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Evolution of solitons in magnetic thin films
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Localized magnetostatic wave pulses propagating in a magnetic thin film can be modeled by a nonlinear
Schroedinger equation, which has stable envelope soliton solutions. When the wave velocity depends also on
the wave amplitude it is necessary to add a self-steepening term to the evolution equation. However, when this
is done the original envelope will evolve from a symmetric structure into an asymmetric structure as a direct
result of the self-steepening term. An approximate time envelope shape is analytically calculated to obtain the
time dependence of the asymmetry, and numerical simulations also indicate similar temporal development.
Finally, the analytical calculation is compared with previous experimental pulse shapes obtained during propa-
gation in yttrium iron garnet thin films.
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I. INTRODUCTION

Microwave envelope solitons can be produced in m
netic thin films such as yttrium iron garnet~YIG! by use of a
simple delay-line setup. In this system a bright solit
evolves when a finite duration pulse on a microwave f
quency carrier wave is launched from a microstrip ante
attached to the film, and it is detected at a second micros
antenna a few millimeters down the film. In addition to t
potential applications in the area of microwave signal p
cessing, these experiments1–3 provide useful tests of the
theory of microwave propagation and soliton formation
magnetic films. In the development of theories a single pu
has a frequency spectrum of widthdv on a carrier frequency
v0 defining ‘‘slow’’ and ‘‘fast’’ characteristic times, respec
tively. If it is assumed thatdv!v0 then one can describe th
dynamics of propagation in terms of the ‘‘slow’’ character
tic time leading to the envelope approximation giving t
nonlinear Schroedinger~NLS! equation describing the evo
lution of the pulse. The NLS equation is one of the fe
equations that can be solved4 by the inverse scattering
method so it is possible to find a solution from an arbitra
initial pulse shape, and a comparison can be made with
perimental results using YIG films. In general, experime
can be explained by use of the NLS equation, and partic
examples are soliton formation5 and soliton decay6 resulting
from dissipation in YIG films.

There are situations when the envelope approximatio
not valid and the NLS model is not expected to be ap
cable; in particular, this can occur if the pulse is narro
(dv'v0) or if the pulse amplitude is large. The usual str
egy in these situations has been the addition of higher-o
terms in the NLS equation such as higher-order linear
nonlinear dispersion resulting in a higher-order nonlin
Schroedinger~HONLS! equation. However, if the pulse i
too narrow~the order of the carrier wavelength! this approxi-
mation will not be adequate7 no matter how many terms ar
included. Here we are interested in the intermediate c
when the envelope approximation is still valid, but t
higher-order terms can also have an effect on the p
0163-1829/2001/64~6!/064416~5!/$20.00 64 0644
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shape. There are analytic solutions8–11 of the HONLS equa-
tion with third-order dispersion and first-order nonlinear d
persion~or self-steepening! as the higher-order terms. In o
der for multisoliton solutions to exist, it has been shown8–10

that the coefficients in the HONLS model must satisfy c
tain relations, but this probably will not be the case in phy
cal systems so these solutions are only of mathematica
terest. On the other hand, the single soliton solutions
exist for arbitrary values of the coefficients, except for si
constraints, so these might be more applicable. Howe
there are no free parameters in these solutions, so again
are too restricted to be useful. The HONLS equation with
self-steepening term only has soliton solutions12 and it has
also been used to analytically model13,14shock development
However, it was recently shown15 that there was an error in
this analytical work resulting from inconsistent solution
an overdetermined set of equations. There are also som
teresting recent numerical studies16,17 of this system, show-
ing that a symmetric pulse will evolve into one or mo
solitons as well as a linear wave train. This can be a not
able effect in optical fibers, but in YIG films the propagatio
distance is too short for the linear wave train to be noti
able.

