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Density-matrix spectra of solvable fermionic systems
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We consider noninteracting fermions on a lattice and give a general result for the reduced density matrices
corresponding to parts of the system. This allows to calculate their spectra, which are essential in the density-
matrix renormalization group method, by diagonalizing small matrices. We discuss these spectra and their
typical features for various fermionic quantum chains and for the two-dimensional tight-binding model.
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I. INTRODUCTION in the chosen subsystem. In general, they have to be calcu-
lated numerically. One should stress that the dimensionality
Density matrices have found an interesting application inof the system plays no essential role.

recent years. In the density-matrix renormalization group In the following Sec. Il we sketch the general method of
(DMRG) method—3a guantum system is built from smaller computation which uses coherent fermionic states for calcu-
parts and the idea is to work with basis functions in thesdating the necessary partial traces. In Sec. lll, we apply it to
parts which are optimal for the combined system. These arthe transverse Ising chain and discuss the resulting spectra
the eigenfunctions of the reduced density matrices whicor a number of situations, including the critical case, the
have the largest eigenvalues,. Obviously, the procedure first excited state and related row transfer matrices. Section
will work well if the eigenvalue spectrum drops rapidly, such IV deals briefly with another one-dimensional problem,
that a small number of functions practically exhausts the sumiamely the spin one-haKY chain in a field. This is inter-
rule Sw,=1. For quantum chains this is indeed the casegsting because it has a disorder point where the spectrum
The numerical calculations show a roughly exponential decollapses. In Sec. V we turn to the physically most important
crease of the eigenvalué8.0f course, this raises the ques- case of a tight-binding model which we dicuss in two dimen-
tion whether such spectra can be obtained explicitely fosions. We present spectra for systems of various sizes and
some solvable models. For noncritical systems this is posshapes, as well as truncation errors showing the difficulties
sible by using the relatiGnbetween the density matrices of in this case. Section VI, finally, contains a summary and
quantum chains and the corner transfer matfic€¥M's) of ~ some additional remarks. Some technical details can be
the corresponding two-dimensional classical problems. Ifound in the Appendix.
this way, the spectra for the transverse Ising cHaire XXZ
Heisenberg chaihand a chain of coupled oscillatérsould Il. METHOD
be determined in the thermodynamic limit and compared . . . . .
with DMRG calculations. In all these cases, one finds simple e consider Hamiltonians which are quadratic in Fermi
analytic expressions and, apart from degeneracies, a strictQP€rators and thus have the general form

exponential behavior. This does not hold for the chiral three- L 1
state Potts chafror for nonintegrable modef€:** but quali- H=> |clAici+=s(c/Bicl+H.c)|, (1)
tatively the spectra are similar. i=1 M2 17

Given the Importance .Of fermionic systems in gene_ral andwhere thec,’s andc/’s are Fermi annihilation and creation
also for DMRG applications, one would of course like to ' s T
have results for this case, too. The transverse Ising chain c erqtgrs. Becayse O.f the Hermltlcny i the rT‘a”'XA IS
be viewed as a fermionic model, but the CTM approach doe lermitian andB is antisymmetric. In_the foII_owmg We con-
not make use of this and is limited to large noncritical sys-Slder (_)nly real matrlcegﬁ One can diagonakt¢hrough the
tems. Therefore an alternative approach is necessary b%pnomcal transformati
which one can treat solvable fermion systems of arbitrary
size. In the present communication we show how this can be = E (gyiCi+ hkic?), (2
done. The systems which we consider are noninteracting, !
such that the Hamiltonian can be diagonalized by a Bogoliuyhich leads to
bov transformation. Using an explicit form of the state in
guestion(usually the ground statewe show that arbitrary +
reduced density matrices can be calculated exactly and have H= ZK Ayt const. ©)
the general form expf ). The operatof{ describes a col-
lection of noninteracting fermions with single-particle eigen-The quantitiesAZ are the eigenvalues of the matrices
valuesg| . Apart from the different statistics, this is the same (A—B)(A+B) and (A+B)(A—B), the corresponding eigen-
situation as for coupled oscillatot$? The &;, which deter-  vectors beingpy;= gy + hyi and ;= gii— hyi ,respectively.
mine the properties of the spectrum, follow from the eigen- Consider now the ground staté,) of the Hamiltonian
values of anM X M matrix, whereM is the number of sites (1) for an even number of sitds Due to the structure dfl,
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it is a superposition of configurations with either an even or (E1---Enlpal &L - €1y
an odd number of fermions. This suggests to writgat the
even casgin the form

