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Evolution of solitons in magnetic thin films
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Localized magnetostatic wave pulses propagating in a magnetic thin film can be modeled by a nonlinear
Schroedinger equation, which has stable envelope soliton solutions. When the wave velocity depends also on
the wave amplitude it is necessary to add a self-steepening term to the evolution equation. However, when this
is done the original envelope will evolve from a symmetric structure into an asymmetric structure as a direct
result of the self-steepening term. An approximate time envelope shape is analytically calculated to obtain the
time dependence of the asymmetry, and numerical simulations also indicate similar temporal development.
Finally, the analytical calculation is compared with previous experimental pulse shapes obtained during propa-
gation in yttrium iron garnet thin films.
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[. INTRODUCTION shape. There are analytic solutiBnt of the HONLS equa-
tion with third-order dispersion and first-order nonlinear dis-
Microwave envelope solitons can be produced in magypersion(or self-steepeningas the higher-order terms. In or-
netic thin films such as yttrium iron garn@tIG) by use of a  der for multisoliton solutions to exist, it has been sh8wf
simple delay-line setup. In this system a bright solitonthat the coefficients in the HONLS model must satisfy cer-
evolves when a finite duration pulse on a microwave fretain relations, but this probably will not be the case in physi-
quency carrier wave is launched from a microstrip antennaal systems so these solutions are only of mathematical in-
attached to the film, and it is detected at a second microstrigerest. On the other hand, the single soliton solutions can
antenna a few millimeters down the film. In addition to the exist for arbitrary values of the coefficients, except for sign
potential applications in the area of microwave signal proconstraints, so these might be more applicable. However,
cessing, these experimehitd provide useful tests of the there are no free parameters in these solutions, so again they
theory of microwave propagation and soliton formation inare too restricted to be useful. The HONLS equation with the
magnetic films. In the development of theories a single pulsaelf-steepening term only has soliton solutignand it has
has a frequency spectrum of widw on a carrier frequency, also been used to analytically motfet* shock development.
wg defining “slow” and “fast” characteristic times, respec- However, it was recently showhthat there was an error in
tively. If it is assumed thafw< wy then one can describe the this analytical work resulting from inconsistent solution of
dynamics of propagation in terms of the “slow” characteris- an overdetermined set of equations. There are also some in-
tic time leading to the envelope approximation giving theteresting recent numerical studi&’ of this system, show-
nonlinear SchroedinggiNLS) equation describing the evo- ing that a symmetric pulse will evolve into one or more
lution of the pulse. The NLS equation is one of the fewsolitons as well as a linear wave train. This can be a notice-
equations that can be solVedy the inverse scattering able effect in optical fibers, but in YIG films the propagation
method so it is possible to find a solution from an arbitrarydistance is too short for the linear wave train to be notice-
initial pulse shape, and a comparison can be made with exable.
perimental results using YIG films. In general, experiments Usually it is expected that the effects resulting from the
can be explained by use of the NLS equation, and particulanigher-order terms will be small; nevertheless, it is of interest
examples are soliton formatidand soliton decdyresulting  to experimentally observe such effects to test the limits of the
from dissipation in YIG films. NLS model. Previous experiments have shown that the soli-
There are situations when the envelope approximation iton velocity has a weak dependence on the input pulse
not valid and the NLS model is not expected to be appli-power, and this was subsequently explaifiettirough the
cable; in particular, this can occur if the pulse is narrowaddition of higher-order linear and nonlinear dispersion in
(dw=~wy) or if the pulse amplitude is large. The usual strat-the NLS equation. To find other effects that can be explained
egy in these situations has been the addition of higher-ordehrough higher-order terms, we will investigate the short-
terms in the NLS equation such as higher-order linear antime evolution of a pulse in a YIG film. To accomplish this,
nonlinear dispersion resulting in a higher-order nonlinearmapproximate analytic solutions of a HONLS equation will be
SchroedingeftHONLS) equation. However, if the pulse is obtained, which will be more general and applicable than the
too narrow(the order of the carrier wavelengtthis approxi-  known exact solutions. First, a temporal series solution is
mation will not be adequateo matter how many terms are developed so that the time evolution of an initial pulse can be
included. Here we are interested in the intermediate casdetermined. Using this solution the change in shape of a
when the envelope approximation is still valid, but thepulse can actually be calculated which is an effect that can-
higher-order terms can also have an effect on the pulsaot be studied through the soliton solutions of the HONLS
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equation. The calculated pulse shape is compared with niequations will be consistent. This will be done by develop-

merical simulation of the same equation to indicate that thisnent of a temporal series solution farso that the time

solution is stable and general. The overall objective of thissvolution can be determined from an arbitrary initial enve-

research is to provide methods to experimentally detect thiope shape.

