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Experiments with acoustic solitons in crystalline solids

H.-Y. Hao and H. J. Maris
Department of Physics, Brown University, Providence, Rhode Island 02912

~Received 26 February 2001; published 18 July 2001!

We have used the picosecond ultrasonic technique to study the formation of acoustic solitons. In these
experiments, a longitudinal acoustic pulse is generated at one surface of a sample. After the pulse has propa-
gated across the sample, its shape is modified as a result of phonon dispersion and nonlinearity. We have found
that the change in the pulse shape can be described by the Korteweg–de Vries equation. The experiments have
been performed on Si, MgO,a-quartz, and sapphire. For each sample, we have observed fully developed
acoustic solitons, with pulse shapes that are in reasonable agreement with the results of computer simulations.
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I. INTRODUCTION

In a nonlinear dispersive system, an initial disturban
can evolve into a solitary wave that retains its shape ov
long distance. In 1834, John Scott Russell observed a sol
wave on the water surface in a narrow channel.1 Korteweg
and De Vries~KdV! provided a theoretical analysis of th
wave in 1895.2 But it was not until 1965, when the particle
like behavior of the solitary-wave solutions in the KdV equ
tion was found, that Zabusky and Kruskal3 termed these so
lutions solitons. It has been found that when solitons coll
with each other, they resume their initial wave forms a
speeds. Since this discovery, there have been many theo
cal and experimental studies of the behavior of solitons i
wide range of nonlinear systems. By developing and app
ing the inverse scattering transform,4 mathematicians have
found soliton solutions in other nonlinear evolution equ
tions, including the nonlinear Schro¨dinger equation and the
sine-Gordon equation. Experimentalists have also obse
the formation and interactions of solitons in a wide range
systems, including shallow water, transmission lines, p
mas, and optical fibers.

In this paper we study acoustic solitons in crystalline s
ids. In this system the dispersion arises from the finite sp
ing of the atoms, and the non-linearity comes from the
harmonicity of the interatomic forces. We first introduce t
nonlinear wave equation that governs the propagation
finite-amplitude acoustic waves in crystals and discuss
conditions for solitons to form. We then describe ultraso
experiments that we have performed to test the theory. M
surements have been performed on Si, MgO, quartz,
sapphire.

II. THEORY OF ACOUSTIC SOLITONS:
WAVE EQUATION

In this section, we derive the wave equation that gove
the propagation of a finite amplitude acoustic wave in a d
persive crystalline solid. For a wave of wavelength su
ciently long that the effect of dispersion can be ignored,
can use standard nonlinear elasticity theory5,6 to derive the
following wave equation:
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r0

]2ua

]t2
5

]2ug

]ab]ad
S Aabgd1Aabgdez

]ue

]az
D , ~1!

whereaa is the material coordinate in thea direction ~La-
grangian coordinate!, ua is the displacement in this direction
r0 is the density in the undeformed state, and the coefficie
Aabgd andAabgdez are defined by

Aabgd5Cabgd , ~2!

Aabgdez5Cabgdez1Cabdzdge1Cgdbzdae1Cezbddag ,
~3!

with Cabgd andCabgdez second and third order elastic con
stants, respectively.7 This equation includes nonlinear effec
to just the lowest order; terms that are of third or higher or
in the displacement are neglected.

In this paper we restrict attention to the propagation
longitudinal waves in a direction of high symmetry, such
one of the principal directions in a cubic crystal. The d
placement of the wave will then be in the direction of prop
gation, and Eq.~1! reduces to a scalar equation

r0

]2u

]t2
5S C21C3

]u

]aD ]2u

]a2
, ~4!

whereu anda are the displacement and the material coor
nate, respectively, in the direction in which the wave
propagating, andC2 andC3 are combinations of second an
third order elastic constants. Examples of these combinat
are listed in Table I.

