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Density-matrix spectra of solvable fermionic systems
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We consider noninteracting fermions on a lattice and give a general result for the reduced density matrices
corresponding to parts of the system. This allows to calculate their spectra, which are essential in the density-
matrix renormalization group method, by diagonalizing small matrices. We discuss these spectra and their
typical features for various fermionic quantum chains and for the two-dimensional tight-binding model.
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I. INTRODUCTION

Density matrices have found an interesting application
recent years. In the density-matrix renormalization gro
~DMRG! method1–3 a quantum system is built from smalle
parts and the idea is to work with basis functions in the
parts which are optimal for the combined system. These
the eigenfunctions of the reduced density matrices wh
have the largest eigenvalueswn . Obviously, the procedure
will work well if the eigenvalue spectrum drops rapidly, su
that a small number of functions practically exhausts the s
rule (wn51. For quantum chains this is indeed the ca
The numerical calculations show a roughly exponential
crease of the eigenvalues.2,4 Of course, this raises the que
tion whether such spectra can be obtained explicitely
some solvable models. For noncritical systems this is p
sible by using the relation5 between the density matrices o
quantum chains and the corner transfer matrices6 ~CTM’s! of
the corresponding two-dimensional classical problems.
this way, the spectra for the transverse Ising chain,7 theXXZ
Heisenberg chain,7 and a chain of coupled oscillators8 could
be determined in the thermodynamic limit and compa
with DMRG calculations. In all these cases, one finds sim
analytic expressions and, apart from degeneracies, a str
exponential behavior. This does not hold for the chiral thr
state Potts chain9 or for nonintegrable models,10,11 but quali-
tatively the spectra are similar.

Given the importance of fermionic systems in general a
also for DMRG applications, one would of course like
have results for this case, too. The transverse Ising chain
be viewed as a fermionic model, but the CTM approach d
not make use of this and is limited to large noncritical s
tems. Therefore an alternative approach is necessary
which one can treat solvable fermion systems of arbitr
size. In the present communication we show how this can
done. The systems which we consider are noninteract
such that the Hamiltonian can be diagonalized by a Bogo
bov transformation. Using an explicit form of the state
question~usually the ground state!, we show that arbitrary
reduced density matrices can be calculated exactly and
the general form exp(2H). The operatorH describes a col-
lection of noninteracting fermions with single-particle eige
values« l . Apart from the different statistics, this is the sam
situation as for coupled oscillators.8,12 The « l , which deter-
mine the properties of the spectrum, follow from the eige
values of anM3M matrix, whereM is the number of sites
0163-1829/2001/64~6!/064412~7!/$20.00 64 0644
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in the chosen subsystem. In general, they have to be ca
lated numerically. One should stress that the dimensiona
of the system plays no essential role.

In the following Sec. II we sketch the general method
computation which uses coherent fermionic states for ca
lating the necessary partial traces. In Sec. III, we apply it
the transverse Ising chain and discuss the resulting spe
for a number of situations, including the critical case, t
first excited state and related row transfer matrices. Sec
IV deals briefly with another one-dimensional problem
namely the spin one-halfXY chain in a field. This is inter-
esting because it has a disorder point where the spec
collapses. In Sec. V we turn to the physically most import
case of a tight-binding model which we dicuss in two dime
sions. We present spectra for systems of various sizes
shapes, as well as truncation errors showing the difficul
in this case. Section VI, finally, contains a summary a
some additional remarks. Some technical details can
found in the Appendix.

II. METHOD

We consider Hamiltonians which are quadratic in Fer
operators and thus have the general form

H5 (
i j 51

L Fci
†Ai j cj1

1

2
~ci

†Bi j cj
†1H.c.!G , ~1!

where theci ’s and ci
†’s are Fermi annihilation and creatio

operators. Because of the Hermiticity ofH, the matrixA is
Hermitian andB is antisymmetric. In the following we con
sider only real matrices. One can diagonalizeH through the
canonical transformation13

hk5(
i

~gkici1hkici
†!, ~2!

which leads to

H5(
k

Lkhk
†hk1const. ~3!

