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Microscopic models of two-dimensional magnets with fractionalized excitations
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We demonstrate that spin-charge separation can occur in two dimensions and note its confluence with
superconductivity, topology, gauge theory, and fault-tolerant quantum computation. We construct a microscopic
Ising-like model and, at a special coupling constant value, find its exact ground state as well as neutral spin-1

2

~spinon!, spinless chargee ~holon!, andZ2 vortex ~vison! states and energies. The fractionalized excitations
reflect the topological order of the ground state which is evinced by its fourfold degeneracy on the torus—a
degeneracy which is unrelated to translational or rotational symmetry—and is described by aZ2 gauge theory.
A magnetic moment coexists with the topological order. Our model is a member of a family of topologically
ordered models, one of which is integrable and realizes the toric quantum error correction code but does not
conserve any component of the spin. We relate our model to a dimer model which could be a spin SU(2)
symmetric realization of topological order and its concomitant quantum number fractionalization.
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I. INTRODUCTION

The advent of polyacetylene1 and the fractional quantum
Hall effect2,3 showed that quantum number fractionalizati
is a robust possibility in condensed-matter physics. T
quantum numbers of the low-energy excitations of these
tems are fractions of those of the microscopic degrees
freedom, the electrons. There are chargee, spin 0, and
charge 0, spin-12 spin-charge separatedexcitations in poly-
acetylene and other one-dimensional~1D! systems. The frac-
tional quantum Hall state at filling fractionn51/m has
chargee/m, statisticsp/m excitations; more exotic possibili
ties lurk at othern. Despite a flurry of interest generated b
the suggestion4,5 that spin-charge separation is the mech
nism for high-temperature superconductivity in the cupra
it is, at present, unclear whether spin-charge separation
occur in a 2D magnet. There is a set of long-wavelength fi
theories6–11 which describe the properties of putative fra
tionalized magnets, but their existence has been controve
for want of a concrete microscopic model of spin-1

2 moments
coupled by short-ranged interactions in which fractionali
tion occurs. In this paper, we construct such a microsco
model of a 2D magnet. We find the exact ground state
neutral, spin-12 ~spinon! and chargee, spinless~holon! ex-
cited eigenstates as well as aZ2 vortex.12–14,9The fraction-
alized excitations reflect thetopological order15,16,14 of the
ground state which is evinced by its fourfold degeneracy
the torus17,18,13—a degeneracy which is unrelated to trans
tional or rotational symmetry—and is described by aZ2
gauge theory.19,20,9 Our construction implies that fractiona
ization is a reasonable possibility for magnets with sho
ranged interactions. Our model is a member of a family
models, another of which is integrable and realizes the t
quantum error correction code.21 The models are related t
the quantum dimer model22 and lie at the confluence betwee
superconductivity, topology, gauge theory, and fault-toler
quantum computation.

Our purpose here is to show that such microscopic mo
do exist, at least in principle, so we construct a model w
the aim that it be deep within a phase supporting fraction
0163-1829/2001/64~6!/064422~7!/$20.00 64 0644
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ized excitations, not that it be a realistic description of a
particular physical system.~As we discuss below, Kitaev,21

in beautiful work, has constructed an exactly soluble mo
with many of the desired properties, but it does not have
conserved quantum numbers, so it is not ‘fractionalized
the sense of admitting fractional quantum numbers.! How-
ever, we insist that our model be expressed in terms of s
1
2 electrons, so that it is truly microscopic. Consequently, o
analysis differs in a number of key respects from earlier o
which dealt with models10,11,6,9which are not, strictly speak
ing, microscopic electronic models or else relied on vario
assumptions22,8 in order to reduce the microscopic models
effective models which exhibit fractionalization. We avo
the need for such assumptions or modifications~however
benign they may seem! by endowing our model with the
following properties which distinguish it from other mode
which have been considered in this context:~i! Ising symme-
try, ~ii ! translational symmetry which is broken by hand, a
~iii ! adiabatic continuability to an integrable model.21

