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Quantum-fluctuation-induced repulsive interaction of a quantum string between walls
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A quantum string, which was brought into discussion recently as a model for the stripe phase in doped
cuprates, is simulated by means of the density-matrix-renormalization-group method. String collides with
adjacent neighbors, as it wanders, owing to quantum zero-point fluctuations. The energy cost due to the
collisions is our main concern. Embedding a quantum string between rigid walls with sepakatierfound
that for sufficiently larged, collision-induced energy cost obeys the formulaxp(—Ad®) with «=0.80§1),
and the string’s mean fluctuation width grows logarithmicaltyogd. Those results are not understood in
terms of a conventional picture that the string is “disordered,” and only short-wavelength fluctuations contrib-
ute to collisions. Rather, our results support a recent proposal that owing to collisions, short-wavelength
fluctuations are suppressed, but instead, long-wavelength fluctuations become significant. This mechanism
would be responsible for stabilizing the stripe phase.
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. INTRODUCTION described byf ~exp(—Ad’3) with string intervald. That re-
sult cannot be understood in terms of conventional
Recently, Zaanen brought up a problem of “quantumargumernt® which gives f~exp(—Ad); this argument is
string,”* which is a linelike object subjected to line tension, based on such picture that string is “disordered,” and the
and it wanders owing to quantum-mechanical zero-pointollisions are mainly due to short-wavelength meandering
fluctuations. Central concern is to estimate the interactioomodes.(We will outline this argument in Sec. 1l BOn the
between adjacent strings as it wanders quantumeontrary, Zaanen emphasizes the role of long-wavelength
mechanically and undergoes entropy-reducing “collisions”fluctuations, because his theory is sensitive to infrared cutoff.
with their neighbors. Statistical mechanics of quantum-string The purpose of this paper is to judge the validity of those
gas would be relevant to the low-energy physics of the soscenarios by performing first-principle simulations. We put a
called stripe phase observed experimentally in dopedjuantum string between rigid walls with spacitigand mea-
cuprate$~* In particular, one is motivated to gain insights sured its repelling interaction by observing pressure against
how the stripe pattern formed in cuprates acquires stabilitythe walls.[This trick has been used in the studies of the
Actually, a good deal of theoretical analyses had predictefluctuation pressure of(classical membrand®~'9 The
tendency toward stripe-pattern formatioit: However, first-  Hamiltonian, which we had simulated, is given by
principle simulations on theJ model still remain controver-
sial about that issu¥ 1 The aim of the aforementioned re- .
cent analysisis to shed light, particularly, on the role of the H 21
guantum fluctuations and the entropy-reducing collisions at
the expense of disregarding microscopic constituents ofere,x; denotes the operator of transverse displacement of a
guantum string. particle atith site, andp; is its conjugate momentum. They
In the path-integral space-time picture, quantum stringsatisfy the canonical commutation relatidng,p;1=i% 4,
spans a world sheet as time evolv@sience, one may won- [x; X;1=0 and[p; ,p;]=0. V(x) is rigid-wall potential with
der that physics of quantum string might bear resemblance tepacingd,
that of membrane, and so quantum string is readily under-
stood through resorting to the past outcomes about
membrané®=??> However, elasticites are different: V(X)=[
Quantum-string’s elastic energy is quadratic in its sldjme
tensior), whereas membrane’s is quadratic in its curvatureX, denotes line tension which puts particles into line. Classi-
(bending elasticity This seemingly slight difference causes, cal version of this Hamiltonian has been used as a model for
according to Ref. 1, distinctive behaviors. line dislocations and steps oicinal) surface$®?” Note
When quantum string is laid down in a free space, itsthat for sufficiently largeX, one can take continuum limit,
Hamiltonian is quadratic, and thus no peculiarity emergeswith which one arrives at field-theoretical version of quan-
(We will introduce the Hamiltonian afterward¥/et, when it  tum string. Such continuum-limit version was studied ana-
is squeezed by adjacent neighbors or walls, there immediytically in Ref. 1.
ately arise awful complications due to many-body correla- The rest of this paper is organized as follows. In the next
tions. In order to tackle with the string gas, Zaanen employedection, we explicate our simulation scheme. We used diago-
Helfrich's techniqué>2?*that has been utilized in the course nalization method: Note that elastic models such as @rs
of the studies of stacked membranes. Thereby, he arrived &tve vast number of vibration modes, which overwhelm
the conclusion that collision-induced energy cbatould be  computer-memory size. Emphasis is laid upon the point how
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we had adopted the idea of density-matrix renormalizatiorireating elastic(bosoni¢ degrees of freedom by means of
groug®?° to quantum string so as to reduce the number ofdiagonalization. Recently, however, it has been reported that
Hilbert-space bases. Our algorithm is indebted to recerithe difficulty is overcome by an application of the density-
development&-32where a polaron modélattice vibration ~ matrix renormalization groug).‘s‘zln the following, based on
was simulated with use of the density-matrix renormalizatiorthese developments, we present our simulation scheme; we
group; see also Ref. 33. Following the preparations, in Sedried to provide enough details for the reader who might
Ill, we perform numerical calculation. We show that our Want to implement it. _ _
first-principle simulation supports aforementioned Zaanen's OuUr algorithm is recursive; after the completion of one

