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Vortex dynamics in two-dimensional systems at high driving forces
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We study numerically the dynamics of two-dimensional vortex systems at zero temperature. In addition to
pinned states and turbulent plastic flow, we find motion of vortices in rough channels along the direction of the
driving force. In this decoupled channel regime we demonstrate how topological defects mediate the phase slip
of different channels moving with different velocities. We thus provide important confirmation of recent
analytical work describing vortex dynamics at high driving forces such as the moving glass theory of Giama-
rchi and Le Doussal. For the largest driving forces we find that the channels couple and observe elastic motion.
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I. INTRODUCTION

Vortex dynamics in the presence of disordering pinn
show a variety of nonequilibrium physics and dynam
phase transitions. Experiments,1–7 numerical,8–12 and
analytical13–18 work suggest that a disordered static syst
of vortices shows ordering at higher driving forces. Koshe
and Vinokur13 predicted a dynamic phase transition betwe
plastic sliding for driving forces just above depinning a
coherent motion of crystalline structures at high drivi
forces. Subsequently, Giamarchi and Le Doussal14 predicted
that the strongly driven and reordered system would b
moving glass, where vortices move elastically-coupled alo
static channels, such that they flow in the direction of
driving force along well-defined, nearly parallel paths in t
pinning potential. These optimal channels~in two dimen-
sions! or sheets~in three dimensions! show a roughness an
are predicted to be a static and reproducible feature of
disorder configuration.

Balents, Marchetti, and Radzihovsky argued15 that in ad-
dition to elastically-coupled channels~no topological defects
in the system! at intermediate velocities a transverse-movi
smectic15,16 would exist in which motion of vortices in dif-
ferent channels is decoupled~topological defects between th
channels!. Later work16–18 mainly supported the initial find-
ings of Giamarchi and Le Doussal with the addition of t
moving smectic as predicted by Balents, Marchetti a
Radzihovsky.15 Different names are in common use: th
moving transverse glass18 ~MTG!, moving smectic16 and de-
coupled channels17 refer to the decoupled channel motio
and the moving Bragg glass18 ~MBG!, moving lattice16 and
coherent phase17 refer to the regime of elastically couple
channels.

The theoretical descriptions14–18 of these dynamic phase
are based on elastic theory and assume either the abs
~for the MBG! or the irrelevance~for the MTG! of topologi-
cal defects. In fact, the theory of Giamarchi and
Doussal14,18 describes both regimes with the same equati
which is~nearly! exact for the MBG and remains an effectiv
description for the MTG. In this work we investigate the ro
of topological defects in the MTG to check the validity
assumptions entering the theory of Giamarchi and Le Do
sal, and find them to be justified.

We review the dynamic phase diagram for a tw
0163-1829/2001/64~6!/064505~10!/$20.00 64 0645
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dimensional 2D vortex system in the presence of rand
disorder varying on a length scale much smaller than
vortex-vortex spacing. Our model describes rigid vortices
thin films or decoupled pancake vortices in layered materi
We employ a modified cutoff19 to the appropriate interaction
force that corresponds to a logarithmic vortex-vortex int
action potential.20 After annealing a vortex system to zer
temperature, we apply an increasing driving force and st
the dynamics of the system systematically for different p
ning strengths.

Section II describes the simulation and the computatio
details. In Sec. III we present a dynamic phase diagram
give an overview of the observed dynamic phases~III A !.
These phases are a pinned vortex glass~III B !, different
kinds of turbulent plastic flow~III C !, a decoupled channe
regime ~III D !, and coherently moving structures~III E !. In
Sec. IV we consider the decoupled channel regime in de
we report on the dependence of the spatial distribution
velocities in the different channels on the pinning landsca
~IV A !, we show how topological defects between the ch
nels mediate the phase slip between channels while pres
ing the transverse periodicity of the system~IV B !, and we
give information on the transverse depinning in the dec
pled channel regime~IV C!. Finally, we draw our conclu-
sions in Sec. V. The Appendix contains technical informat
on the smooth cutoff used.

II. THE SIMULATION

A. Equation of motion

We consider a two-dimensional vortex system and mo
the vortex motion with overdamped Langevin dynamics. T
total forceFi acting on vortexi is given by

Fi52hvi1FL1Fi
vv1Fi

vp1Fi
therm50, ~1!

where h is the Bardeen-Stephen21 viscosity coefficient,vi
the velocity,FL the Lorentz force acting equally on all vor
tices, Fi

vv the vortex-vortex interaction,Fi
vp the vortex-

pinning interaction, andFi
therm a stochastic noise term t

model temperature.22 The vortex-vortex interaction force fo
rigid vortices in thin films and pancakes in decoupl
layers of multilayer materials experienced by vortexi at
position r i is20
©2001 The American Physical Society05-1
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Fi
vv5

F0
2s

2pm0l2 (
j Þ i

r i2r j

ur i2r j u2
. ~2!

