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Experiments with acoustic solitons in crystalline solids
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We have used the picosecond ultrasonic technique to study the formation of acoustic solitons. In these
experiments, a longitudinal acoustic pulse is generated at one surface of a sample. After the pulse has propa-
gated across the sample, its shape is modified as a result of phonon dispersion and nonlinearity. We have found
that the change in the pulse shape can be described by the Korteweg—de Vries equation. The experiments have
been performed on Si, MgQy-quartz, and sapphire. For each sample, we have observed fully developed
acoustic solitons, with pulse shapes that are in reasonable agreement with the results of computer simulations.
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In a nonlinear dispersive system, an initial disturbance
can eyolve into a solitary wave that retains its shape OVer Yherea, is the material coordinate in the direction (La-
long distance. In 1834, John Scott Russell observed a solitagyrangian coordinajeu,, is the displacement in this direction,

wave on the water surface in a narrow charhibrteweg s the density in the undeformed state, and the coefficients
and De Vries(KdV) provided a theoretical analysis of this Aupys aNdA 5.5, are defined by

wave in 1895 But it was not until 1965, when the particle-

like behavior of the solitary-wave solutions in the KdV equa- Aupys=Capys: 2
tion was found, that Zabusky and Krusk&rmed these so-

lutions solitons. It has been found that when solitons collide A,gyse;=Capgyser T CapsrOyet Crsprlact Cerpsbay s
with each other, they resume their initial wave forms and

speeds. Sincg this discove_ry, there have b_een many the_ore\;\il-Ith Capys aNdC 4,5, Second and third order elastic con-
cal and experimental studies of the behavior of solitons in &ants  respectivekyThis equation includes nonlinear effects
wide range of nonlinear systems. By developing and applyg jyst the lowest order; terms that are of third or higher order
ing the inverse scattering transfofrmathematicians have i, the displacement are neglected.
found soliton solutions in other nonlinear evolution equa- |n this paper we restrict attention to the propagation of
tions, including the nonlinear Schdimger equation and the |ongitudinal waves in a direction of high symmetry, such as
sine-Gordon equation. Experimentalists have also observeshe of the principal directions in a cubic crystal. The dis-
the formation and interactions of solitons in a wide range ofplacement of the wave will then be in the direction of propa-
systems, including shallow water, transmission lines, plasgation, and Eq(1) reduces to a scalar equation
mas, and optical fibers.

In this paper we study acoustic solitons in crystalline sol- d%u au\d%u
ids. In this system the dispersion arises from the finite spac- POF:< 2T 39 E’
ing of the atoms, and the non-linearity comes from the an-
harmonicity of the interatomic forces. We first introduce thewhereu anda are the displacement and the material coordi-
nonlinear wave equation that governs the propagation ofate, respectively, in the direction in which the wave is
finite-amplitude acoustic waves in crystals and discuss thpropagating, an€, andC3; are combinations of second and
conditions for solitons to form. We then describe ultrasonicthird order elastic constants. Examples of these combinations
experiments that we have performed to test the theory. Meaare listed in Table I.

surements have been performed on Si, MgO, quartz, and To include the effect of diSperSion, we first note that for
sapphire. long wavelengths the phonon dispersion relation can be ex-

panded in the form

4

w=ck—yk3+. .. 5)
Il. THEORY OF ACOUSTIC SOLITONS:
WAVE EQUATION or
In this section, we derive the wave equation that governs w2=C2K2— 2K+ - .- (6)

the propagation of a finite amplitude acoustic wave in a dis-

persive crystalline solid. For a wave of wavelength suffi-where c=(C,/po)Y? is the sound velocityk is the wave
ciently long that the effect of dispersion can be ignored, wenumber, andy is a constant that is usually positive. We
can use standard nonlinear elasticity th&8rio derive the  would like to modify the wave equatidiEq. (4)] so that for
following wave equation: waves of small amplitude the dispersion relation is as given
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TABLE |. Values of the coefficient€, and C; appearing in Eq. 8 for different propagation directions.