Usually it is expected that the effects resulting from t
higher-order terms will be small; nevertheless, it is of inter
to experimentally observe such effects to test the limits of
NLS model. Previous experiments have shown that the s
ton velocity has a weak dependence on the input pu
power, and this was subsequently explained18 through the
addition of higher-order linear and nonlinear dispersion
the NLS equation. To find other effects that can be explain
through higher-order terms, we will investigate the sho
time evolution of a pulse in a YIG film. To accomplish thi
approximate analytic solutions of a HONLS equation will
obtained, which will be more general and applicable than
known exact solutions. First, a temporal series solution
developed so that the time evolution of an initial pulse can
determined. Using this solution the change in shape o
pulse can actually be calculated which is an effect that c
not be studied through the soliton solutions of the HON
©2001 The American Physical Society16-1
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equation. The calculated pulse shape is compared with
merical simulation of the same equation to indicate that
solution is stable and general. The overall objective of t
research is to provide methods to experimentally detect
effects arising from the higher-order terms. Therefore
calculated pulse shapes are compared with pulse shape
tained during propagation in YIG films and it is shown th
the higher-order terms can, indeed, have a measurable e
on microwave pulse propagation.

II. SOLUTION OF THE MODEL EQUATION

The time evolution of a pulse is determined from the st
dard nonlinear Schro¨dinger equation with a higher-orde
self-steepening term as a perturbation. This term is the di
result of an amplitude dependent group velocity and it
expressed as the last term in the following HONLS equati

iw t1
D

2
wxx2Nuwu2w2 iQ~ uwu2w!x50, ~1!

where the complex envelope functionw(x,t) specifies a
pulse traveling in thex direction and the subscripts indica
partial differentiation. The coefficients in Eq.~1! are ob-
tained from derivatives of the magnetostatic wave dispers
relationv(k,uwu2), whereD5]2v/]k2 is the dispersion co-
efficient, N5]v/]uwu2 is the nonlinear coefficient, andQ
5]N/]k is the nonlinear dispersion coefficient. All coeffi
cients are evaluated at the carrier wave number and
uwu250. We begin by expressing the complex envelope fu
tion as

w~x,t !5u~x,t !eis~x,t !, ~2!

whereu ands are real functions. Then substitution of Eq.~2!
into the HONLS equation and separately equating the im
nary and real parts to zero gives the two equations

ut1
D

2
~uxx12uxsx!13Qu2ux50, ~3a!

2us t1
D

2
~uxx2usx

2!2~N1Qsx!u
350. ~3b!

Next it is possible to express Eqs.~3a! and~3b! in conserva-
tion law form,

~u2! t1~cu2!x50, ~4a!

c t1S c2

2
1A~c! D

x

, ~4b!

where the functionc is defined byc53Qu2/21Dsx , A(c)
is an arbitrary function, and all functions must be related

D2uxx

2u
2NDu21

Q2

4
u42

Q

2
cu22A~c!50. ~5!

At this point we have three equations and three unknow
but the third unknown function is itself a function ofc so the
main problem here is the determination ofA so that all three
06441
u-
is
s
e

e
ob-
t
ect

-

ct
s
:

n

or
-

i-

y

s,

equations will be consistent. This will be done by develo
ment of a temporal series solution foru so that the time
evolution can be determined from an arbitrary initial env
lope shape.

The first step in this process is the development of a se
solution for c, which will be general at this stage becau
Eq. ~4b! has the soft solutionc5g(x2ct2Act) whereg is
still an arbitrary function. Using the soft solution it is easy
derive the following series forc if the form is assumed for
the functionA(c)5a01a1c1a2c21...,

c5g1c1t1c2t250, ~6!

where c152(a11a2g)gx , c25(a11a2g)@gxx(a11a2g)
1a2gx

2#/2, anda25112a2 . This is the solution of Eq.~4b!
and it is next necessary to consistently solve Eqs.~4a! and
~5! to obtainu in the form of a series.

