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Vortex dynamics in two-dimensional systems at high driving forces
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We study numerically the dynamics of two-dimensional vortex systems at zero temperature. In addition to
pinned states and turbulent plastic flow, we find motion of vortices in rough channels along the direction of the
driving force. In this decoupled channel regime we demonstrate how topological defects mediate the phase slip
of different channels moving with different velocities. We thus provide important confirmation of recent
analytical work describing vortex dynamics at high driving forces such as the moving glass theory of Giama-
rchi and Le Doussal. For the largest driving forces we find that the channels couple and observe elastic motion.
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[. INTRODUCTION dimensional 2D vortex system in the presence of random
disorder varying on a length scale much smaller than the
Vortex dynamics in the presence of disordering pinningvortex-vortex spacing. Our model describes rigid vortices in
show a variety of nonequilibrium physics and dynamicthin films or decoupled pancake vortices in layered materials.
phase transitions. Experiments, numericaf*? and We employ a modified cutoff to the appropriate interaction
analyticat®=*® work suggest that a disordered static systenforce that cor_regponds to a logarithmic vortex-vortex inter-
of vortices shows ordering at higher driving forces. Koshelevaction potentiaf® After annealing a vortex system to zero
and Vinokut® predicted a dynamic phase transition betweerf€mperature, we apply an increasing driving force and study
plastic sliding for driving forces just above depinning andthe dynamics of the system systematically for different pin-
coherent motion of crystalline structures at high drivingning strengths. _ _ .
forces. Subsequently, Giamarchi and Le Douésatedicted Section Il describes the simulation and the computational
that the strongly driven and reordered system would be &€tails. In Sec. lll we present a dynamic phase diagram and
moving glass, where vortices move elastically-coupled alon§ive an overview of the observed dynamic phagésA).
static channels, such that they flow in the direction of thelhese phases are a pinned vortex glasisB), different
driving force along well-defined, nearly parallel paths in thekinds of turbulent plastic flowlll C), a decoupled channel
pinning potential. These optimal channdla two dimen-  feégime(lliD), and coherently moving structur¢sl E). In
siong or sheetgin three dimensionsshow a roughness and Sec. IV we consider the decoupled channel regime in detail:

are predicted to be a static and reproducible feature of th@€ report on the dependence of the spatial distribution of
disorder configuration. velocities in the different channels on the pinning landscape

Balents, Marchetti, and Radzihovsky argtiethat in ad-  (IV A), we show how topological defects between the chan-
dition to elastically-coupled channelso topological defects Nels mediate the phase slip between channels while preserv-

in the systemat intermediate velocities a transverse-movingind the transverse periodicity of the systéh B), and we
smectid®1® would exist in which motion of vortices in dif- 9ive information on the transverse depinning in the decou-

ferent channels is decouplémpological defects between the Pled channel regim¢lV C). Finally, we draw our conclu-
channels Later work®~®mainly supported the initial find- Sions in Sec. V. The Appendix contains technical information

ings of Giamarchi and Le Doussal with the addition of the®n the smooth cutoff used.
moving smectic as predicted by Balents, Marchetti and

Radzihovsky® Different names are in common use: the Il. THE SIMULATION
moving transverse gla¥s(MTG), moving smectit® and de- ) .
coupled channet$ refer to the decoupled channel motion, A. Equation of motion
and the moving Bragg gla¥5(MBG), moving latticé® and We consider a two-dimensional vortex system and model
coherent phasé refer to the regime of elastically coupled the vortex motion with overdamped Langevin dynamics. The
channels. total forceF; acting on vortex is given by
The theoretical descriptiolfs 8 of these dynamic phases
are based on elastic theory and assume either the absence Fi=— v+ F-+ PV + FP+ FemM=, (1)

(for the MBG) or the irrelevancéfor the MTG) of topologi- _ _ ] o
cal defects. In fact, the theory of Giamarchi and LeWhere 7 is the Bardeen-Steph&nviscosity coefficienty;
Doussal*8 describes both regimes with the same equationthe velocity,F- the Lorentz force acting equally on all vor-
which is(nearly exact for the MBG and remains an effective tices, F{" the vortex-vortex interactionf* the vortex-
description for the MTG. In this work we investigate the role pinning interaction, and="™®™ a stochastic noise term to
of topological defects in the MTG to check the validity of model temperaturé The vortex-vortex interaction force for
assumptions entering the theory of Giamarchi and Le Dousrigid vortices in thin fiims and pancakes in decoupled
sal, and find them to be justified. layers of multilayer materials experienced by vortexat
We review the dynamic phase diagram for a two-positionr; is®°
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The constantb is the magnetic flux quantuns,the length 2 : :
of the vortex,u the vacuum permeability, anndthe London £ i P
penetration depth. We employ periodic boundary conditions . L9 ! :
and cut off the logarithmic vortex-vortex repulsion potential ; i

smoothly!® The important feature of this modified interac-
tion potential is that it does not introduce numerical artifacts, (a) —W-—
such as topological defects that can result from using a naive
cutoff potential. Details can be found in the Appendix and
Ref. 19. The cutoff distance is minf2,L,/2) whereL, and

L, are the lengths of the sides of the rectangular simulation
cell. The lengthd., andL are chosen such that a hexagonal
lattice fits perfectly in the simulation cell.