Direction C, Cs

cubic[100] Cu C111+3Cyy

cubic[110] 3(C11+Cyp+2Cyy) #(C111#+3C110+ 12C 169 + 5(Caq+ C1p+2Cy)

cubic[111] $(Cyy+2C,+4C44) $(Cy11+6C 10+ 12C 44+ 24C 166+ 2C 103+ 16C 450)
+(Cyy+2C 1+ 4C,0)

trigonal [0001] Css C333t3Cs3

by Eqg. (5). This can be achieved through inclusion of ations of the KdV equation. The KdV equation has two
fourth order spatial derivative, so that the wave equation theclasses of special solution. The first are periodic solutions,

becomes cnoidalwaves, and the second class are the solitons. Since in
our experiments, we will be considering an initial distur-

d%u au\ d%u d*u bance that is a short acoustic pulse, we will focus on the
Pos2 ™ CotCsg E+2POC7’Q' (") properties of the soliton solutions. It is well known that Eq.

(9) has a soliton solutidi®
It is useful to consider the relation of this equation to an

1/2

equation that has the KdV form. Let us define the strain =7 secﬁ{ ( 82’70) (a—Ut)}
= gu/da. By differentiation of Eq.(7) with respect toa, we 0 12B,
obtain o Ca7o |12

P21 . . P = 7o S€ec ShpoCy (a—Ut), (12

—=C,— —| 7= +2pocy—;. (8)

Po a2 2 932 39a 7 Ja Po yﬂa“ B, 7o Care
Now we consider an equation of the KdV form U=c+ 3 —er 6poC’ 13
an an an &y where U is the velocity of the soliton andy, is the peak

E=—81£—an5—83—3, (9)  strain amplitude. Sinc®, is normally negative an®; is

Ja positive, we see from Eq12) that 5, must be negative, i.e.,
where B;, B,, and B; are some coefficients to be deter- the pulge must b_e a_compression, rather than a rarefaction.
mined. We differentiate E9) with respect to time, and use 1N€ soliton velocityJ is always larger than the sound speed
Eq. (9) again to replace the time-derivatives of the strain tha€: Note that the magnitude of the dispersion does not affect

appear on the right-hand side. The result is the velocity, bu'g only influences the Widt_h _o_f the soliton. _
The KdV solitons are stable, and an initial pulse of arbi-
Py , p P i g4 trary s_hape can evolve into one or more _solitons. The number
—2=Bl—2+28182a— | +2BBs—+- . of solitons formed from a particular initial pulse shape can
ot Ja al ’oda Ja

be found from the inverse scattering transfé¥it’ The num-
(10 ber of solitons is the same as the number of bound states of

The higher order terms omitted from the right hand sidethe associated Schamger equation

of this equation involve the sixth order derivative pfterms 2
of the order of »® , or products of the form 4 5/da’) d™v +[E-V(a)]¥=0 (14)
X(d'nloal), wherei + j=4. Thus, these are all higher order da? '

than the terms that are retained. If tBg coefficients are ] ) o
chosen to have the values where the potentia¥/(a) is related to the initial pulse shape

n;(a) in the form
B1=(Cy/po)?=c, B,=Cyl2p,c, Bz=7y, (11)

o . Bami(a) Csni(a)
then Eq.(10) becomes identical to Eg8). It follows that if V(a)=— 6B, 120007 "
this choice of the coefficients is made, the solutions of Eq. s ot
(9) will also be solutions of Eq(8), although not all solu- As a specific example, consider an initial disturbance in

tions of Eq.(8) will be solutions of Eq(9). The solutions of which the strain has the value 7, betweena=0 anda

Eq. (9) correspond to disturbances that propagate in the posi- 2 is zero elsewher& From the Schrdinger equation,
tive direction along the axis. It is also possible to choose

insteadB, = — ¢, together with appropriate choices®j and we know that providedy, is positive, there will always be at

B,. Then the solutions of Eq9) are disturbances that propa- least one bound state, and that there willhdeound states if

gate in the negative direction.
It follows that we can find solutions of the generalized (n—1)2<s —— "= <n?, (16)

elastic wave equatiofEq. (7)] by taking over known solu- 1272pCy

(15

C3W2 71
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TABLE II. A list of samples that were used in the experiments, together with their material parameters.
The dispersion parameterand the nonlinear paramet€yg are as defined in Eq$5) and(4), respectively.
The density, sound velocity, and nonlinear parameter are calculated from the data in Refs. 15-17. The
dispersion parameters are from Ref. 18.

