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We investigate the thermodynamic properties of a two-dimensidivedve superconductor in the vortex
state using a semiclassical approach, and argue that such an approach is valid for the analysis of the experi-
mental data on high-temperature superconductors. We develop a formalism where the spatial average of a
physical quantity is written as an integral over the probability density of the Doppler shift, and evaluate this
probability density for several model cases. The approach is then used to analyze the behavior of the specific
heat and the nuclear magnetic resonafM®R) spin-lattice relaxation rate in a magnetic field. We compare
our results with the experimental measurements, and explain the origin of the discrepancy between the results
from different groups. We also address the observability of the recently predicted fourfold oscillations of the
specific heat for the magnetic field parallel to the copper oxide planes. We consider both the orbital and the
Zeeman effects, and conclude that at experimentally relevant temperatures Zeeman splitting does not appre-
ciably reduce the anisotropy, although it does change the field dependence of the anisotropic specific heat. We
predict a scaling law for the nonexponentially decaying NMR magnetization, and discuss different approaches
to the effective relaxation rate.
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[. INTRODUCTION quasiparticles and the idea that the physical quantities in the
vortex state can be obtained by calculating the spatial aver-
Despite significant recent advances we still lack a com-age of their local values, computed with the help of the semi-
plete understanding of the physics of low-energy excitationglassical approach.
in the vortex state of unconventional superconductors. High- Until now such spatial averages have only been done ana-
temperature superconductdi$TSC's) are an example of a lytically in an oversimplified model of a single vortéX.'8
system where theoretical predictions can be checked against this paper we introduce a generalization of these ap-
a large body of experimental evidence. In zero field thesgroaches by rewriting the spatial average as an average over
materials have a-wave superconducting energy gap, with the probability density of the Doppler shift of the quasipar-
nodes along the diagonals of the Brillouin zone, and conseticle energy in the presence of the superflow. Restating the
quently a finite density of low-energy excitatiochsloreover, problem in this language enables us to introduce several
it is believed that at temperatures low compared to the tranmodel distributions of the probability density, discussed in
sition temperatureT<T,, these excitations are reasonably Sec. IV, and investigate how the physical quantities obtained
well described by the Landau quasiparticles, even thoughvithin the semiclassical framework depend on these distri-
such an approach fails in these materials at higher energieButions and on the structure of the vortex state. We obtain the
A variety of experimentally measured quantities such as thenergy and field dependence of the density of states for the
electronic specific heat? effective penetration depth from geometries with the magnetic field applied both normal to
muon spin rotatiod, spin-lattice relaxation rat®) and ther-  the superconducting planes and in the plane in Sec. V. This
mal conductivity®~2are available to test the predictions of density of states is used to analyze the behavior of the elec-
theories. tronic specific heat in HTSC's. We obtain the energy scales
In this work we discuss the influence of the magnetic fieldrelevant to the high-temperature superconductors in the vor-
on the thermodynamic quantities in the vortex state of theéex state, and suggest a resolution to the origin of the dis-
unconventional superconductor, and, in particular, addressgreement between different experimental groups regarding
the question of how these properties depend on the structuthe magnitude of the field-dependent term in the specific heat
of the vortex state. We concentrate on the behavior of thand the form of the scaling function; this is the content of
density of states and the electronic specific heat and the spisec. VI. In the same section we address the question of the
lattice relaxation of the nuclear magnetic resonafi¢®IR) observability of the oscillations in the specific heat for the
magnetization. There exist several theoretical approaches tnagnetic field applied in the superconducting plane as a
the analysis of the thermodynamic quantities in the vorteunction of the angle between the field and the nodal direc-
state of unconventional superconductors. We employ here tions. These oscillations have been recently predittéd,
semiclassical approacft*which has been successful in de- but so far have not been observed. Part of the difficulty may
scribing the field dependence of a variety of the physicaktem from the smallness of the in-plane Doppler energy
quantitiest*~*° It is an approximate description, and in the scale, as inferred from the experimental measurements; it has
next section we discuss the region of its validity and therecently been argued that the Zeeman splitting reduces the
grounds for our belief that it is applicable to the presentobserved oscillations significanly,and we investigate its
problem. Section Il introduces the basic model of the nodakffect in detail in this work.
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Section VIl is devoted to the effect of the nonuniform position of the quasiparticle as commuting variables. It is
density of states on the spin-lattice relaxation time. This nonvalid when the wave function of a quasiparticle can be re-
uniformity leads to a nonexponential decay of the magnetiplaced by its envelope on the length scales exceeding the
zation and to a field dependence of the effective relaxatiogoherence length, i.e., whémé,> 1, wherek; is the inverse
rate!® here we show that the effective relaxation rate deFermi wavelength. In that method the effect of the supercur-
pends on the structure of the vortex state, and obtain apents is accounted for by introducing a Doppler shift into the
approximate form for it. We also predict a scaling law for the uasiparticle energy spectrf®1314 E’(k,r)=E(K)
magnetization decay that can be checked directly. The eﬁe& e(k,r). Here E(k) is the energy of a quasiparticle with

of impurities on the density of states is briefly addressed ir?'nomentumk in the absence of the field measured with re-
Sec. VIII. We expect these effects to be very important for.

the discussion of the transport properties that we defer to spect to the chemical potential. In a two-dimensiahalave
N . port prop L ! guperconductor this spectrum is conidahassless aniso-
later publication. Finally we summarize our findings and dis-

cuss some open questions. tropic_ Dirac_spect_rum E(k_)% + \/v_fkf +qu Iﬂz‘, where the
Fermi velocityvs is associated with the dispersion of the
quasiparticles in the direction normal to the Fermi surface
(component; of the momentury) while v,~Ay/Ks is the

HTSC's are extreme type Il superconduct@tee ratio of ~ slope of the gap at the node associated with the dispersion of
the London penetration depi to the coherence lengfy,  the quasiparticles along the Fermi surfakg) (The Doppler
is large,\ /&,~100), and are in the mixed state over the shift, e(k,r)=vs-k depends on the quasiparticle momentum
range of applied field#l, from a few hundred gauss to well and the local value of the supervelocity(r). This shift in
in excess of 50 T in YBEwO, s (YBCO) and the energy is an exact result for a uniform supercuriént,
Bi,S,CaCyOg. 5 (Bi-2212 or BSCCQ near optimal dop- where it reflects the pairing of the electrons with a finite
ing. In the mixed state the magnetic field penetrates the bulkenter-of-mass momentum. In the simplest picture such an
of the superconductor in the form of vortices, which consistapproach remains valid for a nonuniform current for as long
of the cores, where the superconducting order parameter & the spatial variations of; are slow on the scale of the
suppressed, and circulating supercurrents around them. Thspatial extent of the Cooper padfs. In superconductors with
vortex core size is of the order of the coherence lenggh, nodes in the energy gap, the Doppler shift may exceed the
~15 A Z-22while the average intervortex distance can belocal (in the momentum spag@ap, and leads to an increase
estimated by imposing the requirement of one flux quantunin the density of the unpaired quasiparticles: evef at0
®,=hc/2e per vortex, od/2=R= \®,/7B, whereBis the  for some positive energies the shifted energ¥’ is nega-
internal field. At typical experimentally accessible fields tive so that the corresponding states become occupied. In the
(1-20 T) A >d>¢&,, the magnetization due to the vortex context ofd-wave superconductors this was emphasized by
lattice is small, and the internal field can be replaced by theXip and Saul$® who investigated the effect of the screening
applied fieldH so thatd VH~500 A T2 The actual distance currents in the Meissner state on the superfluid density.
differs from the average valuiby a numerical factor of the These currents vary on the scale of the penetration depth
order of unity, which depends on the structure of the vortex\| > &, so that the Doppler shift description is appropriate,
state; the vortices in HTSC’s may form a regular lattfies ~ and result in a linear dependence of the effective penetration
they do in YBCO and in Bi-2212 at low fielé*) or be depth on the applied field for certain experimental

II. SEMICLASSICAL APPROXIMATION

moderately disordereths in Bi-2212 at higher field9. geometrie$® However, so far the predicted dependence has
In the experimentally relevant fieldsd ., <H<H.,  not been confirmed experimenta?l”y. _ o
whereH,; (H,,) is the lower(uppe) critical field, there may Similar physics is at play in the dilute vortex limit. At

exist two types of low-energy excitations. First, as in con-distances small compared to the penetration depth, supercur-
ventional,s-wave materials with an isotropic gap, there mayrents around an isolated vortex are inversely proportional to
be a branch of low-energy fermionic excitations bound to thehe distance from the center of the vortexfor &y<r <\
vortex cores® Theoretical studies of the Bogoliubov- the supervelocity field ifvg| =7%/2mr, wheremis the quasi-
deGennes equations, however, suggest that there are no trylgrticle mass. Consequently, the requirement of the slowness
bound states in the vortex cores of a-wave of the variation ofvg, which can be written agVvg|&y<vs
superconductd®®?’ Experimental evidence also indicates (two particles comprising the Cooper pair “see” the same
that there is at most one such state in the vortex cores ofelocity), is satisfied at > &, justifying the use of the semi-
YBCO and Bi-2212322 Therefore the properties of the classical approach outside of the core and therefore for the
mixed state ofi-wave superconductors are dominated by theanalysis of the extended quasiparticle excitations at energies
“extended” quasiparticle states in the bulk. These states artow compared to the gap maximum. Such an analysis for a
formed when quasiparticles with momenta close to the posisingle vortex ind-wave superconductors was first carried out
tion of the nodes of the gap),, in the momentum space in a landmark paper by Volovik who showed that the den-
(and therefore with a small gajinteract with the supercur- sity of the extended quasiparticles at low temperafuxer-
rents in the vortex state. Most of the theoretical work hases as+/H. This result was confirmed first by Molet al?
explored the properties of these states. and subsequently by other grodpsfrom the measurements
Very significant progress has been made by utilizing theof the electronic specific heat in an applied magnetic field.
semiclassical approach, which treats the momentum and tiéumerical studies of the tight-binding model are also in
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qualitative agreement with this resdftMoreover Volovik  (each having charge). Consequently, their wave functions
has shown that the density of the extended quasiparticleshange phase by around a vortex lingAharonov-Bohm
dominates that of the states bound to the vortex core even ghase, leading to the necessity of introducing branch cuts
the latter set is treated semiclassically, as a quasicontitiuumand to the problem of multivalued wave functions in the full
(as it would be in a superconductor with a long coherencejuantum mechanical treatment. However, the semiclassical
length. Together with the numerical studies of Refs. 26 andapproximation is only valid for large quantum numbers, that
27 this result provided further theoretical support for neglectds for the quasiparticles for which the total phase of the wave
ing the core states in the analysis of the properties of théunction, accumulated as the electron moves around the vor-
vortex state in unconventional superconductors. tex, is large. The wave function of an electron circling a

The semiclassical approach was incorporated into theortex at a distancefrom the vortex center acquires a phase
Green’s function formalism by Kaert and Hirschfeld! and 27k, compared to an extra Aharonov-Bohm phasérom
used in that form to analyze thermodynamic and transporthe supervelocity field. For the analysis of the extended
properties of the higf, cuprates in the vortex state>!’In  states (>¢&;) in the semiclassical approachalid at k&,
particular, accounting for the impurity scattering in this >1), kir>1, so that if the phase of the wave function is
framework has significantly improved the agreement bechanged by, it still corresponds to the quasiclassical state
tween the theory and the measurements of the electronic sp@ith essentially the same energy and momentum. Séce
cific heat:* and the field dependence of the low-temperature~v /A, we can rewrite the condition for the applicability of
thermal conductivity” is in qualitative agreement with the the semiclassical methot;&y>1, asap=v¢/v,>1. In-
results of a semiclassical calculatibhin the semiclassical deed, the work of Refs. 38,39 has shown that for large an-
approach the effect of the magnetic field is contained in thésotropy of the Dirac cone the semiclassical approach re-
new energy scale associated with the Doppler shift, mains valid down to the lowest energies. Sinee 14 for
=v/d, and the behavior of the physical properties is deter-YBCO (Ref. 10, and =20 for Bi-2212(Refs. 40 and 34
mined by the competition between this energy, the temperathis is the parameter range relevant for the study of HTSC's.
ture, and the impurity scattering rate. Photoemission mean a very recent preprint Mel'nikov has shown that the
surements on higi, compounds suggest®*thatv;=(1.5 Aharonov-Bohm phase leads to a different result for the qua-
—2.5)x 10" cm/s leading tcE~30yH KT~ %2 siparticle density at distances>\, , while in the ranget,