To include the effect of dispersion, we first note that f
long wavelengths the phonon dispersion relation can be
panded in the form

v5ck2gk31••• ~5!

or

v25c2k222cgk41•••, ~6!

where c5(C2 /r0)1/2 is the sound velocity,k is the wave
number, andg is a constant that is usually positive. W
would like to modify the wave equation@Eq. ~4!# so that for
waves of small amplitude the dispersion relation is as giv
©2001 The American Physical Society02-1
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TABLE I. Values of the coefficientsC2 andC3 appearing in Eq. 8 for different propagation direction

Direction C2 C3

cubic @100# C11 C11113C11

cubic @110# 1
2 (C111C1212C44)

1
4 (C11113C112112C166)1

3
2 (C111C1212C44)

cubic @111# 1
3 (C1112C1214C44) 1

9 (C11116C112112C144124C16612C123116C456)
1(C1112C1214C44)

trigonal @0001# C33 C33313C33
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by Eq. ~5!. This can be achieved through inclusion of
fourth order spatial derivative, so that the wave equation t
becomes

r0

]2u

]t2
5S C21C3

]u

]aD ]2u

]a2
12r0cg

]4u

]a4
. ~7!

It is useful to consider the relation of this equation to
equation that has the KdV form. Let us define the strainh
[]u/]a. By differentiation of Eq.~7! with respect toa, we
obtain

r0

]2h

]t2
5C2

]2h

]a2
1C3

]

]a S h
]h

]a D12r0cg
]4h

]a4
. ~8!

Now we consider an equation of the KdV form

]h

]t
52B1

]h

]a
2B2h

]h

]a
2B3

]3h

]a3
, ~9!

where B1 , B2, and B3 are some coefficients to be dete
mined. We differentiate Eq.~9! with respect to time, and us
Eq. ~9! again to replace the time-derivatives of the strain t
appear on the right-hand side. The result is

]2h

]t2
5B1

2 ]2h

]a2
12B1B2

]

]a S h
]h

]a D12B1B3

]4h

]a4
1•••.

~10!

The higher order terms omitted from the right hand s
of this equation involve the sixth order derivative ofh, terms
of the order of h3 , or products of the form (] ih/]ai)
3(] jh/]aj ), wherei 1 j >4. Thus, these are all higher orde
than the terms that are retained. If theBn coefficients are
chosen to have the values

B15~C2 /r0!1/25c, B25C3/2r0c, B35g, ~11!

then Eq.~10! becomes identical to Eq.~8!. It follows that if
this choice of the coefficients is made, the solutions of
~9! will also be solutions of Eq.~8!, although not all solu-
tions of Eq.~8! will be solutions of Eq.~9!. The solutions of
Eq. ~9! correspond to disturbances that propagate in the p
tive direction along thea axis. It is also possible to choos
insteadB152c, together with appropriate choices ofB2 and
B3. Then the solutions of Eq.~9! are disturbances that propa
gate in the negative direction.

It follows that we can find solutions of the generaliz
elastic wave equation@Eq. ~7!# by taking over known solu-
06430
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tions of the KdV equation. The KdV equation has tw
classes of special solution. The first are periodic solutio
cnoidalwaves, and the second class are the solitons. Sinc
our experiments, we will be considering an initial distu
bance that is a short acoustic pulse, we will focus on
properties of the soliton solutions. It is well known that E
~9! has a soliton solution8–10

h5h0 sech2H S B2h0

12B3
D 1/2

~a2Ut !J
5h0 sech2H S C3h0

24r0cg D 1/2

~a2Ut !J , ~12!

U5c1
B2h0

3
5c1

C3h0

6r0c
, ~13!

where U is the velocity of the soliton andh0 is the peak
strain amplitude. SinceB2 is normally negative andB3 is
positive, we see from Eq.~12! thath0 must be negative, i.e.
the pulse must be a compression, rather than a rarefac
The soliton velocityU is always larger than the sound spe
c. Note that the magnitude of the dispersion does not af
the velocity, but only influences the width of the soliton.