Next it is assumed thatu is expressed as the series

u5u01«1t1«2t1..., ~7!

whereu0 is the initial form of the pulse and the other coe
ficients are in general dependent onx. To find these coeffi-
cients Eqs.~6! and ~7! are substituted into Eq.~4a!, it is
assumed thatg has the formg5a1bu0

2, and Eq.~4a! is
written in series form. The coefficients of each power oft are
then equated to zero to obtain the set of equations for
coefficients«n ,

u0t1au0x12bu0
2u0x1«150, ~8a!

«1t1a«1x1bu0
2u0x1c1u0x1 1

2 u0c1x1bu0u0x«112«250
~8b!

corresponding to the coefficients of thet0 and t1 terms, re-
spectively. It is remarked that the lowest order Eq.~8a! is
used to obtain«1 and the higher-order equations can be us
to obtain the other coefficients.

The final step is the solution of Eq.~5!, which is done by
substitution of the series forc and u into Eq. ~5! with the
values for« from Eqs. ~8!. Again, this will give a power
series int with complicated coefficients that will be function
of u0 , and when the coefficients are equated to zero
obtain the set of equations

u0xx1S Q2

2D2 1
Qb

D2 2
2a2b2

D2 Du0
52S 2N

D
1

2a1b

D2 Du0
32

2a0

D2 u0

50, ~9a!

D2

2
«1xx1S 3ND1

5

4
Q2u0

21
3

2
QgDu0

2«1

1S Q

2
u0

22a122a2gDu0c12~a01a1g1a2g2!«150

~9b!

for the t0 and t1 coefficients, respectively. Now Eq.~8a! is
used to determine«1 in terms of the initial envelope func
tion, u0 , the second derivative of«1 is calculated by differ-
entiation of Eq.~8a!, and the derivatives ofu0 are eliminated
6-2
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EVOLUTION OF SOLITONS IN MAGNETIC THIN FILMS PHYSICAL REVIEW B64 064416
by use of Eq.~9a! and its first integral. Substitution ofg, c1 ,
«1 , and«1xx into Eq. ~9b! then results in a polynomial inu0

with terms the order ofu0
2, u0

4, andu0
6. All of the previous

equations will be satisfied to first order int if the coefficients
of these powers in this polynomial are equated to zero giv
the set of three equations,

a2a21a1a12a2a2a213a1a2a1a1
228a050, ~10a!

16aba2
2112aba218a1a2b22Qaa22Qa124Qa

216a1b214ND50, ~10b!

2
28

3
a2b31S 23

3
Q22Qa2Db21

10

3
Q2b50, ~10c!

for exponents 2, 4, and 6, respectively.
In order to determine the unknown constants in Eqs.~10!

assumptions about the initial pulse shape are made. To
plify the following calculations, it is assumed that the initi
pulse has a sech form, which implies that the coefficien
u0

5 in Eq. ~9a! is zero. This gives the following value for th
parametera2 :

a25
Q

2b
1

Q2

4b2 ~11!

in terms of the other unknown parameter,b. The value ofb
is easily obtained by substitution of Eq.~11! into Eq. ~10c!
resulting in

Q

b
56), ~12!

and Eq.~10b! finally gives an expression relating the oth
two parameters,

a2Q

2
~25110) !1

a1Q

)
~3)210!214ND50. ~13!

These steps leave a free parameter that can eventual
related to an experimental quantity such as the pulse am
tude, which is done using the definite form foru0 after inte-
gration of Eq.~9a! yielding the initial pulse

u05w0 cosh21S w0A2n

2
xD , ~14!

where the effective nonlinear coefficient isn52N/D
12ba1 /D2, and w0 is the pulse amplitude. Furthermor
using this initial solution it can be shown that the parame
a0 is related to the amplitude by the expression

a052 1
4 nD2w0

2. ~15!