The quantitiesLk
2 are the eigenvalues of the matrice

(AÀB)(A¿B) and (A¿B)(AÀB), the corresponding eigen
vectors beingfki5gki1hki andcki5gki2hki ,respectively.

Consider now the ground stateuF0& of the Hamiltonian
~1! for an even number of sitesL. Due to the structure ofH,
©2001 The American Physical Society12-1
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it is a superposition of configurations with either an even
an odd number of fermions. This suggests to write it~for the
even case! in the form

uF0.5C expH 1

2 (
i j

Gi j ci
†cj

†J u0&, ~4!

whereu0& is the vacuum of theci , i.e.,

ci u0&50. ~5!

Such an exponential form is known from superconductiv
where the BCS wave function~in momentum space! can be
written in this way.14

One obtainsGi j by applying the Fermi operatorshk to the
ground state

hkuF0&50 for all k, ~6!

which leads to~see Appendix!

(
m

gkmGmn1hkn50 for all k,n. ~7!

ThusG relates the two matricesg andh of the transforma-
tion ~2!. Using Eq.~4!, one obtains the total density matr
r05uF0&^F0u explicitly in an exponential form

r05uCu2expS 1

2 (
i j

Gi j ci
†cj

†D u0&^0u expS 2
1

2 (
i j

Gi j cicj D .

~8!

One now divides the total system in two parts~system and
environment in the DMRG terminology! and looks for the
reduced density matrix in part 1. This is obtained by tak
the trace over part 2:

r15Tr2~r0!. ~9!

In order to calculater1, one uses the fermionic cohere
states defined by15

ci uj1•••jL&5j i uj1•••jL&. ~10!

Such states can be built from the vacuum with operatorci
and Grassmann variablesj i

uj1•••jL&5expS 2(
i

j ici
†D u0&. ~11!

Using this, one can write the trace of an operatorO as

Tr O5E )
a

dja* djae2(
a

ja* ja^2juOuj&. ~12!

After forming a general matrix element ofr0 with such
states and taking the trace over the environment with
~12!, one obtains, if part 1 consists ofM sites
06441
r

,

g

q.

^j1•••jMur1uj18•••jM8 &

5uCu2E )
i 5M11

L

dj i* dj ie
2(

i
j i* j i^j1•••jM

2jM11•••2jLur0uj18•••jM8 jM11•••jL&.

~13!

Inserting Eq.~8! leads to an integrand which contains on
quadratic forms of Grassmann variables in the expone
The integration can then be carried out by rotating and d
placing the variables as for a Gaussian integral with comp
numbers. This gives

^j1•••jMur1uj18•••jM8 &

5uCu2 expS (
i j

a i j j i* j j* DexpS (
i j

b i j j i* j j8D
3expS 2(

i j
a i j j i8j j8D , i , j <M . ~14!

The M3M matricesa andb appearing here are defined a
follows. One dividesG into four submatricesa11, a12, a21,
anda22, according to whether the sitesi , j belong to part 1 or
part 2. In terms of these

2a5a111ca22cT,
~15!

b5ccT,

where c5a12(12a22)21 and cT denotes its transpose. A
shown in the Appendix one can reconstruct the operator fo
of r1 from the matrix elements~14! . This gives

r15uCu2expS (
i j

a i j ci
†cj

†DexpS (
i j

~ lnb! i j ci
†cj D

3expS 2(
i j

a i j cicj D , i , j <M . ~16!

Finally, since the Fermi operators appear quadratic in
exponents,r1 can be diagonalized with a Bogoliubov tran
formation as in Eq.~2!. As a result,

r15K expS 2(
l 51

M

« l f l
†f l D ~17!

with new Fermi operatorsf l
† , f l and K5uCu2. The single-

particle eigenvalues« l follow from the matricesa,b accord-
ing to Eq.~A9! of the Appendix. The normalization factorK
is fixed by the sum rule Tr(r1)51. In this way, one can
calculate the density-matrix spectra numerically for an ar
tary part of a finite system with Hamiltonian~1!.