L
:|C|2f_ H dgi*dgie_Ei ff&(gl...gm
i=M+1

1
|¢0>=Cexp{§§j: Gi,-cichT]|0), (4) —Emar—EpolEL - EyEman L)

. . 13
where|0) is the vacuum of the;, i.e., (13
Inserting Eq.(8) leads to an integrand which contains only
ci|0)=0. (5) quadratic forms of Grassmann variables in the exponents.

The integration can then be carried out by rotating and dis-
Such an exponential form is known from superconductivity,placing the variables as for a Gaussian integral with complex
where the BCS wave functiofin momentum spagecan be  numbers. This gives
written in this way.**

One obtains5;; by applying the Fermi operatosg to the (&1 -Enlpal &1 - €
ground state
=|cl|? LR gk Lex g
ml®o)=0 forallk, (6) © eXp(%: e )eXp(; P g‘)
which leads tasee Appendix ' .
pp xex;{—; &l & |, =M. (14
%‘« IkmGmnthin=0 forallk,n. (7 The M x M matricese and 8 appearing here are defined as

follows. One dividesG into four submatriceg!?, a'? a®!

Thus G relates the two matriceg andh of the transforma- anda??, according to whether the siteg belong to part 1 or
tion (2). Using Eq.(4), one obtains the total density matrix part 2. In terms of these
po=|Po){(Py| explicitly in an exponential form 2a=al+ca?%,

. (15
p0=|C|2ex;{§ ; GijCichT

1
|0><O| ex _E; GijCiCj . B:CCT,

@) wherec=a¥1-a?? ! and c" denotes its transpose. As

. i shown in the Appendix one can reconstruct the operator form
Qne now d_lVldes the total system in two paggstem and ¢ p, from the matrix elementél4) . This gives
environment in the DMRG terminologyand looks for the

reduced density matrix in part 1. This is obtained by taking
the trace over part 2: p1= |C|2exp( > aijcfc;r)ex;{ > (Inﬂ)ijcfcj)
ij ij
p1=Tra(po). €) o
X ex _Z a;;CiCj |, =M. (16)
In order to calculatep;, one uses the fermionic coherent g

states defined By Finally, since the Fermi operators appear quadratic in the

exponentsp; can be diagonalized with a Bogoliubov trans-

Cilé1---E)=6l&r--- &) 10 tormation as in Eq(2). As a result,
Such states can be built from the vacuum with operators M
and Grassmann variabl&s —Kexn — i1 1
p1 IZ:l gt (17

|0). (1) with new Fermi operator$| ,f, and K=|C|2. The single-
particle eigenvalues; follow from the matricesy, 8 accord-

ing to Eq.(A9) of the Appendix. The normalization factér

is fixed by the sum rule Ti;)=1. In this way, one can
calculate the density-matrix spectra numerically for an arbi-
Tro:f 11 dEZdEae_za: fZ€a<—g|o|g>_ (12) tary part of a finite system with Hamiltonia).

€1 - '§L>:eXF< _Ei &cel

Using this, one can write the trace of an opera@oas

. . . Ill. TRANSVERSE ISING CHAIN
After forming a general matrix element @f, with such

states and taking the trace over the environment with Eq. As a first example,we consider in this section the trans-
(12), one obtains, if part 1 consists bf sites verse Ising chain with open boundaries described by
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FIG. 1. Single-particle eigenvalues for one-half of a trans- FIG. 2. Density-matrix eigenvalues,, arranged in decreasing

verse Ising chain, arranged in ascending order. The system is in therder, obtained from the, in Fig. 1 and for the same parameters.
ground statel. =20 and\ <1.