Sample Sample Density Sound velocity Nonlinear Dispersion
thicknessd Po c parameteiCy parametery
(cm) (@em3®  (10cmsl)  (10%gemts?) (10 em’s Y
Si[100] 0.0315 2.33 8.48 -3.73 1.80
MgO [100] 0.0495 3.585 9.05 -40.2 1.6
SiO, [000Y 0.2010 2.651 6.40 -4.88 7.75
Al,O5 [000]] 0.1065 3.98 11.23 -18.3 3.50

From this result, we can make a rough estimate of the poc3y?d
experimental conditions necessary in order for multiple soli- 27648”3—1/3 =6.56x10 “. (19
tons to appear. Of particular interest is the magnitude and Cswd

spatial length of the strain pulse that is required. The material =~ = . ) _
parameters of the samples that we have studied are listed #1iS 1S within the range of strain amplitudes that can be
Table II. As a representative case, consider the propagatig¥enerated in a picosecond ultrasonics experiment. .
in the[100] direction of silicon of a strain pulse that initially !t IS important to recognize that because of the way in
has a width of 200 A. From E16), we find that in order for which the effect of phonon dispersion has been included, the
two solitons to be produced, the magnitugle of the strain ~ Wave equation£7) and(10) have to be used with care. For
must exceed 2:810°%. The critical strain varies signifi- €xample, if the nonlinear coefficier@; in Eq. (7) is set
cantly between the different materials; the smallest criticafdual to zero, this equation bzecor;nezs a Ilnei\r wave equation
strain is 3.8 10°° for MgO. with the dispersion relationn”=c°k“—2cyk™. Thus, for

To design an experiment, it is also necessary to considdf’9€ enoughk, the waves have a purely imaginary fre-
the distance a pulse has to propagate before a soliton can B¥€ncy, and the amplitude of the Fourier com1;/)20r21ents with
observed. Consider, again an experiment in which the starlyave numberk will grow with time as exp(2cy)™“k"t]. It
ing situation is a strain- 5, extending over distanog. Sup- follows from _P_a_rsev_al’s theorem that if the Fourier compo-
pose that one soliton is produced. For simplicity, we assum@€nts of the initial disturbance fall off for large k as a power
that the disturbance develops in a way such that the solitolW: the solution will diverge for any finite value of the time
becomes the dominant contribution to the strain distribution: 1-€-, the displacemeni(a) and the strainy(a) will cease
i.e., we suppose that the amplitudes of the disturbances o&? P€ a square-integrable functionafThe wave _numtigkc
curring behind the soliton are small. When the strain pulse i€t Which the frequency becomes imaginary &2f)" ,
launched the relative displacement of the material in fronVhich is of same order of magnitude as the inverse of the
and behind the pulse is7,. If the attenuation is negligible, lattice parameter. The strain pulses that we use in this experi-
this relative displacement will be conserved, and so must b8'€nt have spatial lengths of several hundred A, and conse-
equal to the relative displacement of the material on eithefluently have very small Fourier components wkifin the
side of the soliton. Using this result, it follows from Bq2) ~ fange abovek.. Nevertheless, the solution of E() still

that diverges for allt>0. This difficulty can, in principle, be
removed by adding into Eqé7) and(10) extra terms involv-

,ﬁwzc3 ing higher order derivatives, and then choosing the coeffi-

7;O=W. (17) cients of these terms so that the frequency is real for all

values ofk. In the present worksee next sectionswe solve
Egs.(7) and(10) using numerical simulation with a mesh of
oints fora. A finite mesh spacing is equivalent to an upper
utoff for k, and so the difficulties with the divergences at
(Iaargek do not occur.

The difference between the velocity of the soliton and th
velocity of small-amplitude disturbances is given by Eq..
(13). Using this velocity difference, we can calculate the
propagation distance required in order for the soliton to hav
traveled an extra distance that is equal to the soliton width
(24pocy/C3m0) Y2 This propagation distance is lll. EXPERIMENT