The constantF0 is the magnetic flux quantum,s the length
of the vortex,m0 the vacuum permeability, andl the London
penetration depth. We employ periodic boundary conditio
and cut off the logarithmic vortex-vortex repulsion potent
smoothly.19 The important feature of this modified intera
tion potential is that it does not introduce numerical artifac
such as topological defects that can result from using a n
cutoff potential. Details can be found in the Appendix a
Ref. 19. The cutoff distance is min(Lx/2,Ly/2) whereLx and
Ly are the lengths of the sides of the rectangular simula
cell. The lengthsLx andLy are chosen such that a hexagon
lattice fits perfectly in the simulation cell.

We investigate systems with a magnetic induction ofB
51 T and a penetration depth ofl51400 Å that yields a
vortex density of'10/l2 representative of typical cuprat
superconductors. The random pinning potential we have
ployed varies smoothly on a length scale ofl/25, which is of
the order of the coherence lengthj. This is a representation
of random pinning on the atomic length scale~for example,
due to oxygen vacancies or small clusters of oxygen vac
cies! since the vortex cores effectively smooth the pinni
potential over a length scale of the core diameter 2j. Fig.
1~a! demonstrates the construction of the pinning potentia
one dimension. Figure 1~b! shows a part of the pinning struc
ture used for the two-dimensional system. System sizes f
100 to 3000 vortices have been investigated. We mea
lengths in units ofl51400 Å, and forces in units of the
force f 0 that two vortices separated byl experience. We
express time in units oft05hl/ f 05h2pm0l4/F0

2s which
is in line with other simulations.10,23

B. Observables

To distinguish different dynamic phases we monitor t
topological defect densitynd ~defined as the fraction of vor
tices with less or more than six nearest neighbors in
Delaunay triangulation24! and the distributionG(^v&) of
time-averaged velocitieŝv i&(t)5u@r i(t1t0)2r i(t0)#/tu of
individual vorticesi over timet. We also observe the struc
ture factor of the system~the Fourier transform of the vorte
positions!, a measure for local hexagonal order~using bond
anglesuk from the Delaunay triangulation we computeC6

5(1/nbond)u(k51
nbondexp(i6uk)u, where nbond is the number of

angles in the Delaunay triangulation!, the frequency spec
trum of the center-of-mass velocity, and the paths of mot
of vortices~two-dimensional histogram of vortex positions!.
We create movies of time snap-shots of vortex positions
visualize the behavior of the system.

III. THE DYNAMIC PHASES

Initially, we anneal the vortex system from a molten sta
to zero temperature in the presence of the random pinn
potential. The pinning forces are obtained by numerica
differentiating the potential. The root mean square value
06450
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the pinning force field is denoted byF rms
vp . An annealed vor-

tex configuration is shown in Fig. 2. After annealing, a dri
ing force is applied that is subsequently increased ev
43104 time steps. This yields force-velocity characteristi
that correspond to experimentally obtainable current-volt
characteristics~at zero temperature!. The driving forceFL is
related to the current densityj via FL5sj3F0, and the vor-
tex velocity to the induced electric fieldE via E5B3v,
whereB is the magnetic induction andv the vortex velocity.
We investigate the modes of motion at different drivin
forces and pinning strengths using the observables spec
in Sec. II B.

A. The phase diagram

The different observed modes of plastic and elastic m
tion are summarized in Table I. The second column of
table shows the expressions used for each mode of mo
and a reference to the section in which it is described. T
third and fourth columns show the criterion used to ident
and distinguish the modes, and the fifth column gives furt
observations.

We describe now briefly the phase diagram shown in F
3. For weak pinning (F rms

vp &0.8f 0) a pinned vortex glass

FIG. 1. A sample pinning potential. Distances are given in m
tiples of the vortex lattice spacing,a0. ~a! Demonstration of con-
struction of the pinning potential in one dimension: First, we ass
random pinning energies at discrete sites~shown as open circles!
with spacingw. Secondly, we interpolate between those sites us
cubic splines to obtain an effectively continous pinning potent
This results in a random pinning potential with a short-range c
relatorV(r )V(r 8)5g(r 2r 8) of rangew. We follow an analogous
procedure in two dimensions.~b! A part of a pinning potential as
used in the simulations. The seven black cylinders indicate vo
lines separated bya0 to demonstrate the length scale.
5-2
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~Fig. 2! undergoes plastic flow~PF! and ordering plastic flow
~OPF! for an increasing driving force~Sec. III C!. In OPF, in
contrast to PF, the density of topological defects,nd , is lower
than the density of the static system,nd

