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Suzuki phase in two-dimensional sonic crystals
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In analogy with the structures discovered by Suzuki in alkali halides, in this article we introduce a two-
dimensional acoustic system consisting of a periodic distribution of impurities~vacancies! in a host array. A
triangular lattice of cylindrical sound scatterers is chosen as the host. The sonic crystal, called the Suzuki
phase, shows extraordinary sound transmission properties: it holds the attenuation bands of the host structure
and it also presents additional ones associated to the periodicity of the missing cylinders. The experiments
agree with predictions based on the calculated acoustic band structure and they are explained by an analysis of
eigenstates.
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It is known that in periodic composite media multip
scattered waves interfere to open frequency gaps w
propagation is forbidden. This behavior is typical of any ki
of wave: acoustic, elastic, electromagnetic, and even e
trons inside crystalline materials. Although it is quite an o
topic,1 nowadays we have the appropriate tools to face
problem. In the field of acoustics, a periodic structure ma
of materials with different acoustic properties is called so
crystal ~SC!.

The acoustic bands of infinite SC’s are currently obtain
by several theoretical approaches.2–6 From the experimenta
side, experiments of sound transmission have been repo
that confirm predictions.5,7–9 The works focussed on th
search of mechanisms for band gap control are specially
teresting. Thus, Kuswaha and Halevi10 proposed the fabrica
tion of multiperiodic structures to open stop bands at des
ranges of frequencies with prefixed width. On the other ha
the work of Caballeroet al.11 was carried out in order to
understand the role of symmetry in determining the band
width. It is clear that if we could control acoustic gaps w
would be able to make a true engineering of the band
and, consequently, to design simple structures that suit
necessities: acoustic screens, filters, or wave guides.

When looking for mechanisms of sound control, so
state physics is a very good source of ideas to export to
field of acoustics. Thus, Suzuki discovered that some al
halide can be doped with divalent cations to produce a n
ionic compound with periodically distributed vacancies a
lattice parameter roughly twice the original one.12 The com-
pound was called the Suzuki phase. It retained propertie
the initial compound and new properties arosed as a co
quence of the translational symmetry imposed by the vac
cies.

Following Suzuki’s idea, we started with a triangular la
tice of rigid cylinders in air and we made a rectangular ar
of vacancies taking out cylinders to arrive at the structure
Fig. 1~a!. This new structure is called Suzuki phase beca
of the following features:~a! its lattice parameter is roughl
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twice the one of triangular lattice and~b! sound transmission
experiments show attenuation bands around frequencies
sociated to the vacancies that were not observed in the s
ing triangular lattice.

The Suzuki phase defines a SC that can be described
rectangular lattice with a basis of three cylinders in t
primitive cell. In Fig. 1~a! the primitive vectors of the Bra-
vais lattice area152ax̂ and a25aA3ŷ, wherea is the dis-
tance between nearest neighbor cylinders. The position
the three cylinders on the basis ared15a(1,0), d2

5a( 3
2 ,A3/2), andd35a( 1

2 ,A3/2). Notice that the structure
of the basis holds the triangular symmetry. To characte
this system we also need the radius of the cylindersR or the
fraction of the unit cell occupied by the cylindersf S ~filling
fraction!. As long as the cylinders do not overlap each oth
the three parameters are related by the expressionf S

5(pA3/2)(R/a)2. The reciprocal space and its correspon
ing Brillouin Zone~BZ!, which is rectangular, are plot in Fig
1~b!. The four special points in the BZ areG5(0,0),

FIG. 1. ~a! Schematic plot of the Suzuki phase structure un
study in this work. The circles represent the cylinders, the do
rectangle defines the unit cell, and the hollow circles are the bas
the cell. The parameters are explained in the text.~b! Its corre-
sponding reciprocal space. The area inside the dotted rectang
the Brillouin Zone. The letters define the high symmetry points.
©2001 The American Physical Society03-1
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FIG. 2. ~right panel! Sound at-
tenuation vs. frequency along th
GX1 direction for the Suzuki
phase~Fig. 1! and the triangular
lattice. The cylinder radiusR is 2
cm, and the parametera is 6.35
cm ~left panel!. Acoustic bands of
the corresponding infinite struc
tures. The shadowed stripe repr
sents the acoustic gap associat
with the lattice of vacancies.
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X15(p/2a)(1,0), X25(p/a)(0,1/A3), and M5(p/a)

3( 1
2 ,1/A3).
With regards to experiments, they were performed ins

an echo free chamber. The samples were made of alumi
cylinders 1 m long and 2 cm radius. They were hanged o
frame, which can rotate around the vertical axis in order
easily explore different directions of sound propagation. T
lattice parameter of the triangular lattice were 6.35 cma
56.35 cm). The Suzuki phase structure@see Fig. 1~a!# was
composed of 246 cylinders and its filling fraction is 0.2
(R/a50.31). The triangular lattice was made with 311 c
inders and its corresponding filling fraction isf T

5(2p/A3)(R/a)250.36. Zero-order transmission expe
ments were performed to characterize both samples. Bri
in the experiment the sound produced by a omnidirectio
source was recorded by two microphones: the first one~di-
rect microphone! received the signal straight from th
source, while the second~interfered microphone! recorded
the signal that crossed the sample. Both signals w
compared in order to obtain the attenuation spectru
Details of the experimental set up can be found in Refs
and 9.