A real magnet will have many additional complication
but these are unimportant so long as it shares the key fea
of our model, namelytopological order. In pioneering work,
Wen15,16,14observed that phases of matter in two dimensio
with fractionalized excitations are not characterized by a
cal order parameter, in contrast to more familiar phases s
as crystals. Rather, their universal properties are enca
lated by topological quantum numbers, such as their grou
state degeneracy on a torus or higher genus surface,over and
above any degeneracy which is due to broken symmetry. De-
generacy which is due to topological order persists in
presence of local perturbations such as impurities, wh
break translational and rotational symmetry.~This observa-
tion will prove important since it guides us to construct o
model on lattices which penalize states which would bre
translational and rotational symmetry on a square lattic!
This is completely different from the twofold degenera
associated with an Ising antiferromagnet, which is remov
by the application of a small symmetry-breaking field at ev
one point. Topological order is well established theoretica
in the fractional quantum Hall effect,16 where it is manifested
©2001 The American Physical Society22-1
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CHETAN NAYAK AND KIRILL SHTENGEL PHYSICAL REVIEW B 64 064422
by the existence of excitations with nontrivial braidin
statistics.23

Along with spinons and holons, a spin-charge separa
state must haveZ2 vortices,12–14 which have been recentl
dubbed ‘‘visons.’’9 Topological order implies the existenc
of a gap in the vison spectrum. It isnot necessary for all
other excitations to be gapped~see, for instance, the con
struction of Ref. 6!. This is analogous to the situation in
conventional ordered state such as a superconductor, w
can have gapless quasiparticles if, for instance, it hasd-wave
symmetry or impurities. They do not preclude a stable
state so long as there is a gap to the creation of vorti
Similarly, in our topologically ordered states the existence
a vison gapDv is necessary to guarantee the existence
distinct topological sectors of the Hilbert space on the tor
as we will describe below. We compute the vison gap a
present evidence that the rest of the spectrum is gap
~though, we reiterate, this is not a major issue!. The inte-
grable model in the family is fully gapped.

The concept of topological order is very attractive the
retically because it is precise, but it is sobering to note tha
has not been possible, to date, to directly measure mos
the topological quantum numbers—such as the braid
statistics—of a fractional quantum Hall state. On the ot
hand, this very feature has generated considerable intere
the use of topologically ordered states for quantum com
tation. The inaccessibility of topological degrees of freed
to local probes insulates them against many forms of de
herence, thebête noir of the quantum computation program

This point was made by Kitaev21 in a beautiful paper in
which he constructed a concrete model exhibiting the req
site topological order and a fault-tolerant quantum error c
recting code which could be implemented in it~see also Ref.
24!. The integrable model in our family is equivalent to K
taev’s. For our purposes, the model of greater physical in
est is the one which conservesSz and exhibits quantum num
ber fractionalization, which is of intrinsic interest and mig
be relevant to high-temperature superconductivity.4 It could
also prove useful for quantum computing since their spin
charge quantum numbers allows for the manipulation
spinons and holons. Harnessing the otherwise elusive vis
also becomes a real possibility if the proposed experimen
Ref. 25 can be implemented. Finally and perhaps most
portantly, the energy scale associated with topological or
in a magnet is likely to be an exchange constantJ
;1000 K. Thus a magnet with fractionalized excitations h
many attractive features as a milieu for quantum compu
tion ~for another, see Ref. 26 and references therein!.

II. MODEL

Our model has spin-1
2 degrees of freedom,Sa , living on

the links of a lattice which we specify below. They arenot
gauge fields, but gauge-invariant, physical degrees of f
dom which happen to be located on the links of the latt
~we return to this point later!. The Hamiltonian is

H05J1(
i

g~Si
z!2J2(

p
FpPp1J3(

p
Pp , ~1!
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whereSi
z[(aPN( i )Sa

z , andN( i ) is the set of links emanat
ing from sitei. The definitions ofFp , Pp are

Fp[ )
aPp

Sa
x , ~2!