effects arising from the higher-order terms. Therefore the The first step in this process is the development of a series

calculated pulse shapes are compared with pulse shapes awlution for ¢, which will be general at this stage because

tained during propagation in YIG films and it is shown that Eq. (4b) has the soft solutiogy=g(x— yt—A,t) whereg is

the higher-order terms can, indeed, have a measurable effestill an arbitrary function. Using the soft solution it is easy to

on microwave pulse propagation. derive the following series foy if the form is assumed for
the functionA(y) =ag+a, g+ ay’+...,

Y=g+ Yt +yt>=0, (6)

The time evolution of a pulse is determined from the stan-
dard nonlinear Schrbinger equation with a higher-order where2¢r1= — (a1t a20)9x, P2=(a1+ a20)[gx(ar t a29)
self-steepening term as a perturbation. This term is the direct @29x}/2, anda;=1+2a,. This is the solution of Eq4b)
result of an amplitude dependent group velocity and it isand it is next necessary to consistently solve Edg) and

expressed as the last term in the following HONLS equation.(s) to obtainu in the form of a series. _
Next it is assumed that is expressed as the series

II. SOLUTION OF THE MODEL EQUATION

: D :
lort 5 @ Nlel*e=iQ(l¢[*¢),=0, (1) U=uptejttestt..., @)

whereu, is the initial form of the pulse and the other coef-

where the complex envelope function(x,t) specifies a ficients are in general dependent xnTo find these coeffi-

pulse traveling in thex direction and the subscripts indicate cients Eqs.(6) and (7) are substituted into Eqda), it is

partial differentiation. The coefficients in Eql) are ob- assumed thag has the formg=a+,8u(2), and Eq.(4a is

tained from derivatives of the magnetostatic wave dispersior\}vritten in series form. The coefficients of each powet afe
relation w(k,|¢|?), whereD = #%w/ Jk? is the dispersion co- : P

efficient, N= dwid|¢|2 is the nonlinear coefficient, an@ then equated to zero to obtain the set of equations for the

=dN/ok is the nonlinear dispersion coefficient. All coeffi- coefficientsen,,
megts are evalgated at the.carner wave number and for u0t+au0X+2,8uSu0X+81=O, (83)
| ¢|“=0. We begin by expressing the complex envelope func-

tion as 10+ @e 1+ BUdUgy+ Y1Uoy+ 3Ug+ BugUoxer+2e,=0

e(X,t)=u(x,1)e' 7Y, 2) (8b)
corresponding to the coefficients of thitandt! terms, re-

whereu ando are real functions. Then substitution of Ef) spectively. It is remarked that the lowest order EBg) is

into the HONLS equation anq separately equating the 'Maglised to obtairz,; and the higher-order equations can be used
nary and real parts to zero gives the two equations

to obtain the other coefficients.
D The final step is the solution of E¢b), which is done by
u;+ §(uxx+ 2u,0y) +3QuPu, =0, (3@  substitution of the series fap andu into Eq. (5) with the
values fore from Eqgs.(8). Again, this will give a power
series int with complicated coefficients that will be functions

—Uo+ E(uxx—UUi)—(NwLQox)u?‘:O. (3  of g, and when the coefficients are equated to zero we
2 obtain the set of equations
Next it is possible to express Eq8a and(3b) in conserva- 2 22,32 ON  2a 2a
2D D D D D D
(Uz)t‘f‘(l//UZ)X:O, (43) =O (ga)
o[ L+ A (40 D’ 5 22. 3ol
thl2 ’ — &5+ | 3ND+ - Q%us+ = Qg uge,
X 2 4 2
where the functiony is defined byy=3Qu?/2+ Doy, A(¥) o)
is an arbitrary function, and all functions must be related by +(§U3—31—2329 Ugthy— (ag+ a9+ a,g%) e, =0
Dy 2 ? i Q5 (9b)
o —NDu +Tu —Ed/u —A(y)=0. (5)

for the t® andt? coefficients, respectively. Now E@8a) is
At this point we have three equations and three unknowngjsed to determine; in terms of the initial envelope func-
but the third unknown function is itself a function ¢fso the  tion, ug, the second derivative af; is calculated by differ-
main problem here is the determinationffo that all three  entiation of Eq(8a), and the derivatives aof, are eliminated