3.4 The basic idea of our experiment is to generate a short
d= 27,64%C"y (18) acoustic pulse, launch it into the sample, and to measure the
cgniv\ﬁ ' shape of the pulse after it has made one round trip through
the sample. The samples were single crystal wafefd @]
Thus, for Si withw=200 A and a propagation distandef  Si, [100] MgO, z-cut sapphire, and quartz, with surfaces
500 um, it is necessary for the initial strain amplitude to highly polished to assure a good acoustic reflection. Param-
have a magnitude of at least eters of the samples are listed in Table II.
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FIG. 1. Schematic diagram of the experiment. A light pulse is E \/ \/ )
absorbed in the Al film and an acoustic pulse is generated. The ;:, FA N 1'111 "
pulse propagates across the crystal and is reflected ai/tfikn. < [T AU
The pulse returns to the Al transducer with a shape modified by = v
dispersion and nonlinearity, and is detected by a probe light pulse. 0<C] A__#\\/\/\A\,___ﬂ_\_‘
. 0.74nJ
The experiment is shown schematically in Fig. 1. An Al peemmemeeeeeee, L ™, d
film was deposited onto one side of the wafer to serve as a ’
transducer for generating and detecting the acoustic pulses.
The thicknesd,, of the Al film was in the range between 037 nJ
235 to 250 A. To generate an acoustic pulse, a light pulse | PN Vi

(pump pulsg of duration 200 fs from a Ti:sapphire mode-
locked laser was focused onto a spot of diamet@5 um

on the surface of the Al film. The laser light absorbed in the
film raises the film temperature. This sets up a thermal stress TIME (ps )

in the Al film, and a longitudinal acoustic pulse is launched _ _ ) _

into the sample. The wavelength of the light pulse was 80(& FIG. 2. First strain echo in 00| Si sample. Results are la-

L 1 L 1 L 1 L 1 L
70000 70020 70040 70 060 70 080 70 100

nm, and the time between pulses of 13.25 ns. The returnin eled by the energy of the pump light pulse. The solid line shows
acdustic ulse results in a change in the.o tica'l reflectivity of '€ experimental data, and the dashed line indicates the results from
P 9 P y a computer simulation. The experiment was performed at 35 K.

the Al film; this change in reflectivity was detected by means
of a time-delayed light pulse from the same lagprobe
pulse. The fractional change of reflectivityR(t)/R was of
the order of 10°, and so lock-in techniques were used to
improve the signal to noise. The travel time for the first

acoustic pulse ranged from 70 ns for the Si sample to over At room temggr?ture,t tr?e attf[anl;%t(ljoggf §ound '? the fre-
600 ns for SiQ. It is inconvenient to produce a probe pulse quency range of interest he80 to 2is very large,

with such a large time delay through the use of a COnVeng:md the strain pulse cannot propagate far enough for solitons

tional optical path. Instead, as a probe pulse, we used a latiQ form. The attenuation is mainly due to anharmonic inter-

pulse from the laser which was given a further delay byact|ons with thermal phonons, and becomes small at low

means of a short adjustable optical path. temperature. Consequently, we performed the experiments at

When a strain pulse is generated in the Al film and propa_temperatures 25 to 35 K using a continuous-flow cryostat.

gates into the crystal, it will produce a soliton if the ampli- Because the sample was mounted n thg cryostat, it was not
tude is sufficiently large. As noted in the previous section,poss'ble to make an accurate determination of the size of the

the soliton must have a negative strain, i.e., it must correPUMP and probe beams on the sample surface.

spond to a compression. If this strain pulse were to be re-

flected at a free surface of the sample, it would undergo a IV. RESULTS AND DISCUSSION

sign change and convert into a rarefaction pulse. The soliton ) ]

would then be destroyed. To avoid this problem, a 3000 A To test the theory discussed in Sec. Il, we have made a
film of Wwas deposited onto the far side of the wafer. Whenseries of measurements with different pump pulse energies.

the strain pulse is reflected at the interface between the waféd Figs. 2—5, we show the results of measurementsfft)
and theW film, the reflection coefficient is for the first echo in the different samples, along with com-

puter simulations to be described below. In each figure, data
with four different pump pulse energies are presented. Note

Zw—Zs that the vertical scale is in arbitrary units, but for a given
r= ZwtZs’ (20 sample the same scale is used for each of the pump pulse
energies. Figure 2 shows the data for Si at the temperature of