scenario. In the last section, we give summary and discudecursion(renormalization, the number of treated particles
sions. (length of quantum stringis enlarged by two, and subse-

guent renormalization follows. In the following, we explain
Il DETAILS OF NUMERICAL METHOD: DENSITY- steps constituting one renormalization procedure: Suppose

that our systemquantum string is decomposed into four
MATRIX RENORMALIZATION GROUP . . . . -
parts, that is, block, site, site and block, in this order. After

In this section, we explain our simulation algorithm. As is one renormalization is completed, composite systems of
mentioned below, our algorithm is based on recent proposal$lock and site are “renormalized” into a new block with
where the idea of the density-matrix renormalizationblock Hilbert-space dimensiomnchanged
group®?® is applied to the problem of phonon and As would be guessed, “site” merely stands for one par-
polaron®*-32We will also show preliminary simulation data ticle of quantum string. We then need to prepare bases to
so as to demonstrate reliability of our calculation. represent the Hilbert space of “site.” We had chosen sMch

Quantum string is made of many particles connected wittbases that are the eigenstgigsg (n=1~M) of the intrasite
line tensions,. Each particle spans infinite-dimensional Hil- Hamiltonian He=p?/(2m)+V(x) with energy E,
bert space. Hence, one is forced to truncate, somehow, the#?7%n%/(2md?). (Therefore, the direct product dh)e
number of bases in order to diagonalize the Hamiltoniangives the eigenstate of the total Hamiltonignprovided that
Even though one truncated bases of each particle, the toteie line tension is tuned off¥{=0).) With respect to these
bases of quantum string, as a whole, would exceed availableases{|n)¢}(N=1—M). We represent the matrix of the
computer-memory size. This difficulty arises inevitably in operator,

2d 1 1
[XQ]nm: .<n|x|m>.= 2 (m+n)2 (m_n)2
0, otherwise.

, ,m)= ,od dd, ,
) (n,m)=(even,odd or (odd,even 3

The truncation bound/ is one source of numerical errors. o
We need to chooskl! sufficiently large; we will demonstrate [y =2 dijwlielidelK)ell s (4
. . . . . 1jkl

afterwards that this truncation does not deteriorate simulation
precision in practice.

Let us turn to explaining “block.” The “block” stands for ~ With use of;; , we obtain the density matrix for the left-
a part(fragmenj of quantum string, and actually, it contains half subsystem (B @®);
many particles in it. Hence, at a glance, one may wonder that
the Hilbert-space dimension of block would be extremely
large. Yet, owing to the density-matrix renormalization, the .
dimension is reduced so that it can be stored in computer [P]ivJ:i’,J’:% Bikiirjria - ®)
memory. The Hilbert space of block is spanned by those
bases|n)g(n=1~m). The bases are to be prepared in the
preceding renormalization procedure; see below. With re-Diagonalizing this, we obtain the eigenstates and the eigen-
spect to these bases, one has to represent the intrablogkctors; p|uy)=wg|u,)  With  Wi>W,> - >Wyxm) -
HamiltonianHg and the coordinate operator of the particle atThose basefu,) with large weightw, would be important
the end of “block” xg; see below. At the initial stage of (relevanj in order to describe the physics of the subsystem
renormalization, the block is merely a “site,” and so we startof block and site. Therefore, we store the basgs with n
with Hg="He, Xg=Xg andm=M. =1-m, and discard the others. This criterion is the essence