static. We summarize
PF and OPF as turbulent plastic flow because in both mo
the motion of vortices is turbulent rather than laminar, i.
the motion of different vortices is hardly correlated. Th
helps us to distinguish between the turbulent~chaotic! plastic
flow of PF and OPF and the~laminar! plastic motion of
vortices in the decoupled channel regime~Sec. III D, Sec.

FIG. 2. A pinned vortex glass at pinning strengthF rms
vp 51.2f 0.

The system has been annealed from molten to zero tempera
The figure shows the Delaunay24 triangulation of vortex positions
Here,nd50.46, i.e., 46% of the 576 vortices are topological defe
~having more or less than six nearest neighbors! and are highlighted
by open circles.
06450
es
,

IV !. At high driving forces the vortices move elastically as
coherently moving structure, i.e., every vortex keeps its ne
est neighbors for all times~Sec. III E!.

For the weakest pinning strength ofF rms
vp '0.04f 0 the an-

nealed system is a defect-free Bragg glass25 and changes
directly from the pinned Bragg glass to MBG~Ref. 14! with-
out undergoing plastic motion. However, since the init
configuration is annealed from random positions, this MB
is, in general, not aligned with the direction of the drivin
force, and the pinning is too weak to reorientate it. This ve

re.

s FIG. 3. Dynamic phase diagram of the vortex state as a func
of disordering pinning strengthF rms

vp and strength of the driving
force ~at zero temperature!.
nd
force
TABLE I. Overview of observed plastic and elastic modes of motion.G(^v&) is the distribution of time-averaged vortex velocities, a
nd is the density of topological defects~Sec. II B!. The topological defect density of the annealed system without any applied driving
is nd

static.

Name Criterion Observations

G(^v&) nd

Plastic PF and some vortices permanently Broad, andnd>nd
static Turbulent flow, system partly pinned.

modes pinned Sec. III C peak at zero

PF and no vortices permanently Broad nd>nd
static Turbulent flow, peak at zero in instantaneous velocity

pinned Sec. III C distribution~i.e., some stationary vortices!.

OPF Sec. III C Broad nd,nd
static Turbulent flow, no vortices have zero velocity in

instantaneous velocity distribution⇔ ‘‘crinkle
motion’’ ~i.e., all vortices moving!.

Decoupled channels, MTG Sec. IV Separated 0,nd!nd
static Motion in uncoupled channels in direction of

d peaks driving force, topological defects between channels,
critical transverse force.

Elastic Coherently moving structure Single nd50 Motion in coupled channels in direction of driving
modes without defects, MBG, Sec. III E d peak force, washboard frequency in noise spectrum,

critical transverse force.

Coherently moving structure Single 0,nd!nd
static Vortices generally aligned with the direction of the

with defects, Sec. III E d peak driving force
5-3
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FIG. 4. The decoupled channe
regime. Periodic boundary condi
tions are applied inx andy direc-
tions. ~a! Velocity histogram of
time-averaged individual vortex
velocities G(^v&) for a driving
force Fx

L55.0f 0. Inset: same for
turbulent plastic flow with Fx

L

50.9f 0. ~b! Delaunay triangula-
tion of one time step with the
time-averaged individual vortex
velocity plotted in the third di-
mension. There are four distinc
groups labeledA, B, C and D of
vortex-channels traveling along
the x direction with different
velocities. ~c! Two-dimensional
view of ~b! and topological de-
fects are highlighted.~d! Change
between initial (d) and final
(3) vortex positions in the frame
of reference of one of the vortice
in groupC.
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weak pinning regime has not been studied in detail in
framework of this investigation.

For stronger pinning (F rms
vp *0.8f 0) there is an intermedi-

ate regime between turbulent plastic flow and cohere
moving structures in which rows of vortices are aligned w
the driving force and vortices move in preferred channe
However, these channels are decoupled: vortices in diffe
channels move with different velocities~Sec. IV!. The
change from the decoupled channel regime to a cohere
moving structure depends on the history of the system: in
mixed regime both modes of motion can be found depend
on whether the driving force is increased or decreased.