For a long time, understanding of the low-energy excita-<r <\, the semiclassical results hdliOnce again, since in
tions in the vortex state beyond this semiclassical picture hathe field range where most experimental measurements are
proved elusive. The difficulties stem in part from the need todone the intervortex distanck<\ this result suggests that
treat on equal footing the applied magnetic field and thehe semiclassical approach is adequate for the analysis of
superconducting current{semiclassical approach treats the these experiments.
supercurrents classicallyAttempts have been made to take  Quantum mechanical treatment is nevertheless needed
as a starting point the Landau quantization of the quasipartifor accurate description of the states at very low energies.
cle states, and include the effects of supercurrent&opnin and Volovik? have considered the effect of the mag-
perturbatively*>® however, since the supervelocity field is netic field on the nodal quasiparticles perturbatively, and
long ranged and singular at the position of each vortex, théound that the spacing between quantum mechanical levels
Landau levels are strongly mixed, making a detailed analysisf the near-nodal quasipatrticles, for which the spatial extent
difficult.®” of the wave function is comparable to the intervortex dis-

The most significant progress has been made in a recetdnce, isExy=v,/d=E,/ap. Therefore they have argued
work by Franz and Temovic*® who have introduced a that below this energy scale the semiclassical approach be-
gauge transformation that takes into account both the supetomes invalid. Forr~ 15 this energy scale is of the order of
current distribution and the magnetic field. In their approacha few kelvin per square root of tesla. However, the specific-
the problem is mapped onto that of nodal Dirac fermions inheat measurements show no crossover to a novel behavior at
an effective zero average magnetic field interacting with efthat scal€,and the measurements of the thermal conductivity
fective scalar and vector potentials that are periodic in théelow 0.5 K in fields of up to 8 T are in agreement with the
unit cell of the vortex lattice. Both Franz and TesandVic semiclassical calculatiort.
and Marinelliet al*® have studied the band structure of the ~ This crossover was recently investigated by Marinelli
nodal quasiparticles for perfectly periodic vortex lattices foret al®® and Knappet al** by comparing numerically the
various values of the anisotropy of the Dirac spectrary,  quantum mechanical and semiclassical results for the density
=v¢lv, . of states. The picture that emerges from their analysis is that

There are two reasons for expecting modifications to thesmall differences between the two approaches begin to ap-
semiclassical spectrum. The first is related to the singulapear below the Kopnin-Volovik crossover scale. These are
spatial structure of the supervelocity field. One flux quantumrather minor, and the qualitative difference between the two
associated with a single vortex means that the superconduatsults does not appear down to a much smaller crossover
ing order parameter, or, equivalently, the wave function of ascale, exponentially small irp .**** Since in real samples
Cooper pair(charge 2) is single valued and has a phasethe presence of impurity scattering and the disorder in the
winding of 27 around each vortex. As emphasized in Ref.vortex lattice always smear out the energy structure on small
38, the semiclassical approach transfers this phase windirgcales, we therefore expect that for the purposes of compari-
equally to each of the quasiparticles forming the Cooper paison with the measurements of the thermodynamic quantities,
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the semiclassical description is adequate. A Zfro+ E COS;1+ E sin®}3
Therefore for the parameter range relevant to the study of G(E,0,w)= ~— . (5)
most real unconventional superconductors, the semiclassical w°—E

approach reproduces the energy spectrum of the near-nodal .

quasiparticles in the vortex state to a high degree of accu- N Writing Eq. (5) we have replaced the bare frequeney
racy. Moreover, presently it remains the only approach that i®y the renormalized frequency to include the effect of
capable of including the effect of impurity scattering into theimpurity scattering. We account for isotropic strofhase

analysis, and we use it hereafter. shift 7/2) impurity scattering in the framework of a self-
consistentT-matrix approximation, and consider a particle-
lIl. SEMICLASSICAL APPROACH TO THE VORTEX hole symmetric system, so that the only nonvanishing com-
STATE ponent of the self-energy is proportional tg.*® Therefore

the effect of impurities is to replace in the Green’s function

w by its renormalized valuep=w—3 (w), with the self-
The semiclassical approximation takes as its starting poingonsistency condition

a Fermi-liquid description of the nodal quasiparticles, so that

in the absence of a magnetic field the Green’s function in the ~

particle-hole (Namby space is given by the Bardeen- (w)=—n,

Cooper-Schrieffer form with an anisotropic gap,

A. Nodal approximation

-1
; 611(2))} : (6)

wheren; is the impurity concentration. In the nodal approxi-
i w,To+ AT+ {73 mation the integral over the Brillouin zone can be written as

G(k,wy)= it 21 A2 (1) a sum over the nodal regions
Here 7, for i=0---3 are the Pauli matricesr{ is the unit > Gy= ! JEO% 2rd® - @ 7)
matrix), w,= 7 T(2n+ 1) is the Matsubara frequency, afig K nodesViVato 2w Jo 27 2—E?
is the energy of a quasiparticle with momentknmeasured - . . ~
relative to the chemical potential. We consider a two-WIting o= w;+iw,, we obtain forE>|w|
dimensional Fermi surface with an energy gapdgf 2 )
symmetry given byA,=Aq(k;—kJ)/k?. Low-energy prop- S G, 2 w;tioy | Eo , W
erties depend only on the nodal quasiparticles, and are only < Gu=- P ViU nm+' arctanw—z '
functions of the parameters entering the linearized dispersion 1772 )

near nodes at positiok, . As {~V¢- (K—k,), andA=~v,
-(k—k,) near a node, the poles of the Green'’s function aftefThe well-known relationships for the density of states in the
analytic continuation to the real axisp,—w+id, are lo- pure limit (w,=0,0;=w), and for the residual density of
cated at energies states in the presence of impurities(=0,w,= 1) follow
easily (cf. Ref. 45 from

E(K) = = e+ A= = utki +vikF, )]

1
wherek, andkj are the components &k, normal to and N(w)=—— Ek: Im Gyy(k, ), 9
along the Fermi surface respectively. We parametrize the
Fermi surface near each of the four nodes not by the morp give
mentak, andkj, but by the quasiparticle enerdgyand the

angle® defined as || o
N(w)= e pure limit (10
vk, =E sin®, 3) me
_ 2 E
vk =Ecos®. () N(0)= = ——In—2, unitarity. (11)
7o UfUA Y

The energy cutoff is chosen to preserve the volume of the
Brillouin zone of the crystal lattice, so that for a square lat-The self-consistency condition; +iw,=w—3 (o) for the

tice with the periodicitya, it is set atEq=mvwa/a.** By |atter case igcf. Ref. 47
making this choice we extend the conical dispersion law be-

yond the maximal gap valuéy,. This leads to logarithmic, , T

in Eq/A,, corrections to the quantities that depend on the Y :E”iUfUA
cutoff energy. Sincev,~Aq/k; and ki~ 7/a, we obtain
Eo~ VE{Aqy, whereE; is the Fermi energy. In the highg
materialsE;~3—10A,, and, consequently, the choice Bf
as the cutoff energy does not affect the results significantly. In the semiclassical approach to the vortex state the pres-
Therefore near each node the Green’s function at real freence of a superflow is accounted for by introducing the Dop-
quencies can be written as pler shift into the energw— w+ e(k,r),>**where

=

In— (12
Y

B. Doppler shift
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e(k,r)=vg(r)-k, (13)  the two become comparable only bk ,ss~ 10* T, and
hence the Zeeman splitting is irrelevant. On the other hand,
andvg(r) is the supervelocity field at a positiondue to all  for the field applied in the plane, the coefficient in the Dop-
vortices. It was demonstrated by Bert and Hirschfelf  pler shift is much reducetf, and the Zeeman splitting is
that to very high accuracy the Doppler shift at the négle  relevant for some experimental geometfi2€onsequently,
can be used to approximate the Doppler shift for the entirgve will revisit this question in the analysis for this configu-
nodal region. Therefore the Green’s function near each nodeation.

can be written as If we know how to express a physical quantityin terms
of the Green’s function we can now compute its local value
@(E,@;w;r)zé(E,;w+en(r)), (14) F(r) with the local Green’s function given by E¢L4). We

then approximate the field-dependent measured V(i)
whereG is given by Eq.(5), n labels the nodes, ane,(r) by the spatial average &f(r)'**°
=vg(r) -k, . For ad-wave superconductor there are two pairs
of nodes such thdt;=—ks andk,= —k,, so that the pos- F(H)= Ef d2rF (ey(r), e5(1)) (15)
sible values for the Doppler shift aree; and = e,. A ' ’

y tlg dpxﬂﬁlafenﬁg;’ a(')lft?hﬁspgzg:r?,giﬂﬁgggﬁs ;Z\r)e?; i%rr?]'_where the integral is taken over the part of a unit cell of the
?nents have to bep made about the assum. tions. im IiCitIvortex lattice(with the aread) in real space where the Dop-
P P %Ier shift is much smaller than the gap maximum. Therefore

present in such calculations. First, we neglect all inelasti he integration is to be cut off at distances of the ordegpf
Processes. Second, there is no additi_onal quasiparticle dam&bm the center of each vortex. In practice in many cases the
Ing dg(_a to the. presence of thg vortices: in the absence Tontribution of the core regionr £ &p) is small due to the
impurities the I|fet|me OT a quaS|par't|c'Ie' defined by the_ pOIegeometric effectintegrals are weighted with the surface area
8; 'E[?z ﬁg?fi? SJ:gi(:tg)r?i(;Ilfqbl‘l\)/;ﬂ'ggg'Leé 'Lhnzg,c:}[trtgzrrllr]g Ordr) and the integral can be extended to the entire unit cell.
q P y > depena: N9Y OWe note that the averaging procedure is often nontrivial for
the nature of the vortex cores; in the higlh-materials this is

an unresolved problefif:*°If the point of view is taken that response functions; for the thermal conductivty for ex-

the core is identical to that of a BCS-like superconductor, theample,x(r) or 1k(r) are averaged depending on the relative

oo ._orientation of the magnetic field and the heat curfeént.
neglect of vortex scattering is reasonable for a vortex Iattlcel'he average in Eq(15) depends on the distribution of vor-

with long-range order, and it remains valid when only short-,. . - .
9 9 Y ices. In practice, this spatial average has been computed

range order exists provided that the lifetime is restricted b Lnalvticallv onlv for the supervelocity field corresponding o
the impurity scattering rather than vortex disorder. The role ytically only P ty P 9

of disorder in the vortex lattice is especially important for a:"stj:n‘(’:'g%e_"b gﬁg rLISri,er(izcl:J;IIOf;o?:h;heaggzlizgl? u'inc}esrt\g%gex
transport properties, where there is a competition betweeﬂ : y P d :

the increase in the density of quasiparticles and the change in The starting point of our approach, which simplifies cal-

the transport lifetime in an applied field; several authors hav% E;ggi?: ?j ni‘g?h(;?jilge;ng?zistlg? ?:o%?inirr?altlizoe::lgfnvgfrtrgees?grtgl-
analyzed its consequenc®s'*2and some questions remain Y 9

unresolved®5253Scanning-tunneling spectroscopy measure-rewr'te the average as the integral over grebability dis-

ments suggest that the vortex lattice is ordered in YB€O tribytion of the Dop_pler shift for a particular vortex configl_J-
and that short-range order is present in Bi-2# therefore ration. There are, in general, two types of local quantities,

in that case the assumption is justified. We note that therm gnd therefore of averaging procedures, which are required.

dynamic quantities, such as the density of states, depend orQ}TQE density Qf states in the absence of Impurity scattering,
; _ : . or example, is a direct sum of the contributions from each
single energy scal&s=v¢/d even in a disordered vortex

state in the absence of strong pinning, and this dependen@eOde’

appears to be nearly identical for the ordered and disordered 1

vortex lattices® Therefore we expect that the results ob- N(w,r)=— —Im{E Tré(k,w)}
tained within the semiclassical approach remain at least 2m K

qualitatively valid even for a strongly disordered lattice. 1 JEdO
Third, in the analysis of the impurity scattering this ap- ~——Im 2 —
proach assumes that the positions of vortices and of impuri- 2 = 47200,
n=1,

ties are uncorrelated. The self-energy given by Hj.is
obtained after averaging over the positions of impurities, and R
solving this equation with the Doppler shift included in the XTrG(E,Q;w+ aey(r)) b, (16
Green'’s function implies that the impurity average and the
spatial average are taken independently.