Pp[ f ~Sa1

z 1Sa2

z !• f ~Sa2

z 1Sa3

z !• f ~Sa3

z 1Sa4

z !, ~3!

wherea1 ,a2 ,a3 ,a4 are the links of plaquettep, enumerated
clockwise. At a site with coordination numberz, g(x)
5(2x1z22)2/4. f (x)512x2. This model is closely re-
lated to the quantum dimer model22 ~please see below!.

The operatorg(Si
z) annihilates states~and only those

states! which haveSi
z521, i.e., which have one and onl

one neighboring spin. The operatorFp ‘‘flips’’ plaquette p
by flipping the four spins around it; an example of such fl
is shown in Fig. 1. The operatorPp is a projection operator
which annihilates all states except those in which up a
down spins alternate aroundp—see Fig. 2. Plaquettes ar
assumed to have four sides. however, they can be pu
gether irregularly or can overlap, as the parallelogra
shaped plaquettes of the triangular lattice do.

We will take J1 ,J2 ,J3.0.

III. LATTICE

Some care is required in the choice of lattice. As we w
see below, the model~1! is tractable atJ25J3. We would
like to choose a lattice so that the ground-state exhibits
key feature from which all of the interesting physics follow
fourfold ground state degeneracy on the torus even in
presence of local translational symmetry-breaking fields.

This can be accomplished if~i! the lattice does not allow
accidental symmetries which will increase the ground-st
degeneracy, a requirement which can usually be satisfie
taking a nonbipartite lattice, and~ii ! the lattice has a unit cel
which includes several plaquettes, so as to frustrate state

FIG. 1. The action of the flip operatorFp on a typical plaquette.
Notice that the totalz component of spin is generally not conserv
under such operation. The links with the up spins are shown her
colored—this provides an alternative graphical representa
which will be exploited later on.

FIG. 2. The action of the projection operatorPp leaves
plaquettes with the above shown spin configurations intact w
annihilatingany other type of plaquettes. A subsequent applicat
of the flip operatorFp to these plaquettes simply transforms the
into each other, therefore they will be referred to as ‘‘flippable.’
2-2
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MICROSCOPIC MODELS OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 64 064422
which the up spins form an ordered crystal~i.e., a spin-
density wave!. There are many possible lattices which satis
these requirements. Our basic strategy for constructing th
lattices is to take a Bravais lattice and introduce a perio
array of ‘‘defects.’’ These defects pin a spin-density-wa
state and make it nondegenerate, but they do not affec
fourfold degeneracy of the topologically ordered state. W
arrange these defects with a spacing which is incomme
rate with the likely spin-density-wave states so that th
states are frustrated and lifted in energy. Certain types
defects will also make it easier to satisfy~i!.

We will give two examples,T8 andS8. T8 is based on the
triangular lattice~which, without defects, was exploited i
this context by Moessner and Sondhi,27 see below!; the de-
fects are missing sites, as depicted in Fig. 3. Even a sin
such missing site frustrates the staggered state—a sp
type of crystalline state with no flippable plaquettes—as
picted in Fig. 3.~A flippable plaquette is a plaquette which
not annihilated byPp—see Fig. 2. It has alternating up an
down spins whose direction can be reversed by applica
of FpPp[Sa1

1 Sa2

2 Sa3

1 Sa4

2 1H.c. Left to its own devices,Fp

will flip any plaquette, even the ones which are not flippab
Pp prevents this. On the triangular lattice, a plaquette is
primitive parallelogram.! In T8, an array of sites is missing
so that the lattice is given by

H RUR5n1~ax̂!1n2S a

2
x̂1

A3a

2
ŷD ; n1 ,n2[” 0 modkJ ,

~4!

wherek is an arbitrary integer~this is just one such example
many otherT8-type lattices can be constructed along the
lines!. Another possibility,S8, is the square lattice in which
some of the plaquettes are split in two, as in Fig. 4.29 This
must be done so as to split some plaquettes horizontally
others vertically, in order to frustrate staggered states alig
in both directions. These split plaquettes may be viewed
elementary dislocations in a perfect square lattice and
they serve to model ‘‘real-life’’ defects.