We investigate systems with a magnetic inductionBof
=1 T and a penetration depth af=1400 A that yields a
vortex density of~10/\? representative of typical cuprate
superconductors. The random pinning potential we have em-
ployed varies smoothly on a length scalexé25, which is of
the order of the coherence length This is a representation
of random pinning on the atomic length scéler example,
due to oxygen vacancies or small clusters of oxygen vacan-
cies S_'nce the vortex cores effectively SmO,Oth the p_'nmngtiples of the vortex lattice spacingy. (2) Demonstration of con-
potential over a length scale of the core diametér Big.  ggryction of the pinning potential in one dimension: First, we assign
1(a) demonstrates the construction of the pinning potential inangdom pinning energies at discrete sitsown as open circlgs

one dimension. Figure(-t‘h) ShO_WS a part of the pinning_ Struc- with spacingw. Secondly, we interpolate between those sites using
ture used for the two-dimensional system. System sizes fromupic splines to obtain an effectively continous pinning potential.

100 to 3000 vortices have been investigated. We measurghis results in a random pinning potential with a short-range cor-
|ength3 in units ofA =1400 A, and forces in units of the re|at0rW:g(r—r’) of rangew. We follow an ana|ogous
force f, that two vortices separated by experience. We procedure in two dimensiongb) A part of a pinning potential as
express time in units ofy= n\/fy= 7727T,u0)\4/<D(2,s which  used in the simulations. The seven black cylinders indicate vortex
is in line with other simulation?:23 lines separated bg, to demonstrate the length scale.

5
Distance /ao

FIG. 1. A sample pinning potential. Distances are given in mul-

B. Observables the pinning force field is denoted B5}2,. An annealed vor-

o . . , tex configuration is shown in Fig. 2. After annealing, a driv-
To distinguish different dynamic phases we monitor thej,, force s applied that is subsequently increased every

topological defect densitily (defined as the fraction of vor- 451 time steps. This yields force-velocity characteristics
tices with less or mg%;e than six nearest neighbors in theyat correspond to experimentally obtainable current-voltage
Delaunay triangulation)) and the distributionl’((v)) of  characteristicsat zero temperatureThe driving forceF" is

time-averaged velocitiev;)(t) = |[ri(t+to) —ri(to) /t| of  rajated to the current densifyia F-=sj x ®,, and the vor-
individual vorticesi over timet. We also observe the struc- tex velocity to the induced electric field via E=BXv,

ture factor of the systerithe Fourier transform of the vortex \;nerep is the magnetic induction andthe vortex velocity.

positions, a measure for local hexagonal ordesing bond We investigate the modes of motion at different driving

anglesdy from the Delaunay triangulation we compuiés  ¢qrces and pinning strengths using the observables specified

= (Unpond | =22 exp(66y)], where nyong is the number of i Sec. |1 B.

angles in the Delaunay triangulatiprthe frequency spec-

trum of the center-of-mass velocity, and the paths of motion

of vortices(two-dimensional histogram of vortex positions

We create movies of time snap-shots of vortex positions to The different observed modes of plastic and elastic mo-

visualize the behavior of the system. tion are summarized in Table I. The second column of the
table shows the expressions used for each mode of motion
and a reference to the section in which it is described. The
third and fourth columns show the criterion used to identify

Initially, we anneal the vortex system from a molten stateand distinguish the modes, and the fifth column gives further

to zero temperature in the presence of the random pinningbservations.

potential. The pinning forces are obtained by numerically We describe now briefly the phase diagram shown in Fig.

differentiating the potential. The root mean square value oB. For weak pinning ;P <0.8f;) a pinned vortex glass

A. The phase diagram

Ill. THE DYNAMIC PHASES
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FIG. 2. A pinned vortex glass at pinning strengt}f.=1.2f,. 0 pinned vortex glass