III. TRANSVERSE ISING CHAIN

As a first example,we consider in this section the tra
verse Ising chain with open boundaries described by
2-2
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DENSITY-MATRIX SPECTRA OF SOLVABLE . . . PHYSICAL REVIEW B 64 064412
H52(
i 51

L

s i
z2l (

i 51

L21

s i
xs i 11

x , ~18!

where thesa are Pauli spin matrices and the transverse fi
has been set equal to one. In the thermodynamic limit,
system has a quantum critical point atl51 and long-range
order insx for l.1. In terms of spinless fermions H read

H522(
i 51

L

~ci
†ci21/2!2l (

i 51

L21

~ci
†2ci !~ci 11

† 1ci 11!

~19!

and thus has the form~1!. In the following we discuss the
reduced density matrixr1 for one half of the chain, i.e.,M
5L/2.

We first consider the ground state. In Fig. 1, the sing
particle eigenvalues« l are plotted forL520 and different
coupling constantsl. For l50.1 they all lie on a straigh
line, which corresponds to the situation one finds in the th
modynamic limit. This is what one expects since the cor
lation length is much less thanL and hence boundary effec
should be small. One can also check that the values are
actly those obtained analytically via corner trans
matrices.7 It seems to be difficult, however, to derive the
results directly from our equations. For larger coupling,l
50.5, only the first« l follow a linear law, then the curve
bends upwards. This is similar to the behavior one finds
finite-size corner transfer matrices,16 although the geometry
there is different. At the same time, the initial slope d
creases. Finally, at the critical point, the whole graph
curved. In the ordered region~not shown!, a linear regime
develops again.

From the« l one obtains the actual eigenvalueswn of r1

by specifying the occupation numbersf l
†f l in Eq. ~17!. The

resulting spectra are shown in Fig. 2 in a semi-logarithm
plot. Note that not allwn are shown, however they are co
rectly normalized to one. Similar results, but for a smal
number ofwn , were obtained in Ref. 7 via DMRG calcula

FIG. 1. Single-particle eigenvalues« l for one-half of a trans-
verse Ising chain, arranged in ascending order. The system is i
ground state,L520 andl,1.
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tions. Due to the relatively large values of the« l there is a
rather rapid decay~note the vertical scale! so that the system
can be treated very well by DMRG.17,18 This holds even at
the critical point, where the decay is slowest.

The situation there is presented in more detail in the n
figures. Figure 3 shows the«-spectra for various sizes of th
system. AsL increases, the number of« increases, the curve
become flatter, but the curvature remains. There is no sig
a linear region related to conformal invariance on this sc
~compare Ref. 16!. The wn spectra are plotted in Fig. 4
Because of the form of the«, there are few degeneracies an
the curves have the typical, relatively smooth shape fou
also for other critical systems.2,4 The finite-size effects show
up essentially in the tails.

So far, we have treated the ground state, but one can
determine the density matrices for the first excited st
uF1&. This state contains an odd number of fermions.
apply the formalism here, one can perform a particle-h

he
FIG. 2. Density-matrix eigenvalueswn , arranged in decreasing

order, obtained from the« l in Fig. 1 and for the same parameter

FIG. 3. Single-particle eigenvalues« l for critical transverse
Ising chains in the ground state.
2-3
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MING-CHIANG CHUNG AND INGO PESCHEL PHYSICAL REVIEW B64 064412
transformation at one site, e.g.,c1
†↔c1. Then uF1& appears

in the even subspace and can be written in the form~4!. With
the help of the relations

h1
†uF1&50,

hkuF1.50 for k>2, ~20!

one can then derive the corresponding equation for the
trix Gi j . In this way, the single-particle eigenvalues« l
shown in Fig. 5 were obtained. In contrast to the case of
ground state, the first eigenvalue is zero here. This refl
the fact that, in the original representation, the fermion nu
ber is odd, while the number of sites is even. The ot
eigenvalues are very similar to those for the ground state
particular, one has a linear spectrum away froml51 and a
curved one at the critical point. The vanishing«1 causes all
eigenvalueswn of r1 to be at least doubly degenerate.

FIG. 4. Density-matrix eigenvalueswn for transverse Ising
chains at the critical point obtained from the« l in Fig. 3.