Related numerical work on dynamic phases has been
formed by Moon, Scalettar and Zima´nyi,9 Ryu et al.10 and
Olson, Reichhardt and Nori.12 It was found in Ref. 9 that as
the driving force is increased, first the pinned vortex gla
exhibits plastic flow and finally moves as a ‘‘moving glas
that is very likely to be the decoupled channel regime. R
10 found an elastically moving structure with topologic
defects at high driving forces. In contrast to this work
which we have used logarithmic interactions and have va
the strength of the pinning forces, in Ref. 12 the strength
an exponentially decaying vortex-vortex interaction has b
varied in a system with a smaller vortex density. Howev
the results can be compared qualitatively, and Ref. 12 d
onstrates similar findings on plastic flow, decoupled chann
and coupled channels.

B. Pinned vortex system

For sufficiently small driving forces the system is pinn
and the velocity distribution shows a single peak at z
velocity. For pinning strengths above'0.04f 0 we see the
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number of topological defects increasing with pinnin
strength and no long-range order exists. We thus refer to
pinned system as a vortex glass, and such a configuratio
shown in Fig. 2.

C. Turbulent plastic flow

Vortices start moving if the driving force exceeds a cri
cal value. We distinguish two different kinds of motio
which we refer to as PF and OPF. Both types of motio
show a broad distribution of time-averaged vortex velocit
as shown in the inset in Fig. 4~a!, which, for very small
driving forces, has another peak at zero velocity. We call
motion OPF if the density of topological defects,nd , is be-
low the defect density,nd

static, the system would have if no
driving force was applied. Otherwise we call it PF~Table I!.

We observe PF for driving forces just above the critic
depinning force. The topological defect density is high
than for the static system because some vortices are sta
ary and others are squeezing past them. Within the PF reg
we find two modes of motion: For driving forces just abo
the depinning current we find a bimodal distribution in t
time-averaged vortex velocity showing a peak at zero vel
ity. Thus, there are some vortices that are permane
pinned ~at least over the simulated time!. By contrast, for
higher driving forces, whilst at any one time some vortic
may be stationary, no vortices are permanently pinned. Th
data confirm earlier findings of Spencer and Jensen11 em-
ploying a simpler model. For clarity, Fig. 3 does not disti
guish between these two types of PF.

In the OPF regime, where the topological defect dens
nd , is lower than for the static system, we observe that
instantaneous velocity distribution shows no peak at z
5-4
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FIG. 5. The moving Bragg
glass. Left: Histogram of vortex
positions. The driving force is act
ing from left to right along thex
direction, and vortices move in
rough channels, like beads on
string. The inset shows a slightly
enlarged version of the channe
and positions of vortices for one
time step are shown as circles
Right: Delaunay configuration o
one snap shot of the same syste
Although the channels in the lef
plot are rough, there are no topo
logical defects in the moving
Bragg glass.
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velocity ~i.e., all vortices are in motion!, whereas this is no
the case for both types of PF described in the last paragr
Faleski, Marchetti, and Middleton26 used the term crinkle
flow to describe motion of vortices via correlated displac
ments of patches of vortices. Our observations of OPF s
gest that the definition used here for OPF (nd,nd

static) is
equivalent to the definition of crinkle flow introduced b
Faleski, Marchetti, and Middleton26 ~absence of a peak a
zero velocity in the instantaneous velocity distribution!.

D. Decoupled channels

For sufficiently strong pinning and intermediate drivin
forces ~Fig. 3! we find that vortices arrange in lines orie
tated along the direction of the driving force~Fig. 4!. These
lines move with different velocities in the direction of th
driving force. This type of motion is described in detail
Sec. IV and is called decoupled channel motion.

E. Coherently moving structure

We observe two different kinds of coherently movin
structures:~i! either a MBG~Ref. 14!, which is free of topo-
logical defects~Fig. 5!, or ~ii ! a hexagonal system similarl
aligned with the direction of the driving force but with a fe
dislocations~Fig. 6!. Both configurations move elastically
i.e., each vortex keeps its nearest neighbors for all times

For strong pinning (F rms
vp *0.8f 0) and increasing driving

force the transition from the decoupled channel regime t
coherently moving structure results in a MBG if the grou
of coupled channels have the same vortex line density~see
Sec. IV B!. If the groups of coupled channels have differe
line densities then the dislocations between them are fro
into the coherently moving structure. For weak pinni
(F rms

vp &0.8f 0) the vortices do not move in decoupled cha
nels for intermediate driving forces, and the system chan
directly from OPF to a coherently moving structure. Aga
elastically-moving systems with and without topological d
fects are observed. Our data from simulating current-volt
characteristics with increasing driving force suggest that
06450
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configuration at high driving forces is usually a hexagon
system aligned with the driving force with a few disloc
tions. However, a MBG configuration is occasiona
observed.