The system has been annealed from molten to zero temperature. 0 04 08 24 28
The figure shows the Delaurftriangulation of vortex positions.
Here,ny=0.46, i.e., 46% of the 576 vortices are topological defects FIG. 3. Dynamic phase diagram of the vortex state as a function
(having more or less than six nearest neighparsi are highlighted ~ of disordering pinning strengtRf and strength of the driving

by open circles. force (at zero temperatuye

1.2 1.6 2
pinning strength (fo)

(Fig. 2) undergoes plastic floWPF) and ordering plastic flow V). At high driving forces the vortices move elastically as a
(OPB for an increasing driving forcéSec. Ill ©. In OPF, in  coherently moving structure, i.e., every vortex keeps its near-
contrast to PF, the density of topological defeats, is lower  est neighbors for all time&Sec. Ill B).

than the density of the static systenf;®"®. We summarize For the weakest pinning strength Bh~0.04f, the an-

PF and OPF as turbulent plastic flow because in both modesealed system is a defect-free Bragg dfassnd changes
the motion of vortices is turbulent rather than laminar, i.e.directly from the pinned Bragg glass to MBRef. 14 with-

the motion of different vortices is hardly correlated. This out undergoing plastic motion. However, since the initial
helps us to distinguish between the turbul@tiaotig plastic ~ configuration is annealed from random positions, this MBG
flow of PF and OPF and thdaminap plastic motion of s, in general, not aligned with the direction of the driving
vortices in the decoupled channel regirtfec. 11l D, Sec. force, and the pinning is too weak to reorientate it. This very

TABLE I. Overview of observed plastic and elastic modes of motlof{v)) is the distribution of time-averaged vortex velocities, and

ng is the density of topological defectSec. Il B.. The topological defect density of the annealed system without any applied driving force

iS natauc_

Name Criterion Observations
I'((v)) Ny
Plastic  PF and some vortices permanently Broad, anchy= nffa‘ic Turbulent flow, system partly pinned.
modes  pinned Sec. IlI C peak at zero
PF and no vortices permanently Broad ng= nzta“c Turbulent flow, peak at zero in instantaneous velocity
pinned Sec. Il C distributiorti.e., some stationary vortices
OPF Sec. llIC Broad ng< nffa“C Turbulent flow, no vortices have zero velocity in

instantaneous velocity distributios “crinkle
motion” (i.e., all vortices moviny

Decoupled channels, MTG Sec. IV Separated 0<ng<n$?" Motion in uncoupled channels in direction of
S peaks driving force, topological defects between channels,
critical transverse force.

Elastic  Coherently moving structure Single ng=0 Motion in coupled channels in direction of driving
modes  without defects, MBG, Sec. lllE & peak force, washboard frequency in noise spectrum,
critical transverse force.
Coherently moving structure Single 0<ng<n3?*  Vortices generally aligned with the direction of the
with defects, Sec. Il E S peak driving force
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5 o S - S 4784 tions. (&) Velocity histogram of
1501 averageveloty 2 4775440 time-averaged individual vortex
Eqoob o D }.B.A. .............. % 477 velocities I'((v)) for a driving
c : ; 8 47654 force F;=5.0f,. Inset: same for
Bl x4 I """" 1y A ® turbulent plastic flow with Fj
275 W76 2 7 , '78 w7 =0.9f,. (b) Delaunay triangula-
(a) avsrage velbdihy t!on of one tlm_e §t9p with the
time-averaged individual vortex
velocity plotted in the third di-
g A 24 \rggfrﬁr%em-jf ATATsSA au mension. There are four distinct
B 23 vorices R e E e groups labeled, B, C aﬁd D of
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KE2 xxxxxxxxxxxxxxxxxxx ><x)(x)()(X)<x><)()<x>(x><x><x 4 iti 1 1
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X * H H
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-1 per row xxxxxxxx:xxxxx XX X xxxxxxxx:xxxxxxx XXX:((X)(X);) fects are h|gh||ghted(d) Change
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5 —D v ‘53';“,‘{,9\,3 (X) vortex positions in the frame
- 3 of reference of one of the vortices
A 24 vortices - = .
-4 -2 0 2 4 per row —4 -2 0 2 4 in groupC.
(c) ® (d) ¥

weak pinning regime has not been studied in detail in thenumber of topological defects increasing with pinning
framework of this investigation. strength and no long-range order exists. We thus refer to the

For stronger pinningR,?=0.8f,) there is an intermedi- pinned system as a vortex glass, and such a configuration is
ate regime between turbulent plastic flow and coherentlyghown in Fig. 2.
moving structures in which rows of vortices are aligned with
the driving force and vortices move in preferred channels. C. Turbulent plastic flow
However, these channels are decoupled: vortices in different
channels move with different velocitie€Sec. V). The
change from the decoupled channel regime to a coherent
moving structure depends on the history of the system: in th
mixed regime both modes of motion can be found dependin ; . L .