Provided that the above matrices are at hand,(thi@l)  of the so-called density-matrix renormalization grétip®
HamiltonianH(=Hgeeg) Of quantum string is expressed in That truncation may cause another source of numerical er-
terms of them. Diagonalizing this matrix, one obtains therors. Later, we will demonstrate that this error is very small.
ground state, Finally, we perform the “density-matrix renormalization,”
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FIG. 1. Relative error of the ground-state energy for the system giG. 2. Probability weighf pe ], Of the stateln)e is plotted.

with d=4, =4, L=8, andM =9. “Exact” energy is C§|CU|§ted This plot indicates how site-dimension truncatiehaffects the re-
with respect to the full Hilbert-space dimensioht =9°, while jiapjlity of simulation. Probability weight fom=9 is negligibly

“approximate” energy is calculated for truncated “block” bas@s  small; [ pg]ee~10" 7. Hence, truncation of those states with9

with use of the density-matrix renormalization group. Ground-stateyoes not deteriorate any reliability in practice. In Sec. Ill, we im-
energy difference between them givéis;. Note that the truncated- pose an even severer requgsg Jymv~10"°.

base calculation with smath reproduces the full-diagonalization

result very precisely. Inset shows the density-matrix eigenvalues |, the above, we have checked that the truncation of block

{Wy}, which are used for monitoring simulation precision; see textimensionm does not harm any reliability of our simulation.

for details. Finally, we will examine the influence of site-dimension
truncationM. In order to see that, it is sensible to monitor

A p) R
Heg®l+10He+ E(xé®1—2x5®x.

[H ’]nm: < Up
B [P.]jj':% ‘/’ijkl‘/’;’kl' ®)

+10x3)

”m>’ 6 As would be apparent from the definitiofye ], tells the
degree of significance of the stdte)¢. Because we use the
- bases ofn=1—-M and discard the others, it should be
[XgInm={Un| 1@ X |Um)- (7)  checked whethdipe ]y is Small enough. We see from Fig.
S 2 that theM =9 state is of very rare probability I0. In the
Now, a renormalization is completed. We can restart the nex{psequent simulations in Sec. Ill, we impose even severer
renormalization from the beginning, replacing the renorma"request[p.],\,,,\,,z 10729, In order to match this request, we
ized block B with B. It is to be noted that through the need, at mostM =20 bases: hence, the maximal total num-
renormalization, the block dimension is kept within ber of Hilbert-space bases is no more thad- M2=3C?

In the following, we will show that the above algorithm . 252 360000. As is mentioned above, the full diagonaliza-
actually works. In Fig. 1, we plotted the relat'ive error of the tjon of Figs. 1 and 2 requires the Hilbert-space dimensions
ground-state energyE,/E, for the system withx=4 and 43046721 for string length =8. It is far beyond the capa-
d=4. (This parameter condition is of great physical signifi- pjjity of the diagonalization method to treat longer string,
cance as would be shown in Sec.)llThe system size i pjess we resort to the density-matrix renormalization group.
=8, and the dimension of “site” i1 =9. Therefore, the full Finally, let us mention the choice of the local basis for the
number of bases - =43046721, which is about to exceed local degree of freedom; we used low-lying eigenstéteg

the limit of available computer-memory size and is barelyfor the rigid-wall potential. One may wonder that another
manageable with full diagonalization method. For these fullchgice, for instance, a set of local oscillator eigenstates,

bases, we calculated the “exact” ground-state energy, whil§youild be more efficient, because it would capture the
“approximate” energy is calculated by means of the density-string's vibration adequately. However, this idea does not
matrix renormalization group with truncated “block” dimen- \ork, because it does not match the boundary condition that
sionm. The energy difference between them givis,. The  the wave function should vanish at rigid walls. In other

relative error6Ey/E, is plotted in Fig. 1. We achieve very \yords, existence of the rigid walls is taken into account in
small error 108 with m=20, for which the total number of our formalism through the boundary condition.

bases is no more than 2@?=25600. Hence, we see that
our algorithm works efficiently. The inset of Fig. 1 shows the
distribution of the density-matrix eigenvalugs,}. Usually,
w, is utilized for monitoring SE4/Ey, because they look In this section, we present simulation results. In our simu-
alike. However, in our case, there are discrepancies in thelation, we treated sufficiently large system sizes by repeating
magnitudes. The discrepancies may be due to the fact thatnormalizations, until the simulation result converges to a
our Hamiltonian matrix elements distribute over wide range (thermodynamig limit. System parameters oh and# are