FIG. 3. The mutilated triangular lattice,T8. The spins~only up
spins are shown! correspond to the maximally staggered configu
tion. In the presence of this type of lattice defects, there are str
of flippable plaquettes~shaded! which frustrate the true staggere
state.
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IV. GROUND STATES AND TOPOLOGICAL ORDER

The first term in Eq.~1! requires each site to have one a
only one neighboring up spin, so thatSi

z521, in which case
it vanishes. On the square lattice, this leads to a magn
moment which is half that of a fully polarized state. In o
model, this magnetic moment does not result from sponta
ous ordering; the magnetization is actually fixed at a nonz
value. However, it is possible to have a system which w
spontaneously undergo an Ising-like transition into su
phase.28 We will call a state with both spin-charge separati
and ferromagnetismF* , following the nomenclature of Ref
7. The coexistence of conventional long-range order a
quantum number fractionalization is familiar in 1D and 2
in polyacetylene, fractionalization coexists with charg
density wave~CDW! order; in easy-axis magnetic chain
with antiferromagnetism; at then5 1

3 quantum Hall plateau,
chargee/3 quasiparticles can form a crystal and the topolo
cal order~and quantum Hall effect! will not be disrupted.

The ground state of this model onT8 or S8 can be found
exactly for J25J3. Every plaquette costs zero energy,
long as all flippable plaquettes are taken in the linear co
binationuc&1Fpuc&.22 Since every spin configuration is ob
tainable from every other one by the repeated application
FpPp ,29,30 the ground state is the superposition with equ
amplitudes of all possible configurations of spins satisfy
Si

z521. The ground state is annihilated byH0.
Let us consider the crystalline states which compete w

the topologically ordered state. On the square and triang
lattices,27 the staggered state does not mix with other sta
underFpPp since it is annihilated by this operator. It is
zero-energy ground state which is degenerate with the to
logically ordered state. These two distinct ground states h
become degenerate at the first-order phase transition p
J25J3.

Fortunately, this is not the case on our lattices, as we n
demonstrate. The staggered state has finite-energy dens
J25J3 on T8 and S8 since it is frustrated on these lattice

-
gs

FIG. 4. A state of our model on the distorted square lattice w
a spinon~centered about the site inside the dotted line!, a holon
~open circle!, and a vison~a cross connected to a dashed line!. The
dotted-dashed line encloses one of the four defect plaquettes w
has been split by additional sites.
2-3
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CHETAN NAYAK AND KIRILL SHTENGEL PHYSICAL REVIEW B 64 064422
On T8, there is no perfect staggered state. Consider a si
defect~missing site!. It is clearly impossible to have a perfe
staggered state in the presence of the defect. The closes
we can come to a perfect staggered state~which we will call
a maximally staggered state! is either~i! a state which has a
string of flippable plaquettes originating at the defect a
extending to infinity or~ii ! a state with one vertex which i
frustrated by havingSi

z522. If we takeJ1→`, then only
~a! is possible. When we introduce an array of defects,
strings of flippable plaquettes will originate at one defect a
terminate at another. Under the action ofFp , this state will
mix with all of the others. Hence a maximally staggered st
will have energy density proportional toArJ2 in this limit
~wherer is the defect density!. However, forJ2→`, only
~ii ! is possible and the energy density of the maximally st
gered state is proportional torJ1. More generally, forJ1 and
J2 finite, the energy density of the maximally staggered st
will be rJ1/2 for small defect densityr and will be propor-
tional toArJ2 at larger. One might wonder whether there
some other crystalline state~e.g., one with a large unit cell!
which has zero energy. However, if such a state conta
flippable plaquettes, it will mix under the action ofFp with
all of the other states with flippable plaquettes.30 Hence such
a state will cost finite energy.