s shown in the inset in Fig.(@, which, for very small

on whether the driving force is increased or decreased. -, .
Related numerical work on dynamic phases has been peg_rlvmg forces, has another peak at zero velocity. We call the

formed by Moon, Scalettar and Zimgi,° Ryu et al'° and motion OPF if the density of topological defects;, is be-
Olson, Reichhardt and No. It was found in Ref. 9 that as oW the defect densityng™*, the system would have if no
the driving force is increased, first the pinned vortex glas€lriving force was applied. Otherwise we call it PFable ).
exhibits plastic flow and finally moves as a “moving glass” = e observe PF for driving forces just above the critical
that is very likely to be the decoupled channel regime. Refdepinning force. The topological defect density is higher
10 found an elastically moving structure with topological than for the static system because some vortices are station-
defects at high driving forces. In contrast to this work in Y @nd others are squeezing past them. Within the PF regime
which we have used logarithmic interactions and have varied’® find two modes of motion: For driving forces just above
the strength of the pinning forces, in Ref. 12 the strength of€ depinning current we find a bimodal distribution in the
an exponentially decaying vortex-vortex interaction has beefime-averaged vortex velocity showing a peak at zero veloc-
varied in a system with a smaller vortex density. However[ty: Thus, there are some vortices that are permanently
the results can be compared qualitatively, and Ref. 12 deninned (at least over the simulated timeBy contrast, for

onstrates similar findings on plastic flow, decoupled channel§igher driving forces, whilst at any one time some vortices
and coupled channels. may be stationary, no vortices are permanently pinned. These

data confirm earlier findings of Spencer and Jelsem-
ploying a simpler model. For clarity, Fig. 3 does not distin-
guish between these two types of PF.

For sufficiently small driving forces the system is pinned In the OPF regime, where the topological defect density,
and the velocity distribution shows a single peak at zermy, is lower than for the static system, we observe that the
velocity. For pinning strengths above0.04f, we see the instantaneous velocity distribution shows no peak at zero

Vortices start moving if the driving force exceeds a criti-
| value. We distinguish two different kinds of motion,
hich we refer to as PF and OPF. Both types of motions
how a broad distribution of time-averaged vortex velocities

B. Pinned vortex system
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FIG. 5. The moving Bragg
glass. Left: Histogram of vortex
positions. The driving force is act-
ing from left to right along thex
direction, and vortices move in
rough channels, like beads on a
string. The inset shows a slightly
[ e ] %X#X#X%m%}%}%X#Xﬁ#}ﬂ%&ﬂ%{ﬂ#} enlarged version of the channels

- TAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV VoV ) IO s | positions of vortices for one
time step are shown as circles.
Right: Delaunay configuration of
one snap shot of the same system.
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velocity (i.e., all vortices are in motionwhereas this is not configuration at high driving forces is usually a hexagonal
the case for both types of PF described in the last paragraphystem aligned with the driving force with a few disloca-
Faleski, Marchetti, and Middletéh used the term crinkle tions. However, a MBG configuration is occasionally
flow to describe motion of vortices via correlated displace-observed.
ments of patches of vortices. Our observations of OPF sug- The coherently moving structures we observe are always
gest that the definition used here for OPR,<n5®") is  aligned with the direction of the driving force for pinning
equivalent to the definition of crinkle flow introduced by strengths=0.8f,. For smaller pinning strengths, configura-
Faleski, Marchetti, and Middletéf (absence of a peak at tions develop occasionally, which are not aligned with the
zero velocity in the instantaneous velocity distribujion driving force. It has been argu¥d®2"?8that this alignment
minimizes power dissipation, and our results are in agree-
ment with other numerical investigatiotd in which the
high-velocity configurations are generally aligned with the
For sufficiently strong pinning and intermediate driving driving force.
forces (Fig. 3) we find that vortices arrange in lines orien-  For a MBG we find peaks at multiples of the washboard
tated along the direction of the driving for¢Eig. 4). These frequencywy=2m{v.n)/ay in the Fourier spectrum of the
lines move with different velocities in the direction of the center-of-mass velocity .,(t) of the system, wheré) de-
driving force. This type of motion is described in detail in notes a time average ara, is the lattice constant of the
Sec. IV and is called decoupled channel motion. vortex lattice. Whereas this temporal periodicity is not exis-
tent for the velocity of an individual vortex, we also find it in
the energy of the system. Clear peaks in the Fourier spectrum
can be observed up to frequencies~0100w,. For a single
We observe two different kinds of coherently moving particle the washboard frequency is observable if it slides

