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Quantum-fluctuation-induced repulsive interaction of a quantum string between walls
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A quantum string, which was brought into discussion recently as a model for the stripe phase in doped
cuprates, is simulated by means of the density-matrix-renormalization-group method. String collides with
adjacent neighbors, as it wanders, owing to quantum zero-point fluctuations. The energy cost due to the
collisions is our main concern. Embedding a quantum string between rigid walls with separationd, we found
that for sufficiently larged, collision-induced energy cost obeys the formula;exp(2Ada) with a50.808(1),
and the string’s mean fluctuation width grows logarithmically; log d. Those results are not understood in
terms of a conventional picture that the string is ‘‘disordered,’’ and only short-wavelength fluctuations contrib-
ute to collisions. Rather, our results support a recent proposal that owing to collisions, short-wavelength
fluctuations are suppressed, but instead, long-wavelength fluctuations become significant. This mechanism
would be responsible for stabilizing the stripe phase.
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I. INTRODUCTION

Recently, Zaanen brought up a problem of ‘‘quantu
string,’’1 which is a linelike object subjected to line tensio
and it wanders owing to quantum-mechanical zero-po
fluctuations. Central concern is to estimate the interac
between adjacent strings as it wanders quantu
mechanically and undergoes entropy-reducing ‘‘collision
with their neighbors. Statistical mechanics of quantum-str
gas would be relevant to the low-energy physics of the
called stripe phase observed experimentally in do
cuprates.2–4 In particular, one is motivated to gain insigh
how the stripe pattern formed in cuprates acquires stab
Actually, a good deal of theoretical analyses had predic
tendency toward stripe-pattern formation.5–11 However, first-
principle simulations on thet-J model still remain controver-
sial about that issue.12–14The aim of the aforementioned re
cent analysis1 is to shed light, particularly, on the role of th
quantum fluctuations and the entropy-reducing collisions
the expense of disregarding microscopic constituents
quantum string.

In the path-integral space-time picture, quantum str
spans a world sheet as time evolves.15 Hence, one may won
der that physics of quantum string might bear resemblanc
that of membrane, and so quantum string is readily und
stood through resorting to the past outcomes ab
membrane.16–22 However, elasticities are differen
Quantum-string’s elastic energy is quadratic in its slope~line
tension!, whereas membrane’s is quadratic in its curvat
~bending elasticity!. This seemingly slight difference cause
according to Ref. 1, distinctive behaviors.

When quantum string is laid down in a free space,
Hamiltonian is quadratic, and thus no peculiarity emerg
~We will introduce the Hamiltonian afterwards.! Yet, when it
is squeezed by adjacent neighbors or walls, there imm
ately arise awful complications due to many-body corre
tions. In order to tackle with the string gas, Zaanen emplo
Helfrich’s technique,23,24 that has been utilized in the cours
of the studies of stacked membranes. Thereby, he arrive
the conclusion that collision-induced energy costf would be
0163-1829/2001/64~6!/064510~7!/$20.00 64 0645
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described byf ;exp(2Ad2/3) with string intervald. That re-
sult cannot be understood in terms of conventio
argument25 which gives f ;exp(2Ad2); this argument is
based on such picture that string is ‘‘disordered,’’ and t
collisions are mainly due to short-wavelength meander
modes.~We will outline this argument in Sec. III B.! On the
contrary, Zaanen emphasizes the role of long-wavelen
fluctuations, because his theory is sensitive to infrared cut

The purpose of this paper is to judge the validity of tho
scenarios by performing first-principle simulations. We pu
quantum string between rigid walls with spacingd, and mea-
sured its repelling interaction by observing pressure aga
the walls. @This trick has been used in the studies of t
fluctuation pressure of~classical! membrane.16–18# The
Hamiltonian, which we had simulated, is given by

H5(
i 51

L S pi
2

2m
1V~xi ! D 1 (

i 51

L21
S

2
~xi2xi 11!2. ~1!

Here,xi denotes the operator of transverse displacement
particle ati th site, andpi is its conjugate momentum. The
satisfy the canonical commutation relations@xi ,pj #5 i\d i j ,
@xi ,xj #50 and@pi ,pj #50. V(x) is rigid-wall potential with
spacingd,

V~x!5H 0 for 0<x<d,

` otherwise.
~2!

S denotes line tension which puts particles into line. Clas
cal version of this Hamiltonian has been used as a mode
line dislocations and steps on~vicinal! surfaces.26,27 Note
that for sufficiently largeS, one can take continuum limit
with which one arrives at field-theoretical version of qua
tum string. Such continuum-limit version was studied an
lytically in Ref. 1.