The KdV solitons are stable, and an initial pulse of ar
trary shape can evolve into one or more solitons. The num
of solitons formed from a particular initial pulse shape c
be found from the inverse scattering transform.8–10The num-
ber of solitons is the same as the number of bound state
the associated Schro¨dinger equation

d2C

da2
1@E2V~a!#C50, ~14!

where the potentialV(a) is related to the initial pulse shap
h i(a) in the form

V~a!52
B2h i~a!

6B3
52

C3h i~a!

12r0cg
. ~15!

As a specific example, consider an initial disturbance
which the strain has the value2h1 betweena50 and a
5w and is zero elsewhere.11 From the Schro¨dinger equation,
we know that providedh1 is positive, there will always be a
least one bound state, and that there will ben bound states if

~n21!2<
C3w2h1

12p2r0cg
<n2. ~16!
2-2
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TABLE II. A list of samples that were used in the experiments, together with their material param
The dispersion parameterg and the nonlinear parameterC3 are as defined in Eqs.~5! and ~4!, respectively.
The density, sound velocity, and nonlinear parameter are calculated from the data in Refs. 15–1
dispersion parameters are from Ref. 18.

Sample Sample Density Sound velocity Nonlinear Dispersion
thicknessd r0 c parameterC3 parameterg

~cm! ~g cm23) (105 cm s21) (1012 g cm21 s22) (10211 cm3 s21)

Si @100# 0.0315 2.33 8.48 -3.73 1.80
MgO @100# 0.0495 3.585 9.05 -40.2 1.6
SiO2 @0001# 0.2010 2.651 6.40 -4.88 7.75
Al2O3 @0001# 0.1065 3.98 11.23 -18.3 3.50
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From this result, we can make a rough estimate of
experimental conditions necessary in order for multiple s
tons to appear. Of particular interest is the magnitude
spatial length of the strain pulse that is required. The mate
parameters of the samples that we have studied are liste
Table II. As a representative case, consider the propaga
in the @100# direction of silicon of a strain pulse that initiall
has a width of 200 Å. From Eq.~16!, we find that in order for
two solitons to be produced, the magnitudeh1 of the strain
must exceed 2.831024. The critical strain varies signifi-
cantly between the different materials; the smallest criti
strain is 3.831025 for MgO.

To design an experiment, it is also necessary to cons
the distance a pulse has to propagate before a soliton ca
observed. Consider, again an experiment in which the s
ing situation is a strain2h1 extending over distancew. Sup-
pose that one soliton is produced. For simplicity, we assu
that the disturbance develops in a way such that the so
becomes the dominant contribution to the strain distributi
i.e., we suppose that the amplitudes of the disturbances
curring behind the soliton are small. When the strain puls
launched the relative displacement of the material in fr
and behind the pulse iswh1. If the attenuation is negligible
this relative displacement will be conserved, and so mus
equal to the relative displacement of the material on eit
side of the soliton. Using this result, it follows from Eq.~12!
that

h05
h1

2w2C3

96r0cg
. ~17!

The difference between the velocity of the soliton and
velocity of small-amplitude disturbances is given by E
~13!. Using this velocity difference, we can calculate t
propagation distance required in order for the soliton to h
traveled an extra distance that is equal to the soliton w
(24r0cg/C3h0)1/2. This propagation distance is

d5
27,648r0

3c4g

C3
3h1

3w3
. ~18!

Thus, for Si withw5200 Å and a propagation distanced of
500 mm, it is necessary for the initial strain amplitude
have a magnitude of at least
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U276481/3
r0c4/3g2/3

C3wd1/3 U56.5631024. ~19!

This is within the range of strain amplitudes that can
generated in a picosecond ultrasonics experiment.