structuresti) either a MBG(Ref. 14, which is free of topo-  through a periodic potential. Here, we have a random poten-
logical defectsFig. 5), or (i) a hexagonal system similarly

aligned with the direction of the driving force but with a few
dislocations(Fig. 6). Both configurations move elastically,
i.e., each vortex keeps its nearest neighbors for all times.
For strong pinning E,P =0.8f;) and increasing driving
force the transition from the decoupled channel regime to a
coherently moving structure results in a MBG if the groups
of coupled channels have the same vortex line der{sig
Sec. IV B). If the groups of coupled channels have different
line densities then the dislocations between them are frozen
into the coherently moving structure. For weak pinning
(FYP=<0.8f) the vortices do not move in decoupled chan-
nels for intermediate driving forces, and the system changes
directly from OPF to a coherently moving structure. Again, ‘
elastically-moving systems with and without topological de-
fects are observed. Our data from simulating current-voltag
characteristics with increasing driving force suggest that th

D. Decoupled channels

E. Coherently moving structure

FIG. 6. A coherently moving structure with six dislocatiqid®
gopological defects
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tial, but a periodic system. One thus finds the washboard B PSRN
frequency in observables that depend on all vortices, such as | oo S Ao
the center-of-mass velocity or the energy, but not for indi- T P
vidual vortices. The washboard frequency has been found | i NS
experimentally in aqRefs. 29-31 and dc(Ref. 32 mea- PSR S
surements, and numericalfyin a similar regime. { e iy
In summary, we observe occasionally a MBG at high e e s |
driving forces, but most of the final configurations are hex- 5y [ S ——————
agonal systems aligned with the driving force with a few T
dislocations pairs. However, it could well be that finite tem- 1 ]
peratures or larger systems would favor the creation of a O D |
MBG at high driving forces: as yet, it is not clear what is the T
“dynamic ground state” of these systems. Our data cannot e e e e
be used to decide whether a MBG exists in two dimensions T
or whether the MTG is the only stable pha§é®since for a | SR ——
system of a given size if the velocity is sufficiently large then e e ——————
all channels couple and appear to be a MBG. Another open =4 -2 0 2 4
guestion is whether periodic boundary conditions can favor a X
reordering of a disordered vortex syst&filhe exploration FIG. 7. This plot shows for the decoupled channel regime

of these questions is computationally expensive though nevit which areas of the simulation vortices prefer to travel. On a

methods for evaluating interactions in the system may maké00x700 cell grid, a two-dimensional histogram of vortex posi-
this feasiblet®34 tions has been created. The darker a cell, the more vortices have

been counted within that cell over the duration of the simulation.

IV. DECOUPLED CHANNELS group that are coupled and move with the same velocity
increases, until the system shows elastic motion. For de-
This section describes a plastic mode of motion that, duereasing driving forces the number of coupled channels de-
to its quite different properties, is separated from the Seccreases until each group of coupled channels exists of only
[l C on turbulent plastic flow. As visible in the dynamic one or two channels. For even smaller driving force, the
phase diagram in Fig. 3 the decoupled channels are onlgystems exhibit turbulent plastic flow.
observed for sufficiently strong pinning. For the mixed regime shown in Fig. 3 we find that the
Increasing the driving forc@vhich acts in thex direction mode of motion depends on the history of the system: In-
from the turbulent plastic flow regime further, transforms thecreasing the driving force for a system in the decoupled
time-averaged velocity distribution from a broad peak as obehannel regime into the mixed regime results in motion in
served for turbulent plastic flow to several clearly distinctdecoupled channels. On the other hand, reducing the driving
peaks as shown in Fig.(&. In Fig. 4b) four different ve- force for a MBG into the mixed regime, yields elastic mo-
locity levels are visible, each of these corresponding to ondion. For driving forces above the dotted line in Fig. 3 all
peak in the velocity histogram. Thus, vortices move in foursystems show elastic motion and below the dash-dotted line
groups of coupled channels and, within a group, all channelall systems show smectic motion. The data suggest that both
travel with a constant velocity in the direction of the driving the MBG and the decoupled channels are metastable steady
force. Plot 4c) shows the lattice structure @b) in a two-  states that are separated by an energy barrier. In future we
dimensional projection. Vortices with more or less than sixwill explore whether finite temperatures are able to overcome
nearest neighbors are highlighted by a gray shade. We sekis barrier.
that the groups of coupled channels are separated from each Figure 7 shows an accumulation of vortex positions using
other by one 5-7 dislocatiofa pair of vortices one having 5 a grid of 700< 700 cells. It demonstrates that the channels in
and the other 7 nearest neighbors which vortices move are not strictly static but slightly broad-
Plot 4(d) shows the initial @) and final () positions of  ened (see, for exampley~3), although vortices never
vortices in the frame of reference of one of the vortices inchange channels. Further analysis in Sec. IV B shows that
group C, and the initial and final positions are connected byhe 5-7 dislocations highlighted in Fig(e} move with time
a straight line, demonstrating that vortices never change thia the x direction parallel to the driving force. Presumably
channels in which they move. This is a particularly interest-this requires slight corrections of the static channels, which
ing point since the moving glass thedtyassumes that the results in their blurred form visible in Fig. 7. This is sup-
topological defectgwhich are hard to treat analyticalljpe-  ported by results given in Fig. 5 which show that for the
tween groups of coupled channel do not destroy transverdeBG in the absence of dislocations the resulting channels
periodicity. Thus, the observation that these topological deare strictly statidand not blurreg This may indicate that the
fects do not introduce chaotic motion of vortices and that theheoretical modéf predicting strictly static channels for the
defects just decouple the different channels supports theITG may be too simple.
theory of Giamarchi and Le DoussAl. Figure 8 shows the square modulus of the structure factor
A series of runs shows that generally for larger drivingfor two k vectors for the MTG. The large value of tli@1)
forces the number of channe{and thus the size of each peak indicates the transverse order of the system. The small
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glass shown in Fig. 4. The1) peak is relative constant at a value ‘y‘?é?ééééigégii',ﬁ%@iﬁéﬁ&é
i i wec- NNNNNNNNNNN AN AN
qf approximately 0.85 and it measures the order alongyttieec \WAVAVAVAVAVAVAVAVAVAVAVA o VA Yo/ ANAVAVAVAVAVAVAVAY,
tion. In contrast, the peaki0) measures also order along tke ‘""""""""""'""“"““""""“
direction, and oscillates strongly. The variations are due to the dif-  XRAFFTFFFFFK K
ferent groups of coupled channels sliding past each other. The de-
viation of the(01) peak from 1.0(as for a perfect lattioeis due to AXNAANZAN FAVAWAW.WAY