The rest of this paper is organized as follows. In the n
section, we explicate our simulation scheme. We used dia
nalization method: Note that elastic models such as ours~1!
have vast number of vibration modes, which overwhe
computer-memory size. Emphasis is laid upon the point h
©2001 The American Physical Society10-1
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YOSHIHIRO NISHIYAMA PHYSICAL REVIEW B 64 064510
we had adopted the idea of density-matrix renormalizat
group28,29 to quantum string so as to reduce the number
Hilbert-space bases. Our algorithm is indebted to rec
developments,30–32where a polaron model~lattice vibration!
was simulated with use of the density-matrix renormalizat
group; see also Ref. 33. Following the preparations, in S
III, we perform numerical calculation. We show that o
first-principle simulation supports aforementioned Zaane
scenario. In the last section, we give summary and disc
sions.

II. DETAILS OF NUMERICAL METHOD: DENSITY-
MATRIX RENORMALIZATION GROUP

In this section, we explain our simulation algorithm. As
mentioned below, our algorithm is based on recent propos
where the idea of the density-matrix renormalizati
group28,29 is applied to the problem of phonon an
polaron.30–32 We will also show preliminary simulation dat
so as to demonstrate reliability of our calculation.

Quantum string is made of many particles connected w
line tensionS. Each particle spans infinite-dimensional H
bert space. Hence, one is forced to truncate, somehow
number of bases in order to diagonalize the Hamiltoni
Even though one truncated bases of each particle, the
bases of quantum string, as a whole, would exceed avail
computer-memory size. This difficulty arises inevitably
s.
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treating elastic~bosonic! degrees of freedom by means
diagonalization. Recently, however, it has been reported
the difficulty is overcome by an application of the densit
matrix renormalization group.30–32In the following, based on
these developments, we present our simulation scheme
tried to provide enough details for the reader who mig
want to implement it.

Our algorithm is recursive; after the completion of o
recursion~renormalization!, the number of treated particle
~length of quantum string! is enlarged by two, and subse
quent renormalization follows. In the following, we expla
steps constituting one renormalization procedure: Supp
that our system~quantum string! is decomposed into fou
parts, that is, block, site, site and block, in this order. Af
one renormalization is completed, composite systems
block and site are ‘‘renormalized’’ into a new block wit
block Hilbert-space dimensionunchanged.

As would be guessed, ‘‘site’’ merely stands for one p
ticle of quantum string. We then need to prepare base
represent the Hilbert space of ‘‘site.’’ We had chosen suchM
bases that are the eigenstatesun&d(n51;M ) of the intrasite
Hamiltonian Hd5p2/(2m)1V(x) with energy En
5\2p2n2/(2md2). ~Therefore, the direct product ofun&d

gives the eigenstate of the total HamiltonianH, provided that
the line tension is tuned off (S50).! With respect to these
bases$un&d%(n512M ). We represent the matrix of thexi
operator,
@xd#nm5 d^nuxum&d5H 2d

p2 S 1

~m1n!2
2

1

~m2n!2D , ~n,m!5~even,odd! or ~odd,even!,

0, otherwise.

~3!
-

en-

em

nce

er-
ll.
The truncation boundM is one source of numerical error
We need to chooseM sufficiently large; we will demonstrate
afterwards that this truncation does not deteriorate simula
precision in practice.

Let us turn to explaining ‘‘block.’’ The ‘‘block’’ stands for
a part~fragment! of quantum string, and actually, it contain
many particles in it. Hence, at a glance, one may wonder
the Hilbert-space dimension of block would be extrem
large. Yet, owing to the density-matrix renormalization, t
dimension is reduced so that it can be stored in comp
memory. The Hilbert space of block is spanned by tho
basesun&B(n51;m). The bases are to be prepared in t
preceding renormalization procedure; see below. With r
spect to these bases, one has to represent the intrab
HamiltonianHB and the coordinate operator of the particle
the end of ‘‘block’’ xB ; see below. At the initial stage o
renormalization, the block is merely a ‘‘site,’’ and so we st
with HB5Hd , xB5xd andm5M .

Provided that the above matrices are at hand, the~total!
HamiltonianH(5HBddB) of quantum string is expressed
terms of them. Diagonalizing this matrix, one obtains t
ground state,
n

at

er
e

-
ck

t

t

uc&5(
i jkl

c i jkl u i &Bu j &duk&du l &B . ~4!