35 K. When the pump pulse enerdy is below 0.37 nJ,

whereZ,, andZg are the acoustic impedances\Wfand the changing the value of) changes only the amplitude of the

sample, respectively. The very large value of the acoustiecho, but not the shape. For higher pulse energies, the front

impedance of the W results in a large magnitude for the
reflection coefficient, and also no change in sign of the
strain.
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FIG. 3. First echo in 4100] MgO sample. Results are labeled FIG. 4. First echo in iOOO_l] SIO, sample. Re;ults are labeled
! o by the energy of the pump light pulse. The solid line shows the
by the energy of the pump light pulse. The solid line shows the - N
) S experimental data, and the dashed line indicates the results from a
experimental data, and the dashed line indicates the results from a

computer simulation. The experiment was performed at 30 K. computer simulation. The experiment was performed at 32 K.

modulus, ands is the linear expansion coefficient. Thus
of the echo starts to deform. This deformation becomes more

significant aQ increases, and eventually a soliton separates BBQ
from the remainder of the pulse. For the other samples, the o==3(1-R) 7= (21)
threshold pump energy for the formation of a soliton is
lower. In MgO, multiple solitons appear at the highest en-whereC is the specific heat per unit volume. Equati@ji) is
ergy, and even for a pulse energy of 0.37 nJ a soliton hastrictly correct if AT is small compared to the ambient tem-
clearly separated from the main pulse. For all of the samplegerature; however, if the ratio ¢f to C is constant, Eq(21)
the velocity of the solitons increase with increasing pumpholds even wheAT is comparable to the ambient tempera-
power, as expected from E(L3). The large number of soli- ture. For Al, the ratio of8 to C changes by only 10% over
tons seen in MgO is expected because of the very large valu@e temperature range 25 to 50 K.
of the nonlinear parameté&; (see Table I\ Given the initial value of the thermal stress, it is then
To calculate the expected shape of the echo requires straightforward to calculate the form of the strain pulse that
determination of the shape of the strain pulse that is geneis launched into the sample. The detailed shape of this pulse
ated by the action of the pump light pulse, the modificationdepends on the acoustic reflection coefficient at the interface
of the shape of the strain pulse that occurs as it propagatdsetween the Al film and the sample. This coefficient is de-
through the sample, and a calculation of the change in opticakrmined by the ratio of the acoustic impedance of the Al to
reflectivity AR(t) that takes place when the strain pulse re-the impedance of the samlsee Eq.(20)]. As an example,
enters the Al film. we show in Fig. 6 the initial shape of the strain pulse gener-
Let Q be the energy in each pump light pul§ethe op-  ated in MgO. The thickness of the Al film is 250 A. A film of
tical reflectivity of the Al film, andA the area of the film that this thickness generates a strain pulse with Fourier compo-
is illuminated. Then the energy absorbed per unit ¥re&a  nents peaked around 120 GHz.
Q(1-R)/A. Rwas measured to be 0.77. The energy in the To calculate the form of the pulse after it has propagated
pump pulse is transferred to the free electrons in the Al filmwithin the sample, we have time developed the strain using
which diffuse very rapidly through the film before losing the KdV equatiorfEq.(9)]. The values of the sound velocity,
their energy to the latticE’ As a consequence, it is a good density, nonlinear elastic coefficient, and dispersion are listed
approximation to consider that the temperature Ase of in Table Il, and were taken from Refs. 15-18. In Fig. 6 we
the Al film is uniform throughout its thickness. The thermal show, for two different amplitudes of the initial pulse, the
stress in the Al film i* o= —3BBAT whereB is the bulk  form of the strain pulse when it reaches the far side of the
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FIG. 5. First echo in #0001] Al,O; sample. Results are labeled
by the energy of the pump light pulse. The solid line shows the RELATIVE DISTANCE INSIDE CRYSTAL
experimental data, and the dashed line indicates the results from a

) - ) FIG. 6. Computer simulation of the shape of strain pulses propa-
computer simulation. The experiment was performed at 35 K. P P P prop

gating in MgO. The upper part of the figure shoges the initial
ulse entering the sampléy) the pulse as it approaches the far side

MgO sample. The pulse is then reflected at the mterfac%f the sample, an€c) as it returns to the Al film. The scale for the

between the sample and th¢film. This reduces the ampli- - ;.. anq distance is as indicated. In the lower welit,(e), and(f)
tude by a factor which for MgO is 0.50. We then continue theg,, the propagation of a pulse of larger amplitude. The distance

time development using the KdV equation, and the result§qyje s as indicated, and each division on the strain axis corre-
obtained for the pulse when it returns to the Al film are gpongs to a strain of $10°5.