Now all parameters can be evaluated in terms of the co
cients in the HONLS equation. Here it is remarked that
coefficients in the HONLS equation will be chosen so th
the amplitude-dependent terms resulting from Eq.~15! will
be negligible, and later this will be shown to indeed be
06441
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case. Using Eqs.~11!–~13! and ~15! we obtain a2
50.251ND/Q and a1520.307ND/Q to get the following
effective nonlinear coefficient:

n51.65
N

D
. ~16!

These results are combined to get a first-order tim
dependent solution of the HONLS equation which will b
used to determine the shape evolution of a pulse owing to
self-steepening term in the HONLS equation. The tim
dependent contribution can now be obtained from Eq.~8a!
for «1 together with the other parameters that were de
mined. Using the initial pulse in Eq.~14!, the following pulse
shape is obtained:

u~x,t !5w0 cosh21~zx!1F1.05QA2N

D
w0

4 cosh24~zx!

3tanh~zx!tanh~zx!G t, ~17!

wherez5w0A2n/2 is the inverse width of the initial pulse
In principle, higher-order corrections can be found using«2
estimated from Eq.~8b!; however, the simple functions tha
we chose forg and A(c) will no longer be sufficient to
satisfy the second-order terms in all three equations. Thi
because there will not be an adequate number of free pa
eters to separately equate all of the powers ofu0 to zero, and
one must use more complicated functions involving mo
parameters, or require that the coefficients in the HON
equation have restricted values. In order to sidestep this
ficulty, we will only apply Eq.~17! in the time interval where
it will be a valid approximation. To determine this interva
first the magnitude of the second-order term is estima
Using Eq.~8b! together with the previous results, it can b
shown that this term is the order of

«2'
NQ2

D
w0

6,

and comparison of this with the first-order term in Eq.~17!
we obtain the inequality

t,
D

NQw0
2A2N

D
, ~18!

giving a relation to be satisfied by the propagation time a
the pulse amplitude.

III. SOLITON EVOLUTION

In this section typical parameters applicable to YIG film
will be used to calculate the pulse shape as a function
time. Bright solitons in these systems can be formed wh
operation of the delay line is in the so-called magnetost
backward volume wave configuration. In this case an ex
nal magnetic field is applied tangent to the film plane, a
the pulse propagates in the direction of the applied fie
Using the magnetostatic wave dispersion relation it is p
6-3
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sible to calculate the dispersion parameter and the nonli
coefficient for specific values of the carrier wave number a
film thickness. This has already been done in the literatu1

so only typical values will be given here. It is more difficu
to get a reliable estimate of the self-steepening coeffici
but if thek dependence of the nonlinear coefficient is know
the value ofQ can be estimated from thek derivative evalu-
ated at the carrier wave number. For one of the most re
calculations19 of N(k) it can be shown thatQ is the order of
106– 107, but this parameter is very dependent on the mo
used. To obtain numerical results giving the pulse shape
sus time from Eq.~17! we will use the parameter values fo
a film of thickness 7.5mm in a 1150-Oe external field giving
D51.43103 cm2/s, N5273109 s21, a typical value for the
magnitude of the group velocity isng53.53106 cm/s. A rea-
sonable estimate for the self-steepening coefficient isQ55
3106 cm/s, although it might be better to determineQ by
fitting the above equation to experimental pulse shapes.
other parameter that is unknown is the initial pulse am
tude, but in order for the cubic NLS approximation to
valid this has to be small. In the following we takew0
50.06.