With use ofc i jkl , we obtain the density matrix for the left
half subsystem (B1d);

@r# i , j ; i 8, j 85(
kl

c i jkl c i 8 j 8kl
* . ~5!

Diagonalizing this, we obtain the eigenstates and the eig
vectors; ruun&5wnuun& with w1.w2.•••.w(M3m) .
Those basesuun& with large weightwn would be important
~relevant! in order to describe the physics of the subsyst
of block and site. Therefore, we store the basesuun& with n
512m, and discard the others. This criterion is the esse
of the so-called density-matrix renormalization group.28,29

That truncation may cause another source of numerical
rors. Later, we will demonstrate that this error is very sma
Finally, we perform the ‘‘density-matrix renormalization,’’
0-2
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QUANTUM-FLUCTUATION-INDUCED REPULSIVE . . . PHYSICAL REVIEW B 64 064510
@HB8#nm5 K unUHB^ 1̂11̂^ Hd1
S

2
~xB

2
^ 1̂22xB^ xd

11̂^ xd
2 !UumL , ~6!

@xB8#nm5^unu1̂^ xduum&. ~7!

Now, a renormalization is completed. We can restart the n
renormalization from the beginning, replacing the renorm
ized block B8 with B. It is to be noted that through th
renormalization, the block dimension is kept withinm.

In the following, we will show that the above algorithm
actually works. In Fig. 1, we plotted the relative error of t
ground-state energydEg /Eg for the system withS54 and
d54. ~This parameter condition is of great physical sign
cance as would be shown in Sec. III.! The system size isL
58, and the dimension of ‘‘site’’ isM59. Therefore, the full
number of bases isML543046721, which is about to excee
the limit of available computer-memory size and is bar
manageable with full diagonalization method. For these
bases, we calculated the ‘‘exact’’ ground-state energy, w
‘‘approximate’’ energy is calculated by means of the dens
matrix renormalization group with truncated ‘‘block’’ dimen
sionm. The energy difference between them givesdEg . The
relative errordEg /Eg is plotted in Fig. 1. We achieve ver
small error 1028 with m520, for which the total number o
bases is no more than 202

•82525600. Hence, we see tha
our algorithm works efficiently. The inset of Fig. 1 shows t
distribution of the density-matrix eigenvalues$wn%. Usually,
wn is utilized for monitoringdEg /Eg , because they look
alike. However, in our case, there are discrepancies in t
magnitudes. The discrepancies may be due to the fact
our Hamiltonian matrix elements distribute over wide ran
By the way, we chosem corresponding towm510212 in Sec.
III. In this way, we kept precision within 1027. Typically, we
need, at most,m530 bases.

FIG. 1. Relative error of the ground-state energy for the sys
with d54, S54, L58, andM59. ‘‘Exact’’ energy is calculated
with respect to the full Hilbert-space dimensionsML598, while
‘‘approximate’’ energy is calculated for truncated ‘‘block’’ basesm
with use of the density-matrix renormalization group. Ground-sta
energy difference between them givesdEg . Note that the truncated
base calculation with smallm reproduces the full-diagonalizatio
result very precisely. Inset shows the density-matrix eigenva
$wn%, which are used for monitoring simulation precision; see t
for details.
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In the above, we have checked that the truncation of bl
dimensionm does not harm any reliability of our simulation
Finally, we will examine the influence of site-dimensio
truncationM. In order to see that, it is sensible to monitor

@rd# j j 85(
ikl

c i jkl c i j 8kl
* . ~8!

As would be apparent from the definition,@rd#nn tells the
degree of significance of the stateun&d. Because we use th
bases ofn512M and discard the others, it should b
checked whether@rd#MM is small enough. We see from Fig
2 that theM59 state is of very rare probability 1027. In the
subsequent simulations in Sec. III, we impose even sev
request@rd#MM510210. In order to match this request, w
need, at most,M520 bases; hence, the maximal total num
ber of Hilbert-space bases is no more thanm2

•M25302

•2025360000. As is mentioned above, the full diagonaliz
tion of Figs. 1 and 2 requires the Hilbert-space dimensio
43046721 for string lengthL58. It is far beyond the capa
bility of the diagonalization method to treat longer strin
unless we resort to the density-matrix renormalization gro