By the way, we chosen corresponding tev,=10 ?in Sec.  fixed; namely, we sem=1 and%=1. those parameters just
1. In this way, we kept precision within I0'. Typically, we  fix the coefficient of the kinetic-energy term. Therefore, the
need, at mostn= 30 bases. choice of parameters does not harm any generality. Technical

IlI. NUMERICAL RESULTS AND DISCUSSIONS
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FIG. 3. Excess energy cost due to collisidr®) is plotted for FIG. 4. Elasticity modulu® (12) is plotted for the same param-
2:43 and variousd. We see that fod<2, it obeys power lawf  eter range as that of Fig. 3. We see thatder2, it obeys power
~d™~, while for d>2, it drops rapidly. law B~d~2, while for d>2, B drops rapidly.
details are to be referred to the previous section. of Fig. 3. As well asf, B also exhibits two distinctive re-
gimes. Ford<2, we see thaB decays in the fornB~ 1/d°.
A. Collision-induced energy costf and elasticity modulus B This behavior is understood immediately, if we remember

~1/d®. For larged>2, on the other hand, the interparticle

interaction is relevant. We will explore this phase in the next
Eq(d) —E4(d—) subsection.

= 5 , (©)

In Fig. 3, we plotted the collision-induced energy cost,

5 B. Scaling analyses
for the system with line tensiob =4 and various wall spac- . -
ing d. Here,E4(d) denotes the ground-state energy per one :ire’.t\r’]"e exarfmne the da\Ita_banBgr?_senteg_ thlgs. 3

particle for wall spacingl. As would be apparent from the and 4 with use of some analytical predictions. First, we sum-

definition (9), f measures excess energy c@sér unit vol- marize recent remarkable predictions by Zaahdn. his
ume due to,the presence of walls. It is notable tha(d theory, B works as a mean field, which is to be determined
o) is calculated exactly ' self-consistently. The self-consistency equation to be solved

IS
1 (= 3
Eg(d—>00)= Z,f— dk m

> d? B
because ford—«, the Hamiltonian reduces to quadratic o S )
form. Appearance of logarithmic term is significanlt is hard to

In Fig. 3, we notice that two distinctive regimes exist: For SCIve this self-consistency equation. However, asymptotic
d<2, the collision energy decreases obeying power law, form for d—o is calculated as follows:

f~1/d3, (11) f~gC'd* (14)

whereas fod>2, it decays “rapidly,” actually, it is our main B~ d2e-C"d? (15)
concern to clarify how “rapid” it decays. The behavior for ’
d<2 is understood immediately: Suppose that the line tenin addition to Eq.(13), under the assumption that the string-
sion is turned off E=0), each particle becomes indepen- meandering modes are irrelevafiozen, he found another
dent, and it reduces to a text-book problem of “particle in aself-consistency condition,
box,” for which the ground-state energy is solved exactly;
Eg=f%m?/(2md?). Hence, we arrive at the relatiof B B
=Eg/d~1/d3. To summarize, for smali<2, inter-particle f=C dT/z (16)
interaction is irrelevant. On the other hand, for ladyehe
interparticle interaction may become relevant. Because ofote that the validity of this relation is checked, if we as-
this, the particles become correlated, dndrops very rap- sume Eq(11). Hence, this relatiori13) may be realized for
idly. small d.

In order to elucidate characteristics of fluctuation-induced Besides those recent treatments, there exists an ingenious
interaction, it is sensible to calculate the elasticity modulusargumerf® in order to deal with entropic interaction. The

: (10

Kk
Slnz

+C'|. (13)

B >d
f=C——|log

which is defined by the formula argument, applied for quantum strin@), yields predictions
different from the above. Below, we outline this argument:
5 9*f As is mentioned in the Introduction, in the path-integral pic-

B=d (12) ture, quantum string is identical ttclassical membrane.

—.
ad When quantum string is embedded in a free space, we can
In Fig. 4, we plottedB for the same parameter range as thatsolve its mean deviatior- (log|)"? with membrane’s linear
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FIG. 7. Similar scaling analysis as Fig. 6 but for varitis
=2-8. In the scaling regimé>/B>3, slopes appear to be identi-
cal, suggesting that the consta@tin Eq. (13) is universal with
respect to arbitrary,.