L tions. Due to the relatively large values of thethere is a
_ z X _x rather rapid decaynote the vertical scaleso that the system
H= _21 i _)‘Z‘l i1 18 can be treated very well by DMR&:8 This holds even at
o ) ~the critical point, where the decay is slowest.
where theo® are Pauli spin matrices and the transverse field - The sjtuation there is presented in more detail in the next
has been set equal to one. In the thermodynamic limit, thigig res. Figure 3 shows thespectra for various sizes of the
system has a quantum critical point)at-1 and long-range = gystem. Ad increases, the number sfincreases, the curves
order ino™ for A>1. In terms of spinless fermions H reads pecome flatter, but the curvature remains. There is no sign of

L L1 a linear region related to conformal invariance on this scale
H= _22 (CiTCi_l/Z)_)\E (cf—c)(cl, 1 +Cisy) (compare Ref. 16 The w, spectra are plotted in Fig. 4.
=1 i=1 Because of the form of the, there are few degeneracies and

(199  the curves have the typical, relatively smooth shape found
and thus has the forrfl). In the following we discuss the also for other critical systenfs! The finite-size effects show
. e S up essentially in the tails.
fﬁlfzced density matri, for one half of the chain, i.eM So far, we have treated the ground state, but one can also

We first consider the ground state. In Fig. 1, the Single_determme the density matrices for the first excited state

particle eigenvalueg, are plotted forL=20 and different L®1>|' -{r?ésfj;[ﬁ:g”g%mﬁé?z %mg%innurgr?grrmogfe;n:tlig{ﬁh;%
coupling constanta.. For A\=0.1 they all lie on a straight PPl ' P P

line, which corresponds to the situation one finds in the ther-

modynamic limit. This is what one expects since the corre- 150 - . . . - - -
lation length is much less thanand hence boundary effects ——L=20

should be small. One can also check that the values are ex o tfzg J/
actly those obtained analytically via corner transfer o — Lo A
matrices’ It seems to be difficult, however, to derive these )/
results directly from our equations. For larger coupling, 100 1 /;/ i

=0.5, only the firste, follow a linear law, then the curve
bends upwards. This is similar to the behavior one finds for®
finite-size corner transfer matricésalthough the geometry
there is different. At the same time, the initial slope de-
creases. Finally, at the critical point, the whole graph is
curved. In the ordered regiomot shown, a linear regime
develops again.

From thee| one obtains the actual eigenvalugs of p,
by specifying the occupation numbe‘r&f, in Eq. (17). The 0
resulting spectra are shown in Fig. 2 in a semi-logarithmic
plot. Note that not allv, are shown, however they are cor-
rectly normalized to one. Similar results, but for a smaller FIG. 3. Single-particle eigenvalues for critical transverse
number ofw,, were obtained in Ref. 7 via DMRG calcula- Ising chains in the ground state.

50
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ul

10 Finally, the closely related problem of the row-to-row
transfer matrices for the two-dimensional Ising model can be
studied in the same way. For a square lattice with couplings
K, (K5) in the vertical(horizonta) direction one can con-

sider two symmetrized versions, namely

—10

10

V=V,"V Vo2 w=v, ALY (21)

whereV; (V,) contain the verticalhorizonta) bonds. Both
represent fermionic quantum chains and can be diagonalized
also for open boundarié¢$:?° For the thermodynamics, one
needs the eigenvector with maximal eigenvalue. DMRG cal-
culations using the operatdthave already been doR&The
spectrum of thes| in the isotropic cas& =K, is very simi-

lar to that found above in Fig. 1. This also holds for the

—30

10

—40

10

0 10 20 30 40 50 60 70 80 magnitude of the;; and the problem can therefore be treated
n equally well by DMRG. ForW the e-spectrum is strictly