Finally, let us mention the choice of the local basis for t
local degree of freedom; we used low-lying eigenstatesun&d

for the rigid-wall potential. One may wonder that anoth
choice, for instance, a set of local oscillator eigensta
would be more efficient, because it would capture t
string’s vibration adequately. However, this idea does
work, because it does not match the boundary condition
the wave function should vanish at rigid walls. In oth
words, existence of the rigid walls is taken into account
our formalism through the boundary condition.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present simulation results. In our sim
lation, we treated sufficiently large system sizes by repea
renormalizations, until the simulation result converges to
~thermodynamic! limit. System parameters ofm and \ are
fixed; namely, we setm51 and\51. those parameters jus
fix the coefficient of the kinetic-energy term. Therefore, t
choice of parameters does not harm any generality. Techn

m

-

s
t

FIG. 2. Probability weight@rd#nn of the stateun&d is plotted.
This plot indicates how site-dimension truncationM affects the re-
liability of simulation. Probability weight forn59 is negligibly
small; @rd#99'1027. Hence, truncation of those states withn.9
does not deteriorate any reliability in practice. In Sec. III, we im
pose an even severer request@rd#MM'10210.
0-3



,

-
n

e

ic

or

r
en
n-
a

ly

e
lu

a

r
le
xt

m-

ed
ved

otic

g-

s-

ious
e

nt:
ic-

can

-

YOSHIHIRO NISHIYAMA PHYSICAL REVIEW B 64 064510
details are to be referred to the previous section.

A. Collision-induced energy costf and elasticity modulusB

In Fig. 3, we plotted the collision-induced energy cost

f 5
Eg~d!2Eg~d→`!

d
, ~9!

for the system with line tensionS54 and various wall spac
ing d. Here,Eg(d) denotes the ground-state energy per o
particle for wall spacingd. As would be apparent from th
definition ~9!, f measures excess energy cost~per unit vol-
ume! due to the presence of walls. It is notable thatEg(d
→`) is calculated exactly,

Eg~d→`!5
1

2pE2p

p

dkAS

mUsin
k

2U, ~10!

because ford→`, the Hamiltonian reduces to quadrat
form.

In Fig. 3, we notice that two distinctive regimes exist: F
d,2, the collision energyf decreases obeying power law,

f ;1/d3, ~11!

whereas ford.2, it decays ‘‘rapidly,’’ actually, it is our main
concern to clarify how ‘‘rapid’’ it decays. The behavior fo
d,2 is understood immediately: Suppose that the line t
sion is turned off (S50), each particle becomes indepe
dent, and it reduces to a text-book problem of ‘‘particle in
box,’’ for which the ground-state energy is solved exact
Eg5\2p2/(2md2). Hence, we arrive at the relationf
5Eg /d;1/d3. To summarize, for smalld,2, inter-particle
interaction is irrelevant. On the other hand, for larged, the
interparticle interaction may become relevant. Because
this, the particles become correlated, andf drops very rap-
idly.

In order to elucidate characteristics of fluctuation-induc
interaction, it is sensible to calculate the elasticity modu
which is defined by the formula

B5d2
]2f

]d2
. ~12!

In Fig. 4, we plottedB for the same parameter range as th

FIG. 3. Excess energy cost due to collisionsf ~9! is plotted for
S54 and variousd. We see that ford,2, it obeys power lawf
;d23, while for d.2, it drops rapidly.
06451
e
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of Fig. 3. As well asf, B also exhibits two distinctive re-
gimes. Ford,2, we see thatB decays in the formB;1/d3.
This behavior is understood immediately, if we remembef
;1/d3. For larged.2, on the other hand, the interpartic
interaction is relevant. We will explore this phase in the ne
subsection.

B. Scaling analyses

Here, we examine the data off andB presented in Figs. 3
and 4 with use of some analytical predictions. First, we su
marize recent remarkable predictions by Zaanen.1 In his
theory,B works as a mean field, which is to be determin
self-consistently. The self-consistency equation to be sol
is

f 5C
B

Sd2 XlogS Sd

B D1C8C. ~13!

Appearance of logarithmic term is significant.1 It is hard to
solve this self-consistency equation. However, asympt
form for d→` is calculated as follows:

f ;e2C9d2/3
, ~14!

B;d2e2C9d2/3
. ~15!

In addition to Eq.~13!, under the assumption that the strin
meandering modes are irrelevant~frozen!, he found another
self-consistency condition,

f 5C-
AB

d3/2
. ~16!

Note that the validity of this relation is checked, if we a
sume Eq.~11!. Hence, this relation~13! may be realized for
small d.