We can repeat the above analysis forS8. On S8, we can
frustrate one plaquette for each defect, with energy den
rJ2. On the perfect square lattice, theF* ground state is no
fourfold degenerate. It is critical,22 and unstable to a colum
nar state asJ3 is decreased.31 This is not the case onT8 or
S8, so we do not need to worry about the columnar sta
either.

The ground state may be visualized in the following wa
Consider some reference configuration of spins which is
nihilated by the first term of Eq.~1! and color all of the links
which have up spins. Now take any other configurat
which is also annihilated by the first term of Eq.~1! and do
the same. By placing one graph on top of the other,
erasing all links at which both graphs coincide, we obtai
collection of loops on the lattice. If we visualize states
terms of their associated loop graphs, then the ground sta
given by a superposition of different loop configurations.

Since H0 conserves modulo 2 the winding numbers
these loops about either of the generators of the torus, t
are four degenerate ground states on the torus,c (n1 ,n2) ,

n1 ,n250,1, with 0,1 corresponding to even or odd windin
numbers. By straightforward extension, the degeneracy o
genusg surface is 4g. Although we have computed this de
generacy only at the special coupling constant valueJ2
5J3, we believe that it is robust over some range of para
eters because it is characterized by an integer, 4. This int
cannot change as a result of infinitesimal perturbations,
only as a result of a perturbation which is sufficiently stro
that it moves the system across a phase transition at w
this integer changes discontinuously.

On the perfect square lattice, the directed winding num
~not merely the winding number modulo 2) is conserv
because the lattice is bipartite. As a result, there areL3L
06442
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sectors.S8 is not bipartite, so it has only four topologicall
distinct ground states.32

V. SPINONS AND HOLONS

The fourfold ground-state degeneracy implies the ex
tence of fractionalized excitations, so long as it is unrela
to translational and rotational symmetry, a condition which
satisfied as a result of our choice of lattice. To see th
imagine cutting open the torus along its second genera
thereby producing an annulus. The ground statec (0,0) has
nonzero projection on the ground state of the annulus
cause it will have some amplitude to have zero loops en
cling the torus.c (1,0) does not, but it does have finite proje
tion on a finite-energy excited state of the annulus becau
must have at least one loop circuiting the torus and it m
have some amplitude to have only one. This finite-ene
excitation has, by construction, a spinon at the inner a
outer edges of the annulus, as in Laughlin’s construction
charge e/3 quasiparticles in the fractional quantum Ha
effect.3 The inner edge of the annulus can be shrunk a
filled in since our discussion depends only on the topolo
but not the geometry of the lattice. This construction can
done on a torus of any size, so the spinon at the bound
can be taken arbitrarily far away from the one in the inter
with finite energy cost.

This general argument can be substantiated in our mo
by a direct construction of spinon and holon excitations. T
spinons may be created by flipping a single up spin int
down spin. This changesSz by 21 and creates 2 sites wit
Si

z522. These sites can be moved apart; each one ca
Sz52 1

2 and costs energyJ1. A holon may be constructed b
simply removing a spin from one of these spinon sites. T
removes chargee and spinSz52 1

2 from a neutralSz52 1
2

excitation, thereby producing a spinless chargee excitation.
There will now be a site withSi

z52 3
2 , so the holon costs

energyJ1/4. In the loop picture, spinons and holons reside
the endpoints of broken loops.

VI. VISONS

Consider now the operator

Fp[ )
aPcp

2Sa
z , ~5!

wherecp is any curve which starts at the center of plaque
p, connects it to the center of a neighboring plaquettep8, and
continues in this manner through the centers of a sequenc
neighboring plaquettes, running to infinity~or the boundary
of the system!. The product in Eq.~5! is over all links a
which intersectcp . Under the action ofFp , each loop con-
figuration receives a21 if cp has an odd number of inter
sections with colored links and 1 if it has an even number
intersections with colored links. When a holon or spin
follows a trajectory encirclingp, the intersection numbe
must change by one, soFp creates aZ2 vortex, or ‘‘vison,’’9

at plaquettep.
2-4
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MICROSCOPIC MODELS OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 64 064422
The statistics of holons and spinons depend on the e
getics of the model: by binding to a vison, they can swit
their statistics between bosonic and fermionic.12,13 Our
Hamiltonian does not allow holons or spinons to move: th
are infinitely heavy. However, a small perturbation will a
low them to move and will give rise to the energetics whi
determines whether they bind with visons and thereby th
statistics.