FIG. 5. fd¥%B? s plotted with use of the data shown in Figs.
3 and 4. This plot shows that the relati¢b6), which is valid for
“compactified” string (Ref. 1), is realized for smaltl. On the other
hand, ford>2, it does not hold at all.

Therefore, the data should align, if the relatid3) is satis-
fied. In fact, for scaling regimel/B>1, we see that the
scaled data get aligned, and exhibit a positive slope. This
result justifies the validity of Eq(13). Namely, the mean-
field treatment of Ref. 1 appears to capture the essence of
this physics. For exceedingly largk eventually, numerical
data become scatterédnstable gradually. This is a symp-
_crd? tom of numerical errors. Note that for exceedingly ladye

. 17 the elasticity modulu® is very small(see Fig. 4 so that it

The argument is based on the assumption that the Strin@uﬁers'from tiny numerical errors. Hence, we cannot con-
would be disordered spatially as in the Einstein-like view of nue s_|mulat|ons for extremel_y largk . .
a crystal. In other words, short-wavelength fluctuations con-. N Fig- 7, we presented similar scaling data but for various
tribute to collisions. On the contrary, Ref. 1 emphasizes the* — 2: 4, 6 and 8. The slopes of these data are identical. This
significance of long-wavelength fluctuations. Our aim is to'act tells that the constar in Eq. (13) is indeed universal
judge which picture is valid by means of first-principle simu- With respect tax. It is, however, suggested that is sub-
lations. jected to a correction to scaling, because plots do not over-
Guided by the above ideas, we will carry out scaling'ap- We h_ad found that scaling data for very sn¥at 1 are
analyses. First, in Fig. 5, we plottéd®? /B with use of the not descrlb_ed.by Eq13). As a matter of fact, the SIOpeS. are
data shown in Figs. 3 and 4. Note tHat®%//B should be almost vanishing. Breakdown of E(L3) for very smallX is

constant, if Eq(16) holds. The scaling plot indicates that for reas.onable,' pecause the 'equ'atlon IS '('jenved under
d<2, in fact, the scaled data are kept constant. On the Conqontlnuum-llmlt treatment Wh'ch Is not Jus.t'f'ed for very
' ' mallX. Therefore, such the region of smalllies out of the

trary, for d>2, the scaled data drop suddenly, suggestin

that Eq.(16) does not hold any more. In consequence, we cope of Eq(13).
confirmed that for smaltl, string-meandering modes are ir-
relevant. These observations are consistent with those found C. Asymptotic form of f

in the previous subsection. _ . In order to confirm the above observation, we investigate
Secondly, let us turn to largg-regime. In Fig. 6, we the asymptotic form of for d—. As is mentioned in the

plotted fd*/B againstd/B with use of the data shown in previous subsectiori,should obey the asymptotic form
Figs. 3 and 4. Note that the scale of abscissa is logarithmic.

dimensionl. Suppose that the wall widttmean membrane
interva) is d, with use of this relation, one obtains an esti-
mate of the surfaceS per one collision such asl
~(logy/S)Y2. Assuming that each collisior(contact-or-
crossing gives rise to entropy loss kglog 2, we obtain the
collision-induced energy gain per unit surface,

~kglog 2e

f~e €' (18)

0.26 ' "o _ _

0.25 J with the exponent eitheww=2/3 (14) or a=2 (17). We ex-
C\D 0.24 i pect that the former would be realized, because it is derived
%G 0.23 - from Eq. (13), whose validity is checked in Sec. Ill B. We
u—0.22 . calculateda by means of the formula

0.21 .

0.2 1 _ log(logf(d1)/logf(d>)) 19
019 ' ' T logldidy) 19

10

1
d/B with respect to adjacent two data points b d; and d,
FIG. 6. fd2/B is plotted againstl/B with use of the data shown depicted in Fig. 3. We plottedr in Fig. 8. The scale of
in Figs. 3 and 4. Fod/B>1, the data approach a straight line abscissa I(logd;+logd,)/2]? is chosen so as to achieve
asymptotically. This result indicates that the relatftid) is satisfied ~ Straight data alignment. We employed the least-square
for the scaling regionl/B>1. method in order to extrapolate the result fdrc, and

064510-5



YOSHIHIRO NISHIYAMA PHYSICAL REVIEW B 64 064510

4 string acquires stiffness with respect to short-wavelength
35 fluctuations. That is, string’s fluctuations are governed by
22 i long-wavelength modes.