FIG. 5. Single-particle eigenvalues« l for the first excited state
of a transverse Ising chain forL512 and four values ofl.
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Finally, the closely related problem of the row-to-ro
transfer matrices for the two-dimensional Ising model can
studied in the same way. For a square lattice with coupli
K1 (K2) in the vertical~horizontal! direction one can con-
sider two symmetrized versions, namely

V5V2
1/2V1V2

1/2, W5V1
1/2V2V1

1/2, ~21!

whereV1 (V2) contain the vertical~horizontal! bonds. Both
represent fermionic quantum chains and can be diagonal
also for open boundaries.19,20 For the thermodynamics, on
needs the eigenvector with maximal eigenvalue. DMRG c
culations using the operatorV have already been done.21 The
spectrum of the« l in the isotropic caseK15K2 is very simi-
lar to that found above in Fig. 1. This also holds for t
magnitude of the« l and the problem can therefore be treat
equally well by DMRG. ForW the «-spectrum is strictly
linear at the lower end and described by a formula contain
elliptic integrals as in Ref. 7, while forV the values are
somewhat smaller and there is a deviation from linearity
the first« l . This reflects the difference in the representati
of r1 via CTM’s in the two cases.

IV. XY-SPIN CHAIN

In this section we consider briefly the spin one-half qua
tum chain described by the Hamiltonian

H52J/2(
i 51

L21

@~11g!s i
xs i 11

x 1~12g!s i
ys i 11

y

1h~s i
z1s i 11

z !#, ~22!

which reads in terms of fermions

H52J(
i 51

L21

@~ci
†ci 111gci

†ci 11
† 1H.c.!

1h~ci
†ci1ci 11

† ci 1121!#. ~23!

Although similar to the transverse Ising chain, this syst
has a special feature. For

g21h251 ~24!

the ground state simplifies and also becomes twofold deg
erate. In the spin language, one has two simple prod
states.22 Moreover, the behavior of correlation function
changes from monotonic to oscillatory23 and thus Eq.~24!
represents a ‘‘disorder line.’’24 On this line,H describes also
a stochastic reaction-diffusion model25 equivalent to Glaub-
er’s kinetic spin model.

The appearance of a simple ground state can be obse
in the density-matrix spectrum and has already been see
DMRG calculations for certain other models~see Sec. 3.1 in
Ref. 3!. For theXY chain, it can be investigated very well i
the fermionic approach.

In Fig. 6 we show the lowest« l values as a function of the
parameterh for fixedg51/2. The disorder point according t
Eq. ~24! is then ath050.866. One can see that, coming fro
larger values ofh, all « l except the lowest one diverge as o
2-4
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DENSITY-MATRIX SPECTRA OF SOLVABLE . . . PHYSICAL REVIEW B 64 064412
approachesh0. For h,h0 they become finite again. In thi
region, however, one has to work in another subspace s
at h0 the lowest fermionic eigenvalueL0 in H crosses zero
which leads to the degeneracy of the ground state. This
be done as for the excited state in Sec. III. Then one finds
curves in the figure. As a check we also performed dir
DMRG calculations and found complete agreement~dots!.
Such crossings appear repeatedly as one reducesh further.
The next one~for the chosenL) takes place ath50.78.
However, as seen from the figure, the higher« l show no
effects at this point, indicating that the ground state ofH
does not simplify there. Ath0, the divergence of the« l for
l>2 together with the value«150 lead to the density-matrix
eigenvaluesw15w251/2, while all otherwn are zero, i.e.,
the spectrum collapses at this point. This effect could b
tool in the search for simple ground states by DMRG.

V. TWO-DIMENSIONAL TIGHT-BINDING MODEL

As the last, but most important example we conside
tight-binding model with open boundaries described by

H52(̂
i,j &

~ci
†cj1cj

†ci!, ~25!

where the bracketŝi,j & denote nearest-neighbor sites. Th
model is critical and solvable in all dimensions. We trea
here for the case of a square lattice and we assume tha
system also has the shape of a square withL5N2 sites where
N is even. This problem has served as a DMRG test c
some time ago.26

The ground state here is different from that in the pre
ous sections. BecauseH only contains hopping,B50 in Eq.
~1!, the fermion number is fixed, anduF0& does not have the
form ~4!. However, one can perform a particle-hole transf
mation onL/2 sites, for example on every second one,
which the Hamiltonian acquires pair creation and annih

FIG. 6. The four lowest single-particle eigenvalues« for anXY
spin chain in a fieldh. The anisotropy isg50.5, the lengthL58.
Lines result from the analytical method, solid circles from a DMR
calculation.
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tion terms (B5” 0). ThenuF0&, which originally containsL/2
particles, becomes a superposition of terms with part
numbers ranging from 0 toL and can again be written in th
form ~4!. In the same way, an arbitraryn-particle eigenstate
of H could be handled by exchanging particles and holesn
sites. The density-matrix spectrum is not affected by su
local transformations.