plot 9 {time step=204500

the roughness of the channels. The inset shows the lattice vectors
used to label the peaks.
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and oscillating10) peak shows the strongly reduced order in ~ FIG. 9. Dislocation mediated phase slip in decoupled channel
the x direction. A time Fourier transform of thel0) signal regime for different longitudinal vortex densities showing snap
reveals the frequencies with which the different groups overshots of 9 time steps. The open circles in each plot mark two fixed
take each other by one lattice spacing. This is exactly what i¥ortices, and the upper one defines the frame of reference. The
expected for a MTG in a finite system and is in agreemenl‘oremz force acts from left to right. The upper two lines of vortices

with the theoretical predictidﬁ‘18 for the smectic regime visible in each plot belong to group C in Fig. 4 and the lower to

that any peaks in the structure factor with a nonzeroIlnes to group D. Thus, in the relative frame of reference, the lower

Lo e two lines move to the left. The two black filled circles indicate
x-component should vanish in an infinitely large system.

. . . topological defects in each snap-shot and represent a dislocation.
The data shown are in agreement with the theoretlcallyl.hese mediate the phase slip while moving to the left as can be seen

predicted mOVing Smecﬁélethat iS aISO Ca”ed MTG? and by comparing the open circles in p|ots 1 and 9.

decoupled channel regimé A MTG has previously been ) . ) . )
identified by a numerical study of Olson, Reichhardt andthe vortices with the maximum velocity are located in the
Nori,*? and the Delaunay triangulation of a snap shot of theircéntral region of the samplg/{=0+1.5), this is not an edge
system looks qualitatively like Fig.(d). Kolton, Domnguez eﬁect; for other samples the maximum is located at different
and Grmbech-Jensen numerically found smectic stites, Y positions. Remarkably, in both the decoupled channel re-

and earlier the numerical studies of Moon, Scalettar and T9iMe (Fig. 4 and the turbulent plastic flow regimgot
Zimanyi® on moving vortex systems suggested the possibilit _hown hergthe fastest flow is located in the same part of the
of phase slips of different channels. Further new results Oﬁm:tulﬁtedbmaterlal. Bdthat the diff t velociti b
the MTG are presented in the next two sections concerninge as been sugges a the dierent velociies ob-
the spatial distribution of vortex channel velocities depend

Served in the decoupled channel regime and shown in Fig. 4
ing on the pinning landscagi&ec. IV A), the mechanism of may be related to the experimentally observed fingerprint
uncoupled channels sliding past each ott&sc. IV B), and

effect? In fact, it seems that for both the turbulent plastic
the transverse depinnin@ec. IV Q.