The fourfold degeneracy of the ground state—or, in ot
words, the topological order—guarantees the existence
vison energy gap. To see this, consider the degenerate s
c (0,0)6c (1,0) on the torus. Now imagine creating a vison pa
at plaquettep, taking one vison around the second genera
of the torus, and annihilating the pair atp. This is equivalent
to acting on our state with an operator similar toFp , but
with the curvecp in Eq. ~5! replaced by a closed curve whic
passes throughp and encircles the torus along its seco
generator. This operator exchangesc (0,0)6c (1,0) . The am-
plitude for such a process is essentially the exponential of
Euclidean action required for such a virtual process to oc
;e2cLDv whereL is the length of the loop around the toru
Dv is the vison gap, andc is a constant. Hence the energ
splitting between statesc (0,0) and c (1,0) is ;e2cLDv. Since
we know that this splitting vanishes in the thermodynam
limit, the vison gapDv must be finite.

This conclusion is supported by a direct calculation. T
creation of a vison atp takes the stateuc&1Fpuc& into uc&
2Fpuc&, with an energy costDv . Since the vison creation
operatorFp commutes with all of the terms in Eq.~1! except
for theJ2 term at plaquettep, with which it anticommutes, a
state with one vison,uFp&, has excitation energy

^FpuHuFp&52J2^0uPpu0&. ~6!

Hence the vison gap is equal to 2J2 multiplied by the density
of flippable plaquettes. This may be computed atJ25J3 by
the Grassmann techniques discussed below. In an integ
model which we discuss below, exact vison eigenstates
energy eigenvalues may be found.

From Eq.~6!, we see that the vison gap will be nonva
ishing whenever̂ 0uFpPpu0&Þ0, i.e., whenever the spin
fluctuate in the ground state, as they generically do in
model, even outside the topologically ordered phase. H
ever, this is not particularly consequential. Consider
analogous situation in a superfluid: it is possible to defin
vortex energy above the transition~e.g., the Kosterlitz-
Thouless transition! which varies smoothly across the trans
tion. However, this energy is only meaningful in the sup
fluid state ~or, perhaps, near it!. Similarly, the vison gap
becomes meaningful in the topologically ordered phase. O
side this phase,Fp is merely an operator which creates som
complicated gapped excitation.

A vison gap is necessary for topological order; a gap
the rest of the spectrum is not. However, the equal-time s
spin correlation function in the ground state is exponentia
decaying, as may be seen from an exact mapping betw
the ground state of our model and the field theory of f
lattice fermions,33 according to which it is a square root o
the eight-fermion correlator. This decays exponentially w
06442
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distance since these fermions, though massless on a re
square lattice, acquire mass in the presence of lattice dis
tions such as that shown in Fig. 4~the details of this calcu-
lation will be published elsewhere!. Hence it is natural to
conclude that there is an energy gap to all excited states;
may be argued via the single-mode approximation. T
computation has been carried out on the triangular lattice
Moessner and Sondhi,27 who found that the single-mode ap
proximation suggests that the system is indeed gapped.

VII. A FAMILY OF MODELS

We can gain further insight into the spectrum of o
model by generalizing it to the following family of models

H5H01J18(
i

y~Si
z!2J28(

p
@Fp~12Pp!2~12Pp!#,

~7!

