
2

11

F113
e1

21e2
2

EH
2 GJ .

~36!

Note that as (e1
21e2

2)EH
2 →0 the distributionL is finite:

L(0,0)52/(pEH
2 ). The corresponding single-node probab

ity density is given by

P~e!5
1

pEH
H FEH

3

e3
1

3EH
5

4e5 Garccos
1

A~2e/EH!211
2

3EH
4

2e4 J .

~37!

For this distributionP(0)532/(15p)'0.68, larger than the
value of 0.5 given by Eq.~35!.

The probability densityP(x) for all three distributions is
shown in Fig. 1. In the following we will refer to the distri
butions given by Eqs.~34! and ~35! and by Eqs.~36! and
~37! as liquid I and liquid II, respectively. The reason for th
is clear from the inset of Fig. 1: these distributions are clo
to those obtained with the help of the Langevin dynam
simulations of the pancake liquid in Ref. 52; as in the vort
liquid they preserve the cylindrical symmetry of the sup
velocity field on average, while introducing zeros in th
field because of the cancellation of the supervelocity fr
neighboring vortices. For a realistic vortex lattice we exp
the results for thermodynamic quantities to be bracketed
the values obtained in the single vortex approach, wh
overestimated the effect of the field by undercounting
number of points in the unit cell of the vortex lattice whe
the Doppler shift for quasiparticles near a particular no
vanishes, and, at least approximately, by the liquid II dis
bution given by Eqs.~36! and~37!. The distribution function
for the pancake liquid can be even sharper peaked atx50;
3-8
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nevertheless, we believe that the approximate analytic f
provides a reasonable low-end estimate for most of the
perimental situations.

D. Completely disordered vortex state

The ‘‘universal’’ high Doppler shift behavior of the prob
ability density,P(x)}x23 results from the strong repulsio
between the vortex lines that prevents vortex cores fr
overlapping. If the vortices were noninteracting, in a dis
dered state their positions would be completely rando
leading to a Gaussian distribution of the Doppler shifts. Su
an approximation has been used by Yuet al.54 and Franz50 in
their analysis of the thermal conductivity in the vortex sta
Even though it is never realized, it is instructive to compa
the predictions obtained with such a distribution with t
results obtained in the framework outlined above. The co
parison may be useful for the extremely anisotropic laye
superconductors in the geometry with the field applied in
basal plane. In that arrangement vortices lack proper co
the intervortex repulsion is weakened, and we expect sig
cant disorder in vortex positions due to the presence of
fects ~such as boundary effects, twin boundaries, etc.!. Con-
sequently, the 1/x3 asymptotic behavior does not onset up
large Doppler shifts~very close to the core!, and over the low
~compared to the gap amplitude! energies, the probability
density decays rapidly. We therefore also consider in the
lowing the random distribution of vortices, which lead
~omitting factors of lnlL /j0 in the width of the Gaussian! to
the probability density54,50

P~x!'
1

Ap
e2x2

. ~38!

We now investigate the dependence of the thermodyna
coefficients on the magnetic field and the temperature
different structure of the vortex state and compare it with
experimentally observed behavior.

V. DENSITY OF STATES: PURE LIMIT

We begin by considering the density of states and
electronic contribution to the specific heat in the pure lim
While this is one of the simplest quantities to analyze, it
the one directly relevant to the measurements of the fi
dependence of the specific heat in YBCO single crystals2–5

To justify ignoring impurities in this analysis we emphasi
that the energy scales associated with the Doppler shift
quite large, and at moderate fields exceed the impurity ba
width even in not too clean samples, and exceed it by fa
the latest single crystals.4,5 Taking the Fermi velocityv f

;(1.522.5)3107 cm/s,33 we obtainEH /AH;30 K T21/2,
and for YBCO near optimal doping, where 1/h;2.524, we
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obtain Eab /AH<10 K T21/2, while the impurity bandwidth
g is of the order of a few kelvin or less.

A. Density of states for Hi ĉ

We first consider the experimental arrangement withHi ĉ.
The density of states in the pure limit is given by Eq.~17!
leading to

N~v,H !5E
2`

1`

deN~v1e!P~e!5E
2`

1`

de
uv1eu
pv fvD

P~e!.

~39!

Introducing the dimensionless variablex5e/EH and consid-
ering hereafterv>0 we find that the density of states
given by

N~v,H !5
2v

pv fvD
E

0

v/EH
P~x!dx1

2EH

pv fvD
E

v/EH

`

xP~x!dx.

~40!

The scaling properties of the density of states withv/EH
~Ref. 56! can be made obvious by rewriting it as

N~v,H !5
EH

pv fvD
FNS v

EH
D , ~41!

FN~Z!52S ZE
0

Z

P~x!dx1E
Z

`

xP~x!dxD . ~42!

The residual density of states at the Fermi surface is given

N~0,H !5M1

EH

pv fvD
5

M1

2vD
A H

pF0
, ~43!

whereM1 is the first moment of the probability distributio
of the Doppler shift

M152E
0

`

xP~x!dx, ~44!

which contains all the information about the structure of t
vortex state relevant to the magnitude of theAH term in the
specific heat. For the probability density given by Eq.~24!
~single-vortex model! we then findM1

s54/p'1.27, while
for the liquid I distribution given by Eq.~35! we obtain
M1

l 51. For liquid II distribution the integral can be evalu
ated numerically to giveM1

l2'0.85, while for the completely
disordered distribution of vorticesM1

g51/Ap'0.56. We
therefore expect thatM1;1 for any realistic vortex state
Furthermore, since the number of zeros of the Doppler s
increases with the increased disorder in the lattice,52 we ex-
pect on general grounds that the coefficient is larger for
more ordered vortex state. The residual density of sta
given by Eq.~43! is close to the expression obtained by W
and Maki in a different approximation scheme.57

Expanding Eqs.~41! and ~42! at low energiesv!EH we
find
3-9
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N~v,H !'
EH

pv fvD
S M11

v2

EH
2

P~0!D . ~45!

Therefore the energy dependence of the density of state
the field-dominated regime is determined by the probabi
weight of the vanishing Doppler shift. As the lattice chang
toward a larger coordination number and toward disorder,
measure of points where the superfluid velocity vanishes
creases. As a result, the coefficient of the leading fie
dependent termM1 decreases, while the coefficient of th
energy-dependent termP(0) increases. The values of th
coefficient are Ps(0)52/3p'0.21, Pl(0)50.5, Pl2(0)
50.68, andPg(0)51/Ap'0.56 for the single vortex, liquid
I, liquid II, and Gaussian distributions, respectively. It imm
diately follows that the position of the crossover from t
field-dominated to the zero-field temperature-dominated
havior in the average density of states is much more sens
to the structure of the vortex state than the leading fie
dependent term.

In the effective weak-field range,v@EH , the field-
dependent contribution is independent of the distribution
vortices. The vortices are well separated, and the reg
where the Doppler shift exceeds the temperature are clos
the cores, and consequently dominated by the universal
P(x)51/2x3, yielding

N~v,H !'
v

pv fvD
S 11

1

2

EH
2

v2D . ~46!

The full dependence of the density of states on the ene
and the magnetic field can be obtained from Eqs.~41! and
~42! with the probability densities discussed above. For
single-vortex picture we regain the result of Ku¨bert and
Hirschfeld14

FN
s ~Z!