included in Fig. 6. In the simulation of the pulse propagation,
the effects of attenuation were included. It was assumed that Of the parameters that enter into the simulatia¥,
the attenuation of the different Fourier components in thdde/d 7|, ¢, anda are not accurately known. The parameter
pulse varied asrk?, with a a coefficient that varied from |de/d7| affects only the magnitude afR(t). Since, we do
sample to sample. Inclusion of the attenuation improves theot make an absolute measurementAdi(t), the value of
agreement between the simulation and the data, primarily ifde/d7| is unimportant. The areA over which the pump
the part of the pulse that arrived after the soliton compo-beam strikes the surface of the sample inside the cryostat is
nents. It is possible that in the experiment the attenuatiomot accurately known. The initial amplitude of the strain
does not occur in the bulk of the sample, but instead arisepulse is inversely proportional t&. When the energy of the
from the roughness of the sample surface. pump light pulse is small and nonlinear effects are unimpor-
When the pulse reaches the Al film, a part of it will be tant, the value ofA does not have a significant effect on the
reflected back into the sample and a part will enter the filmshape of the returning echo. However, for large pump energy
The part that enters the film will then propagate back andhe echo shape is affected by the initial amplitude of the
forth across the film. Each time it returns to the interfacestrain pulse, and so the choice of the valueAobecomes
between the film and the sample, a part of the pulse will besignificant. For this reason, we have chogerso that the
retransmitted into the sample. The time varying strain in thesimulation is in good agreement with the data for the highest
Al film results in a change in the optical constants. From thispulse energy. The same value Afwas then used in the
change, the change in the optical reflectivity of the film cansimulations for lower pulse energy. In earlier picosecond ul-
be calculated. To perform this calculation, we used standarttasonic experiments with Al film& we have found that a
values for the optical constants of AWe write the strain  good fit to echo pulse shapes can be obtained with3.95
derivative de/dn of the dielectric constant of Al as radians, and this same value was used here. For each sample,
|de/dn|expl¢). The magnitude of the reflectivity change the value ofa was chosen to give a best fit. Changesain
AR(t) is proportional tode/d 7|, but the shape chAR(t) as  primarily affect the rate at which the oscillations in the tail of
a function of time depends only on the phase the pulse shape decay, i.e., they do not have a large effect on

064302-6



EXPERIMENTS WITH ACOUSTIC SOLITONS IN.. .. PHYSICAL REVIEW B4 064302

the shape of the soliton. If we sét=7r2, we find that the (acoustic path less than 1 myut significant for quartz and
values ofA for the four samples correspond to radthat lie  sapphire(acoustic paths of 4 and 2 mm, respectiyel
in the range between 10 and 13:/. Once the value oiAis  second effect that is neglected in the one dimensional model
determined, the amplitude of the initial strain pulse is setarises from the variation of the soliton amplitude with lateral
For example, withA having value corresponding to  position within the area excited by the pump. The probe
=13.6 um, a pump pulse energy of 0.37 nJ gives a strainbeam has a radius of arounduim, and is centered on the
amplitude in silicon of 3.% 10 °. pump beam. If we suppose that the pump beam has a Gauss-
It can be seen from Figs. 2-5 that the agreement betweedan profile with a radius to half intensity of 3m, the sound
the simulations and the data is good, although not all featureamplitude at a distance of Zm from the center will be 14 %
are accurately reproduced. Part of the discrepancy may aridess than at the center. This variation in amplitude means that
from the use of a simulation in one dimension to approxi-the soliton amplitude will be slightly larger at the center and
mate a three-dimensional problem. A full three-dimensionabko the soliton generated there will travel faster than a soliton
simulation would require a significant computational effdrt. generated away from the center. This spread in soliton ve-
As the strain pulse propagates into the sample, it will spreatbcities presumably has the consequence that the experimen-
laterally, and of course this diffraction is not considered in atally measured soliton component should be somewhat
one-dimensional simulation. For a Fourier component ofbroader than is calculated in the one-dimensional simulation.
wavelengthn and a source of radius diffraction becomes We have not tried to apply a correction for this effect.
important after a propagation distance Df~r?/\. In the
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