To calculate the acoustic dispersion relations infin
long cylinders are considered. The mathematical prob
consists of solving the acoustic differential equation with p
riodic boundary condition in the two-dimensional spacer
5(x,y):

¹S ¹p~r !

r~r ! D1
v2

r~r !c2~r !
p~r !50, ~1!

wherep is the pressure andv is the angular frequency of th
steady state. In addition,r andc are the mass density and th
velocity of sound, respectively. They are functions of t
position and contain the symmetry of the systems. Our st
tures are composed of air as background material (rair51.3
06430
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31023 g cm23,cair5340 m s21) and rigid cylinders made
of aluminum (ralum52.73 g cm23,calum56800 m s21).
So, we are dealing with a composite having a huge den
and sound velocity contrasts:ralum/rair'2000, calum/cair

'20.
Since we are using the acoustic equation, the shear w

inside the cylinders are ignored. This approximation is go
enough because the density contrast between air and al
num is so high that the penetration of acoustic waves ins
the cylinders can be neglected.6 Equation~1! is solved by a
variational method in which the pressure was expanded
linear combination of Bloch functions built from spline
based polynomials.5 Satisfactory results are obtaine
with 100 functions in the linear combination, but we ca
easily go as far as 1500 function in order to ensure accu
results.

Figures 2 and 3 show the comparison between theory
experiment for the systems studied. The left panels disp
the dispersion relations along theGX1 andGX2 directions for
the sample parameters. The right panels plot the meas
attenuation spectra. In the Suzuki phase case~continuous
lines!, the agreement between predicted gaps and attenua
peaks is remarkable in the low frequency regi
(n,2400 Hz) in both directions. The attenuation bands o
served at higher frequencies~where bands exist! are pro-
duced by other mechanisms, such as the existence of
bands5 and/or by and energy transfer to higher Bragg ord
when the sound leaves the sample. For the full triangu
array ~dotted lines! the acoustic bands are plotted in the B
defined by the Bravais lattice of the Suzuki phase for an e
comparison. In this case, alongGX2 ~Fig. 3! the attenuation
band observed in frequencies 2200–3400 Hz agrees fa
well with the gap predicted at the very same frequency
gion. On the other hand, alongGX1 the attenuation measure
at frequencies higher than 2400 Hz are originated by
mechanisms mentioned above.
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FIG. 3. ~right panel! Sound at-
tenuation vs frequency along th
GX2 direction for the Suzuki
phase~Fig. 1! and the triangular
lattice. The cylinder radiusR is 2
cm, and the parametera is 6.35
cm ~left panel!. Acoustic bands of
the corresponding infinite struc
tures. The shadowed stripe repr
sents the acoustic gap associat
with the lattice of vacancies.
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Let us stress that the attenuation spectra of both latti
triangular and Suzuki phase, practically coincide in the h
frequency region. That is also true for the acoustic ba
structure; though gaps are opened in the low frequency
gion, at high frequencies similar dispersion relation is o
tained. This result shows the dual behavior of the SC defi
by the Suzuki phase. Since the Suzuki phase presents at
ations not shown in the triangular array, we can assign th
features to the rectangular lattice of vacancies. This ass
ment is further supported by the Bragg peaks of a rectang
array of scatterers in air placed at the vacancy positio
Their values along GX1 and GX2 directions @v(Xi)
'cairkXi

# are, respectively, 1339 and 1546 Hz, whi
agree with the experiments~see the shadowed stripes in Fig
3, 4!.

The discussion above permits to obtain the following co
clusion regarding the sound transmission properties of
Suzuki phase. At wavelengths larger than, or comparable
the periodicity of this SC, the vacancies behave as if th
were a true lattice of sound scatterers in a background.
the other hand, at lower wavelengths~large frequencies!
the sound transmission properties are controlled by the s
metry of the basis in the unit cell, which in our case
triangular. This result is the key point of this work, and
can be generalized to any structure based on similar p
ciples.