_ o ) linear at the lower end and described by a formula containing
FIG. 4. Density-matrix eigenvaluew,, for transverse lsing elliptic integrals as in Ref. 7, while fow the values are

chains at the critical point obtained from thein Fig. 3. somewhat smaller and there is a deviation from linearity for

. _ the firste, . This reflects the difference in the representation
transformation at one site, e.g:I<—>C1. Then |(Dl> appears of p1 via CTM’s in the two cases.

in the even subspace and can be written in the f@mwith

the help of the relations IV. XY-SPIN CHAIN
7”{|q)1>:0’ In this section we consider briefly the spin one-half quan-
tum chain described by the Hamiltonian
7 ®,>=0 for k=2, (20) L—1

| . | H==322 [(1+y)ofol, +(1-y)alol,,
one can then derive the corresponding equation for the ma- i=1

trix G;jj. In this way, the single-particle eigenvalues s 7
shown in Fig. 5 were obtained. In contrast to the case of the +h(oi+ o)), (22)
ground state, the first eigenvalue is zero here. This reflectghich reads in terms of fermions

the fact that, in the original representation, the fermion num-

ber is odd, while the number of sites is even. The other L1

eigenvalues are very similar to those for the ground state. In H= —JZ [(CiTCH1+ yciTcLlJr H.c)
particular, one has a linear spectrum away from1 and a =1

curved one at the critical point. The vanishiag causes all +h(clei+cl, 60— 1)]. (23)

eigenvaluesv, of p; to be at least doubly degenerate.
Although similar to the transverse Ising chain, this system

80 . . : , has a special feature. For

y*+h?=1 (24)

—e 2=0.1

60 | . %305 | the ground state simplifies and also becomes twofold degen-
+-—~A=10 erate. In the spin language, one has two simple product
state$? Moreover, the behavior of correlation functions
L changes from monotonic to oscillatéfyand thus Eq(24)
40 - T represents a “disorder line?* On this line,H describes also
et a stochastic reaction-diffusion mo&ekquivalent to Glaub-
gt er’s kinetic spin model.
The appearance of a simple ground state can be observed
oha in the density-matrix spectrum and has already been seen in
DMRG calculations for certain other modékee Sec. 3.1 in
Ref. 3. For theXY chain, it can be investigated very well in
' ' the fermionic approach.
In Fig. 6 we show the lowest; values as a function of the
parameteh for fixed y=1/2. The disorder point according to
FIG. 5. Single-particle eigenvalues for the first excited state EQ. (24) is then athy=0.866. One can see that, coming from
of a transverse Ising chain far=12 and four values oX. larger values oh, all £; except the lowest one diverge as one
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FIG. 7. Single-particle eigenvalues for two-dimensional tight-
binding models of different sizes. Thg are for one-half of the
system.

FIG. 6. The four lowest single-particle eigenvaluefor an XY
spin chain in a fielch. The anisotropy isy=0.5, the lengthL=8.
Lines result from the analytical method, solid circles from a DMRG
calculation. ) . o .

tion terms @+ 0). Then|®), which originally containg. /2
approaches,. For h<h, they become finite again. In this particles, becpmes a superposition of. terms ywth .partlcle
region, however, one has to work in another subspace sind&mbers ranging from 0 tb and can again be written in the
ath, the lowest fermionic eigenvalu&, in H crosses zero, form (4). In the same way, an arbitraryparticle eigenstate
which leads to the degeneracy of the ground state. This caff H could be handled by exchanging particles and holes at
be done as for the excited state in Sec. IIl. Then one finds thgités- The density-matrix spectrum is not affected by such
curves in the figure. As a check we also performed directoc@l transformations. ,

DMRG calculations and found complete agreeméuts. To carry out the calculation, one makes the problem for-
Such crossings appear repeatedly as one redudasgher. mally one-dimensional by_numberln_g thg sites from 1 o '
The next one(for the choserL) takes place ah=0.78. such a way that the desired partition into two parts arises
However, as seen from the figure, the higlgrshow no naturally. For example, a meanderlike numbering as in Ref.
effects at this point, indicating that the ground statetbf 26 Permits a division of the square into two halves.