Finally, in the discussion so far we have neglected thetnd can consequently be expressed as an integral over the
Zeeman splitting altogether; this is justified when the Dop-Probability density of the Doppler shiéit a single node
pler energy scale exceeds the Zeeman shift. In the abslence of 1 .
spin-orbit coupling the Zeeman shift jsH~0.6H KT~ -, _ - ”
while the Doppler shift i€€,,=30yH K T~ 2 consequently Nlw.H)=3 a2+ — deN(otae)Ple). (17
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where limit such an approach gives an adequate description of the

vortex state. The supervelocityvg(r) =#6/2mr, whereg is
Pe)= EJ d2r 8(e—vy(r)-k,). (18 the winding angle of the vortex in real spacejs the effec-
A tive mass, and is the distance from the center of the vortex.
Such an approach has been recently used to analyze the %,(-e now write the Doppler shift in terms of thg energy scale
havior of the interlayer conductivity in the vortex liquid n=v¢/(2R), whereR is the radius of the unit cell of the
state> where the functiorP was determined from numerical VOrtex lattice, taken to be circulaiR=®o/mH (Refs.
simulations. A similar methodalthough with an unrealistic 14,18,
distribution, see belowhas been used in the analysis of the

thermal conductivity*>° _ Ak o Ew
However, in general the functidh depends on the values Vs(r) -k 2mr sin¢ p sing. (22
for the Doppler shift at two inequivalent nodes, and e,, ) )
and the corresponding average can be written as Here we have introduced the normalized lengtar/R, and
have chosen, without loss of generaliky, along the direc-

[t tion 6= /2.
F(H)= . de;deF(er,€2)L( €1, €2), (19 The probability distribution at a single node is now easily
obtained from Eq(18)
1
L(e,€ =—fd2r56—vr~k S(e3—vg(r)-Ky), 1(2m (1 E
(€1,€2) A (€1—Vs(r)-Kq) 6(€2—Vvg(r)-Ky) 77(6)=—J dﬂfpdpﬁ(e——HSin9>
(20 TJo 0 p
wherek; andk; label two nearest nodes. This is the case, for EZ (2n Ey . Ey .
example, for the density of states in the presence of impurity ] dé sir* 60 — sing S 1=—sind|,
scattering, since the self-energimplicitly present in the
Green’s function in Eq.16)] contains the sum over the (23

nodes, see Eq6), and therefore depends on bathande,. o
In general, the functior has to be even in bot, ande,,  Yi€lding
and symmetric under the interchange- €,; in all the cases

considered below it depends on a single variadjl¢ e3. 1 Ef i = Euc
Now all the relevant information about the structure of the 2 3 -
vortex state is contained in the functions Ple)= ,
2
H . € € € .
_pry 2 2 - N, N
L(€1,6)=L" (€]t €5) 7 3 arcsmE—H EH\M Eﬁl if e<Ey.
and (24)
Here we have takee=0, the probability density is even in
P(E)Zf de;L(€,€q), (22 €.

_ _ It was argued in Ref. 52 that the functid®(e) for any
and therefore to analyze the field dependence of the physicgbrtex configuration has two important properties. First, the
quantities we first focus on determining these probabilityasymptotic behaviorP(e):Eﬁ/(Zee’) holds for Ay>e

densities. >Ey. Since the vortices repel each other, the vortex cores
do not overlap. The large Doppler shifts come from the re-
IV. PROBABILITY DENSITY FOR THE DOPPLER SHIFT gions near the cores, where the superfluid velocity is high,

The distributionsP and £ can be determined numerically gr;((j:c?r?g Sienq?he: g:,:;?,gg rg;nsiﬁ(e)?]; );/:);[rr:r?v;(l;?lﬁa\\/so r;e;r?gl)ésms.

for an _arbltra_ry configuration of vortices. Here we are 'nter'energy scal&, and depends on the Doppler shift only via
ested in making progress analytically, and therefore consider : Y i .

. i : S e/E, . Since the probability density is normalized,
several model configurations for which the distributions can
be found exactly. Moreover, we propose that the distributions o
that we consider give the maximal and the minimal possible f Pe)de=1, (25)
weight to the low-energy Doppler shift, and therefore can be o

used to obtain the upper and the lower limits of the experi- ) ) ) )
mentally accessible quantities. we can follow Ref. 52 and define a normalized dimension-

less probability density as

A. Single vortex, H|c P(X) = EnP(elEy), 26)
The simplest of these models is that of a velocity field of
an isolated vortex, cut off at the distance equal to the interwherex=e/E .

vortex distance; since the experiments are in the dilute vortex The two-node probability distribution function is
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1 (2= 1 EH )
£(61,62)=;J0 dﬁfopdp5 el—Fsma
X 0 EZ_lST ) (27)

where ¢, is the angle between the nodks andk, at the
Fermi surface. For the pumd@wave symmetry that we con-
sider here,¢o=m/2, and the integral can be evaluated to
give

1 E3
AT g g

if JVei+es=Ey,

and zero otherwise. The physical reason for the discontinuity ;5 1 wain panel: probability distributioR(x) in the single-

is that for the nodes at the orthogonal positioefst €5 \ortex approximation from Eq(24) (solid line), and for a model
=E/p?=E}, so that the probability of having the Doppler vortex liquid states from Eq35) (dashed lingfor liquid | model,
shifts not satisfying this inequality is identically zero. In an and from Eq.(37) for the liquid Il model(dot-dashed ling Inset:
orthorhombic system, where the nodes are not at anfle  comparison of the distributions for the model liquid stateame
the shape of the distribution is different. In analogy with thenotations as in the main panekith the numerically determined
single-node probability density we can also define the didistributions for pancake liquid in BSCCO @t=9 K (narrow dis-
mensionless energies,{) = (e;,€,)/Ey, and introduce the tribution) and T=67 K (broad distribution from Ref. 48.

function

(28)

For such a geometry the Doppler shifts at the two neigh-

) 1 I, boring nodes are related kyy=E,e, /E; in contrast to the
L(x,y)=EjL(e1,€2)= 7T yD)2’ if x*+y“=1, case of the field applied along teaxis, the Doppler shift at
(29) one of the nodes uniquely determines the value of the Dop-

pler shift at the other node independently of the winding
angle ¢ in real space. Therefore the two-node probability
distribution is given by

and zero otherwise.

B. Single vortex, Hjab

L Lo . E,
For the magnetic field applied in the superconducting L(€1,6)=P(€)d| e— =€, ],
plane it has been recently argued that for a relatively three- Es

dimensional highF. material, such as YBCO, the semiclas- and a single average is always sufficient for computing the

sical approach still captures the essential features of the qughysical quantities in the semiclassical approximations for
siparticle behaviot! The approach of Ref. 17 is to take the the field applied in the plane.

supervelocity field from an anisotropic London model, but to
introduce the Doppler shift only in the dispersion of the qua-
siparticles with the momenta in the plane. After rescaling the
c axis to make the unit cell of the vortex lattice isotropic, the
Doppler shift is given by

(31)

C. Vortex solids and liquids

We now discuss how the probability densities obtained
above can be generalized to the case of vortex solids or lig-
uids. We first consider the single-node probability density
P(x). Since this function is normalized, the question is what
type of the redistribution of the density in Fig. 1 one may
expect for realistic vortex structures. As argued above, the
where the anglep parametrizes the cylindrical Fermi sur- high-energy tail of the distribution is entirely determined by
face, a is the angle between the direction of the magneticthe single vortex physics, and is therefore insensitive to the
field in the plane and the&-axis, and the in-plane energy structure of the vortex state; the redistribution of weight oc-
scale isE,,=7E,, where in the London effective-mass curs in the regiorx<1 or e<Ey.
model the anisotropy;= (A ,,/\¢)2 In the nodal approxi- It is also clear that the single vortex picture described
mation (which provides an excellent agreement with the nu-above underestimates the number of points where the Dop-
merical resultY) the probability distribution of the Doppler pler shift vanishes. For the supervelocity field of a single

Eab . .
vs(r)~kf=73|nesm(¢—a), (30

shift at a single node is given by E@®4) with E, replaced
by E;=Eg/sin(m/4—a)| and E,=E,,|cos@/4— a)|, re-
spectively, for the two pairs of nodes. Any effects of the
three dimensionality reduce the effective valdg, rather

vortex |vg(r)|>0 everywhere in the unit cell, and the Dop-
pler shift vanishes only for the superfluid velocity direction
normal to the nodal directions i space. In a vortex lattice
there exist points where(r)|=0: the high-symmetry loca-

severely!’ so that the estimate obtained using the valug of tions such as midpoints between the centers of two neighbor-
for the effective anisotropy in the two-dimensional case canng vortices. Consequently, for vortex latticB¢0) is larger
only serve as an upper limit. than it is in the single-vortex picture. The weight shifted to
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the vanishing Doppler shiftx=0, comes at the price of a unit cell boundary in a fashion that allows analytical
reduction in the peak iR(x) and moving the peak to smaller progress. In the first, we take the modulating factor to be
x. The actual shape of the function depends on the type of thel —r?/R?)Y2, which leads taS(p)= /1 — p?/p. Computing
vortex lattice, the number of nearest neighbors, and on relahe probability densities as in the previous section we find
tive orientation of the basis vectors of the vortex lattice with

respect to the nodal directions. 1 Eﬁ
As the number of nearest neighbors is increased, so is the Ller €)= —— 5 (34)
value P(0). This value depends not only on the number of (e e+ Ey)
zeros, but also on the asymptotic behavior of the supervelyng
ocity near a point where it vanishas,(ro) =0. It is easy to
check that ifvg(r—rg)=|r—rg|”, the contribution of this 1 EZ
area toP(0) is finite for <2, is singular but integrable for Ple)= 3 2. 2 (35
2=p<3, and is nonintegrabléand therefore nonphysigal (Ehte)

for »=3. In a typical vortex distributions varies linearly | this case the measure of Doppler shift zeros is large due to
with the distance fronto, so thatP(0) remains finite. We  gisorder in the positions of vorticeB(0)=0.5. The simplic-

now try to derive analytically an approximate distribution jiv, of this probability distribution makes this choice attrac-
that gives a large weight to the probability of the vanishingye for further analytical work.