In a typical experimental setup the pulse propagates a
millimeters down the film, which corresponds to a propag
tion time of about 100 ns. Therefore in the following we w
calculate the pulse shape for times up to about 100 ns, w
is also in the neighborhood of the limiting value of tim
given by Eq.~18!. The time development of a pulse is illus
trated in Fig. 1 where Eq.~17! was used to calculate th
pulse shape as a function of time using the above parame
Both the initial and the pulse after a propagation time
about 80 ns are plotted as a function of position. Here we
clearly notice the growth of the pulse asymmetry as the pu
propagates from the initial symmetric pulse to the asymm
ric pulse. The propagation of a similar initial pulse has a
been numerically modeled by Eq.~1! and these results ar
indicated by the data points in Fig. 1. In general the num
cal modeling shows that after a long propagation time~200
ns! the initial symmetric pulse will evolve into a stab

FIG. 1. Pulse shape at two different times. The dashed curv
the initial symmetric pulse, and the solid curve is the pulse afte
propagation time of 80 ns. The solid points are numerical res
corresponding to a propagation time of 200 ns.
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asymmetric pulse, and referring to Fig. 1 it is noticed th
these long propagation time numerical results almost co
cide with the analytical results. The main point here is th
the numerical results are qualitatively similar to the analy
cal results in Fig. 1 indicating that the analytical and nume
cal data are consistent and the analytic series solution
good approximation. Next the temporal region where the
proximations are valid is determined by using the values
the parameters in Eq.~18! giving a range of aboutt
,100 ns. Since the propagation time used in Fig. 1 is cl
to this limit, it is expected that the larger times used in E
~17! will not give an accurate pulse shape. Indeed, wh
larger time values are used a shoulder and a secondary
will form on the right side of the pulse. Since this is not
result of physical significance, the pulse profiles at larg
values of the time are not illustrated in Fig. 1. It is final
remarked that the asymmetric pulses in Fig. 1 are simila
the initial stages of shock development in Refs. 13 and
which were, however, shown to be incorrect.

Finally, the pulse shape calculated from Eq.~17! is com-
pared with experimental data. To do this we use some
data20 from a YIG film of thickness 7.5mm operating in the
magnetostatic backward volume wave configuration. In t
case the parameters used earlier are still valid and they
used to obtain the pulse form. In this experimental setup
output pulse is observed at the second antenna as the o
amplitude versus time. For this reason the pulse amplitud
a function of time at a fixed position is calculated, and the
results are compared with experimental data. In Fig. 2
solid curve indicates a pulse from Ref. 20 after propagat
in YIG for a time of about 80 ns. In the original experime
this pulse was formed from a 0.01-W rectangular pulse
duration 13 ns. Here notice the asymmetry of the pulse. T
asymmetry seems to be a characteristic of other small am
tude pulses, maybe because it is more noticeable if the
plitude is small. Furthermore, if the pulse amplitude i
creases to the two-soliton threshold, the multisolit
structure has a significant effect on the pulse shape and
~17! is no longer expected to be applicable. Since the exp
mental pulse has formed from a rectangular pulse, an

is
a
ts

FIG. 2. Experimental pulse~solid curve! propagating in YIG
film. Calculated pulse~dashed curve! formed from symmetric pulse
after a propagation time of 50 ns. The relative amplitudes have b
shifted slightly to better distinguish between the two pulses, an
symmetric pulse is shown by the dashed curve extending from
experimental pulse peak.
6-4
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short time is required for the pulse to evolve into a sech-t
shape, the propagation time used to calculate the pulse s
was taken to be about 50 ns. The only unknown paramet
the pulse amplitude, which is a measure of the tim
dependent magnetization relative to the saturation magn
zation in YIG. For typical experimental conditions this is
the range 0.01,w0,0.1 so we took the initial pulse ampli
tude to be an adjustable parameter, and the valuew050.06
was used to calculate the pulse shape. The calculated p
shape is shown as the dashed curve in Fig. 2 where
amplitude has been increased slightly to better compare
two pulses. To better show the asymmetry of the experim
tal pulse a symmetric shape is extended as a dashed c
e

n,

H.
c

06441
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rve

from the pulse peak. These parameters give a good qua
tive agreement between the calculated time dependence
experimental results. In conclusion, both analytical calcu
tions and numerical simulations have shown that nonlin
dispersion in the NLS equation is one possible explanation
the asymmetry of envelope solitons propagating in Y
films.
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