064416-2



EVOLUTION OF SOLITONS IN MAGNETIC THIN FILMS PHYSICAL REVIEW B64 064416

by use of Eq(9a) and its first integral. Substitution of ¢, case. Using EQs.(11)—(13) and (15 we obtain a,
€1, ande 4y into EQ. (9b) then results in a polynomial ing =0.25IND/Q anda;=—0.30MND/Q to get the following
with terms the order ofi3, ug, andug. All of the previous  effective nonlinear coefficient:

equations will be satisfied to first orderftiif the coefficients

of these powers in this polynomial are equated to zero giving n=1 65E (16)
the set of three equations, D
a2a2+a1a+2a2a2a2+3a1a2a+a§—8ao=0, (104 These results are combined to get a first-order time-
dependent solution of the HONLS equation which will be
16a,8a§+ 12aBa,+8a,a,8—2Qaa,— Qa; —4Qa used to determine the shape evolution of a pulse owing to the
self-steepening term in the HONLS equation. The time-
—16a;8—-14ND=0, (10D dependent contribution can now be obtained from @)
28 23 10 for e, together with the other parameters that were deter-
48 3 [0~ 2, Y2, mined. Using the initial pulse in Eq14), the following pulse
3 2671 | 73Q72Q8 | f7+ 5 Q=0 (109 shape is obtained:

for exponents 2, 4, and 6, respectively.
In order to determine the unknown constants in E6) u(x,t)= @ cosh 1(¢x)+
assumptions about the initial pulse shape are made. To sim-

1,050/ ¢ cosh-*
: D $oCosh(£x)

plify the following calculations, it is assumed that the initial

pulse has a sech form, which implies that the coefficient of Xtanh({x)tanh({x) |t, (17)
ug in Eq. (99 is zero. This gives the following value for the

paramete®, where= po\/—n/2 is the inverse width of the initial pulse.

In principle, higher-order corrections can be found using
estimated from Eq(8b); however, the simple functions that
we chose forg and A(#) will no longer be sufficient to
, satisfy the second-order terms in all three equations. This is
in terms of the other unknown parametgr,The value of8  pecayse there will not be an adequate number of free param-
is easily obtained by substitution of EQLD) into Eq. (100 gers to separately equate all of the poweragfo zero, and
resulting in one must use more complicated functions involving more
parameters, or require that the coefficients in the HONLS

9: +v3, (12  equation have restricted values. In order to sidestep this dif-
ficulty, we will only apply Eq.(17) in the time interval where
it will be a valid approximation. To determine this interval,
first the magnitude of the second-order term is estimated.
Using Eqg.(8b) together with the previous results, it can be
shown that this term is the order of

NQ*

, Q@

a _ﬁ+4_ﬂ2

(11)

and Eq.(10b finally gives an expression relating the other
two parameters,

a
%(2& 10v3)+ 17;2(31@—10)—14ND=0. (13

These steps leave a free parameter that can eventually be
related to an experimental quantity such as the pulse ampland comparison of this with the first-order term in Ef7)
tude, which is done using the definite form fay after inte-  we obtain the inequality
gration of Eq.(9a) yielding the initial pulse
D —N
_ t<—— \/—=— (18
n 2 D ’
©o\/ TX)’ NQ¢o

Ug= @gcosh ! (14)

giving a relation to be satisfied by the propagation time and
where the effective nonlinear coefficient i8=2N/D the pulse amplitude.
+2Ba,/D?, and ¢, is the pulse amplitude. Furthermore,
using this initial solution it can be shown that the parameter Il. SOLITON EVOLUTION

ag is related to the amplitude by the expression _ _ _ _ _
In this section typical parameters applicable to YIG films

= — 1D2,2 (15) will be used to calculate the pulse shape as a function of
=N 7 ND%¢q. . - . .

time. Bright solitons in these systems can be formed when

Now all parameters can be evaluated in terms of the coeffioperation of the delay line is in the so-called magnetostatic
cients in the HONLS equation. Here it is remarked that allbackward volume wave configuration. In this case an exter-
coefficients in the HONLS equation will be chosen so thatnal magnetic field is applied tangent to the film plane, and
the amplitude-dependent terms resulting from Edp) will the pulse propagates in the direction of the applied field.
be negligible, and later this will be shown to indeed be theUsing the magnetostatic wave dispersion relation it is pos-
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FIG. 2. Experimental pulsésolid curve propagating in YIG
film. Calculated pulsédashed curveformed from symmetric pulse

FIG. 1. Pulse shape at two different times. The dashed curve igftgr a prgpagation time OT 5.0 ns. The relative amplitudes have been
the initial symmetric pulse, and the solid curve is the pulse after f'h'ﬁed sl_lghtly to_better distinguish between the two pL_JIses, and a
propagation time of 80 ns. The solid points are numerical resultSYMmetric pulse is shown by the dashed curve extending from the

corresponding to a propagation time of 200 ns. experimental pulse peak.