Doppler shift; we consider it here to model a relatively dis- : P A

ordF()aFr’ed vortex state, such as a vortex liquid, and to provide a Another possible choice i§(p)= V1= p/p; it leads to
lower limit of the magnetic field dependence of the physical £l
guantities. To make progress we consider a cylindricallyﬁ,:(sl €)= — H
symmetric spatial dependence of the supervelocity, modu-— ' T (E§+E§)3
lated compared to the single-vortex distribution. Different

choices for the modulation of the superfluid velocity are con- 2, 2 1 2, 2
sidered in the literaturg®*®in any approach the superveloc- 14 €17 € _ 1+361 €2
ity near the vortex core should remain nearly unmodified E2 2, 2 E2
. e g H €11 €5 H

compared to the single-vortex velocity field, while at the cell 4 +1
boundaryvs=0. Therefore, in the cylindrically symmetric Eﬁ
case, the Doppler shiffor H||c) can be approximated as (36)

vy(r)-k;=EnS(p)sin g, 32 Note that as &+ €5)Ef—0 the distribution is finite:

£(0,0)= 2/(7-rEﬁ). The corresponding single-node probabil-
whereS(p—0)=1/p andS(1)=0. ity density is given by
Notice that the requirement th&(0) is finite imposes

restrictions on the decay @&(p) asp—0. Since in the cy- 1 E3 3ES 1 34
. . . . . H H H
lindrically symmetric modeb ¢ vanishes along a line rather P(e)= o — T —— |arccos ="
than at discrete point&s it does for a realistic vortex distri- TEH (| € de V(2e/lEp)*+1  2e

bution), the required asymptotic behavior $fp) is different (37)

from that ofv, in the system with points of vanishing Dop- For this distributionP(0)=32/(157)~0.68, larger than the
pler shift. Nevertheless, as we show below, the appropriatgg|,e of 0.5 given by Eq(35).
choice ofS(p) allows us to arrive at a probability distribu-  The propability densityP(x) for all three distributions is
tion close to that obtained by numerical simulations of theghown in Fig. 1. In the following we will refer to the distri-
vortex liquid. In such a liquid the distribution is temperature p tions given by Egs(34) and (35) and by Egs.(36) and
dependent. A detailed calculation therefore would have 1q37) a5 liquid | and liquid II, respectively. The reason for that
take into account the changes in the probability density withs clear from the inset of Fig. 1: these distributions are close
the temperature in a given material. These changes are ngj those obtained with the help of the Langevin dynamics
well understood beyond simple models, and even then argmyations of the pancake liquid in Ref. 52; as in the vortex
usually ac<_:eSS|bIe only via numerical S|r_nulat|0_ns of the VOjiquid they preserve the cylindrical symmetry of the super-
tex dynamics. We therefore take the point of view that for ayg|ocity field on average, while introducing zeros in that
q.ualltauve or semiquantitative analysis it is sgfﬂment t0 CON-field because of the cancellation of the supervelocity from
sider a model temperature-independent distribition. _ neighboring vortices. For a realistic vortex lattice we expect
Computing the distributioP(e) from Eq.(18) we obtain  the results for thermodynamic quantities to be bracketed by
the values obtained in the single vortex approach, which
P(x) = E 1 pdp overestimated the effect of the field by undercounting the
(x)= 7)o S(p)—x2’ number of points in the unit cell of the vortex lattice where
the Doppler shift for quasiparticles near a particular node
Clearly, P(0) is finite whenS(p—1)<(1—p)” with »<1.  vanishes, and, at least approximately, by the liquid Il distri-
We use here two different models where the superfluid vebution given by Eqs(36) and(37). The distribution function
locity field of a single vortex is modulated to vanish at thefor the pancake liquid can be even sharper peaked=43;

(33
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nevertheless, we believe that the approximate analytic fornabtain E,,/H=<10 K T~ 2 while the impurity bandwidth
provides a reasonable low-end estimate for most of the exy is of the order of a few kelvin or less.
perimental situations.

A. Density of states for H|c

D. Completely disordered vortex state We first consider the experimental arrangement \MMI&.
The density of states in the pure limit is given by Efj7)
The “universal” high Doppler shift behavior of the prob- leading to

ability density, P(x)x 2 results from the strong repulsion
between the vortex lines that prevents vortex cores from +ee +o | o+ €
overlapping. If the vortices were noninteracting, in a disor- N(@:H)= fﬁm deN(w+e)P(e)= fﬁx dem,fUAP(e)'
dered state their positions would be completely random, (39
leading to a Gaussian distribution of the Doppler shifts. Such
an approximation has been used byetal>* and FranZ in InFroducing the dimension]ess variable e/EH_ and consid-.
their analysis of the thermal conductivity in the vortex state.€ring hereaftero=0 we find that the density of states is
Even though it is never realized, it is instructive to comparediven by
the predictions obtained with such a distribution with the 2w (wlE oE .
results obtained in the framework outlined above. The com- N, H)= f HP(x)dx+ H f XP(x)dx.
parison may be useful for the extremely anisotropic layered mUiUAJo TUUAJ wlEy
superconductors in the geometry with the field applied in the (40
basal plane. In that arrangement vortices lack proper coreg, scaling properties of the density of states wittE,,

the intervortex repulsion is weakened, and we expect signifi(Ref 56 can be made obvious by rewriting it as
cant disorder in vortex positions due to the presence of de-

fects(such as boundary effects, twin boundaries,)et€on- Ey
sequently, the %P asymptotic behavior does not onset up to N(w,H)= FN(E—), (42
large Doppler shiftgvery close to the cojeand over the low TUfUA H

(compared to the gap amplitudenergies, the probability . .

density decays rapidly. We therefore also consider in the fol- Fn(Z)= 2( ZJ P(x)dx+ j XP(X)dX)_ (42
lowing the random distribution of vortices, which leads 0 z

(omitting factors of In\ /& in the width of the Gaussiario
the probability densiy/>°

The residual density of states at the Fermi surface is given by

Ew M; [H

1 ) N(O,H):Ml’JTUfUA_ZUA rq)o, (43)
P(x)~—=e™*. 38
) Jr 38 whereM is the first moment of the probability distribution
of the Doppler shift
We now investigate the dependence of the thermodynamic *
coefficients on the magnetic field and the temperature for M1=2fo xP(x)dx, (44)

different structure of the vortex state and compare it with the
experimentally observed behavior. which contains all the information about the structure of the
vortex state relevant to the magnitude of t{id term in the
specific heat. For the probability density given by E24)
V. DENSITY OF STATES: PURE LIMIT (single-vortex modelwe then findM3=4/7r~1.27, while
for the liquid | distribution given by Eq(35 we obtain
We begin by considering the density of states and thé\/l'lzl. For liquid II distribution the integral can be evalu-
electronic contribution to the specific heat in the pure limit.ated numerically to givé/ 12~0.85, while for the completely
While this is one of the simplest quantities to analyze, it isdisordered distribution of vortice:M%zll\/;~0.56. We
the one directly relevant to the measurements of the fieldherefore expect thal;~1 for any realistic vortex state.
dependence of the specific heat in YBCO single cry$tals. Furthermore, since the number of zeros of the Doppler shift
To justify ignoring impurities in this analysis we emphasizeincreases with the increased disorder in the laftfoge ex-
that the energy scales associated with the Doppler shift angect on general grounds that the coefficient is larger for the
quite large, and at moderate fields exceed the impurity bandnore ordered vortex state. The residual density of states
width even in not too clean samples, and exceed it by far igjiven by Eq.(43) is close to the expression obtained by Won
the latest single crystafs’ Taking the Fermi velocityv; and Maki in a different approximation schertfe.
~(1.5-2.5)x 10" cm/s3 we obtainE, /\VH~30 KT~ 2 Expanding Egs(41) and(42) at low energies»<E,, we
and for YBCO near optimal doping, whereztt 2.5-4, we  find
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N(w.H)~— [ Myt < p(o 45 T e | 4
o s Mg PO @ 25 |2 el -

Therefore the energy dependence of the density of states in 2010 Srates .
the field-dominated regime is determined by the probability o) s
weight of the vanishing Doppler shift. As the lattice changes 8 15 = 1
toward a larger coordination number and toward disorder, the = PR == |
measure of points where the superfluid velocity vanishes in- B = "
creases. As a result, the coefficient of the leading field- 0.5 :—":/ ]
dependent ternM, decreases, while the coefficient of the e
energy-dependent terf@(0) increases. The values of this 0.0 L= ' '
coefficient are PS(0)=2/37~0.21, P'(0)=0.5, P'?(0) 0.0 10 i 20 30

=0.68, andP9(0)= 1/\/w~0.56 for the single vortex, liquid
I, liquid 11, and Gaussian distributions, respectively. Itimme-  rig 2 Energy dependence of the density of states in the mag-
diately follows that the position of the crossover from the netic field for different models of the probability density for the
field-dominated to the zero-field temperature-dominated bepgppler shift. Density of states is in units B, /(7vv,).
havior in the average density of states is much more sensitive
to the structure of the vortex state than the Ieading field'dependent part of the density of states is determined by the
dependent term. weight in the part of the distributio®(e) with €= w, which

In the effective weak-field rangep>Ey, the field- s exponentially small.
dependent contribution is independent of the distribution of  Thjs difference is clear from Fig. 2. The low energy limit
vortices. The vortices are well separated, and the regiongf the density of states depends on the moment of the distri-
where the Doppler shift exceeds the temperature are close fution function, and is therefore different for each of the
the cores, and consequently dominated by the universal tailpodel distributions. On the other hand the high energy, or

P(x)=1/2¢, yielding weak field, limit yields the same result for the models re-
specting the asymptotic 3 decay for the probability distri-
1 Eﬁ bution P(x), while the Gaussian model gives the density of
N(w,H)~ MUV A + 2 2] (46)  states which is not enhanced relative to the zero-field value.

The Gaussian model therefore misses the field-dependent
The full dependence of the density of states on the energgontribution to the physical quantities at high energies, lead-
and the magnetic field can be obtained from Eg4) and ing to incorrect results, especially in the regifieEy .
(42) with the probability densities discussed above. For the

single-vortex picture we regain the result of lsart and B. Density of states for Hab

Hirschfeld
We can now analyze in the same framework the anisot-
F(2) ropy in the density of states for the field applied in the su-
perconducting plane, at an angteo thex axis. As discussed
Z (m(1+Z7%/2), if Z=1; in Sec. IV B, density of states for such a configuration is a

T | 27 (14273 arcsinZ + 3Z\1-72], if Z<1. sum over the two inequivalent pairs of nodes, with the dif-
ferent characteristic scales for the Doppler shift at each pair

(47 of nodes,
For the liquid | model we obtain a remarkably simple result

E,=Egp/sin(m/4— a)|, (51
Fh=1VZ?+1, (48)
E,=E,p cog m/4— a)|. (52
[ 2 2
[ _ Vo't Ej In the London modeE,,= nE,, wherey is the penetration
N'(w,H)= (49 . . ; . .
TUU A depth anisotropy ratio. We emphasize that in reality the value

of the “effective” anisotropy depends on the details of the
c-axis transport propertié$, and therefore the estimate of
E.,/VH~10 K T-¥2is just an upper limit on its magnitude,
and, as we comment below, the value inferred from the avail-

while for the liquid Il model the integral can only be evalu-
ated numerically, and for the Gaussian model

exp(—Z?)