does not simplify there. Ah,, the divergence of the, for In Fig. 7, the single-particle eigenvalues for such a
|=2 together with the value; =0 lead to the density-matrix half-system and three different sizes are shown. One notices

eigenvaluesv, =w,=1/2, while all otherw, are zero, i.e., two features which are in contrast to the one-dimensional

the spectrum collapses at this point. This effect could be &€sults: a “foot” of low-lying & and @ much smaller slope of

tool in the search for simple ground states by DMRG. the curves (note the scalgs Both are strongly size-
dependent. The number of in the foot is equal tdN, which

indicates that these states are closely connected with the in-
terface between system and environment. Figure 8 shows the
As the last, but most important example we consider dirst 2000 eigenvaluew, which result. Due to the smadj,
tight-binding model with open boundaries described by they decrease very slowly and the situation worsens as the
system is enlarged. The tails of the curves can be described
+ + qualitatively by Ingv,)~—In?n) as in Refs. 11 and 12. The
H:_% (cicj+cjci), (29 effect of these tails shows up even more in the truncation
' error f,, which is defined as the sum of all's beyondn.
where the bracketéi,j) denote nearest-neighbor sites. This This quantity is given in the inset of the figure. With
model is critical and solvable in all dimensions. We treat it=2000 it is approximately 510 2, 5x10° %, and 10,
here for the case of a square lattice and we assume that thespectively. Thus the situation is not only much worse than
system also has the shape of a square WitN? sites where  for one-dimensional systems, but also worse than for the
N is even. This problem has served as a DMRG test casgvo-dimensional system with a gap discussed in Ref. 12.
some time ag4® Standard DMRG calculations using, say, 2000 states would
The ground state here is different from that in the previ-be limited to sizes below 2212, and even then the accuracy
ous sections. Becaus€only contains hopping3=0 in Egq.  would be much less than one is used to in quantum chains.
(1), the fermion number is fixed, ajd,) does not have the One can also calculate the density-matrix spectra for other
form (4). However, one can perform a particle-hole transfor-shapes of the selected subsystem. As an illustration, we show
mation onL/2 sites, for example on every second one, byin Fig. 9 results for one quarter of a quadratic systéon
which the Hamiltonian acquires pair creation and annihila-example the upper right oneNote that the sizes indicated

V. TWO-DIMENSIONAL TIGHT-BINDING MODEL
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the tails of thew, curves even flatter than in the spinless
case. However, the curves are also pulled down by smaller
normalization factors which leads to a faster initial decay.
For a 20< 20 lattice, the spectrum of the first 3000 states is,
on the whole, rather close to that shown in Fig. 8.

VI. CONCLUSION

We have studied the reduced density matrices for nonin-
teracting fermions on a lattice. The key ingredient for the
calculation was a simple representation of (geund state.

This led rather directly to the exponential Boltzmann-like
form of the density matrices. The only really numerical step
involved was the calculation of the single-fermion eigenval-
ues appearing in the exponent. With these, we discussed a
number of cases in one and two dimensions with character-