To carry out the calculation, one makes the problem f
mally one-dimensional by numbering the sites from 1 toL in
such a way that the desired partition into two parts ari
naturally. For example, a meanderlike numbering as in R
26 permits a division of the square into two halves.

In Fig. 7, the single-particle eigenvalues« l for such a
half-system and three different sizes are shown. One not
two features which are in contrast to the one-dimensio
results: a ‘‘foot’’ of low-lying « l and a much smaller slope o
the curves ~note the scales!. Both are strongly size-
dependent. The number of« l in the foot is equal toN, which
indicates that these states are closely connected with th
terface between system and environment. Figure 8 shows
first 2000 eigenvalueswn which result. Due to the small« l ,
they decrease very slowly and the situation worsens as
system is enlarged. The tails of the curves can be descr
qualitatively by ln(wn);2ln2(n) as in Refs. 11 and 12. Th
effect of these tails shows up even more in the truncat
error f n , which is defined as the sum of allw’s beyondn.
This quantity is given in the inset of the figure. Withn
52000 it is approximately 531022, 531021, and 1021,
respectively. Thus the situation is not only much worse th
for one-dimensional systems, but also worse than for
two-dimensional system with a gap discussed in Ref.
Standard DMRG calculations using, say, 2000 states wo
be limited to sizes below 12312, and even then the accurac
would be much less than one is used to in quantum cha

One can also calculate the density-matrix spectra for o
shapes of the selected subsystem. As an illustration, we s
in Fig. 9 results for one quarter of a quadratic system~for
example the upper right one!. Note that the sizes indicate

FIG. 7. Single-particle eigenvalues« l for two-dimensional tight-
binding models of different sizes. The« l are for one-half of the
system.
2-5
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there refer to the whole system. One sees again some s
eigenvalues, but fewer than for the half-system, while th
are further higher-lying plateaus and additional short ste
Obviously this reflects the particular interface with a corn
For the 10310 system, for example, the two lowest platea
contain 9 states which is just the number of sites along
interface. The eigenvalueswn are plotted in the inset of the
figure. They are similar to those for the half-system but so
more steps persist for smalln. In the same way, one ca
investigate cases where one cuts the square diagonal
various positions. Such partitions appear in a recent n
DMRG algorithm.27 The general features of the spectr
however, do not change.

Finally, let us mention that one can also include spin inH
and thereby treat the Hubbard model in theU50 limit. Then
the operatorsf l , f l

† in r1 acquire a spin label, too, and a
single-particle levels become doubly degenerate. This ma

FIG. 8. Density-matrix eigenvalueswn of two-dimensional
tight-binding models, obtained from the« l in Fig. 7. The inset
shows the truncation error~see text!.

FIG. 9. Single-particle eigenvalues« l of two-dimensional tight-
binding models. The« l are for a quarter of the system; thewn

obtained from them are plotted in the inset.
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the tails of thewn curves even flatter than in the spinle
case. However, the curves are also pulled down by sma
normalization factors which leads to a faster initial dec
For a 20320 lattice, the spectrum of the first 3000 states
on the whole, rather close to that shown in Fig. 8.

VI. CONCLUSION

We have studied the reduced density matrices for non
teracting fermions on a lattice. The key ingredient for t
calculation was a simple representation of the~ground! state.
This led rather directly to the exponential Boltzmann-li
form of the density matrices. The only really numerical st
involved was the calculation of the single-fermion eigenv
ues appearing in the exponent. With these, we discuss
number of cases in one and two dimensions with charac
istic differences. We focused on the eigenvalues, but one
also investigate the single-fermion eigenfunctions. One t
sees that they are concentrated near the interface betwee
two parts of the system. This explains the decisive role of
connectivity for the spectra.