FI(Z2)=Z®(Z)+ ——— (50) able experimental data on the specific heat is lower.
N Jr o The density of states in the clean limit is given by
where®(Z) is the probability integral® Notice that for the N(w,H;a)=3[N;(w,H)+Ny(w,H)], (53)

Gaussian distribution the enhancement of the density of
states in the weak field limii>Ey is vanishingly small in  whereN; is computed from Eq(41) as in the previous sec-
w/Ey, in contrast to Eq(46). Indeed, in this limit the field- tion but with E; (i =1,2) replacingEy, .
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FIG. 3. Contribution of different nodes to the density of states.
The nodes are numbered and the direction of the Fermi momentum FIG. 4. Angular dependence of the density of states, measured
is shown at each nodal point. Left: field along the nodal directionin units of E,,/(7v¢v,), on the the direction of the applied mag-
and orthogonal to the other pair of nodes. The Fermi momentum atetic field. Density of states has been computed with the model
nodes 2 and 4broken ling is orthogonal to the plane where super- liquid | probability density of the Doppler shift. Angle is mea-
currents flow, and the Doppler shift vanishes everywhere in spaceured with respect to th& axis, and the minima are along the
for this pair of nodes. Right: field in the antinodal direction. The position of the nodes. Notice a significant reduction in the anisot-
Doppler shift is nonvanishing at some points in space for each nodeppy at energies of the order &, .
and the density of states is maximal.

the Doppler shift is finite, consequently the node is still “ac-
As is knowrt”*? the residual density of states exhibits tive” in contributing to the density of states. In the simplest
fourfold oscillations as a function of the direction of the ap- estimate in a three-dimensional systéthe effect is reduced
plied field in the plane to 7—8%, in some models with a tight-binding disper&ton
along thec axis it may be reduced even further, to about 4%,
M, E;+E, Mg Egp ) making the effect more difficult to detect.
N(OH:a)= 2 wowa 2 v max|sinal,|cosa|]. The anisotropy is also rapidly washed out with increased
. oA (54) energy!’ Since the density of states has a minimum when the
field is applied along a nodeEg =0 for examplg, the cor-
The minima of the density of states occur when the field igesponding pair of nodes is “inactive” and insensitive to the
along the nodal directiony= 7/4+ 7n/2. In that case at two field; therefore the density of states increases linearly in en-
of the four nodes the circulating currents are in the planeergy, as in the absence of a field. For the field away from the
orthogonal to the direction of the Fermi momentum at thenodal direction the density of states increases as a square of
node, and consequently the Doppler shift vanishes at athe energy, see E@45), resulting in a rapid suppression of
points in real spacéeitherE;=0 or E,=0), as seen in Fig. the difference between the two geometries. For low energies
3. In contrast, when the field is along the antinodal directionin the limit w<E;,E,, which can only happen if the field is
the Doppler shift in non-zero, and all four nodes contributenot close to a nodal directiorEg ,E,#0), we have
to the density of states, leading to a maximuniifw,H).’
It is important to emphasize that, as is clear from Fig. 3, it is E
only for a tetragonal system that the minima in the density of N(w,H;a)~max|sina| ,|Cosa|]—ab
states occur for the field along the node. One reason for that W\/EUfUA
is that in an orthorhombic systenm{# m,), for the field
applied in a direction other than along the principal axes of
the effective mass tensor, the directions of the internal and
the external fields diffet’ The difference may be quite small
in the experimentally relevant field range; ignoring it,
Schachinger and Carbotfeargued that the minima occur
when the field is parallel to the direction of the Fermi veloc-
ity at the node, which differs from the direction toward the

C!)2

X M1+E—§bmp(0) . (55

On the other hand, IE;<w<<E,, which may happen when
the field is close to one of the nodes, aBg<E,, we have

2
node. . . . . N(w,Hia)~=———|M,E +w+w—2P(0)+E
The anisotropy in the density of states given by &d) is Y 2mvw,| L2 E, 20|
~30% for the purely two-dimensional model considered (56)

here. Any three-dimensionality reduces this number severely:

if there is a line of nodes extending along thaxis, for the = The anisotropy in the density of states as a function of the
field applied toward a node in the equatorial plane, the Dopangle for the liquid | model is shown in Fig. 4, at low ener-
pler shift vanishes only for the nodal quasiparticles with mo-gies there is no qualitative difference between the different
menta in the plane. For the quasiparticles on the same nodalodels, see below. As the energy is increased the sharp
line but with a component of the momentum along #rexis ~ minima fill up, and the resulting anisotropy decreases.
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0.30 Even if this energy scale is only 15% Bf;, a factor of 2—3
oas single smaller than estimated, the rati,/ uH~6.7\H T2 im-
———- liquid plies a crossover field of 45 T. Consequently the Zeeman
3 020 liquid 11 splitting is unimportant compared to the Doppler shift in the
~ 0.15 —— {Gaugsian experiments performed so far in YBCO. This is in contrast to
25 : more two-dimensional materials, such as BSCCO, where the
X 0.10 response to a parallel magnetic field is dominated by the
S Zeeman splitting®®*
% 0.05 ) The situation is different for the geometry with the field
0.00 ‘\ e applied along a node; this was first pointed out in Ref. 20. In
Neemm 7T this case the Doppler shift at one pair of the nodes vanishes,
005 o o 2.0 and, atw=0, the only contribution to the density of states at

these nodes is due to the Zeeman splitting. The Zeeman split-
ting leads to a finite contribution to the density of states that
FIG. 5. Relative anisotropy in the density of statédj(w) IS linear inuH, and consequently reduces the residual an-
=N(w,H;a=0)—N(w,H;@=m/4) normalized by the maximal isotropy SN(O,H). This reduction has been investigated in
Npax(@)=N(w,H;0) for different models considered in the text. Ref. 20.
Notice that the relative anisotropy at=0 is identical for all mod- This is, however, not the only effect of the paramagnetic
els, as is clear from Ed54). In the single-vortex model the anisot- coupling. Since the density of states at the nodes with the
ropy vanishes identically ab=E,,, see Eq(47). For the Gaussian Vvanishing Doppler shift is now dominated by the Zeeman
model the exponential asymptotic behavior of the probability distri-splitting at low energies, the anisotropy is not reduced as
bution leads to the inverse anisotropy in the intermediate energyapidly with the increasing energy. Indeed, if only the para-
range. The two liquid models yield a very similar dependence of thanagnetic effect is taken into account, the taizér particle,
anisotropy on the energy. i.e. summed over the spins rather than per sdensity of

) ~ states is
The angular dependence of the density of states vanishes

at higher energies, as fer>E,,E, with a realistic distribu- _ lo+apH| 2mafuH, o]
tion respecting the asymptotic behavidt(x)xx 2 for NZ(“"H)_Fi T,y UV, , (60
x>1

and therefore the anisotropy increases withup to w
® 1 E§+ E§ = uH, where it reaches a maximum.
1 2 Let us consider the liquid | model, where the analytic
w expression for the density of states is particularly simple, the

N(w,H;a)~

TUfUA

1 E2 results are not modified substantially if other models are
__“ — Zab (57) used. The anisotropy in the tot@ummed over the spin di-
TUUA 4 y? rections density of states between the nodal and the antin-

._qdal directions is given b
The exact crossover scale from the strong- to the weak-ﬁelg 9 y

regime depends on the particular choice of the probability
distribution. This is shown in Fig. 5 for the three different 6N(w,H)=
choices ofP(x) considered in this work.

E (2\w?+E2/2— w2 +EZ)

2TUU

C. Zeeman splitting —2mafuH,|w|] (61)

Typically the Zeeman shift is small compared to the Dop-
pler energy scale, and does not modify significantly the den-
sity of states. Indeed, for the field along tleaxis, the
spin-up and spin-down density of states is given by

As Fig. 6 demonstrates, even though the zero-energy anisot-
ropy is severely reduced upon inclusion of the Zeeman split-
ting, the anisotropy at moderate energies is close to the result
obtained without accounting for the paramagnetic effect. It is
. = . clear that the magnitude of the reduction and the crossover
N™(w,H)= FN(E__ : (58 energy depend on the actual value®f,, and we need a
YA H realistic estimate of this value to evaluate the impact of the
where w. =|w* uH|. Therefore, for example, the correc- paramagnetic splitting on the experimental results for the
tions to the residual density of states due to the paramagnetfteld along a nodal direction. Such an estimate can be ob-
contributions in the regimgH<E are of the order tained from the analysis of the data on the specific heat that
we discuss in the next section.

SN(OH) (MH)ZP(O)
N(O,H) En

For quasi-three-dimensional materials, such as YBCO, the The information about the density of states is experimen-
relevant energy for the field applied in the planeBg,. tally available primarily via the specific-heat measurements,

— <1,
M, <1 (59 V1. SPECIFIC HEAT AND SCALING
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FIG. 6. Effect of the Zeeman splitting on the anisotropy in the
density of states. Her&,,/\H=a KT 2 Main panel: energy
dependence of the anisotropy for the liquid I distribution wgblid
line) and without(dashed lingaccounting for the Zeeman splitting
for a=5 atH=10 T. Inset: anisotropy in the residual density of
states, in units ob/27vfv,, as a function of the applied field.
Dashed line: no Zeeman effect, dot-dashed lae:10, solid line:
a=>5.

and we now address this quantity in more detail. The pre

PHYSICAL REVIEW B4 064513

Two quantities that can be compared with experiment are the
coefficient of theT? term in absence of the field,

K NVimol 184(3)

- (66)

Ys UV

and the coefficient of th& JH term at low temperature

C(TH) 72K Vo My

T 3 & s 4,0

(67)

p=lim
T—0
Here Vo is the molar volumes is the unit cell size along
the c axis, andn is the number of Cu@layers per unit cell.
The presence of both terms has been firmly established from
the analysis of the experimental data on the specific heat in
YBCO,2*® however, there remains disagreement about the
values of the coefficients between different groups.
For that materialVy,,=104.6 cm/mol, n=2, and s
~12 A . The coefficienp can in general be determined to a
higher degree of accuracy, and the values available in the
literature arep~0.91 (mJ mofY/K?) T~%2 for moderately
clean sample$® and more recently obtainegp~1.34
(mJ mol Y/K?) T~Y2 for the ultrapure single crystalsThe
analysis of these data in the single-vortex picture has been

liminary analysis of some of these issues within the singlecarried out by Wanget al,® and by Chiaoet al®° In that

vortex picture has been carried out by us befSrelere we

picture the 50% difference in the coefficient translates into

concentrate on the effects of different distributions, and orthe same relative difference in the value for the slope of the

the measurability of the specific heat anisotropy.

A. Specific heat

The electronic contribution to the specific heat is given

byl4,62

2

)

=3

+ o 5 w
doN(w,H) cosh >

—0o0

C(T,H)=%f

o X
=Tf dxsz(xT,H)cosh‘zz. (62)
0

Making use of Eq(41) we can rewrite the specific heat in
the form useful for further analysis. For the field along the

axis, H| c, we have

C(T.H)= —H fmd ery| L |cosh2X, (63
(’)_wvaAoX N g, CoST 7S (63
whereF is given by Eq.(42).
As a result we find in the limiE>T
C(T H)~ 2Lt 7TZM +77T4P0 r 64
and in the opposite limitE<T,
T E3
C(T,H)~ . 9¢(3)+ ;Inz . (65)

gap. In contrast, according to the previous section, the more
ordered vortex state leads to a larger first moment of the
distribution, and consequently to a larger valuepah Eq.
(67); it is therefore reasonable that a higher-quality crystal
would have a more ordered vortex state and hence a larger
coefficientp. If we setM ;=1 the experimental values qf
lead to the values for the slope of the gapvaf~1.5x 10°
cm/s andv,~1.0x10° cm/s, respectively. On the other
hand, M;=4/m for the pure crystal yields a larger,
~1.27x10° cm/s, leading to a less than 20% discrepancy
between the groups. The disagreement can be further re-
duced by assuming a disordered state WNth<<1 in the
ceramic sample of Ref. 3. We also note that the pure crystal
of Ref. 5 is overdoped, rather than optimally doped as in the
work of Refs. 2 and 3, which may contribute to the differ-
ence in the coefficient. In combination with the value for the
ratio v;/v,~14 obtained from the universal limit of the
thermal conductivit§® this yieldsv;~1.8x 10’ cm/s. This is
in reasonable agreement with the value of the Fermi velocity
obtained from the ARPES measurements in BSG®@hich
is believed to have a Fermi surface similar to that of YBCO.
The coefficientys of the temperature dependence has
been measured with significantly larger error bars, and the
results from different groups vary significantly: Molet al?
reported the value of 0.1 (mJmd) K3, Wright and
co-worker$ obtained y,~0.064 in the same units, while
Wang et al® measured 0.21. From the comparison with Eq.
(66) we find vfv,~ax 10" cn?/s’, wherea=2.9,4.5,1.4
for the three values given above. All these yield the Fermi
velocity within a factor of two of the estimate given above.
This implies that in the calculations requiring a cutoff in
energy the cutofEy~ (1.3—2.3)x10° K.
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) . " FIG. 8. Scaling function for the specific heat. For concreteness
FIG. 7. Anisotropy in the specific heat between the nodaline crossover valueg, have been defined as the point of a 20%