0(12 i IV. SUMMARY

Tk . We have investigated fluctuation-induced repelling inter-
05 1 action of quantum string described by the Hamiltoni{&h

0 ' ! : : First, we have developed simulation scheme based on the

0 05 1 15 2 22'5 idea of the density-matrix renormalization grotip? We
1/((logd;+logdy)/2) found that the scheme works very efficiently. As is demon-

strated in Fig. 1, ground-state energy is precise up to the
FIG. 8. Exponentr (19) is plotted with use of the data shown in ejghth digit. Precision is crucial in our study, because we
Fig. 3. With the least-square method, we extrapolated the data so aged to calculate second-order derivative in order to obtain
to obtaina=0.808(1) ford—co. the elasticity modulusB (12). Secondly, based on those
preparations, we have performed extensive simulations.
thereby, we obtained the estimaie=0.80§1). This result  Simulation data suggest that two distinctive regimes exist:
clearly supportsy=2/3 (14) rather thana=2 (17). We no-  For smalld, intraparticle interaction dominates so that simu-
tice that the convergence speed is rather slow; note that tHation data are understood by ignoring line tensian=0).
abscissa scale of Fig. 8 is logarithmic. Hence, we found thathat is, collision-induced energy co$tand the elasticity
the asymptotic forni14) is realized for extremely large. modulus B obey simple formulas such @sB~d ™. For
large d, on the other hand, particles get correlated by line
tension2,, and physics becomes much harder to interpret. We
made trials of several types of scalings in Figs. 5—7. From
So far, we have confirmed the validity of the relationsthose scaling plots, in consequence, we found that the data of
(13) and (14). Underlying physics of these relations is f andB agree with Zaanen’s self-consistency conditi@8).
astonishing: namely, it is speculated that collisions rather Moreover, we investigated the asymptotic form fofWwe
contribute to straightening the quantum string. In this subfound f~exp(—C’d®) with «=0.80§1), which again sup-
section, we will examine this remarkable scenario directlyports Zaanen’s resuitl4) rather than Eq(17).

D. Mean fluctuation width A

We calculated the mean fluctuation deviation, According to him, underlying physics of Eqél3) and
(14) is quite peculiar; collisions with adjacent neighbors
A:‘/<Xi2>_<xi>2- (20 rather suppress short-range fluctuations, and consequently,

quantum string is straightened macroscopically. In fact, we
In Fig. 9, we plottedA for the same parameter conditions asfound that in Fig. 9, string’s fluctuation deviatioA is
in Fig. 3. To our surpriseA grows logarithmically A bounded withinA~logd, which is far less than the wall
~logd) for larged. That is,A is much less than the wall spacingd. The above observations tell that in essence,
spacingd. This feature contradicts our intuition that the fluc- quantum-string’s ground state is governed by long-
tuation might be proportional to the wall spacidgBecause wavelength fluctuations. In this respect, it is decisively im-
Eq. (17) relies on this picture, it turned out that this picture portant to treat sufficiently long quantum string; otherwise
does not hold for quantum string. Rather this result tells thatve could not have observed those features mentioned above.
We have confirmed that owing to collisions, actually, or-
0.6 r der out of disorder sets in. This observation immediately

05 k i leads an expectation that the stripe pattern observed in doped
) cuprate$™* is stabilized by this mechanism. To verify this
A04} 1 scenario definitely, one needs to explore “stacked” strings.
03 | i As for stacked membranes, it has been known that
N-membrane behavior is essentially the same as that of a
021 i single membrane confined between waft8! That is, there
0.1 \ = is a relation, with which one obtair§-membrane behavior
06 1 2 3 4 with respect tesinglemembrane result. It remains for future
d study to verify that similar relation holds as well as for

. . . . stacked strings.
FIG. 9. Meandering-fluctuation widt20) is plotted for the

same parameter range as that of Fig. 3. &o12, A grows loga- ACKNOWLEDGMENTS

rithmically (A~logd). That is, the string’s fluctuation is far less

than the wall spacingl. This result indicates that the string is Numerical calculation was performed on Alpha worksta-
straightened by collisions. tions of Theoretical Physics Group, Okayama University.
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