The behavior of the gaps in the Suzuki phase as a func
of the ratio R/a has also been theoretically analyzed. T
dispersion relations were calculated forf S ranging from 0 to
55 % ~almost touching cylinders!; i.e., 0<R/a<0.45. Figure
4 depicts the map for the gaps between the first and sec
bands. A full band gap exists forR/a>0.36, which, in com-
parison with that of the triangular lattice, is completely ne
and appears at frequencies half of the gap found in the tr
gular symmetry. On the other hand, it is worthy to note t
pseudogaps exist for very low ratioR/a and they spread an
06430
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overlap as this parameter increases. What is m
pseudogaps are opened between every band at the sp
points of the first BZ, no matter how lowf S is. This property
is characteristic of the rectangular symmetry and it can
predicted by group theory: none of the point groups of
special points of the BZ have got irreducible representati
of dimension greater than 1.13 So we expected that all acc
dental degeneracies at the boundary of the BZ split up, e
with very thin cylinders.

Finally, in what follows theoretical arguments are us
in order to understand the dual behavior of the Suz
phase. They are based on the analysis of the eigenstat
the SC.

FIG. 4. Gap map~in reduced units! for the Suzuki phase struc
ture ~see Fig. 1!. Only pseudogaps between the first and seco
bands are plotted as a function of the ratio between cylinder ra
~R! and nearest neighbor distance (a). A full gap develops for
R/a>0.36
3-3
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Let us recast Eq.~1! in the following operator form:

Ĥp~r !52v2Ŝp~r !; Ĥ[¹S ¹

r~r ! D ; Ŝ[
1

c2~r !r~r !
,

~2!

wherev2 is the eigenvalue andp the eigenstate. It is easy t
demonstrate that operatorŜ is definite positive andĤ is Her-
mitian.

A variational principle can be extracted from the Eq.~2!
as it was done in electromagnetism for photonic crystals.14 If
eigenstatesp(r ) are normalized, it can be stated that t
eigenfrequencies of the system are the stationary value
the functional

E 1

r~r !
u¹p~r !u2 dr . ~3!

This functional establishes that lower frequency eigenst
have got maximum variation of pressure inside high den
regions. In our system it means that variation of press
must be confined inside the cylinders. This feature will h
to understand the pressure pattern of eigenstates in Eq~2!
and their dominant symmetry characters.

Figures. 5 show the contour lines of two eigenstates of
Suzuki phase: Fig. 5~a! presents the one at theX2 point
which belongs to the second band~i.e., at the end of the firs
attenuation peak! while Fig. 5~b! is the one also in the sec
ond band, but at theG point. In this kind of plot the density
of lines is a measure of the gradient’s modulus: the den
the lines, the higher the gradient. So that, in accordance
the variational picture, contour lines tend to be localized
side the cylinders, and so it is the pressure gradient. T
feature is present on both patterns.

Now, with the help of the variational principle, let u
discuss why the eigenstate in Fig. 5~a! has the character o
the rectangular symmetry imposed by the vacancies w
the one in Fig. 5~b! has a predominant triangular charact
Since the frequency associated with the state in Fig. 5~a! is
lower than the one of Fig. 5~b!, we expect pressure’s gradie
to be more localized inside the cylinders than outside. Thi
clear at vacancy places because the contour lines are
separated in Fig. 5~a! ~the low frequency state! than in
Fig. 5~b!, where the contour lines approach each other.
other words, the pressure lines in Fig. 5~b! behave as if there
were an increase of density in the vacancy positions. T
last feature let us conclude that eigenstate in Fig. 5~b! has
a triangular character because it has a pressure pa
similar to the one expected in arrays of sound scatte
with such symmetry. Also notice that above this state atte
ation of both structures, Suzuki phase and triangular, c
cides.

In summary, we have reported astonishing sound tra
mission properties of a new SC consisting of a rectang
lattice of vacancies embedded in a triangular array of so
scatterers in air. This SC, which has been called Suz
phase, presents stop gaps for sound transmission at freq
cies related with the symmetry imposed by the vacancies
the same time, attenuation bands of the underlying triang
06430
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lattice still remain in the spectra at higher frequencies.
intuitive picture derived from the fundamental properties
the wave equation for sound propagation has helped u
understand the inner processes responsible for this u
pected result. We conclude that lattices of vacancies emb
ded in a SC can be used as a smart mechanism of so
control in these materials.

This work was partially supported by the Comisio´n Inter-
ministerial de Ciencia y Tecnologı´a of Spain, Contract No
MAT97-0698-C04.

FIG. 5. Surface line plot of two band-edge states in the acou
band structure of Fig. 3.~a! At the X2 point of the second band.~b!
At the G point of the second band. The white circumferences de
the cylinder positions. Notice that the density of lines is prop
tional to the pressure’s gradient.
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