n istic differences. We focused on the eigenvalues, but one can

also investigate the single-fermion eigenfunctions. One then
sees that they are concentrated near the interface between the
two parts of the system. This explains the decisive role of the
connectivity for the spectra.
there refer to the whole system. One sees again some small One should mention that fermionic density matrices have
eigenvalues, but fewer than for the half-system, while therdeen studied before, e.g., in quantum chemfSt#y.How-
are further higher-lying plateaus and additional short stepsever, in this case the systems are continuous and the Hilbert
Obviously this reflects the particular interface with a corner.space is infinite. Then already the single-particle density ma-
For the 10< 10 system, for example, the two lowest plateaustrices have inifinitely many eigenstatésOur systems are
contain 9 states which is just the number of sites along theliscrete, but we are interested in density matrices for arbi-
interface. The eigenvaluag, are plotted in the inset of the trarily large subsystems. These are non-trivial even for non-
figure. They are similar to those for the half-system but soménteracting fermions. From the experience with other models,
more steps persist for smail In the same way, one can one can expect that the results are roughly representative also
investigate cases where one cuts the square diagonally tr more complicated systems.
various positions. Such partitions appear in a recent new For this reason, the two-dimensional case is particularly
DMRG algorithm?” The general features of the spectra,important. With our formulas, we could treat the tight-
however, do not change. binding model for arbitrary partitions of the system. This
Finally, let us mention that one can also include spiklin allows us to make much more detailed statements than a
and thereby treat the Hubbard model in the 0 limit. Then  previous, purely numerical investigation of this systénm
the operators, , fl‘r in p, acquire a spin label, too, and all particular, one can see the very slow decay of the spectra and

single-particle levels become doubly degenerate. This make¥ the truncation errors directly. Basically, it is connected
with the existence of long boundaries between the two parts

of the system. In the current DMRG procedures, these appear
necessarily at some point of the calculation. Therefore it is
not yet clear whether a recent algorithfhzan really over-
come this problem.

FIG. 8. Density-matrix eigenvalues/, of two-dimensional
tight-binding models, obtained from thg in Fig. 7. The inset
shows the truncation errgsee texk
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APPENDIX
Here we list some details concerning the steps in Sec. .
(A) To derive Eq.(7), one writes Eq(6) explicitly as

En: (gkncn+hkncg)eF|O>=01 (A1)

whereF = 1/22ijGijciTcJT. Using the relation
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J
c,efl=—¢€ A2
[ci.e"] P (A2)
the exponential factor can be brought to the left
ern: [%‘4 gkamn+ hkn] C;|O>:0' (AS)

Since this must hold for ak, the only possibility is that the

term in the bracket vanishes which gives the desired result.

(B) The explicit form of the integrand in E¢13) is

exp— &5 Té,+ 1A TP — £7a7%,)
— (&1 Tat%g + gate)) + VA&t Tate] — £1Tate),
(A4)

where &5 ,£1(&5 ,&,) are vectors composed of the variables
of part 1 (part 2, respectively. Using the notatioF
=(¢,,&5), this can be rewritten as

expl— £ Be+ {Te+ ETp+K],

where B is a 2L—M)X2(L—M) matrix containing
a?’, (,n are both 2(—M) dimensional vectors con-
structed froma'? a?!, ¢¥, and¢; andK is the last term in
Eqg. (A4). Equation(A5) is an explicit Gaussian form which
can be integrated whereby E{.4) is obtained.

(C) To derive the operator form fqr; from Eq.(14), one
first diagonalizes the matrig. This transforms Eq(14) into
a similar form with modified matrixx. Using the relations

(A5)

PHYSICAL REVIEW B 64 064412
(&&lclcl=(agle &,
CiCil & &) =& Ej1& €)),

one can replace’ & with ¢/cl and&] & with cic; in the left

and right exponentials. The cross terefed & , Where\; is
one of the eigenvalues @, can be rewritten with the rela-
tion

(A6)

(&lf(cl.c)l&)=eSEt(g 8. (A7)
In our case the left-hand side equal§& & =1+\,& &
so that

f(cf,e)=[1+(n—1)ce]=emelc. (Ag)

Transforming back to the original representation leads
to Eq.(16).

(D) The operatoip; in Eqg. (16) can be diagonalized by
calculating the Heisenberg operatgrecip; * and p;c/p; *
as in Ref. 20. Due to the form ¢f;, they are linear combi-
nations of thec andc’. Inserting the Bogoliubov transforma-
tion and following Ref. 20 one finds that the eigenvalaes
can be obtained from the equation

(B+B *+B ta—aB t—aB ta)y,=2 coshey.
(A9)

Typically, the matix has elements which vary exponen-
tially over a large range. This limits the size of the systems
for which one can use E@A9) in actual numerical calcula-
tions.
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