flow and the decoupled channel regime the same areas of the

pinning potential allow for bettefor worse pinning. This is

not obvious since in the turbulent plastic flow regime vorti-
A. Dependence of the spatial velocity distribution ces flow more or less individually along highly tortuous

on pinning landscape paths whereas in the decoupled channel regime they move in
We find a correlation between the particular pinning po-& much more correlated way.

tential employedrepresenting details of the microstructure

causing vortex pinning in the matenalnd the positions and

velocities of the different groups of coupled channels. It Figure 4 shows that the number of vortices per line of

should be noted that, although for the data shown in Rig\. 4 vortices(the line density differs from group to group by 1,

B. Channel sliding mechanisms
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plot 1 (time step=268600) plot 7

plot 2 plot 8
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FIG. 10. Dislocation mediated phase slip in decoupled channel regime for equal longitudinal vortex densities. The open circles mark four
fixed vortices and black filled circles show topological defects. Here, in the relative frame of reference, the lower two lines move to the right.
The phase slip is realized by two dislocations consisting of a 5-7 and a 7-5-disclinatigoquaiting first the nearest neighbors for the upper
disclination. These emerge from a pair-antipair creation process in plot 2. The 5-7-dislocation on the left moves to the left and the
7-5-dislocation to the right-hand side. In this process they allow the lower lines to pass a lattice spacing to the right. Between plots 6 and 7
the 7-5-dislocation leaves the simulation cell at the right-hand side and enters it again on the left-hand side. Finally, in plot 10, the two
dislocations meet again and annihilate each other. The topological defect in the lowest row is not important here.

and exactly one dislocation between the groups is required teectors’ parallel to the driving force, both in agreement with

accommodate this differendd-ig. 4(c)]. In Fig. 9 a time our results.

series of Delaundy triangulations of snap shots of a part of  In conclusion, as far as we know, the detailed mechanism

Fig. 4 is shown, demonstrating how a moving dislocationof decoupled channels moving past each other has been iden-

allows groupC to move faster than group. tified for the first time. The phase slip is mediated by discli-
Figure 10 shows this process for two neighboring channation pairs which either exist between separate groups of

nels having the same longitudinal vortex density. Again theoupled channels with locally different line densities of vor-

phase slip is mediated by dislocations that travel along thgces or the disclination pairs are created dynamically and in
channel. However, since initially there are no dlslocat|on%

. ; e airs when sufficient shear stress has built up. These results
bgtween the channels a dislocation pair is c'reated. The ay help in finding a starting point for a theoretical descrip-
d|_slocat|ons travel away from each othgr, allowing the phas%on of the dynamics of dislocations, such as a
slip between the upper and lower two lines. When the dlslo-K L o

. ! . o osterlitz-Thoules® theory for nonequilibrium systems.
cations meet agairidue to periodic boundary conditions
they annihilate.

Only the two mechanisms shown in Figs. 9 and 10 have
been observed. The situation with the same longitudinal vor-
tex density has been observed less frequently that may indi- Following the theory of Giamarchi and Le Dous$akt
cate that this is energetically more expensive. However, irzero temperature, a nonanalytical response of the vortex sys-
macroscopic systems the two mechanisms described are letssn to a small transverse force is expected for the moving
distinguishable and may coexist: the local vortex line densityglass, i.e., for the MBG and the MTG. In agreement with our
differs around each of the dislocations in Fig. 10. Thus, theesults in both the MBG and the MTG the existence of such
process shown in Fig. 9 may just be a more detailed studfransverse barriers have been observed in
of the phase slipping process in Fig. 10 for each of thesimulations'%394°The transverse depinning of the MBG
dislocations. has recently been descrit®dand here we report on the

From a figure in the work of Olson, Reichhardt and Nori transverse depinning of the MTG. We have found that the
we identify varying longitudinal vortex densities and Burgerstransverse depinning of a MTG may happen in two ways:

C. Transverse depinning
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Mechanism AAt a certain strength of the transverse force L L T 1
(below the transverse depinning foyceome vortices change smoothing region; -
the rows in which they have moved so far, such that after thisp.15
first step the different groups of coupled chann&|sB, C, 0.1k Y i
andD (in Fig. 4 have the same number of vortices in each i — p(n}
row. Then, all these rows move with the same velocity, i.e.,o'05
the system has changed from a MTG to a MBG. This MBG 0 e o
does not(yet) move in the transverse direction. Only when 4 5 6 7 a 8 9 10 b
the transverse driving force is increased even further, the r (a0)
system depins in the transverse direction, and moves elasti- g5 11 Demonstrating the shape of the interpolating polyno-
cally in the longitudinal and the transverse direction as demja| p(r) (thick line) that smoothly reduces the vortex-vortex in-
scribed in Ref. 39. teraction forcef(r) to zero. For clarity we have chosef{r)