5
Z

p H p~11Z22/2!, if Z>1;

Z22@~112Z2!arcsinZ13ZA12Z2#, if Z<1.

~47!

For the liquid I model we obtain a remarkably simple res

FN
l 5AZ211, ~48!

Nl~v,H !5
Av21EH

2

pv fvD
~49!

while for the liquid II model the integral can only be eval
ated numerically, and for the Gaussian model

FN
g ~Z!5ZF~Z!1

exp~2Z2!

Ap
, ~50!

whereF(Z) is the probability integral.58 Notice that for the
Gaussian distribution the enhancement of the density
states in the weak field limit,v@EH is vanishingly small in
v/EH , in contrast to Eq.~46!. Indeed, in this limit the field-
06451
in
y
s
e
-
-

e-
ve
-

f
ns
to
ils

y

e

t

of

dependent part of the density of states is determined by
weight in the part of the distributionP(e) with e>v, which
is exponentially small.

This difference is clear from Fig. 2. The low energy lim
of the density of states depends on the moment of the di
bution function, and is therefore different for each of t
model distributions. On the other hand the high energy,
weak field, limit yields the same result for the models r
specting the asymptoticx23 decay for the probability distri-
bution P(x), while the Gaussian model gives the density
states which is not enhanced relative to the zero-field va
The Gaussian model therefore misses the field-depen
contribution to the physical quantities at high energies, le
ing to incorrect results, especially in the regimeT<EH .

B. Density of states for Hiab̂

We can now analyze in the same framework the anis
ropy in the density of states for the field applied in the s
perconducting plane, at an anglea to thex axis. As discussed
in Sec. IV B, density of states for such a configuration is
sum over the two inequivalent pairs of nodes, with the d
ferent characteristic scales for the Doppler shift at each
of nodes,

E15Eabusin~p/42a!u, ~51!

E25Eabucos~p/42a!u. ~52!

In the London modelEab5hEH , whereh is the penetration
depth anisotropy ratio. We emphasize that in reality the va
of the ‘‘effective’’ anisotropy depends on the details of th
c-axis transport properties,17 and therefore the estimate o
Eab /AH;10 K T21/2 is just an upper limit on its magnitude
and, as we comment below, the value inferred from the av
able experimental data on the specific heat is lower.

The density of states in the clean limit is given by

N~v,H;a!5 1
2 @N1~v,H !1N2~v,H !#, ~53!

whereNi is computed from Eq.~41! as in the previous sec
tion but with Ei ( i 51,2) replacingEH .

FIG. 2. Energy dependence of the density of states in the m
netic field for different models of the probability density for th
Doppler shift. Density of states is in units ofEH /(pv fvD).
3-10
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THERMODYNAMICS OF d-WAVE SUPERCONDUCTORS IN . . . PHYSICAL REVIEW B64 064513
As is known17,19 the residual density of states exhibi
fourfold oscillations as a function of the direction of the a
plied field in the plane

N~0,H;a!5
M1

2

E11E2

pv fvD
5

M1

A2p

Eab

v fvD
max@ usinau,ucosau#.

~54!

The minima of the density of states occur when the field
along the nodal direction,a5p/41pn/2. In that case at two
of the four nodes the circulating currents are in the pla
orthogonal to the direction of the Fermi momentum at
node, and consequently the Doppler shift vanishes at
points in real space~eitherE150 or E250), as seen in Fig
3. In contrast, when the field is along the antinodal directi
the Doppler shift in non-zero, and all four nodes contribu
to the density of states, leading to a maximum inN(v,H).17

It is important to emphasize that, as is clear from Fig. 3, i
only for a tetragonal system that the minima in the density
states occur for the field along the node. One reason for
is that in an orthorhombic system (maÞmb), for the field
applied in a direction other than along the principal axes
the effective mass tensor, the directions of the internal
the external fields differ.59 The difference may be quite sma
in the experimentally relevant field range; ignoring
Schachinger and Carbotte60 argued that the minima occu
when the field is parallel to the direction of the Fermi velo
ity at the node, which differs from the direction toward th
node.

The anisotropy in the density of states given by Eq.~54! is
;30% for the purely two-dimensional model consider
here. Any three-dimensionality reduces this number sever
if there is a line of nodes extending along thez axis, for the
field applied toward a node in the equatorial plane, the D
pler shift vanishes only for the nodal quasiparticles with m
menta in the plane. For the quasiparticles on the same n
line but with a component of the momentum along thez axis

FIG. 3. Contribution of different nodes to the density of stat
The nodes are numbered and the direction of the Fermi momen
is shown at each nodal point. Left: field along the nodal direct
and orthogonal to the other pair of nodes. The Fermi momentum
nodes 2 and 4~broken line! is orthogonal to the plane where supe
currents flow, and the Doppler shift vanishes everywhere in sp
for this pair of nodes. Right: field in the antinodal direction. T
Doppler shift is nonvanishing at some points in space for each n
and the density of states is maximal.
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the Doppler shift is finite, consequently the node is still ‘‘a
tive’’ in contributing to the density of states. In the simple
estimate in a three-dimensional system17 the effect is reduced
to 7–8 %, in some models with a tight-binding dispersion61

along thec axis it may be reduced even further, to about 4
making the effect more difficult to detect.

The anisotropy is also rapidly washed out with increas
energy.17 Since the density of states has a minimum when
field is applied along a node (E150 for example!, the cor-
responding pair of nodes is ‘‘inactive’’ and insensitive to t
field; therefore the density of states increases linearly in
ergy, as in the absence of a field. For the field away from
nodal direction the density of states increases as a squa
the energy, see Eq.~45!, resulting in a rapid suppression o
the difference between the two geometries. For low energ
in the limit v!E1 ,E2, which can only happen if the field is
not close to a nodal direction (E1 ,E2Þ0), we have

N~v,H;a!'max@ usinau,ucosau#
Eab

pA2v fvD

3FM11
v2

Eab
2

2

ucos 2au
P~0!G . ~55!

On the other hand, ifE1!v!E2, which may happen when
the field is close to one of the nodes, andE1!E2, we have

N~v,H;a!'
1

2pv fvD
FM1E21v1

v2

E2
P~0!1

E1
2

2vG .
~56!

The anisotropy in the density of states as a function of
angle for the liquid I model is shown in Fig. 4, at low ene
gies there is no qualitative difference between the differ
models, see below. As the energy is increased the s
minima fill up, and the resulting anisotropy decreases.

.
m

n
at

ce

e,

FIG. 4. Angular dependence of the density of states, meas
in units of Eab /(pv fvD), on the the direction of the applied mag
netic field. Density of states has been computed with the mo
liquid I probability density of the Doppler shift. Anglea is mea-
sured with respect to thex axis, and the minima are along th
position of the nodes. Notice a significant reduction in the anis
ropy at energies of the order ofEab .
3-11
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I. VEKHTER, P. J. HIRSCHFELD, AND E. J. NICOL PHYSICAL REVIEW B64 064513
The angular dependence of the density of states vani
at higher energies, as forv@E1 ,E2 with a realistic distribu-
tion respecting the asymptotic behaviorP(x)}x23 for
x@1

N~v,H;a!'
v

pv fvD
S 11

1

4

E1
21E2

2

v2 D
5

v

pv fvD
S 11

1

4

Eab
2

v2 D . ~57!

The exact crossover scale from the strong- to the weak-fi
regime depends on the particular choice of the probab
distribution. This is shown in Fig. 5 for the three differe
choices ofP(x) considered in this work.