(dashed lingand antinodaisolid line) directions for different mod-  ircrease above the high-field flat regidfs(Z.) = 1.2F o(0).

els.

measurement dt,;, available. However, an estimate for this

We now turn our attention to the field applied in tab  scale can be obtained from the scaling plots for the specific
plane, and discuss the specific heat following the genergieat.
approach of our previous pag®rThe first question that we
address is the observability of the fourfold oscillations in the
density of states. These oscillations have not been seen in the
experiments by Moleet al:2 nor have they been found in It has been pointed out by Simon and Pethat on gen-
recent measurements on very high quality single crystals ogral grounds the thermodynamic coefficients of the nodal
YBCOZS It seems likely that the estimate Bf,,~10 K T~ 12 fermions in a magnetic field should scale with the variable
from the purely two-dimensional model is too high, and theT/Ew; consequently the experimental results can be inter-
three-dimensionality reduces the effect significahtiyt is ~ Preted as giving the form of these scaling functions. The
also possible that the orthorhombicity, which shifts thescaling of the specific heat itself follows easily from E4L)
minima in the density of states away from thét directions, ~ for the density of states, and the weak and the strong-field
combined with twinning of the crystals used in both experi_limits of the scaling function are obtained from the equations
ments reduces the observable anisotropy signific&htly. for the specific heat above. For the fidtjc, we definez
However, even in this case, the in-plane anisotropy for the=T/E, andFc(Z)=mv:v,C(T,H)/(2TEy); then
fields of up to 14 T used in the experiments by Wamgl>
should be within the experimental resolution. A very impor- * X
tant observation is that since the anisotropy in the density of Fe(2)= JO dxxF y(xZ)cosh 25'
states is washed out rapidly as the energy is increased, the
in-plane anisotropy of the specific heat is greatly reducedvith Fy given by Eq.(42). The limits for the scaling func-
with increased temperatutéas seen in Fig. 7 the reduction tion follow easily:
is more rapid for the Doppler shift density with the larger
weight at low energies. We only consider here the possible mM,/3+ 77*P(0)Z2%/15, ifZ<1;
s:ituation when the configuration of the vortex Ia_ttice is iQen- c\&)= 9¢(3)Z+Z 1In2, if 7>1.
tical for the field along the nodal and the antinodal direc-
tions; then the limiting behavior for the specific heat with theThe numerically determined scaling function is shown in
field along an antinodea(=0) and along a noden(= 7/4) is  Fig. 8. It is remarkably similar to the scaling plot obtained
easily obtained from Eq455) and (56), from the measured specific heat in Ref. 3. In that experiment
the crossover scale, marking the transition from the field-
dominated regime, wheré-(Z)~const, to the temperature

B. Scaling functions

(70

(71)

2 4 2
C(TH:0)= V2EarT T 1+14_7T T_p(o) . (68 dominated regime, has been determined toTh¢H=~6.5
v | 3 15 Eib K/TY2 a very close value has been obtained in a more recent
experiment of Wangt al® As is clearly seen from Fig. 8 the
- E T [ T value of the scaling variable at the crossover depends on the
C(T,H;—) —_ab —M,;+97(3)=—|. (69  Structure of the vortex state; this is easy to understand from
4] muw,l 3 Eab Eq. (71). The zero temperature value of the scaling function

is determined by the first moment of the Doppler shift dis-
Therefore while the amplitude of th¢H term confirms the tribution M, while the increase of - with the temperature
estimates for the nodal velocities andv,, and therefore is proportional to the weight of the distribution at the van-
for the energy scal&y, such a term has not been observedishing Doppler shift?(0). Consequently the crossover value
for the field in the plane, and therefore there is no direciZ, can be expected to be proportionaltt, /P(0). As the
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number of zeros of the superfluid velocity grows, the weight 2 :
in P(x) is shifted toward lower energies, so thet; de- | |_____ /!
creases whild?(0) increases; these opposing trends lead to R
significant variations irZ.. From Fig. 8, for the liquid and
single-vortex models the crossover occurs arodpe-0.2
—0.3; taking this value as the experimentally determined
crossover point, we arrive &,/\H~30 KT %2 in agree-
ment with our previous estimate. Notice that the crossover
occurs atZ.<1; this is simply the result of a large coeffi-
cient of theZ? term in the low-temperature expansion in Eq.
(72), 77*/15=45, while 72/3=3. < o o
A similar analysis can be carried out for the field applied T/E,,
in the plane by introducing,,=T/E,, and F, ,(Zap; @)
=7 ,C(T,H;a)/(TE,p); the limiting form of the scaling FIG. 9. Scaling functions for the specific heat with the field
functions forZ,,<1 can be read off Eq$68) and (69); at  applied along thec axis, C(T,H) and thec/a—b difference 5C

wn

=]
T
—
=

_________________ -~ .. CH,T), Hlle
—%C

v, 6C/TE,,

Z.,>1 we have =C(T,H)—C(T,H;0). The former has been evaluated for the
single-vortex distribution of the Doppler shift, the latter for the
Fap=18(3)Z4pt Z;bl In2. (72 liquid 1 model as explained in the text. The behavior remains es-

- sentially unmodified for other forms of the distribution. Inset: dif-
The specific-heat data of Refs. 2 and 3 are analyzed by moderence between the nodabp) and antinodal directions disappears
eling and subtracting the “background” contributions to the on the scale of the larger graph.

specific heat(phonons, Schottky anomalies, ¢tcTo avoid
the extensive analysis, Revaral® have looked at the dif- . .
ference between the specific heat with the field alongcthe tion reflect the smaller Doppler energy _scale n the_plane,
axis, and the field along the antinodal direction, tla—b  Fab=<Ew. and the results of these experiments are, in fact,
difference 6C(T,H)=C(T,H)—C(T,H:0). The compari- ql_Jlte conS|stent._Not|ce that the crossoverd@ is much
son between the results of Ref.4, and Refs. 2 and 3 has be#fider than that inC(T,H) because of two energy scales
a subject of some controversy, most clearly stated in Ref. contributing to it: it extends over a decade in the scaling
It has been argued a|ready by the present authors and CMariable. Note that in Flg 9 we have evaluated the SpeCifiC
botte that the experimental results from these groups are iheat with the fieldH||c in the single-vortex approximation,
fact in agreemerf? and here we elaborate further on the while the specific heat for the field along the antinode in the
sources of the apparent differences. We interp@{T,H) as  plane has been evaluated for the liquid | distribution, to
a pure vortex quantity, ignoring the possible elastic contribumodel the expected difference in the degree of order in the
tion of the vortex lattice and the possible field dependence ofortex lattice. Both quantities have been evaluated with the
the anisotropyn=E,,/Ey . The issues raised in Ref. 3 in- single-vortex distribution in a prior publicatidi,and there
clude the temperature dependence’6(T,H)/T in the re-  are no qualitative differences between the two cases.
gime whereC(T,H)/T is essentially insensitive to tempera- g fyrther quantify these considerations we note that even
ture, and a form of the scaling function féC that is quite  {hogh the crossover to the temperature insensifi@ehas
different from that ofC(T,H). . not been found in Ref. 4, the data suggest that it is close to
As is clear from Fig. 8 for the fieldH|c the ratio 1/ /H~0.5 K T-Y2 which is the lowest value of the scaling
C(T,H)/T does not depend strongly on the temperature for5iaple reached in the papéexperimental measurements
T=T,~(0.1-0.25)y, reflecting the energy independence 5¢ jimited to the temperatures above..5 K, since at lower
Of the densily of states TQD<EH‘. Fo_r the field ap_phe(_j n temperatures the nonvortex contributionsgr,H) become
the plane along the antinodal direction the physics is Ve%ominan). Taking this number as a crossover value of
similar, up to rescaling of the energies, which means that th(—i-./E we estimateE,,/VH~3—4.5 KT Y2 2-3 times
density of states is only constant fas<Eg,<Ey, and smzfl?ér than the estin?gte from the. London r'nodel
therefore C(T,H;0)/T is T dependent abovel,,~ (0.1 . o - |
—0.25),,. The differenceC/T, becomes temperature de- . If the va_Iue of E,p, is low, it is not surprising th.at the _
in-plane anisotropy between the nodal and the antinodal di-

pendent at the lower of the two crossovers, which g at X , )
~0.1E,,, and for T,,<T<T, it varies with temperature rections has not been found in the experiments of Ref. 5: at
. ap» ab—= 1=

even thoughC(T,H)/T is approximately constant. 14 T, E,p,~11-17 K, and even at the lowest temperature
It is easy to understand the difference in the scaling bewhere the measurements of Ref. 5 have been naég,

havior betweensC and C(T,H). Taking the ratioE, /E,, =0.09-0.15. Then the anisotropy in the density of states is
=4 we plot the corresponding scaling functions in Fig. 9.significantly reduced from th&=0 value, see the inset of
Even in the regime where the scaling functibgp is nearly ~ Fig. 9. On the other hand, the data of Ref. 5 for the field in
constantF 5 is decreasing continuously. We therefore be-the plane yield (after the subtraction of the Schottky
lieve that there is no contradiction between the results of Refanomaly a crossover temperature between the field-
5, and Refs. 2 and 3. Both the temperature dependence dbminated and the temperature-dominated regimes close to
SCIT and the difference in the behavior of the scaling func-T¢,~2 K TY2 If this value is taken as corresponding to the
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crossover inT/E,y, it implies a large value oE,,/VH 2.0 7
=10-20 KT~ 2 In that case the absence of the anisotropy 15 ' /
can only be explainesomewhat unsatisfactorjlypy an ap- &
peal to the three-dimensionafifyor a combination of the ~
orthorhombicity and twinning”®° Since part of the experi- ;ss 10 a
mental difficulty stems from the smallness of tkiel term & ) o)
with the field in the plane, the analysis for that geometry :i b
typically involves assuming a field-dependent contribution of B
that form?° However, ifE,, is small, the field dependence = 05
of the specific heat is modified by the Zeeman splitting, and ) H"” [Tesla"’]
this splitting has to be taken into account in the analysis. D§
i 0.0 - - .
C. Zeeman splitting 0.0 0.2 0.4 0.6 0.8

If the energy scale for the in-plane Doppler shift is indeed T/E,,
much smaller than the naive estimate from the London _ _ . . -
model E b/\/ﬁ”(3_4 5 KT 12 the Zeeman splitting has FIG. 10. Main panel: the anisotropy in the in-plane specific heat
sa . ’ . . _ . .
a significant effect on the specific heat with the field appliedﬁ'ozeldo InKﬁel/Zsczgzgv\;?t:?utagcg :l?m; fofgrtllﬁeccz’iz'gzztzhm
along a node in the experimentally relevant range. The sp - (4.10) ’ 9

cific heat no longer obevs the scalin roperties discusse ashed ling Inset: The specific heat at=1.5 K, which is close to
.g y g prop o the lowest experimentally accessible temperature, for the same two
above; for the field along a node the contribution of the

o e values ofa with (solid line) and without(dashed ling accounting
Doppler-“inactive” nodes is given by for the Zeeman shift.