The coherently moving structures we observe are alw
aligned with the direction of the driving force for pinnin
strengths*0.8f 0. For smaller pinning strengths, configur
tions develop occasionally, which are not aligned with t
driving force. It has been argued16,18,27,28that this alignment
minimizes power dissipation, and our results are in agr
ment with other numerical investigations9,10 in which the
high-velocity configurations are generally aligned with t
driving force.

For a MBG we find peaks at multiples of the washboa
frequencyv052p^vcm&/a0 in the Fourier spectrum of the
center-of-mass velocityvcm(t) of the system, wherê& de-
notes a time average anda0 is the lattice constant of the
vortex lattice. Whereas this temporal periodicity is not ex
tent for the velocity of an individual vortex, we also find it i
the energy of the system. Clear peaks in the Fourier spect
can be observed up to frequencies of'100v0. For a single
particle the washboard frequency is observable if it slid
through a periodic potential. Here, we have a random po

FIG. 6. A coherently moving structure with six dislocations~12
topological defects!.
5-5
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tial, but a periodic system. One thus finds the washbo
frequency in observables that depend on all vortices, suc
the center-of-mass velocity or the energy, but not for in
vidual vortices. The washboard frequency has been fo
experimentally in ac~Refs. 29–31! and dc~Ref. 32! mea-
surements, and numerically12 in a similar regime.

In summary, we observe occasionally a MBG at hi
driving forces, but most of the final configurations are he
agonal systems aligned with the driving force with a fe
dislocations pairs. However, it could well be that finite te
peratures or larger systems would favor the creation o
MBG at high driving forces: as yet, it is not clear what is t
‘‘dynamic ground state’’ of these systems. Our data can
be used to decide whether a MBG exists in two dimensi
or whether the MTG is the only stable phase,16,18 since for a
system of a given size if the velocity is sufficiently large th
all channels couple and appear to be a MBG. Another o
question is whether periodic boundary conditions can favo
reordering of a disordered vortex system.33 The exploration
of these questions is computationally expensive though
methods for evaluating interactions in the system may m
this feasible.19,34

IV. DECOUPLED CHANNELS

This section describes a plastic mode of motion that,
to its quite different properties, is separated from the S
III C on turbulent plastic flow. As visible in the dynami
phase diagram in Fig. 3 the decoupled channels are
observed for sufficiently strong pinning.

Increasing the driving force~which acts in thex direction!
from the turbulent plastic flow regime further, transforms t
time-averaged velocity distribution from a broad peak as
served for turbulent plastic flow to several clearly distin
peaks as shown in Fig. 4~a!. In Fig. 4~b! four different ve-
locity levels are visible, each of these corresponding to
peak in the velocity histogram. Thus, vortices move in fo
groups of coupled channels and, within a group, all chann
travel with a constant velocity in the direction of the drivin
force. Plot 4~c! shows the lattice structure of~b! in a two-
dimensional projection. Vortices with more or less than
nearest neighbors are highlighted by a gray shade. We
that the groups of coupled channels are separated from
other by one 5-7 dislocation~a pair of vortices one having 5
and the other 7 nearest neighbors!.

Plot 4~d! shows the initial (d) and final (3) positions of
vortices in the frame of reference of one of the vortices
group C, and the initial and final positions are connected
a straight line, demonstrating that vortices never change
channels in which they move. This is a particularly intere
ing point since the moving glass theory18 assumes that the
topological defects~which are hard to treat analytically! be-
tween groups of coupled channel do not destroy transv
periodicity. Thus, the observation that these topological
fects do not introduce chaotic motion of vortices and that
defects just decouple the different channels supports
theory of Giamarchi and Le Doussal.18

A series of runs shows that generally for larger drivi
forces the number of channels~and thus the size of eac
06450
rd
as
-
d

-

-
a

t
s

n
a

w
e

e
c.

ly

-
t

e
r
ls

x
ee
ch

y
he
-

se
-
e
e

group! that are coupled and move with the same veloc
increases, until the system shows elastic motion. For
creasing driving forces the number of coupled channels
creases until each group of coupled channels exists of o
one or two channels. For even smaller driving force,
systems exhibit turbulent plastic flow.

For the mixed regime shown in Fig. 3 we find that th
mode of motion depends on the history of the system:
creasing the driving force for a system in the decoup
channel regime into the mixed regime results in motion
decoupled channels. On the other hand, reducing the dri
force for a MBG into the mixed regime, yields elastic m
tion. For driving forces above the dotted line in Fig. 3 a
systems show elastic motion and below the dash-dotted
all systems show smectic motion. The data suggest that
the MBG and the decoupled channels are metastable st
states that are separated by an energy barrier. In future
will explore whether finite temperatures are able to overco
this barrier.