C. Zeeman splitting

Typically the Zeeman shift is small compared to the Do
pler energy scale, and does not modify significantly the d
sity of states. Indeed, for the field along thec-axis, the
spin-up and spin-down density of states is given by

N6~v,H !5
EH

pv fvD
FNS v6

EH
D , ~58!

where v65uv6mHu. Therefore, for example, the correc
tions to the residual density of states due to the paramagn
contributions in the regimemH!EH are of the order

dN~0,H !

N~0,H !
'S mH

EH
D 2 P~0!

M1
!1. ~59!

For quasi-three-dimensional materials, such as YBCO,
relevant energy for the field applied in the plane isEab .

FIG. 5. Relative anisotropy in the density of states,dN(v)
5N(v,H;a50)2N(v,H;a5p/4) normalized by the maxima
Nmax(v)5N(v,H;0) for different models considered in the tex
Notice that the relative anisotropy atv50 is identical for all mod-
els, as is clear from Eq.~54!. In the single-vortex model the aniso
ropy vanishes identically atv>Eab , see Eq.~47!. For the Gaussian
model the exponential asymptotic behavior of the probability dis
bution leads to the inverse anisotropy in the intermediate ene
range. The two liquid models yield a very similar dependence of
anisotropy on the energy.
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Even if this energy scale is only 15% ofEH , a factor of 2–3
smaller than estimated, the ratioEab /mH;6.7/AH T 1/2 im-
plies a crossover field of 45 T. Consequently the Zeem
splitting is unimportant compared to the Doppler shift in t
experiments performed so far in YBCO. This is in contrast
more two-dimensional materials, such as BSCCO, where
response to a parallel magnetic field is dominated by
Zeeman splitting.63,64

The situation is different for the geometry with the fie
applied along a node; this was first pointed out in Ref. 20
this case the Doppler shift at one pair of the nodes vanis
and, atv50, the only contribution to the density of states
these nodes is due to the Zeeman splitting. The Zeeman s
ting leads to a finite contribution to the density of states t
is linear in mH, and consequently reduces the residual
isotropy dN(0,H). This reduction has been investigated
Ref. 20.

This is, however, not the only effect of the paramagne
coupling. Since the density of states at the nodes with
vanishing Doppler shift is now dominated by the Zeem
splitting at low energies, the anisotropy is not reduced
rapidly with the increasing energy. Indeed, if only the pa
magnetic effect is taken into account, the total~per particle,
i.e. summed over the spins rather than per spin! density of
states is

NZ~v,H !5 (
a56

uv1amHu
pv fvD

5
2 max@mH,uvu#

pv fvD
, ~60!

and therefore the anisotropy increases withv up to v
5mH, where it reaches a maximum.

Let us consider the liquid I model, where the analy
expression for the density of states is particularly simple,
results are not modified substantially if other models
used. The anisotropy in the total~summed over the spin di
rections! density of states between the nodal and the an
odal directions is given by

dN~v,H !5
1

2pv fvD
F (

a56
~2Ava

21Eab
2 /22Ava

21Eab
2 !

22 max@mH,uvu#G ~61!

As Fig. 6 demonstrates, even though the zero-energy an
ropy is severely reduced upon inclusion of the Zeeman sp
ting, the anisotropy at moderate energies is close to the re
obtained without accounting for the paramagnetic effect. I
clear that the magnitude of the reduction and the crosso
energy depend on the actual value ofEab , and we need a
realistic estimate of this value to evaluate the impact of
paramagnetic splitting on the experimental results for
field along a nodal direction. Such an estimate can be
tained from the analysis of the data on the specific heat
we discuss in the next section.

VI. SPECIFIC HEAT AND SCALING

The information about the density of states is experim
tally available primarily via the specific-heat measuremen

-
y
e
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and we now address this quantity in more detail. The p
liminary analysis of some of these issues within the sing
vortex picture has been carried out by us before.62 Here we
concentrate on the effects of different distributions, and
the measurability of the specific heat anisotropy.

A. Specific heat

The electronic contribution to the specific heat is giv
by14,62

C~T,H !5
1

2E2`

1`

dvN~v,H !S v2

T2 D cosh22
v

2T

5TE
0

`

dxx2N~xT,H !cosh22
x

2
. ~62!

Making use of Eq.~41! we can rewrite the specific heat i
the form useful for further analysis. For the field along thec

axis,Hi ĉ, we have

C~T,H !5
TEH

pv fvD
E

0

`

dxx2FNS xT

EH
D cosh22

x

2
, ~63!

whereFN is given by Eq.~42!.
As a result we find in the limitEH@T

C~T,H !'
2TEH

pv fvD
S p2

3
M11

7p4

15
P~0!

T2

EH
2 D , ~64!

and in the opposite limit,EH!T,

C~T,H !'
2T2

pv fvD
S 9z~3!1

EH
2

T2
ln 2D . ~65!

FIG. 6. Effect of the Zeeman splitting on the anisotropy in t
density of states. HereEab /AH5a K T21/2. Main panel: energy
dependence of the anisotropy for the liquid I distribution with~solid
line! and without~dashed line! accounting for the Zeeman splittin
for a55 at H510 T. Inset: anisotropy in the residual density
states, in units ofa/2pv fvD , as a function of the applied field
Dashed line: no Zeeman effect, dot-dashed line:a510, solid line:
a55.
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Two quantities that can be compared with experiment are
coefficient of theT2 term in absence of the field,

gs5
kB

3

\2

nVmol

s

18z~3!

pv fvD
, ~66!

and the coefficient of theTAH term at low temperature

p5 lim
T→0

C~T,H !

T
5

p3/2

3

kB
2

\

nVmol

s

M1

vDF0
1/2

. ~67!

HereVmol is the molar volume,s is the unit cell size along
the c axis, andn is the number of CuO2 layers per unit cell.
The presence of both terms has been firmly established f
the analysis of the experimental data on the specific hea
YBCO,2,3,5 however, there remains disagreement about
values of the coefficients between different groups.

For that materialVmol5104.6 cm3/mol, n52, and s
'12 Å . The coefficientp can in general be determined to
higher degree of accuracy, and the values available in
literature arep'0.91 (mJ mol21/K2) T21/2 for moderately
clean samples,2,3 and more recently obtainedp'1.34
(mJ mol21/K2) T21/2 for the ultrapure single crystals.5 The
analysis of these data in the single-vortex picture has b
carried out by Wanget al.,5 and by Chiaoet al.40 In that
picture the 50% difference in the coefficient translates i
the same relative difference in the value for the slope of
gap. In contrast, according to the previous section, the m
ordered vortex state leads to a larger first moment of
distribution, and consequently to a larger value ofp in Eq.
~67!; it is therefore reasonable that a higher-quality crys
would have a more ordered vortex state and hence a la
coefficientp. If we setM151 the experimental values ofp
lead to the values for the slope of the gap ofvD'1.53106

cm/s andvD'1.03106 cm/s, respectively. On the othe
hand, M154/p for the pure crystal yields a largervD