asymmetric pulse, and referring to Fig. 1 it is noticed that

sible to calculate the dispersion parameter and the nonline@kese long propagation time numerical results almost coin-
coefficient for specific values of the carrier wave number anctide with the analytical results. The main point here is that
film thickness. This has already been done in the literaturethe numerical results are qualitatively similar to the analyti-
so only typical values will be given here. It is more difficult cal results in Fig. 1 indicating that the analytical and numeri-
to get a reliable estimate of the self-steepening coefficiengal data are consistent and the analytic series solution is a
but if thek dependence of the nonlinear coefficient is known,good approximation. Next the temporal region where the ap-
the value ofQ can be estimated from tHederivative evalu-  proximations are valid is determined by using the values of
ated at the carrier wave number. For one of the most recethe parameters in Eq(18) giving a range of about
calculations® of N(k) it can be shown tha® is the order of <100 ns. Since the propagation time used in Fig. 1 is close
10°-10/, but this parameter is very dependent on the modelo this limit, it is expected that the larger times used in Eq.
used. To obtain numerical results giving the pulse shape ver17) will not give an accurate pulse shape. Indeed, when
sus time from Eq(17) we will use the parameter values for |arger time values are used a shoulder and a secondary peak
a film of thickness 7.5um in a 1150-Oe external field giving will form on the right side of the pulse. Since this is not a
D=1.4x10°cnf/s,N=—7x10°s ™, atypical value for the result of physical significance, the pulse profiles at larger
magnitude of the group velocity ig,=3.5x 10° cm/s. Area-  values of the time are not illustrated in Fig. 1. It is finally
sonable estimate for the self-steepening coefficiel®4s5  remarked that the asymmetric pulses in Fig. 1 are similar to
X 10° cm/s, although it might be better to determi@eby  the initial stages of shock development in Refs. 13 and 14
fitting the above equation to experimental pulse shapes. Anyhich were, however, shown to be incorrect.
other parameter that is unknown is the initial pulse ampli- Finally, the pulse shape calculated from E&j7) is com-
tude, but in order for the cubic NLS approximation to bepared with experimental data. To do this we use some old
valid this has to be small. In the following we take,  data® from a YIG film of thickness 7.5um operating in the
=0.06. magnetostatic backward volume wave configuration. In this

In a typical experimental setup the pulse propagates a fewase the parameters used earlier are still valid and they are
millimeters down the film, which corresponds to a propaga-used to obtain the pulse form. In this experimental setup the
tion time of about 100 ns. Therefore in the following we will output pulse is observed at the second antenna as the output
calculate the pulse shape for times up to about 100 ns, whichmplitude versus time. For this reason the pulse amplitude as
is also in the neighborhood of the limiting value of time a function of time at a fixed position is calculated, and these
given by Eq.(18). The time development of a pulse is illus- results are compared with experimental data. In Fig. 2 the
trated in Fig. 1 where Eq(17) was used to calculate the solid curve indicates a pulse from Ref. 20 after propagation
pulse shape as a function of time using the above parameteiia. YIG for a time of about 80 ns. In the original experiment
Both the initial and the pulse after a propagation time ofthis pulse was formed from a 0.01-W rectangular pulse of
about 80 ns are plotted as a function of position. Here we caduration 13 ns. Here notice the asymmetry of the pulse. This
clearly notice the growth of the pulse asymmetry as the pulsasymmetry seems to be a characteristic of other small ampli-
propagates from the initial symmetric pulse to the asymmettude pulses, maybe because it is more noticeable if the am-
ric pulse. The propagation of a similar initial pulse has alsoplitude is small. Furthermore, if the pulse amplitude in-
been numerically modeled by E@l) and these results are creases to the two-soliton threshold, the multisoliton
indicated by the data points in Fig. 1. In general the numeristructure has a significant effect on the pulse shape and Eq.
cal modeling shows that after a long propagation ti@0  (17) is no longer expected to be applicable. Since the experi-
ng the initial symmetric pulse will evolve into a stable mental pulse has formed from a rectangular pulse, and a
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short time is required for the pulse to evolve into a sech-typdrom the pulse peak. These parameters give a good qualita-
shape, the propagation time used to calculate the pulse shatiee agreement between the calculated time dependence and
was taken to be about 50 ns. The only unknown parameter igxperimental results. In conclusion, both analytical calcula-
the pulse amplitude, which is a measure of the timetions and numerical simulations have shown that nonlinear
dependent magnetization relative to the saturation magnetitispersion in the NLS equation is one possible explanation of
zation in YIG. For typ|Ca| eXperimental conditions this is in the asymmetry Of envelope So|it0ns propagating in YIG
the range 0.0& ¢;<<0.1 so we took the initial pulse ampli- fjims.

tude to be an adjustable parameter, and the vale0.06

was used to calculate the pulse shape. The calculated pulse

shape is shown as the dashed curve in Fig. 2 where the ACKNOWLEDGMENTS

amplitude has been increased slightly to better compare the
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