Figure 7 shows an accumulation of vortex positions us
a grid of 7003700 cells. It demonstrates that the channels
which vortices move are not strictly static but slightly broa
ened ~see, for example,y'3), although vortices neve
change channels. Further analysis in Sec. IV B shows
the 5-7 dislocations highlighted in Fig. 4~c! move with time
in the x direction parallel to the driving force. Presumab
this requires slight corrections of the static channels, wh
results in their blurred form visible in Fig. 7. This is sup
ported by results given in Fig. 5 which show that for th
MBG in the absence of dislocations the resulting chann
are strictly static~and not blurred!. This may indicate that the
theoretical model18 predicting strictly static channels for th
MTG may be too simple.

Figure 8 shows the square modulus of the structure fa
for two k vectors for the MTG. The large value of the~01!
peak indicates the transverse order of the system. The s

FIG. 7. This plot shows for the decoupled channel regi
in which areas of the simulation vortices prefer to travel. On
7003700 cell grid, a two-dimensional histogram of vortex pos
tions has been created. The darker a cell, the more vortices
been counted within that cell over the duration of the simulatio
5-6



in

e
t

en

er

al

n
e

s,

ilit
o
in

nd

o
re

I

he

ent
re-

he

-
g. 4
rint
tic
f the

ti-
s
e in

of

rs
e

di
d

ct

nel
ap
xed
The
es
to
er

te
tion.
seen

VORTEX DYNAMICS IN TWO-DIMENSIONAL SYSTEMS . . . PHYSICAL REVIEW B 64 064505
and oscillating~10! peak shows the strongly reduced order
the x direction. A time Fourier transform of the~10! signal
reveals the frequencies with which the different groups ov
take each other by one lattice spacing. This is exactly wha
expected for a MTG in a finite system and is in agreem
with the theoretical prediction15–18 for the smectic regime
that any peaks in the structure factor with a nonz
x-component should vanish in an infinitely large system.

The data shown are in agreement with the theoretic
predicted moving smectic15,16 that is also called MTG,18 and
decoupled channel regime.17 A MTG has previously been
identified by a numerical study of Olson, Reichhardt a
Nori,12 and the Delaunay triangulation of a snap shot of th
system looks qualitatively like Fig. 4~c!. Kolton, Domı́nguez
and Gro”nbech-Jensen numerically found smectic state35

and earlier the numerical studies of Moon, Scalettar and
Zimányi9 on moving vortex systems suggested the possib
of phase slips of different channels. Further new results
the MTG are presented in the next two sections concern
the spatial distribution of vortex channel velocities depe
ing on the pinning landscape~Sec. IV A!, the mechanism of
uncoupled channels sliding past each other~Sec. IV B!, and
the transverse depinning~Sec. IV C!.

A. Dependence of the spatial velocity distribution
on pinning landscape

We find a correlation between the particular pinning p
tential employed~representing details of the microstructu
causing vortex pinning in the material! and the positions and
velocities of the different groups of coupled channels.
should be noted that, although for the data shown in Fig. 4~b!

FIG. 8. Intensity of two Bragg peaks for the moving transve
glass shown in Fig. 4. The~01! peak is relative constant at a valu
of approximately 0.85 and it measures the order along they direc-
tion. In contrast, the peak~10! measures also order along thex
direction, and oscillates strongly. The variations are due to the
ferent groups of coupled channels sliding past each other. The
viation of the~01! peak from 1.0~as for a perfect lattice! is due to
the roughness of the channels. The inset shows the lattice ve
used to label the peaks.
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the vortices with the maximum velocity are located in t
central region of the sample (y'061.5), this is not an edge
effect: for other samples the maximum is located at differ
y positions. Remarkably, in both the decoupled channel
gime ~Fig. 4! and the turbulent plastic flow regime~not
shown here! the fastest flow is located in the same part of t
simulated material.

It has been suggested36 that the different velocities ob
served in the decoupled channel regime and shown in Fi
may be related to the experimentally observed fingerp
effect.4 In fact, it seems that for both the turbulent plas
flow and the decoupled channel regime the same areas o
pinning potential allow for better~or worse! pinning. This is
not obvious since in the turbulent plastic flow regime vor
ces flow more or less individually along highly tortuou
paths whereas in the decoupled channel regime they mov
a much more correlated way.