2
Cz(T,H)= P, FZ(MT) (73 cessible range, toi=20 T, at highelT. In comparison, ifa
~10, the maximum lies at high fields for all relevaht
X t o t Consequently, in the search for the experimental verification
I:z(X)ZXf t2 COSh_ZEdt+f t3 cosh‘zzdt, (74 of the anisotropy in the specific heat, it cannot be assumed
0 X that the anisotropy increases dbl; if the energy scale for
in agreement with Ref. 64, and therefore scales Witather ~ the in-plane Doppler shift is small, the Zeeman splitting
than \H. modifies the field dependence of the specific heat. For the
As the in-plane anisotropy in the density of states has #mall valuea=4 K T~Y?the maximum anisotropy, reached
maximum for o= MH, the anisotropy in the Specific heat in the fields of the order of 10-15T &t=1.5—-3 K, is of the
also goes through a maximum; we expect approximatewarder of 0.5~ 0.9ys; based on the available experimental
Tmax(H)=H. We consider here two different cases far Value$™°for y between 0.064 and 0.21 (mJmo) K2,
=E,,/VH: a large value corresponding to our original esti- the maximal anisotropy ranges between 0.032 and 0.19 mJ
matea=10 KT~ *2 and a small value implied by the ex- mol~* K™% it is significantly larger for larger values of
perimenta=4 K T~ Y2, and evaluate the specific heat for the Eap/ VH.
liquid | distribution. The main panel of Fig. 10 shows the Recently, Wanget al. attempted to observe the angular
Sca”ng p|0t for the in-p|ane anisotropy in the specific heat,OSCi”ationS we have predicted in the in-plane Specific ﬁeat.
Canis(T,H)=C(T,H;0)—C(T,H;w/4) atH=10 T, so that They did not, however, find appreciable difference between
the values for the two cases dfg,~32 K, andE,,~13 K.  two measurements with field applied in the nodal and antin-
While the anisotropy is severely reducedrat 0, it becomes

close to the values estimated without accounting for the Zee- 040 H— 7-735K . .
man shift at the temperatur@s=2.2 K andT=1.8 K for the - T=3K -

two cases, respectively, and therefore the anisotropy in the - T=5K e N
experimentally relevant regime is not modified significantly. 0.30 A h

Nevertheless, if the absolute magnitude of the anisotropic
term is small, and its field dependence has to be modeled in
the analysis of the experimental resilti,is important to
note that, as is clear from the inset of Fig. 10, the field
dependence of the anisotropy is not simply proportional to
JH, but flattens and decreases at high fields. The deviations
are especially important for smal] since then the maximum

of the anisotropy is reached Hit~10 T for T=1.5 K, well 0.00
within the experimental range. We analyze this scenario in )
more detail in Fig. 11, which demonstrates that if the coeffi-
cienta is small, the maximum in the anisotropy can be ob- FIG. 11. Anisotropy of the in-plane specific heat far4
served at low temperatures, but moves out of the easily ad T~ %2 as a function of the field at different temperatures.

S(TLHNT [K]
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g
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odal directions. Several reasons may have contributed: firsto unique identification of the local value of the superveloc-
of all, the YBCO sample used in their experiment is twinned.ity corresponding to a local magnetic field. It may therefore
Twinning, combined with the orthorhombicity of YBCO is be useful to analyze the relaxation rate obtained by the “glo-
expected to reduce the anisotrdpy® Here we point out bal” fit to the resonance line; especially when the linewidth
another possible reason for the difficulty in extracting theremains quite narrow in frequency. It has been shown that
difference between the two directions from the data: the fieldhe time-decay of the magnetization is nonexponential as it
dependence of the anisotropic term is not simply given byinvolves a convolution of many local relaxation rates, but
JH, as it would be in the absence of the Zeeman term, and dbat it is possible to describe it with an effective scattering
assumed in Ref. 5. Instead, the anisotropy increases with thate that depends on the field and the temperdftfteUsu-
field up to fields of about 10—15 T, and decreases thereaftedlly the analysis of the experimental data is done assuming a
Consequently, we believe that to confirm the predicted oscilsingle relaxation rate, and it is therefore important to under-
lations experimentally, it is highly desirable to use an un-stand its behavior in d-wave superconductor.
twinned crystal, and carry out the measurements at interme- The analysis of the relaxation tinig can be undertaken
diate fields(10—15 T) at the lowest possible temperatures, either by looking at its magnitude directly, or by analyzing
since the anisotropy in the specific heat is expected to be thée ratioT, /7., wherer, is the relaxation time aT=T,.
largest in this range. The former approach involves modeling or estimating from
the available data the matrix element for the interaction; it
has been used, for example, in Ref. 55. The latter method is
VII. SPIN-LATTICE RELAXATION RATE based on making assumptions about the normal state relax-
We now turn our attention to the calculation of the re-2ation in the cuprates. We employ it assuming a normal me-
sponse functions. In these calculations the local, in reaf@!lic relaxation afT. with the caveat that this may be only
space, physical quantities depend on the Doppler shift gudlitatively correct for underdoped compounds. _
both pairs of nodes, and consequently the averaging has to be With this assumption for the spip-system the magneti-
carried out with the two-node probability density rather ~ Zation decays am(t) =M (t)/M(0)=exp(~t'T,), where the
than the single-node distributidh. The simplest example of relaxation rate in the infinitesimal field is given by
such a quantity is the average spin-lattice relaxation rate that

we now consider. Tele = jm wNZ(w) - a_f)
Since the NMR measurements on cuprates are typically T, T —w Né Jw
done in a magnetic field of- 10 T, the effect of the field on
the measured signal has to be considered in the analysis of 1 (+> N2xT) 72
the data. There are at least two effects of the vortex state on =5 f . dx NF cosh “x/2, (75)
the spin-lattice relaxation time. First, the Doppler shift modi- 0

fies the local density of states, introducing the local relaxwhereNy,=m/2742 is the two-dimensional2D) density of
ation rate, which varies from point to point. Second, thestates in the normal state.
magnetization due to the vortex lattice introduces inhomoge- In nonzero magnetic field, the decay of the average mag-
neities in the field, leading to the broadening of the resonetization is given by
nance line. As a result, there are two possible approaches to
the analysis. In a perfect vortex lattice the.re exists a one-to- m(t)=4Jxdelfmdezﬁ(el,ez)exp[—t/Tl(el,ez)],
one correspondence between the local field at a particular 0 0
point in the unit cell of the vortex lattice, and the value of the (76)
superfluid velocity at that point. Assuming such a perfectyhere the position and Doppler-shift-dependent relaxation
lattice itis therefore possmle to associate the local relaxatlorgate is determined from
rate with the relaxation rate at a particular frequency in the
resonant line. Such an approach has been developed theoreti-
cally in the semiclassical framework®® and the results are Tele . 1 (e =2
. (e c »oar 4 =— XN“(XT,€eq,e5)cosh “x/2.  (77)
in qualitative agreement with the experimental observation T, T 2NgJo
that the relaxation rate and the local density of states are
larger in the regions of higher field, i.e., higher The density of states is given by the sum of the contributions
supervelocity’ of all nodes|w+ €;|/(7vv,) with (6= * €;,* €,), which

On the other hand, in a disordered vortex state there igields

2(1), if mea)(El,Ez);
N(w,€q,€6)= wt+max e, e), ifmin(e, e))<ws=maxe,e;); (79
27TUfUA i .
62+61, if w$m|n(€l,62).
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FIG. 12. Magnetization decay at a fixed temperature for differ-
ent values of the magnetic field. We have uséthyZviv=Kksv,
~2A, (pured wave, and have sef\,=2.14T.. m(t) has been
evaluated for the liquid | model.

FIG. 13. Magnetization as a function Bf=tTEZ/ 7. T,A3. The
ratio T/Ey is identical for the bottom two sets.

form are noticeable already f& /T~4; however, even in

Here again, without loss of generality, we sgte;,€,=0. this regime the curves for differeify and T but with the

The decay of the magnetization is therefore non-same raticE, /T, coincide. The scaling is always obeyed at
exponential®®” as is shown in Fig. 12 for a liquid distribu- short time scales, where the time decay of the magnetization
tion. In a magnetic field the density of states is enhanceds determined by the fast relaxation rates in the regions with
globally, and therefore the stronger the field the faster the large Doppler shift. On the other hand, at long time scales
decay ofm(t). In the regimeE>T the density of states is the time-dependence oh(t) is determined by the slowest
significantly enhanced over a large part of the unit cell of therelaxation rates, in the regions where the Doppler shift van-
vortex lattice. This high density of states yields a fast relaxishes, and therefore there are always deviations from the
ation rate responsible for the initial decrease in the magnetiscaling withtTH.
zation. The long-time decay af(t) is determined by the Since the long-time-scale decay is determined by the mea-
slowest relaxation rates, which occur in the regions wheraure of the points with small Doppler shift, it depends cru-
the superfluid velocity is small and the density of states isially on the probability densityZ(e;,e€,). In particular,
largely determined by the temperature. The two regimes arthere is a dramatic difference between the single-vortex pic-
seen in Fig. 12: the largetail of Inm(t) is affected by the ture, wheree?+ e3=EZ, and the lattice or liquid states,
field much more weakly than the short-time decay. For allwhere this restriction is lifted: magnetization decays much
the values of the field it is possible to fit the time dependenceaster in the single-vortex picture, as can be seen in Fig. 14.
by an exponential, although clearly the relaxation rate obNotice that for the very early times, when the magnetization
tained from such a fit differs significantly from the zero-field decay is determined by the regions with the highest Doppler
rate. We have addressed the fit of the magnetization at difshift, the two distributions give the same result. Therefore
ferent time scales in a previous publicatitt’ the effective relaxation rate obtained from the exponential fit

An important comment concerns the scaling of the magdepends not only on the field but also on the structure of the
netization. First of all, due to scaling properties of the den-ortex state. The difference in the behavior for the two types

sity of states, the magnetization decay due to spin-latticef the vortex state can be understood from the analysis of the
relaxation satisfies

1
T 1 . E,/T=0.1
m(t)=F,| tHTf \/_ﬁ> ) (79 o
>~ = X
where the function§,, andf can be obtained from the gen- ‘\\ 0a | 01 N
eral expression Eq76). Moreover, wherkE,, /T>1 the den- - L 2000
sity of states and therefore the functibare nearly constant. \E' 0.1 \\\ E
Two conclusions follow immediately. First, at a fixed ratio ——=- liquid N
T/\/H the magnetization depends only on the single variable single
tTH. Second, at low temperaturextTH) is independent of E/T=0.25
the ratioT/\/H at short time scales, when the relaxation rate T/T =0.1
is dominated by the field-induced density of states rather 0.01 . ' .
0 1000 2000 3000

than the temperature-driven density of states. The collapse of
the low-T data on a single curve as a functiontdfhas been
found previously® however, we are not aware of an ex-  FIG. 14. The difference between the liquiiquid 1) and the
perimental check of such scaling at different fields. In Fig. 13single-vortex models in a strongmain panel and weak(inse
this behavior is clearly seen. Deviations from the scalingmagnetic field. Parameters are the same as in Fig. 12.