Besides those recent treatments, there exists an ingen
argument25 in order to deal with entropic interaction. Th
argument, applied for quantum string~1!, yields predictions
different from the above. Below, we outline this argume
As is mentioned in the Introduction, in the path-integral p
ture, quantum string is identical to~classical! membrane.
When quantum string is embedded in a free space, we
solve its mean deviation;(log l)1/2 with membrane’s linear

FIG. 4. Elasticity modulusB ~12! is plotted for the same param
eter range as that of Fig. 3. We see that ford,2, it obeys power
law B;d23, while for d.2, B drops rapidly.
0-4
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QUANTUM-FLUCTUATION-INDUCED REPULSIVE . . . PHYSICAL REVIEW B 64 064510
dimensionl. Suppose that the wall width~mean membrane
interval! is d, with use of this relation, one obtains an es
mate of the surfaceS per one collision such asd
;(logAS)1/2. Assuming that each collision~contact-or-
crossing! gives rise to entropy loss;kBlog 2, we obtain the
collision-induced energy gain per unit surface,

;kBlog 2e2C9d2
. ~17!

The argument is based on the assumption that the s
would be disordered spatially as in the Einstein-like view
a crystal. In other words, short-wavelength fluctuations c
tribute to collisions. On the contrary, Ref. 1 emphasizes
significance of long-wavelength fluctuations. Our aim is
judge which picture is valid by means of first-principle sim
lations.

Guided by the above ideas, we will carry out scali
analyses. First, in Fig. 5, we plottedf d3/2/AB with use of the
data shown in Figs. 3 and 4. Note thatf d3/2/AB should be
constant, if Eq.~16! holds. The scaling plot indicates that fo
d,2, in fact, the scaled data are kept constant. On the c
trary, for d.2, the scaled data drop suddenly, suggest
that Eq.~16! does not hold any more. In consequence,
confirmed that for smalld, string-meandering modes are i
relevant. These observations are consistent with those fo
in the previous subsection.

Secondly, let us turn to large-d regime. In Fig. 6, we
plotted f d2/B againstd/B with use of the data shown in
Figs. 3 and 4. Note that the scale of abscissa is logarithm

FIG. 5. f d3/2/B1/2 is plotted with use of the data shown in Fig
3 and 4. This plot shows that the relation~16!, which is valid for
‘‘compactified’’ string ~Ref. 1!, is realized for smalld. On the other
hand, ford.2, it does not hold at all.

FIG. 6. f d2/B is plotted againstd/B with use of the data shown
in Figs. 3 and 4. Ford/B.1, the data approach a straight lin
asymptotically. This result indicates that the relation~13! is satisfied
for the scaling regiond/B.1.
06451
ng
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e
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Therefore, the data should align, if the relation~13! is satis-
fied. In fact, for scaling regimed/B.1, we see that the
scaled data get aligned, and exhibit a positive slope. T
result justifies the validity of Eq.~13!. Namely, the mean-
field treatment of Ref. 1 appears to capture the essenc
this physics. For exceedingly larged, eventually, numerical
data become scattered~unstable! gradually. This is a symp-
tom of numerical errors. Note that for exceedingly larged,
the elasticity modulusB is very small~see Fig. 4! so that it
suffers from tiny numerical errors. Hence, we cannot co
tinue simulations for extremely larged.

In Fig. 7, we presented similar scaling data but for vario
S52, 4, 6 and 8. The slopes of these data are identical. T
fact tells that the constantC in Eq. ~13! is indeed universal
with respect toS. It is, however, suggested thatC8 is sub-
jected to a correction to scaling, because plots do not o
lap. We had found that scaling data for very smallS,1 are
not described by Eq.~13!. As a matter of fact, the slopes ar
almost vanishing. Breakdown of Eq.~13! for very smallS is
reasonable, because the equation is derived un
continuum-limit treatment which is not justified for ver
smallS. Therefore, such the region of smallS lies out of the
scope of Eq.~13!.