;1.273106 cm/s, leading to a less than 20% discrepan
between the groups. The disagreement can be further
duced by assuming a disordered state withM1,1 in the
ceramic sample of Ref. 3. We also note that the pure cry
of Ref. 5 is overdoped, rather than optimally doped as in
work of Refs. 2 and 3, which may contribute to the diffe
ence in the coefficient. In combination with the value for t
ratio v f /vD'14 obtained from the universal limit of th
thermal conductivity65 this yieldsv f;1.83107 cm/s. This is
in reasonable agreement with the value of the Fermi velo
obtained from the ARPES measurements in BSCCO,33 which
is believed to have a Fermi surface similar to that of YBC

The coefficientgs of the temperature dependence h
been measured with significantly larger error bars, and
results from different groups vary significantly: Moleret al.2

reported the value of 0.1 (mJ mol21) K23, Wright and
co-workers3 obtainedgs;0.064 in the same units, while
Wanget al.5 measured 0.21. From the comparison with E
~66! we find v fvD;a31013 cm2/s2, where a52.9,4.5,1.4
for the three values given above. All these yield the Fer
velocity within a factor of two of the estimate given abov
This implies that in the calculations requiring a cutoff
energy the cutoffE0;(1.322.3)3103 K.
3-13
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We now turn our attention to the field applied in theab
plane, and discuss the specific heat following the gen
approach of our previous paper.62 The first question that we
address is the observability of the fourfold oscillations in t
density of states. These oscillations have not been seen i
experiments by Moleret al.;2 nor have they been found i
recent measurements on very high quality single crystal
YBCO.5 It seems likely that the estimate ofEab;10 K T21/2

from the purely two-dimensional model is too high, and t
three-dimensionality reduces the effect significantly.17 It is
also possible that the orthorhombicity, which shifts t
minima in the density of states away from thep/4 directions,
combined with twinning of the crystals used in both expe
ments reduces the observable anisotropy significant60

However, even in this case, the in-plane anisotropy for
fields of up to 14 T used in the experiments by Wanget al.5

should be within the experimental resolution. A very impo
tant observation is that since the anisotropy in the densit
states is washed out rapidly as the energy is increased
in-plane anisotropy of the specific heat is greatly redu
with increased temperature,17 as seen in Fig. 7 the reductio
is more rapid for the Doppler shift density with the larg
weight at low energies. We only consider here the poss
situation when the configuration of the vortex lattice is ide
tical for the field along the nodal and the antinodal dire
tions; then the limiting behavior for the specific heat with t
field along an antinode (a50) and along a node (a5p/4) is
easily obtained from Eqs.~55! and ~56!,

C~T,H;0!5
A2EabT

pv fvD
Fp2

3
M11

14p4

15

T2

Eab
2

P~0!G , ~68!

CS T,H;
p

4 D5
EabT

pv fvD
Fp2

3
M119z~3!

T

Eab
G . ~69!

Therefore while the amplitude of theAH term confirms the
estimates for the nodal velocitiesv f and vD , and therefore
for the energy scaleEH , such a term has not been observ
for the field in the plane, and therefore there is no dir

FIG. 7. Anisotropy in the specific heat between the no
~dashed line! and antinodal~solid line! directions for different mod-
els.
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measurement ofEab available. However, an estimate for th
scale can be obtained from the scaling plots for the spec
heat.

B. Scaling functions

It has been pointed out by Simon and Lee56 that on gen-
eral grounds the thermodynamic coefficients of the no
fermions in a magnetic field should scale with the varia
T/EH ; consequently the experimental results can be in
preted as giving the form of these scaling functions. T
scaling of the specific heat itself follows easily from Eq.~41!
for the density of states, and the weak and the strong-fi
limits of the scaling function are obtained from the equatio
for the specific heat above. For the fieldHi ĉ, we defineZ
5T/EH andFC(Z)5pv fvDC(T,H)/(2TEH); then

FC~Z!5E
0

`

dxx2FN~xZ!cosh22
x

2
, ~70!

with FN given by Eq.~42!. The limits for the scaling func-
tion follow easily:

FC~Z!5H p2M1/317p4P~0!Z2/15, if Z!1;

9z~3!Z1Z21 ln 2, if Z@1.
~71!

The numerically determined scaling function is shown
Fig. 8. It is remarkably similar to the scaling plot obtaine
from the measured specific heat in Ref. 3. In that experim
the crossover scale, marking the transition from the fie
dominated regime, whereFC(Z)'const, to the temperatur
dominated regime, has been determined to beT/AH'6.5
K/T1/2; a very close value has been obtained in a more rec
experiment of Wanget al.5 As is clearly seen from Fig. 8 the
value of the scaling variable at the crossover depends on
structure of the vortex state; this is easy to understand f
Eq. ~71!. The zero temperature value of the scaling functi
is determined by the first moment of the Doppler shift d
tribution M1, while the increase ofFC with the temperature
is proportional to the weight of the distribution at the va
ishing Doppler shiftP(0). Consequently the crossover valu
Zc can be expected to be proportional toAM1 /P(0). As the

l
FIG. 8. Scaling function for the specific heat. For concreten

the crossover valuesZc have been defined as the point of a 20
increase above the high-field flat region:FC(Zc)51.2FC(0).
3-14
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THERMODYNAMICS OF d-WAVE SUPERCONDUCTORS IN . . . PHYSICAL REVIEW B64 064513
number of zeros of the superfluid velocity grows, the weig
in P(x) is shifted toward lower energies, so thatM1 de-
creases whileP(0) increases; these opposing trends lead
significant variations inZc . From Fig. 8, for the liquid and
single-vortex models the crossover occurs aroundZc.0.2
20.3; taking this value as the experimentally determin
crossover point, we arrive atEH /AH;30 K T21/2, in agree-
ment with our previous estimate. Notice that the crosso
occurs atZc!1; this is simply the result of a large coeffi
cient of theZ2 term in the low-temperature expansion in E
~71!, 7p4/15.45, whilep2/3.3.

A similar analysis can be carried out for the field appli
in the plane by introducingZab5T/Eab and Fab(Zab ;a)
5pv fvDC(T,H;a)/(TEab); the limiting form of the scaling
functions forZab!1 can be read off Eqs.~68! and ~69!; at
Zab@1 we have

Fab518z~3!Zab1Zab
21 ln 2. ~72!

The specific-heat data of Refs. 2 and 3 are analyzed by m
eling and subtracting the ‘‘background’’ contributions to t
specific heat~phonons, Schottky anomalies, etc.!. To avoid
the extensive analysis, Revazet al.4 have looked at the dif-
ference between the specific heat with the field along thc
axis, and the field along the antinodal direction, thec/a2b
difference dC(T,H)5C(T,H)2C(T,H;0). The compari-
son between the results of Ref.4, and Refs. 2 and 3 has
a subject of some controversy, most clearly stated in Re
It has been argued already by the present authors and
botte that the experimental results from these groups ar
fact in agreement,62 and here we elaborate further on th
sources of the apparent differences. We interpretdC(T,H) as
a pure vortex quantity, ignoring the possible elastic contri
tion of the vortex lattice and the possible field dependenc
the anisotropyh5Eab /EH . The issues raised in Ref. 3 in
clude the temperature dependence ofdC(T,H)/T in the re-
gime whereC(T,H)/T is essentially insensitive to temper
ture, and a form of the scaling function fordC that is quite
different from that ofC(T,H).