One should mention that fermionic density matrices ha
been studied before, e.g., in quantum chemistry.28,29 How-
ever, in this case the systems are continuous and the Hi
space is infinite. Then already the single-particle density m
trices have inifinitely many eigenstates.30 Our systems are
discrete, but we are interested in density matrices for a
trarily large subsystems. These are non-trivial even for n
interacting fermions. From the experience with other mod
one can expect that the results are roughly representative
for more complicated systems.

For this reason, the two-dimensional case is particula
important. With our formulas, we could treat the tigh
binding model for arbitrary partitions of the system. Th
allows us to make much more detailed statements tha
previous, purely numerical investigation of this system.26 In
particular, one can see the very slow decay of the spectra
of the truncation errors directly. Basically, it is connect
with the existence of long boundaries between the two p
of the system. In the current DMRG procedures, these ap
necessarily at some point of the calculation. Therefore i
not yet clear whether a recent algorithm27 can really over-
come this problem.
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APPENDIX

Here we list some details concerning the steps in Sec
~A! To derive Eq.~7!, one writes Eq.~6! explicitly as

(
n

~gkncn1hkncn
†!eFu0&50, ~A1!

whereF51/2( i j Gi j ci
†cj

† . Using the relation
2-6
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@ci ,eF#5
]

]ci
†

eF ~A2!

the exponential factor can be brought to the left

eF(
n

H(
m

gkmGmn1hknJ cn
†u0&50. ~A3!

Since this must hold for allk, the only possibility is that the
term in the bracket vanishes which gives the desired res

~B! The explicit form of the integrand in Eq.~13! is

exp$2j2*
Tj211/2~j2*

Ta22j2* 2j2
Ta22j2!

2~j1*
Ta12j2* 1j2

Ta21j18!11/2~j1*
Ta11j1* 2j18

Ta11j18!%,

~A4!

wherej1* ,j18(j2* ,j2) are vectors composed of the variabl
of part 1 ~part 2!, respectively. Using the notationj
[(j2 ,j2* ), this can be rewritten as

exp$2j†B̂j1z†j1j†h1K̂%, ~A5!

where B̂ is a 2(L2M )32(L2M ) matrix containing
a22, z,h are both 2(L2M ) dimensional vectors con
structed froma12, a21, j1* , andj18 and K̂ is the last term in
Eq. ~A4!. Equation~A5! is an explicit Gaussian form which
can be integrated whereby Eq.~14! is obtained.

~C! To derive the operator form forr1 from Eq.~14!, one
first diagonalizes the matrixb. This transforms Eq.~14! into
a similar form with modified matrixa. Using the relations
in

cs

s

06441
t.

^j ij j uci
†cj

†5^j ij j uj i* j j* ,
~A6!

cicj uj i8 ,j j8&5j i8j j8uj i8j j8&,

one can replacej i* j j* with ci
†cj

† andj i8j j8 with cicj in the left

and right exponentials. The cross termsel ij i* j i8, wherel i is
one of the eigenvalues ofb, can be rewritten with the rela
tion

^j i u f ~ci
† ,ci !uj i8&5ej i* j i8 f ~j i* ,j i8!. ~A7!

In our case the left-hand side equalsel ij i* j i8511l ij i* j i8
so that

f ~ci
† ,ci !5@11~l i21!ci

†ci #5eln l i ci
†ci. ~A8!

Transforming back to the original representation lea
to Eq. ~16!.

~D! The operatorr1 in Eq. ~16! can be diagonalized by
calculating the Heisenberg operatorsr1cjr1

21 and r1cj
†r1

21

as in Ref. 20. Due to the form ofr1, they are linear combi-
nations of thec andc†. Inserting the Bogoliubov transforma
tion and following Ref. 20 one finds that the eigenvalues« l
can be obtained from the equation

~b1b211b21a2ab212ab21a!x l52 cosh« lx l .
~A9!

Typically, the matixb has elements which vary expone
tially over a large range. This limits the size of the syste
for which one can use Eq.~A9! in actual numerical calcula
tions.
,
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