C. Asymptotic form of f

In order to confirm the above observation, we investig
the asymptotic form off for d→`. As is mentioned in the
previous subsection,f should obey the asymptotic form

f ;e2C9da
, ~18!

with the exponent eithera52/3 ~14! or a52 ~17!. We ex-
pect that the former would be realized, because it is deri
from Eq. ~13!, whose validity is checked in Sec. III B. W
calculateda by means of the formula

a5
log„logf ~d1!/ logf ~d2!…

log~d1 /d2!
, ~19!

with respect to adjacent two data points ofd5d1 and d2
depicted in Fig. 3. We plotteda in Fig. 8. The scale of
abscissa 1/@(logd11logd2)/2#2 is chosen so as to achiev
straight data alignment. We employed the least-squ
method in order to extrapolate the result ford→`, and

FIG. 7. Similar scaling analysis as Fig. 6 but for variousS
52 –8. In the scaling regimedS/B.3, slopes appear to be ident
cal, suggesting that the constantC in Eq. ~13! is universal with
respect to arbitraryS.
0-5
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YOSHIHIRO NISHIYAMA PHYSICAL REVIEW B 64 064510
thereby, we obtained the estimatea50.808(1). This result
clearly supportsa52/3 ~14! rather thana52 ~17!. We no-
tice that the convergence speed is rather slow; note tha
abscissa scale of Fig. 8 is logarithmic. Hence, we found
the asymptotic form~14! is realized for extremely larged.

D. Mean fluctuation width D

So far, we have confirmed the validity of the relatio
~13! and ~14!. Underlying physics of these relations
astonishing;1 namely, it is speculated that collisions rath
contribute to straightening the quantum string. In this s
section, we will examine this remarkable scenario direc
We calculated the mean fluctuation deviation,

D5A^xi
2&2^xi&

2. ~20!

In Fig. 9, we plottedD for the same parameter conditions
in Fig. 3. To our surprise,D grows logarithmically (D
; logd) for large d. That is,D is much less than the wa
spacingd. This feature contradicts our intuition that the flu
tuation might be proportional to the wall spacingd. Because
Eq. ~17! relies on this picture, it turned out that this pictu
does not hold for quantum string. Rather this result tells t

FIG. 8. Exponenta ~19! is plotted with use of the data shown i
Fig. 3. With the least-square method, we extrapolated the data s
to obtaina50.808(1) ford→`.

FIG. 9. Meandering-fluctuation width~20! is plotted for the
same parameter range as that of Fig. 3. Ford.2, D grows loga-
rithmically (D; log d). That is, the string’s fluctuation is far les
than the wall spacingd. This result indicates that the string
straightened by collisions.
06451
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string acquires stiffness with respect to short-wavelen
fluctuations. That is, string’s fluctuations are governed
long-wavelength modes.

IV. SUMMARY

We have investigated fluctuation-induced repelling int
action of quantum string described by the Hamiltonian~1!.
First, we have developed simulation scheme based on
idea of the density-matrix renormalization group.30–32 We
found that the scheme works very efficiently. As is demo
strated in Fig. 1, ground-state energy is precise up to
eighth digit. Precision is crucial in our study, because
need to calculate second-order derivative in order to ob
the elasticity modulusB ~12!. Secondly, based on thos
preparations, we have performed extensive simulatio
Simulation data suggest that two distinctive regimes ex
For smalld, intraparticle interaction dominates so that sim
lation data are understood by ignoring line tension (S50).
That is, collision-induced energy costf and the elasticity
modulus B obey simple formulas such asf ,B;d23. For
large d, on the other hand, particles get correlated by l
tensionS, and physics becomes much harder to interpret.
made trials of several types of scalings in Figs. 5–7. Fr
those scaling plots, in consequence, we found that the da
f andB agree with Zaanen’s self-consistency condition~13!.
Moreover, we investigated the asymptotic form off. We
found f ;exp(2C8da) with a50.808(1), which again sup-
ports Zaanen’s result~14! rather than Eq.~17!.

According to him, underlying physics of Eqs.~13! and
~14! is quite peculiar; collisions with adjacent neighbo
rather suppress short-range fluctuations, and conseque
quantum string is straightened macroscopically. In fact,
found that in Fig. 9, string’s fluctuation deviationD is
bounded withinD; logd, which is far less than the wal
spacing d. The above observations tell that in essen
quantum-string’s ground state is governed by lon
wavelength fluctuations. In this respect, it is decisively i
portant to treat sufficiently long quantum string; otherwi
we could not have observed those features mentioned ab

We have confirmed that owing to collisions, actually, o
der out of disorder sets in. This observation immediat
leads an expectation that the stripe pattern observed in do
cuprates2–4 is stabilized by this mechanism. To verify th
scenario definitely, one needs to explore ‘‘stacked’’ strin
As for stacked membranes, it has been known t
N-membrane behavior is essentially the same as that
single membrane confined between walls.17,21 That is, there
is a relation, with which one obtainsN-membrane behavio
with respect tosingle-membrane result. It remains for futur
study to verify that similar relation holds as well as f
stacked strings.
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