As is clear from Fig. 8 for the fieldHi ĉ the ratio
C(T,H)/T does not depend strongly on the temperature
T&TH;(0.120.25)EH , reflecting the energy independen
of the density of states forv!EH . For the field applied in
the plane along the antinodal direction the physics is v
similar, up to rescaling of the energies, which means that
density of states is only constant forv!Eab!EH , and
therefore C(T,H;0)/T is T dependent aboveTab;(0.1
20.25)Eab . The difference,dC/T, becomes temperature de
pendent at the lower of the two crossovers, which is aT
.0.1Eab , and for Tab<T<TH it varies with temperature
even thoughC(T,H)/T is approximately constant.

It is easy to understand the difference in the scaling
havior betweendC and C(T,H). Taking the ratioEH /Eab
54 we plot the corresponding scaling functions in Fig.
Even in the regime where the scaling functionFC is nearly
constantFdC is decreasing continuously. We therefore b
lieve that there is no contradiction between the results of R
5, and Refs. 2 and 3. Both the temperature dependenc
dC/T and the difference in the behavior of the scaling fun
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tion reflect the smaller Doppler energy scale in the pla
Eab!EH , and the results of these experiments are, in fa
quite consistent. Notice that the crossover indC is much
wider than that inC(T,H) because of two energy scale
contributing to it: it extends over a decade in the scal
variable. Note that in Fig. 9 we have evaluated the spec

heat with the fieldHi ĉ in the single-vortex approximation
while the specific heat for the field along the antinode in
plane has been evaluated for the liquid I distribution,
model the expected difference in the degree of order in
vortex lattice. Both quantities have been evaluated with
single-vortex distribution in a prior publication,62 and there
are no qualitative differences between the two cases.

To further quantify these considerations we note that e
though the crossover to the temperature insensitivedC has
not been found in Ref. 4, the data suggest that it is clos
T/AH;0.5 K T21/2, which is the lowest value of the scalin
variable reached in the paper„experimental measuremen
are limited to the temperatures above;1.5 K, since at lower
temperatures the nonvortex contributions toC(T,H) become
dominant…. Taking this number as a crossover value
T/Eab , we estimateEab /AH;324.5 K T21/2; 2–3 times
smaller than the estimate from the London model.

If the value of Eab is low, it is not surprising that the
in-plane anisotropy between the nodal and the antinoda
rections has not been found in the experiments of Ref. 5
14 T, Eab'11217 K, and even at the lowest temperatu
where the measurements of Ref. 5 have been madeT/Eab

>0.0920.15. Then the anisotropy in the density of states
significantly reduced from theT50 value, see the inset o
Fig. 9. On the other hand, the data of Ref. 5 for the field
the plane yield ~after the subtraction of the Schottk
anomaly! a crossover temperature between the fie
dominated and the temperature-dominated regimes clos
Tcr'2 K T1/2. If this value is taken as corresponding to th

FIG. 9. Scaling functions for the specific heat with the fie
applied along thec axis, C(T,H) and thec/a2b differencedC
5C(T,H)2C(T,H;0). The former has been evaluated for th
single-vortex distribution of the Doppler shift, the latter for th
liquid I model as explained in the text. The behavior remains
sentially unmodified for other forms of the distribution. Inset: d
ference between the nodal~top! and antinodal directions disappea
on the scale of the larger graph.
3-15
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crossover inT/Eab , it implies a large value ofEab /AH
>10220 K T21/2. In that case the absence of the anisotro
can only be explained~somewhat unsatisfactorily! by an ap-
peal to the three-dimensionality17 or a combination of the
orthorhombicity and twinning.17,60 Since part of the experi
mental difficulty stems from the smallness of theAH term
with the field in the plane, the analysis for that geome
typically involves assuming a field-dependent contribution
that form.2,5 However, if Eab is small, the field dependenc
of the specific heat is modified by the Zeeman splitting, a
this splitting has to be taken into account in the analysis

C. Zeeman splitting

If the energy scale for the in-plane Doppler shift is inde
much smaller than the naive estimate from the Lond
model,Eab /AH;(324.5) K T21/2, the Zeeman splitting ha
a significant effect on the specific heat with the field appl
along a node in the experimentally relevant range. The s
cific heat no longer obeys the scaling properties discus
above; for the field along a node the contribution of t
Doppler-‘‘inactive’’ nodes is given by

CZ~T,H !5
T2

pv fvD
FZS mH

T D ~73!

FZ~x!5xE
0

x

t2 cosh22
t

2
dt1E

x

`

t3 cosh22
t

2
dt, ~74!

in agreement with Ref. 64, and therefore scales withH rather
thanAH.

As the in-plane anisotropy in the density of states ha
maximum for v5mH, the anisotropy in the specific hea
also goes through a maximum; we expect approxima
Tmax(H)}H. We consider here two different cases fora
5Eab /AH: a large value corresponding to our original es
matea510 K T21/2, and a small value implied by the ex
periment,a54 K T21/2, and evaluate the specific heat for th
liquid I distribution. The main panel of Fig. 10 shows th
scaling plot for the in-plane anisotropy in the specific he
Canis(T,H)5C(T,H;0)2C(T,H;p/4) at H510 T, so that
the values for the two cases areEab.32 K, andEab.13 K.
While the anisotropy is severely reduced atT50, it becomes
close to the values estimated without accounting for the Z
man shift at the temperaturesT.2.2 K andT.1.8 K for the
two cases, respectively, and therefore the anisotropy in
experimentally relevant regime is not modified significant
Nevertheless, if the absolute magnitude of the anisotro
term is small, and its field dependence has to be modele
the analysis of the experimental results,5 it is important to
note that, as is clear from the inset of Fig. 10, the fie
dependence of the anisotropy is not simply proportiona
AH, but flattens and decreases at high fields. The deviat
are especially important for smalla, since then the maximum
of the anisotropy is reached atH;10 T for T51.5 K, well
within the experimental range. We analyze this scenario
more detail in Fig. 11, which demonstrates that if the coe
cient a is small, the maximum in the anisotropy can be o
served at low temperatures, but moves out of the easily
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cessible range, toH>20 T, at higherT. In comparison, ifa
;10, the maximum lies at high fields for all relevantT.
Consequently, in the search for the experimental verificat
of the anisotropy in the specific heat, it cannot be assum
that the anisotropy increases asAH; if the energy scale for
the in-plane Doppler shift is small, the Zeeman splitti
modifies the field dependence of the specific heat. For
small valuea54 K T21/2 the maximum anisotropy, reache
in the fields of the order of 10–15 T atT51.523 K, is of the
order of 0.520.9gs ; based on the available experiment
values2,3,5 for gs between 0.064 and 0.21 (mJ mol21) K23,
the maximal anisotropy ranges between 0.032 and 0.19
mol21 K21; it is significantly larger for larger values o
Eab /AH.

Recently, Wanget al. attempted to observe the angul
oscillations we have predicted in the in-plane specific he5

They did not, however, find appreciable difference betwe
two measurements with field applied in the nodal and an

FIG. 10. Main panel: the anisotropy in the in-plane specific h
plotted in the scaling form atH510 T for the coefficienta
5(4,10) K T21/2, and without accounting for the Zeeman sh
~dashed line!. Inset: The specific heat atT51.5 K, which is close to
the lowest experimentally accessible temperature, for the same
values ofa with ~solid line! and without~dashed line! accounting
for the Zeeman shift.