B. Channel sliding mechanisms

Figure 4 shows that the number of vortices per line
vortices~the line density! differs from group to group by 1,

e

f-
e-

ors

FIG. 9. Dislocation mediated phase slip in decoupled chan
regime for different longitudinal vortex densities showing sn
shots of 9 time steps. The open circles in each plot mark two fi
vortices, and the upper one defines the frame of reference.
Lorentz force acts from left to right. The upper two lines of vortic
visible in each plot belong to group C in Fig. 4 and the lower
lines to group D. Thus, in the relative frame of reference, the low
two lines move to the left. The two black filled circles indica
topological defects in each snap-shot and represent a disloca
These mediate the phase slip while moving to the left as can be
by comparing the open circles in plots 1 and 9.
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FIG. 10. Dislocation mediated phase slip in decoupled channel regime for equal longitudinal vortex densities. The open circles m
fixed vortices and black filled circles show topological defects. Here, in the relative frame of reference, the lower two lines move to t
The phase slip is realized by two dislocations consisting of a 5-7 and a 7-5-disclination pair~counting first the nearest neighbors for the upp
disclination!. These emerge from a pair-antipair creation process in plot 2. The 5-7-dislocation on the left moves to the left
7-5-dislocation to the right-hand side. In this process they allow the lower lines to pass a lattice spacing to the right. Between plot
the 7-5-dislocation leaves the simulation cell at the right-hand side and enters it again on the left-hand side. Finally, in plot 10,
dislocations meet again and annihilate each other. The topological defect in the lowest row is not important here.
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and exactly one dislocation between the groups is require
accommodate this difference@Fig. 4~c!#. In Fig. 9 a time
series of Delaunay24 triangulations of snap shots of a part
Fig. 4 is shown, demonstrating how a moving dislocat
allows groupC to move faster than groupD.

Figure 10 shows this process for two neighboring ch
nels having the same longitudinal vortex density. Again
phase slip is mediated by dislocations that travel along
channel. However, since initially there are no dislocatio
between the channels a dislocation pair is created. Th
dislocations travel away from each other, allowing the ph
slip between the upper and lower two lines. When the dis
cations meet again~due to periodic boundary conditions!
they annihilate.

Only the two mechanisms shown in Figs. 9 and 10 ha
been observed. The situation with the same longitudinal v
tex density has been observed less frequently that may
cate that this is energetically more expensive. However
macroscopic systems the two mechanisms described are
distinguishable and may coexist: the local vortex line den
differs around each of the dislocations in Fig. 10. Thus,
process shown in Fig. 9 may just be a more detailed st
of the phase slipping process in Fig. 10 for each of
dislocations.

From a figure in the work of Olson, Reichhardt and Nor12

we identify varying longitudinal vortex densities and Burge
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vectors37 parallel to the driving force, both in agreement wi
our results.

In conclusion, as far as we know, the detailed mechan
of decoupled channels moving past each other has been
tified for the first time. The phase slip is mediated by disc
nation pairs which either exist between separate group
coupled channels with locally different line densities of vo
tices, or the disclination pairs are created dynamically and
pairs when sufficient shear stress has built up. These re
may help in finding a starting point for a theoretical descr
tion of the dynamics of dislocations, such as
Kosterlitz-Thouless38 theory for nonequilibrium systems.

C. Transverse depinning

Following the theory of Giamarchi and Le Doussal,14 at
zero temperature, a nonanalytical response of the vortex
tem to a small transverse force is expected for the mov
glass, i.e., for the MBG and the MTG. In agreement with o
results in both the MBG and the MTG the existence of su
transverse barriers have been observed
simulations.9,10,39,40 The transverse depinning of the MBG
has recently been described39 and here we report on th
transverse depinning of the MTG. We have found that
transverse depinning of a MTG may happen in two ways
5-8
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Mechanism A.At a certain strength of the transverse for
~below the transverse depinning force!, some vortices chang
the rows in which they have moved so far, such that after
first step the different groups of coupled channelsA, B, C,
andD ~in Fig. 4! have the same number of vortices in ea
row. Then, all these rows move with the same velocity, i
the system has changed from a MTG to a MBG. This MB
does not~yet! move in the transverse direction. Only whe
the transverse driving force is increased even further,
system depins in the transverse direction, and moves el
cally in the longitudinal and the transverse direction as
scribed in Ref. 39.

Mechanism B.At the transverse depinning force the sy
tem rearranges plastically such that the rows of vorti
~which are aligned with thex axis in Fig. 4! become orien-
tated with an angle to thex axis after the change. The ne
direction of the rows is not the same as the direction of
total driving force~adding the small transverse force to t
main driving force along thex axis!.