where y(x)5 2
3 x(x224)(x11) ~for z54) and J25J3 in

H0. As J18 ,J28 are increased, two things occur: loop crossin
are allowed34 and plaquette flips of unflippable plaquettes a
allowed. The topological order is preserved because
winding number modulo 2 is conserved. In the extreme lim
J185J1 , J285J2, there are eight equally likely configuration
at each site~corresponding to those of the eight-verte
model! and the model is now integrable because@g(Si

z)
1y(Si

z)# and Fp commute among themselves and hen
with the Hamiltonian, for alli, p. Hence we can simulta
neously diagonalize all of these operators. They have eig
values 0 and 1, respectively, in the ground state; ag(Si

z)
1y(Si

z)51 eigenvalue is a quasiparticle excitation ati and
Fp521 is a vison at p. This model is equivalent to
Kitaev’s.21 The ground state of this integrable model has
same topological order~fourfold degeneracy! as that of Eq.
~1!, but its quasiparticle excitations do not carry spin since
is not conserved. Since there is no projection operatorPp in
H, the vison energy is exactly 2J2. Crystalline states have
energyJ2/2 per plaquette above the ground state.

VIII. FIELD-THEORETIC DESCRIPTION

The configurations allowed in the ground state of the
tegrable model are described by closed loops—in ot
words, by the configurations of the Ising model on the d
lattice ~equivalent to the eight-vertex model!. The dynamics
of the plaquette flip operator is the same as that of a tra
verse field in the Ising model. Hence the integrable mode
equivalent at low energies to the transverse field Ising mo
which, in turn, is dual to aZ2 gauge theory. Since the topo
logical order associated withH0 is the same as that of th
integrable model, it, too, is described by aZ2 gauge theory,19

as proposed in Refs. 20 and 9.
Note thatSi

z is conserved for alli in our model~1!. Hence
there is an independent U(1) symmetry at each site of
lattice. However, only time-independent transformatio
leave the Lagrangian invariant. Hence this is an ordinary~but
large! symmetry group; it isnot a gauge symmetry, which
must allow time-dependent transformations. All of the d
2-5
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grees of freedom in Eq.~1! are physical. This is similar to the
symmetry of a set of noninteracting spins in a magnetic fie
H52( iB•Si , which also has an independent U(1) at ea
site of the lattice.

IX. QUANTUM DIMER MODELS

Our model ~1! can be mapped to the quantum dim
model,5,22,12,35 in which it is assumed that there are spi
located at the sites of a lattice and that each spin form
singlet dimer with one of its nearest neighbors. In Eq.~1!, an
up-spin link corresponds to a dimer; a down-spin link to t
absence of a dimer; spinons, to empty sites~which are holons
in the dimer model!. Then the first term in Eq.~1! requires
each spin to form a dimer with exactly one of its neighbo
The J2 and J3 terms are precisely the dimer kinetic an
potential energies of Ref. 22. OurF* state of Eq.~1! is
simply the resonating valence bond~RVB! ~Refs. 4 and 22
ground state of the quantum dimer model on the same lat
Recently, Moessner and Sondhi27 gave compelling evidence
that the triangular lattice quantum dimer model has an R
ground state over a substantial range of parameters term
ing at a first-order phase transition atJ25J3 into the stag-
gered state. According to our arguments, the RVB state is
unique, exact ground state atJ25J3 on T8.

X. SU„2… SYMMETRIC MODELS

There is no reason to believe that an SU(2) symme
magnet cannot be topologically ordered. If we wish to ap
the preceding results, then the quantum dimer model ca
v
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the starting point for the discussion of an SU(2) symme
topologically ordered magnet.36,37,39There is some numerica
evidence38 that a model of spins on the triangular lattice w
strong four-spin exchanges—reminiscent of the plaquette
operator—has a topologically ordered ground state w
fourfold degeneracy.

XI. SUMMARY

We have demonstrated that quantum number fractio
ization and topological order are an eminently reason
possibility for two-dimensional magnets by constructing
microscopic model which exhibits these phenomena. Ou
sult links two problems of great interest: quantum num
fractionalization in 2D quantum magnets and the invest
tion of physical systems which are suitable platforms
fault-tolerant quantum computation~this link was also noted
in Ref. 40!. A possible nexus with ideas abo
superconductivity—either in the cuprates or elsewher
leads to potentially fruitful avenues for further research
both areas.
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