FIG. 11. Anisotropy of the in-plane specific heat fora54
K T21/2 as a function of the field at different temperatures.
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THERMODYNAMICS OF d-WAVE SUPERCONDUCTORS IN . . . PHYSICAL REVIEW B64 064513
odal directions. Several reasons may have contributed:
of all, the YBCO sample used in their experiment is twinne
Twinning, combined with the orthorhombicity of YBCO i
expected to reduce the anisotropy.17,60 Here we point out
another possible reason for the difficulty in extracting t
difference between the two directions from the data: the fi
dependence of the anisotropic term is not simply given
AH, as it would be in the absence of the Zeeman term, an
assumed in Ref. 5. Instead, the anisotropy increases with
field up to fields of about 10–15 T, and decreases therea
Consequently, we believe that to confirm the predicted os
lations experimentally, it is highly desirable to use an u
twinned crystal, and carry out the measurements at inter
diate fields~10–15 T! at the lowest possible temperature
since the anisotropy in the specific heat is expected to be
largest in this range.

VII. SPIN-LATTICE RELAXATION RATE

We now turn our attention to the calculation of the r
sponse functions. In these calculations the local, in r
space, physical quantities depend on the Doppler shif
both pairs of nodes, and consequently the averaging has
carried out with the two-node probability densityL rather
than the single-node distributionP. The simplest example o
such a quantity is the average spin-lattice relaxation rate
we now consider.

Since the NMR measurements on cuprates are typic
done in a magnetic field of;10 T, the effect of the field on
the measured signal has to be considered in the analys
the data. There are at least two effects of the vortex stat
the spin-lattice relaxation time. First, the Doppler shift mo
fies the local density of states, introducing the local rel
ation rate, which varies from point to point. Second, t
magnetization due to the vortex lattice introduces inhomo
neities in the field, leading to the broadening of the re
nance line. As a result, there are two possible approache
the analysis. In a perfect vortex lattice there exists a one
one correspondence between the local field at a partic
point in the unit cell of the vortex lattice, and the value of t
superfluid velocity at that point. Assuming such a perf
lattice it is therefore possible to associate the local relaxa
rate with the relaxation rate at a particular frequency in
resonant line. Such an approach has been developed the
cally in the semiclassical framework,55,66 and the results are
in qualitative agreement with the experimental observat
that the relaxation rate and the local density of states
larger in the regions of higher field, i.e., high
supervelocity.8

On the other hand, in a disordered vortex state ther
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no unique identification of the local value of the supervelo
ity corresponding to a local magnetic field. It may therefo
be useful to analyze the relaxation rate obtained by the ‘‘g
bal’’ fit to the resonance line; especially when the linewid
remains quite narrow in frequency. It has been shown t
the time-decay of the magnetization is nonexponential a
involves a convolution of many local relaxation rates, b
that it is possible to describe it with an effective scatteri
rate that depends on the field and the temperature.16,67 Usu-
ally the analysis of the experimental data is done assumin
single relaxation rate, and it is therefore important to und
stand its behavior in ad-wave superconductor.

The analysis of the relaxation timeT1 can be undertaken
either by looking at its magnitude directly, or by analyzin
the ratioT1 /tc , wheretc is the relaxation time atT5Tc .
The former approach involves modeling or estimating fro
the available data the matrix element for the interaction
has been used, for example, in Ref. 55. The latter metho
based on making assumptions about the normal state re
ation in the cuprates. We employ it assuming a normal m
tallic relaxation atTc with the caveat that this may be onl
qualitatively correct for underdoped compounds.

With this assumption for the spin-1
2 system the magneti

zation decays asm(t)5M (t)/M (0)5exp(2t/T1), where the
relaxation rate in the infinitesimal field is given by

tcTc

T1T
5E

2`

1`

dv
N2~v!

N0
2 S 2

] f

]v D
5

1

2E0

1`

dx
N2~xT!

N0
2

cosh22 x/2, ~75!

whereN05m/2p\2 is the two-dimensional~2D! density of
states in the normal state.

In nonzero magnetic field, the decay of the average m
netization is given by

m~ t !54E
0

`

de1E
0

`

de2L~e1 ,e2!exp@2t/T1~e1 ,e2!#,

~76!

where the position and Doppler-shift-dependent relaxat
rate is determined from

tcTc

T1T
5

1

2N0
2E0

1`

dxN2~xT,e1 ,e2!cosh22 x/2. ~77!

The density of states is given by the sum of the contributio
of all nodes,uv1e i u/(pv fvD) with (e i56e1 ,6e2), which
yields
N~v,e1 ,e2!5
1

2pv fvD
H 2v, if v>max~e1 ,e2!;

v1max~e1 ,e2!, if min~e1 ,e2!<v<max~e1 ,e2!;

e21e1 , if v<min~e1 ,e2!.

~78!
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I. VEKHTER, P. J. HIRSCHFELD, AND E. J. NICOL PHYSICAL REVIEW B64 064513
Here again, without loss of generality, we setv,e1 ,e2>0.
The decay of the magnetization is therefore no

exponential,16,67 as is shown in Fig. 12 for a liquid distribu
tion. In a magnetic field the density of states is enhan
globally, and therefore the stronger the field the faster
decay ofm(t). In the regimeEH@T the density of states is
significantly enhanced over a large part of the unit cell of
vortex lattice. This high density of states yields a fast rel
ation rate responsible for the initial decrease in the magn
zation. The long-time decay ofm(t) is determined by the
slowest relaxation rates, which occur in the regions wh
the superfluid velocity is small and the density of states
largely determined by the temperature. The two regimes
seen in Fig. 12: the large-t tail of ln m(t) is affected by the
field much more weakly than the short-time decay. For
the values of the field it is possible to fit the time depende
by an exponential, although clearly the relaxation rate
tained from such a fit differs significantly from the zero-fie
rate. We have addressed the fit of the magnetization at
ferent time scales in a previous publication.16,67

An important comment concerns the scaling of the m
netization. First of all, due to scaling properties of the de
sity of states, the magnetization decay due to spin-lat
relaxation satisfies

m~ t !5FmS tHT fS T

AH
D D , ~79!

where the functionsFm and f can be obtained from the gen
eral expression Eq.~76!. Moreover, whenEH /T@1 the den-
sity of states and therefore the functionf are nearly constant
Two conclusions follow immediately. First, at a fixed rat
T/AH the magnetization depends only on the single varia
tTH. Second, at low temperaturesm(tTH) is independent of
the ratioT/AH at short time scales, when the relaxation ra
is dominated by the field-induced density of states rat
than the temperature-driven density of states. The collaps
the low-T data on a single curve as a function oftT has been
found previously;9,68 however, we are not aware of an e
perimental check of such scaling at different fields. In Fig.
this behavior is clearly seen. Deviations from the scal

FIG. 12. Magnetization decay at a fixed temperature for diff
ent values of the magnetic field. We have used 2N0pv fvD5kfvD

'2D0 ~pure d wave!, and have setD052.14Tc . m(t) has been
evaluated for the liquid I model.
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form are noticeable already forEH /T;4; however, even in
this regime the curves for differentEH and T but with the
same ratioEH /T, coincide. The scaling is always obeyed
short time scales, where the time decay of the magnetiza
is determined by the fast relaxation rates in the regions w
a large Doppler shift. On the other hand, at long time sca
the time-dependence ofm(t) is determined by the slowes
relaxation rates, in the regions where the Doppler shift v
ishes, and therefore there are always deviations from
scaling withtTH.