Mechanism BAt the transverse depinning force the sys- =1/r. The interpolation starts at the fading distarce 7.5a, and
tem rearranges plastically such that the rows of vorticeseduces the interaction force to zero at the cutoff distabce
(which are aligned with thet axis in Fig. 4 become orien- =10.5,, wherea, is the average vortex lattice spacing. See text
tated with an angle to the axis after the change. The new for details.
direction of the rows is not the same as the direction of the
total driving force(adding the small transverse force to the

main driving force along the axis). We thank P. Le Doussal, A. R. Price, and S. Gordeev for
We have found that the critical transverse force is highehelpful discussions. We acknowledge financial support from

for mechanismA. Our early investigations have shown that DAAD and EPSRC.

the transverse depinning of the MTG is an intricate matter

and further studies are required to reveal under which cir- APPENDIX: SMOOTH CUTOEE

cumstances mechanisfor B appears.
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We employ a smooth cutoff for the vortex-vortex interac-

tion following the ideas described in Ref. 19. Here we

V. CONCLUSIONS give details on the particular interpolating function we have
chosen.

We have modeled the dynamics of vortices in two dimen- The vortex-vortex interaction has to be cutoff for dis-
sions using overdamped Langevin dynamics with a logarithtances greater than a cutoff distariceAssume the interac-
mic vortex-vortex interaction potential that includes a modi-tion force is given byf(r). For short-ranged interactions it is
fied cutoff® to avoid introducing numerical artifacts into the syfficient to use an interactio?(r) which is f(r) for r<b
simulation. We have computed a dynamic phase diagram asgnd zero otherwise:
function of pinning strength and driving force. We find A f(r), r<b
pinned vortex systems, different kinds of turbulent plastic f(r)y=
flow, and for large driving forces motion of vortices in rough 0, r>b.
channels along the direction of the driving force. Depending FOr long-ranged forces this approach results in artificial
on pinning strength and driving force the motion in different configurations® However, those problems can be overcome
channels can either be coupled or decoupled. These phageyreducingf(r) smoothly to zero near the cutoff distartze
can be identified with the predicted MB@Ref. 14 and ©One needs to introduce another distaacand a polynomial
the MTG [Ref. 15 as described in recent theoretical P(r), suchthat<b and thatp(r) interpolates betweef(a)

modelst4-18 ata and and zero &l

We have studied the MTG in detail and report on the f(r), r<a
dependence of the vortex channel velocities on the pinning f(r)y=4 p(r), a<r=b
landscape. We have identified how topological defects medi- 0, r>b.

ate the phase slip between channels moving with differenf; i required® that f(r) showsC?
velocities, and we have shown that vortices never change the; yerivative at to be zero:
channels in which they are moving, i.e., the dislocations in

continuity ata andb, and

the system do not produce chaotic motion of vortices, thus f(a)=p(a), (Ala)

preserving transverse periodicity. Together with the observed p(b)=0, (Alb)

critical transverse force for the MTG and the MBG in these

simulations, our findings strongly support the moving glass df _dp

theory of Giamarchi and Le Dous&that assumes that the dr| __dr| (Alo

dislocations in the MTG do not introduce additional effects e e

that may destroy transverse periodicignd thus the critical dp

transverse forgein the MTG. dr =0. (Ald)
Our findings may also help in finding an extension to the r=b

Kosterlitz-Thoules¥ theory for nonequilibrium systems. We have used a third-order polynomial
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3
p(X)= EO Cixi= X3+ CoX2+CyX+ Cq
=

and the coefficients; are completely determined by Eq#&1a)—(Ald). Writing f'(r) for df/dr(r) one finds

C3 f'(a)a—f'(a)b—2f(a)

Cy 1 —f'(a)a’+3f(a)(at+b)—af’'(a)b+2f'(a)b?
ci| (a—b)| (2f'(a)a2-af'(a)b—6f(a)a—f'(a)b)b
Co —f'(a)b%a®+3f(a)ab’+f'(a)ab®—b3f(a)

The cutoff distancdn is determined by geometrical constraiféee Sec. Il A We follow Ref. 19 and choose the distarize
—a over which the interaction is reduced to zero to be three lattice spacings, se-that3ay. In this workf(r)e1/r. Figure
11 shows a schematic plot of the smooth cutoff and the interpolating polynomial.

To compute the potential energy of the system it is required to integratex) to represent the smoothed interaction
potential fora<r<b. The integration constant is determined by requiring continuity of the interaction potentialaat
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