Hr,
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magnetization. Noticing thaf(e;,e,) = L1(€>+ €3) due to 1 7421 TE} E
symmetry(the probability density should be even in bath o 2n T PInE_' (86)
and e,, and should be symmetric under the interchange 1 € ¢30 H

e1+>€,), and introducing polar coordinatesx=(e5  The relaxation rate given by this expression is expected to

+ eg)/ EZ, tang= €, /e,, We arrive at overestimate the rate of the decay of the magnetization. Fast
. relaxation occurs near the cores, where the effective field is
m(t)%f dxCy(x)e™ A4 (Bxl4), (80)  higher, and therefore in the component of the signal away

Xo from the original position of the resonance litreAlterna-

tively, we can define the average relaxatione

I(z)=f exp(—zsing)de, (81 w o @
0 Tiff=f m(t)dt=4J delJ' desL(€1,€2)T1(€1,€).
0 0 0
wherexo~T?/EZ, and B=tTEZ/7.T;A5. This form shows 87)
explicitly that there is an approximate scaling with the vari-

able 8, and that the scaling is obeyed better the smaller thd his average has a large contrjbution from slow reIax.ation
ratio T/Ey, . rates, and we expect the effective rate to be underestimates

Due to the exponential the integral overis cut off at since over experimentally relevant time scales the slowest
Bx>1, so that we only need to evaluatgz) for z~1. In rates do not contribute to the magnetization decay apprecia-
that case all angless contribute to the integral, ant{z) b!y. I_nde_ed, for the cases of th_e smgle-_vortex anc_i the liquid
~ exp(—b2z with b~1 [in contrast,l (z)=2/z for z>1] distributions we obtain in the field-dominated regime

leading to

1 =#1TEj e vort .
% ——~————, single vortex,
m(t)~7rf dxCy(x)e s (82) £ 8 7 Te A2
X0
2 _
with s=1+a~1. Consequently, the long-time-scale limits 1 #1TEy InE ! liquid | (89)
(B>1) for the single-vortex and liquid | distribution, respec- Ttléff 327, T, AS T ' '
tively
The coefficient in the last expression is significantly smaller
© @ X4 exp— Bslb) than the expression given by E&6). We can now compare
m(t)= L dx 2 spla (83)  this expression with the result of Ref. 9, where it was found
that 7. T./T;T~0.2 atH=11 T at lowT. From our estimate
- — Bsx4 _ of Ey it follows that at this fieldE,~100 K. Taking Eg
m(t):J dx € ~ eXp— BSXo/4) (84) =1500 K, we find this ratio for the average rate to be 0.35,
o (X+1)2 spl4 while the average relaxation time procedure yields the values

of 0.06 and 0.00%at T=5 K), respectively. The experimen-

As a result, the long time decay for the liquid regime 'Stal value is between the two estimates, as expected.

governed by the relaxation rate close to e T3 behav-
ior expected foH =0, while for the single-vortex model the
relaxation rate is proportional {6« TH.

In reality, however, the decay ofi(t) at long time scales The self-energy
is usually not measured, and at intermediate times the de-
tailed analysis of the time dependence of the magnetization . i ~ ~
taking into account the nonexponential formroft) is com-  rénormalized according te=w—X(w). The self-energy
plex. It is possible to define an effective relaxation rate, how= () depends on the momentum integral of the Green’s
ever, the weight of the components of the magnetization wittfunction, and therefore on the Doppler shifts at all nodes.
fast and slow decay is different for different definitions, andConsequently, in all the calculations involving the impurities,
the resulting effective relaxation rate is different, as we nowthe local quantities depend on bath and e.
illustrate. One possible approach is to define the effective Here we consider the impurity scattering in the unitarity
rate as limit. The strategy for the calculation is as follows. The self-

energy is given by Eq(6); to evaluate this expression in a
1 (= o field we have to introduce the Doppler shift in the Green’s
Teff _4Jo delJO dEZ‘C(el’EZ)Tl(El,GZ) - (89 fynction as before, and solve for the self-energy self-
consistently at each node. In other words, there is a distinct
Unlike the average for the magnetization, E@6), which ~ Doppler shift at each node, and the self-consistency requires
has the largest contribution from the slowest relaxation rateghat the scattering to other nodes with their respective Dop-
in this averaging procedure the weight of short relaxationpler shifts be taken into account self-consistently. Therefore
rates is high, and a cutoff of the energy integral near the coreve can write
is required. To leading order in E,/Ey the relaxation rate in 5 5
the field-dominated regime is then given by S(w,€1,6)=—n[Go(w,€1,€6)] L, (90

VIII. IMPURITY SCATTERING

In the presence of impurity scattering the frequency is
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where, from Eq/(8),

~ 1 wantiw,
Go(w,€1,€3)=— o~ Lo
a—==
n=12

VU

. wa n
+i arctan——|, (91
w32

\ wa,n+ w3

and

(92

Wan= 0+ e, — Re3(w,€1,6),

(93

We now focus our attention on the cases of weskE,

Woy= — Im 2(2),61,62).

<1, and strongw<<y<E fields at low temperatures. Set-
ting =0 it is clear immediately that the real part of the
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FIG. 15. Residual density of states as a function of the field. The
impurity scattering is taken in the unitarity limit, with
(nyov,)¥2=20 K. The parameters arEy=1500 K, E/H
=30 KT 12

momentum integral of the Green’s function at each node in

Eqg. (92) is odd in the Doppler shifte,, and therefore van-
ishes upon summatiodff As a result, the self-energy has only

the imaginary part given by Eq90) with

. E2
Go(@,€1,69)= — — —2In 0
olw,€1,€6) == —
T UUA \/szl-l— wzz\/622+ w22
i €1 €1 | €o €r
- arctan—— — arctan—.
T UfUA w2 T UfUA w2
(94)

In the strong-field limit,w,<€;,€,, we obtain for the the
density of states

1 ~ 1 |egl+]e
N(E]_,GZ):—;h’ﬂGo(a),el,ez):ﬁW

(99

as expected, see E8). The quasiparticle damping in this

regime is given by

2njvv 72

~ ~ <.
2" el el Ted+led Y

(96)

w

In the weak-field impurity-dominated regime,> €4, €,, On

that the three distributions yield different high-field slopes,
corresponding to the different values of the moméhy.
These results are in agreement with the previous Wotk.
The low energy-scattering rate, provides the new energy
scale in addition to the average Doppler sl and the
temperaturd. At low temperatures, the competition between
Ey and y determines the behavior of the density of states,
and in the field-dominated regim&,,> v, the density of
states strongly depends on the probability density of the
Doppler shift, as it does in the pure limit. The dependence of
the self-energy on the magnetic field is crucially important
for the analysis of the transport properties in the vortex state,
and we will discuss these issues in detalil in a separate paper.

IX. CONCLUSIONS

In this paper we have discussed the semiclassical ap-
proach to the vortex state of unconventional superconductors
and have applied it to the analysis of the thermodynamic
properties of a two-dimensional-wave superconductor,
which we take as a model for the high-cuprates at low
energies. Our main point is that within the semiclassical ap-
proach the dependence of the measured quantities on the
magnetic field is sensitive to the structure of the vortex state

the other hand, the field-induced change in the density oénd the distribution of the supercurrents. This is shown in an

states is quadratic in the Doppler shift and is given by

1 ei-ﬁ- 65
5N(El,62)%—2 '
41 UfUA Y

97

approach that involves introducing the Doppler shift due to
circulating supercurrents into the quasiparticle dispersion,
and computing the physically measured magnetic field de-
pendent quantities as a spatial average of their local values in
the vortex state. The major step that has enabled us to move

wherey is the zero energy-scattering rate that has been déseyond the standard single-vortex description is the rewriting

fined in Sec. Ill. Then to the leading order inBy/E, the
average change in the density of states is given by

2

E H
—Hln—oocHIn—0

SNg(OH)~
® 272 yviva En H

(98)

of the spatial average in terms of the average over a prob-
ability density of the Doppler shift at a particular node or at
a pair of nodes. We have analytically computed these prob-
ability densities for the single-vortex picture, for model lig-
uid distributions, and for a nonphysical, albeit often used,
completely random distribution. We have argued that this

for the single-vortex and the liquid distributions. For the approach is easily applicable to any given distribution of
Gaussian model the change in the density of states is smallgortices, and that the single-vortex and the liquid models
by a logarithm of a large numbe@Ng(0,H)/SNg(0,H) typically give the upper and the lower limits of the field
=2 InEy/Ey. This behavior is illustrated in Fig. 15. Notice dependence since they overestimate and underestimate, re-
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spectively, the number of the points in the vortex lattice unitand at long times depends crucially on the structure of the
cell where the Doppler shift dominates the physical picturevortex state. We have predicted a scaling form of the mag-

We have applied this approach to the analysis of the elemetization, and discussed the existing evidence for such a
tronic specific heat in the vortex state and to the descriptioscaling; of course more experimental work checking this pre-
of the spin-lattice relaxation of the NMR magnetization. In diction would be highly desirable. We have also introduced
the former case the specific heat depends on the single-nod@ effective relaxation rate obtained from a global fit to the
probability distribution. The values for the Fermi velocity at magnetization, and found that it agrees qualitatively with the
the nodes, as well as of the slope of the superconducting gapyailable experimental results.
determined from such an analysis are consistent with the In general, the structure of the vortex state may change
values inferred from other experimental measurements, anguite dramatically as the temperature and the applied field
the values directly determined from the photoemissionare varied; one example of such a change is the melting of
Moreover, noticing that the magnitude of théH term is  the vortex lattice. In such a situation we expect a change in
larger for the more ordered vortex state, has allowed us tthe spatially averaged thermodynamic quantities measured in
reduce the discrepancy between the results for the gap slogxperiment that reflects the transition from one type of dis-
obtained by different experimental groups. We have also emribution to another. Moreover, as the degree of ordering in
phasized that the difference in the form of the scaling functhe vortex lattice depends on the history of the sample, the
tion obtained by these groups is naturally explained as aneasured field dependence varies accordingly. For example,
consequence of the smaller Doppler shift energy scale for théhe coefficient of the/H term in the electronic specific heat
field applied in the plane; this work confirms our earlier as-should, in general, depend on whether the sample has been
sessment on the basis of the single-vortex pictére. cooled in an applied field or in zero field: in the latter case

Since the analysis of the scaling plots allowed us to estithe vortex state is more disordered. Whether these effects are
mate the energy scale of the Doppler shift for the field in theobservable experimentally depends crucially on the quality
plane, and since this energy scale is smaller than the Londaof the sample since the changes may be rather small, never-
model estimate of our previous wotkwe have investigated theless, in clean, untwinned samples they may be measur-
here whether the anisotropy in the specific heat between thable.
experimental arrangements with the field applied along a Finally, to illustrate that in the presence of impurities the
node and between the two nodes is observable. We have paido-node probability density is always required we have
special attention to the effect of the Zeeman splitting, whichanalyzed the density of states in the impurity-dominated re-
becomes more important for smaller in-plane sdalg. We  gime for different structures of the vortex state. This part of
have found that, while the zero-temperature anisotropy i®ur work will be developed further in the analysis of the
significantly reduced compared to the case of no Zeematransport properties, which warrants a separate paper.
splitting, as predicted® the anisotropy does not decrease
with the temperature and in the experimentally relevant tem-
perature range the magnitude of the anisotropy is weakly
affected by the inclusion of the Zeeman splitting. The field It is a pleasure to acknowledge discussions and correspon-
dependence of the anisotropic specific heat may, however, lience with L. N. Bulaevskii and A. E. Koshelev. This re-
modified quite significantly, and this change has to be takeisearch has been supported in part by the Department of En-
into account when analyzing the experimental data. ergy under Contract No. W-7405-ENG-86V.), by the NSF

We have considered the spin-lattice relaxation rate as athrough Grant No. DMR-997439@.J.H), and by NSERC
example of a response function that depends on the probabitf Canada, Cottrell Scholar program of Research Corpora-
ity distribution at two nodes; in contrast to the specific heattion, and the Premier's Research Excellence Award of the
the contributions of the nodes are not simply additive. It hassovernment of Ontario, Canadg.J.N). I.V. acknowledges
been known that the magnetization decay is nonexponentifispen Center for Physics for hospitality during the early
due to a distribution of the local relaxation timésie have  stages of this work. 1.V. and P.J.H. are grateful for hospitality
shown here that the effective relaxation rate obtained from and support of ITP Santa Barbara via Grant No. NSF-PHY-
fit to an exponential at short or long time scales is different94-07194.
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