We have found that the critical transverse force is hig
for mechanismA. Our early investigations have shown th
the transverse depinning of the MTG is an intricate ma
and further studies are required to reveal under which
cumstances mechanismA or B appears.

V. CONCLUSIONS

We have modeled the dynamics of vortices in two dime
sions using overdamped Langevin dynamics with a logar
mic vortex-vortex interaction potential that includes a mo
fied cutoff19 to avoid introducing numerical artifacts into th
simulation. We have computed a dynamic phase diagram
function of pinning strength and driving force. We fin
pinned vortex systems, different kinds of turbulent plas
flow, and for large driving forces motion of vortices in roug
channels along the direction of the driving force. Depend
on pinning strength and driving force the motion in differe
channels can either be coupled or decoupled. These ph
can be identified with the predicted MBG@Ref. 14# and
the MTG @Ref. 15# as described in recent theoretic
models.14–18

We have studied the MTG in detail and report on t
dependence of the vortex channel velocities on the pinn
landscape. We have identified how topological defects m
ate the phase slip between channels moving with differ
velocities, and we have shown that vortices never change
channels in which they are moving, i.e., the dislocations
the system do not produce chaotic motion of vortices, t
preserving transverse periodicity. Together with the obser
critical transverse force for the MTG and the MBG in the
simulations, our findings strongly support the moving gla
theory of Giamarchi and Le Doussal18 that assumes that th
dislocations in the MTG do not introduce additional effec
that may destroy transverse periodicity~and thus the critical
transverse force! in the MTG.

Our findings may also help in finding an extension to t
Kosterlitz-Thouless38 theory for nonequilibrium systems.
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APPENDIX: SMOOTH CUTOFF

We employ a smooth cutoff for the vortex-vortex intera
tion following the ideas described in Ref. 19. Here w
give details on the particular interpolating function we ha
chosen.

The vortex-vortex interaction has to be cutoff for di
tances greater than a cutoff distanceb. Assume the interac-
tion force is given byf (r ). For short-ranged interactions it i
sufficient to use an interactionf̂ (r ) which is f (r ) for r<b
and zero otherwise:

f̂ ~r !5H f ~r !, r<b

0, r .b.

For long-ranged forces this approach results in artific
configurations.19 However, those problems can be overcom
by reducingf (r ) smoothly to zero near the cutoff distanceb.
One needs to introduce another distancea, and a polynomial
p(r ), such thata,b and thatp(r ) interpolates betweenf (a)
at a and and zero atb:

f̂ ~r !5H f ~r !, r<a
p~r !, a,r<b

0, r .b.
It is required19 that f̂ (r ) showsC 1 continuity ata andb, and
its derivative atb to be zero:

f ~a!5p~a!, ~A1a!

p~b!50, ~A1b!

d f

dr U
r 5a

5
dp

drU
r 5a

, ~A1c!

dp

dr U
r 5b

50. ~A1d!

We have used a third-order polynomial

FIG. 11. Demonstrating the shape of the interpolating poly
mial p(r ) ~thick line! that smoothly reduces the vortex-vortex in
teraction force f (r ) to zero. For clarity we have chosenf (r )
51/r . The interpolation starts at the fading distancea57.5a0 and
reduces the interaction force to zero at the cutoff distanceb
510.5a0, wherea0 is the average vortex lattice spacing. See te
for details.
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p~x!5(
i 50

3

cix
i5c3x31c2x21c1x1c0

and the coefficientsci are completely determined by Eqs.~A1a!–~A1d!. Writing f 8(r ) for d f /dr(r ) one finds

S c3

c2

c1

c0

D 5
1

~a2b!3 S f 8~a!a2 f 8~a!b22 f ~a!

2 f 8~a!a213 f ~a!~a1b!2a f8~a!b12 f 8~a!b2

~2 f 8~a!a22a f8~a!b26 f ~a!a2 f 8~a!b2!b

2 f 8~a!b2a213 f ~a!ab21 f 8~a!ab32b3f ~a!

D .

The cutoff distanceb is determined by geometrical constraints~see Sec. II A!. We follow Ref. 19 and choose the distanceb
2a over which the interaction is reduced to zero to be three lattice spacings, so thata5b23a0. In this work f (r )}1/r . Figure
11 shows a schematic plot of the smooth cutoff and the interpolating polynomial.

To compute the potential energy of the system it is required to integrate2p(x) to represent the smoothed interactio
potential fora,r ,b. The integration constant is determined by requiring continuity of the interaction potential atr 5a.
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