Since the long-time-scale decay is determined by the m
sure of the points with small Doppler shift, it depends cr
cially on the probability densityL(e1 ,e2). In particular,
there is a dramatic difference between the single-vortex
ture, wheree1

21e2
2>EH

2 , and the lattice or liquid states
where this restriction is lifted: magnetization decays mu
faster in the single-vortex picture, as can be seen in Fig.
Notice that for the very early times, when the magnetizat
decay is determined by the regions with the highest Dopp
shift, the two distributions give the same result. Therefo
the effective relaxation rate obtained from the exponentia
depends not only on the field but also on the structure of
vortex state. The difference in the behavior for the two typ
of the vortex state can be understood from the analysis of

-
FIG. 13. Magnetization as a function ofb5tTEH

2 /tcTcD0
2 . The

ratio T/EH is identical for the bottom two sets.

FIG. 14. The difference between the liquid~liquid I! and the
single-vortex models in a strong~main panel! and weak~inset!
magnetic field. Parameters are the same as in Fig. 12.
3-18
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magnetization. Noticing thatL(e1 ,e2)5L1(e1
21e2

2) due to
symmetry~the probability density should be even in bothe1
and e2, and should be symmetric under the interchan
e1↔e2), and introducing polar coordinatesx5(e1

2

1e2
2)/EH

2 , tanf5e1 /e2, we arrive at

m~ t !'E
x0

`

dxL1~x!e2bx/4I ~bx/4!, ~80!

I ~z!5E
0

p

exp~2z sinf!df, ~81!

wherex0'T2/EH
2 , andb5tTEH

2 /tcTcD0
2 . This form shows

explicitly that there is an approximate scaling with the va
ableb, and that the scaling is obeyed better the smaller
ratio T/EH .

Due to the exponential the integral overx is cut off at
bx@1, so that we only need to evaluateI (z) for z;1. In
that case all anglesf contribute to the integral, andI (z)
'p exp(2bz) with b;1 @in contrast,I (z).2/z for z@1],
leading to

m~ t !'pE
x0

`

dxL1~x!e2bsx/4, ~82!

with s511a;1. Consequently, the long-time-scale limi
(b@1) for the single-vortex and liquid I distribution, respe
tively

m~ t !5E
1

`

dx
e2bsx/4

x2
;

exp~2bs/4!

sb/4
, ~83!

m~ t !5E
x0

`

dx
e2bsx/4

~x11!2
;

exp~2bsx0/4!

sb/4
. ~84!

As a result, the long time decay for the liquid regime
governed by the relaxation rate close to thebx0}T3 behav-
ior expected forH50, while for the single-vortex model th
relaxation rate is proportional tob}TH.

In reality, however, the decay ofm(t) at long time scales
is usually not measured, and at intermediate times the
tailed analysis of the time dependence of the magnetiza
taking into account the nonexponential form ofm(t) is com-
plex. It is possible to define an effective relaxation rate, ho
ever, the weight of the components of the magnetization w
fast and slow decay is different for different definitions, a
the resulting effective relaxation rate is different, as we n
illustrate. One possible approach is to define the effec
rate as

1

T1
e f f

54E
0

`

de1E
0

`

de2L~e1 ,e2!
1

T1~e1 ,e2!
. ~85!

Unlike the average for the magnetization, Eq.~76!, which
has the largest contribution from the slowest relaxation ra
in this averaging procedure the weight of short relaxat
rates is high, and a cutoff of the energy integral near the c
is required. To leading order in lnE0 /EH the relaxation rate in
the field-dominated regime is then given by
06451
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T1
e f f

'
p12

2p

1

tc

T

Tc

EH
2

D0
2

ln
E0

EH
. ~86!

The relaxation rate given by this expression is expected
overestimate the rate of the decay of the magnetization.
relaxation occurs near the cores, where the effective fiel
higher, and therefore in the component of the signal aw
from the original position of the resonance line.55 Alterna-
tively, we can define the average relaxationtime

t1
e f f5E

0

`

m~ t !dt54E
0

`

de1E
0

`

de2L~e1 ,e2!T1~e1 ,e2!.

~87!

This average has a large contribution from slow relaxat
rates, and we expect the effective rate to be underestim
since over experimentally relevant time scales the slow
rates do not contribute to the magnetization decay appre
bly. Indeed, for the cases of the single-vortex and the liq
distributions we obtain in the field-dominated regime

1

t1
e f f

'
p

8

1

tc

T

Tc

EH
2

D0
2

, single vortex, ~88!

1

t1
e f f

'
p

32

1

tc

T

Tc

EH
2

D0
2 F ln

EH

T G21

, liquid I. ~89!

The coefficient in the last expression is significantly sma
than the expression given by Eq.~86!. We can now compare
this expression with the result of Ref. 9, where it was fou
thattcTc /T1T'0.2 atH511 T at lowT. From our estimate
of EH it follows that at this fieldEH;100 K. Taking E0
.1500 K, we find this ratio for the average rate to be 0.3
while the average relaxation time procedure yields the val
of 0.06 and 0.005~at T.5 K!, respectively. The experimen
tal value is between the two estimates, as expected.

VIII. IMPURITY SCATTERING

The self-energy

In the presence of impurity scattering the frequency
renormalized according toṽ5v2S(ṽ). The self-energy
S(ṽ) depends on the momentum integral of the Gree
function, and therefore on the Doppler shifts at all nod
Consequently, in all the calculations involving the impuritie
the local quantities depend on bothe1 ande2.

Here we consider the impurity scattering in the unitar
limit. The strategy for the calculation is as follows. The se
energy is given by Eq.~6!; to evaluate this expression in
field we have to introduce the Doppler shift in the Gree
function as before, and solve for the self-energy se
consistently at each node. In other words, there is a dist
Doppler shift at each node, and the self-consistency requ
that the scattering to other nodes with their respective D
pler shifts be taken into account self-consistently. Theref
we can write

S~ṽ,e1 ,e2!52ni@G0~ṽ,e1 ,e2!#21, ~90!
3-19
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where, from Eq.~8!,

G0~ṽ,e1 ,e2!52
1

2p (
a56
n51,2

va,n1 iv2

v fvD

3F ln
E0

Ava,n
2 1v2

2
1 i arctan

va,n

v2
G , ~91!

and

va,n5v1aen2ReS~ṽ,e1 ,e2!, ~92!

v252Im S~ṽ,e1 ,e2!. ~93!

We now focus our attention on the cases of weakv!EH
!g, and strongv!g!EH fields at low temperatures. Se
ting v50 it is clear immediately that the real part of th
momentum integral of the Green’s function at each node
Eq. ~91! is odd in the Doppler shift,en , and therefore van-
ishes upon summation.14 As a result, the self-energy has on
the imaginary part given by Eq.~90! with

G0~ṽ,e1 ,e2!52
i

p

v2

v fvD
ln

E0
2

Ae1
21v2

2Ae2
21v2

2

2
i

p

e1

v fvD
arctan

e1

v2
2

i

p

e2

v fvD
arctan

e2

v2
.

~94!

In the strong-field limit,v2!e1 ,e2, we obtain for the the
density of states

N~e1 ,e2!52
1

p
Im G0~ṽ,e1 ,e2!5

1

2p

ue1u1ue2u
v fvD

,

~95!

as expected, see Eq.~78!. The quasiparticle damping in thi
regime is given by

v2'
2niv fvD

ue1u1ue2u
;

g2

ue1u1ue2u
!g. ~96!

In the weak-field impurity-dominated regime,v2@e1 ,e2, on
the other hand, the field-induced change in the density
states is quadratic in the Doppler shift and is given by

dN~e1 ,e2!'
1

4p2v fvD

e1
21e2

2

g
, ~97!

whereg is the zero energy-scattering rate that has been
fined in Sec. III. Then to the leading order in lnE0 /EH the
average change in the density of states is given by

dNs~0,H !'
EH

2

2p2gv fvD

ln
E0

EH
}H ln

H0

H
~98!

for the single-vortex and the liquid distributions. For th
Gaussian model the change in the density of states is sm
by a logarithm of a large number,dNs(0,H)/dNG(0,H)
52 lnE0 /EH . This behavior is illustrated in Fig. 15. Notic
06451
n

of

e-

ler

that the three distributions yield different high-field slope
corresponding to the different values of the momentM1.
These results are in agreement with the previous work.14,18

The low energy-scattering rate,g, provides the new energy
scale in addition to the average Doppler shiftEH and the
temperatureT. At low temperatures, the competition betwe
EH and g determines the behavior of the density of stat
and in the field-dominated regime,EH@g, the density of
states strongly depends on the probability density of
Doppler shift, as it does in the pure limit. The dependence
the self-energy on the magnetic field is crucially importa
for the analysis of the transport properties in the vortex st
and we will discuss these issues in detail in a separate pa

IX. CONCLUSIONS

In this paper we have discussed the semiclassical
proach to the vortex state of unconventional superconduc
and have applied it to the analysis of the thermodynam
properties of a two-dimensionald-wave superconductor
which we take as a model for the high-Tc cuprates at low
energies. Our main point is that within the semiclassical
proach the dependence of the measured quantities on
magnetic field is sensitive to the structure of the vortex st
and the distribution of the supercurrents. This is shown in
approach that involves introducing the Doppler shift due
circulating supercurrents into the quasiparticle dispersi
and computing the physically measured magnetic field
pendent quantities as a spatial average of their local value
the vortex state. The major step that has enabled us to m
beyond the standard single-vortex description is the rewrit
of the spatial average in terms of the average over a p
ability density of the Doppler shift at a particular node or
a pair of nodes. We have analytically computed these pr
ability densities for the single-vortex picture, for model liq
uid distributions, and for a nonphysical, albeit often use
completely random distribution. We have argued that t
approach is easily applicable to any given distribution
vortices, and that the single-vortex and the liquid mod
typically give the upper and the lower limits of the fie
dependence since they overestimate and underestimate

FIG. 15. Residual density of states as a function of the field. T
impurity scattering is taken in the unitarity limit, with
(nipv fvD)1/2520 K. The parameters areE051500 K, EH /AH
530 K T21/2.
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spectively, the number of the points in the vortex lattice u
cell where the Doppler shift dominates the physical pictu

We have applied this approach to the analysis of the e
tronic specific heat in the vortex state and to the descript
of the spin-lattice relaxation of the NMR magnetization.
the former case the specific heat depends on the single-n
probability distribution. The values for the Fermi velocity a
the nodes, as well as of the slope of the superconducting
determined from such an analysis are consistent with
values inferred from other experimental measurements,
the values directly determined from the photoemissio
Moreover, noticing that the magnitude of theAH term is
larger for the more ordered vortex state, has allowed us
reduce the discrepancy between the results for the gap s
obtained by different experimental groups. We have also e
phasized that the difference in the form of the scaling fun
tion obtained by these groups is naturally explained a
consequence of the smaller Doppler shift energy scale for
field applied in the plane; this work confirms our earlier a
sessment on the basis of the single-vortex picture.62

Since the analysis of the scaling plots allowed us to e
mate the energy scale of the Doppler shift for the field in t
plane, and since this energy scale is smaller than the Lon
model estimate of our previous work,17 we have investigated
here whether the anisotropy in the specific heat between
experimental arrangements with the field applied along
node and between the two nodes is observable. We have
special attention to the effect of the Zeeman splitting, whi
becomes more important for smaller in-plane scaleEab . We
have found that, while the zero-temperature anisotropy
significantly reduced compared to the case of no Zeem
splitting, as predicted,20 the anisotropy does not decreas
with the temperature and in the experimentally relevant te
perature range the magnitude of the anisotropy is wea
affected by the inclusion of the Zeeman splitting. The fie
dependence of the anisotropic specific heat may, howeve
modified quite significantly, and this change has to be tak
into account when analyzing the experimental data.

We have considered the spin-lattice relaxation rate as
example of a response function that depends on the proba
ity distribution at two nodes; in contrast to the specific he
the contributions of the nodes are not simply additive. It h
been known that the magnetization decay is nonexponen
due to a distribution of the local relaxation times.16 We have
shown here that the effective relaxation rate obtained from
fit to an exponential at short or long time scales is differe
d

a

A

E
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and at long times depends crucially on the structure of
vortex state. We have predicted a scaling form of the m
netization, and discussed the existing evidence for suc
scaling; of course more experimental work checking this p
diction would be highly desirable. We have also introduc
an effective relaxation rate obtained from a global fit to t
magnetization, and found that it agrees qualitatively with t
available experimental results.

In general, the structure of the vortex state may chan
quite dramatically as the temperature and the applied fi
are varied; one example of such a change is the melting
the vortex lattice. In such a situation we expect a change
the spatially averaged thermodynamic quantities measure
experiment that reflects the transition from one type of d
tribution to another. Moreover, as the degree of ordering
the vortex lattice depends on the history of the sample,
measured field dependence varies accordingly. For exam
the coefficient of theAH term in the electronic specific hea
should, in general, depend on whether the sample has b
cooled in an applied field or in zero field: in the latter ca
the vortex state is more disordered. Whether these effects
observable experimentally depends crucially on the qua
of the sample since the changes may be rather small, ne
theless, in clean, untwinned samples they may be mea
able.

Finally, to illustrate that in the presence of impurities th
two-node probability density is always required we ha
analyzed the density of states in the impurity-dominated
gime for different structures of the vortex state. This part
our work will be developed further in the analysis of th
transport properties, which warrants a separate paper.
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38M. Franz and Z. Tesˇanović, Phys. Rev. Lett.84, 554 ~2000!.
39L. Marinelli, B. I. Halperin, and S. H. Simon, Phys. Rev. B62,

3488 ~2000!.
40M. Chiao, R. W. Hill, C. Lupien, L. Taillefer, P. Lambert, R

Gagnon, and P. Fournier, Phys. Rev. B62, 3554~2000!.
41A. S. Mel’nikov, cond-mat/0007156~unpublished!.
42N. B. Kopnin and G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz.64,

641 ~1996! @JETP Lett.64, 690 ~1996!#.
43D. Knapp, C. Kallin, and A. J. Berlinsky, cond-mat/0011053~un-

published!.
44L. Marinelli ~private communication!.
45A. C. Durst and P. A. Lee, Phys. Rev. B62, 1270~2000!.
46P. J. Hirschfeld, D. Vollhardt, and P. Wo¨lfle, Solid State Commun.

59, 111 ~1986!; S. Schmitt-Rink, K. Miyake, and C. M. Varma
Phys. Rev. Lett.57, 2575~1986!.

47P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B48, 4219~1993!.
48J. H. Han and D. H. Lee, Phys. Rev. Lett.85, 1100~2000!.
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