It is important to recognize that because of the way
which the effect of phonon dispersion has been included,
wave equations~7! and ~10! have to be used with care. Fo
example, if the nonlinear coefficientC3 in Eq. ~7! is set
equal to zero, this equation becomes a linear wave equa
with the dispersion relationv25c2k222cgk4. Thus, for
large enoughk, the waves have a purely imaginary fre
quency, and the amplitude of the Fourier components w
wave numberk will grow with time as exp@(2cg)1/2k2t#. It
follows from Parseval’s theorem that if the Fourier comp
nents of the initial disturbance fall off for large k as a pow
law, the solution will diverge for any finite value of the tim
t, i.e., the displacementu(a) and the strainh(a) will cease
to be a square-integrable function ofa. The wave numberkc
at which the frequency becomes imaginary is (c/2g)1/2 ,
which is of same order of magnitude as the inverse of
lattice parameter. The strain pulses that we use in this exp
ment have spatial lengths of several hundred Å, and con
quently have very small Fourier components withk in the
range abovekc . Nevertheless, the solution of Eq.~7! still
diverges for all t.0. This difficulty can, in principle, be
removed by adding into Eqs.~7! and~10! extra terms involv-
ing higher order derivatives, and then choosing the coe
cients of these terms so that the frequency is real for
values ofk. In the present work~see next sections!, we solve
Eqs.~7! and~10! using numerical simulation with a mesh o
points fora. A finite mesh spacing is equivalent to an upp
cutoff for k, and so the difficulties with the divergences
largek do not occur.

III. EXPERIMENT

The basic idea of our experiment is to generate a sh
acoustic pulse, launch it into the sample, and to measure
shape of the pulse after it has made one round trip thro
the sample. The samples were single crystal wafers of@100#
Si, @100# MgO, z-cut sapphire, and quartz, with surfac
highly polished to assure a good acoustic reflection. Par
eters of the samples are listed in Table II.
2-3
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The experiment is shown schematically in Fig. 1. An
film was deposited onto one side of the wafer to serve a
transducer for generating and detecting the acoustic pu
The thicknessdAl of the Al film was in the range betwee
235 to 250 Å. To generate an acoustic pulse, a light pu
~pump pulse! of duration 200 fs from a Ti:sapphire mode
locked laser was focused onto a spot of diameter;25 mm
on the surface of the Al film. The laser light absorbed in t
film raises the film temperature. This sets up a thermal st
in the Al film, and a longitudinal acoustic pulse is launch
into the sample. The wavelength of the light pulse was 8
nm, and the time between pulses of 13.25 ns. The return
acoustic pulse results in a change in the optical reflectivity
the Al film; this change in reflectivity was detected by mea
of a time-delayed light pulse from the same laser~probe
pulse!. The fractional change of reflectivityDR(t)/R was of
the order of 1025, and so lock-in techniques were used
improve the signal to noise. The travel time for the fi
acoustic pulse ranged from 70 ns for the Si sample to o
600 ns for SiO2. It is inconvenient to produce a probe pul
with such a large time delay through the use of a conv
tional optical path. Instead, as a probe pulse, we used a
pulse from the laser which was given a further delay
means of a short adjustable optical path.

When a strain pulse is generated in the Al film and pro
gates into the crystal, it will produce a soliton if the amp
tude is sufficiently large. As noted in the previous secti
the soliton must have a negative strain, i.e., it must co
spond to a compression. If this strain pulse were to be
flected at a free surface of the sample, it would underg
sign change and convert into a rarefaction pulse. The sol
would then be destroyed. To avoid this problem, a 3000
film of W was deposited onto the far side of the wafer. Wh
the strain pulse is reflected at the interface between the w
and theW film, the reflection coefficient is

r 5
ZW2ZS

ZW1ZS
, ~20!

whereZW andZS are the acoustic impedances ofW and the
sample, respectively. The very large value of the acou

FIG. 1. Schematic diagram of the experiment. A light pulse
absorbed in the Al film and an acoustic pulse is generated.
pulse propagates across the crystal and is reflected at theW film.
The pulse returns to the Al transducer with a shape modified
dispersion and nonlinearity, and is detected by a probe light pu
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impedance of the W results in a large magnitude for
reflection coefficient, and also no change in sign of t
strain.

At room temperature, the attenuation of sound in the f
quency range of interest here~50 to 200 GHz! is very large,
and the strain pulse cannot propagate far enough for soli
to form. The attenuation is mainly due to anharmonic int
actions with thermal phonons, and becomes small at
temperature. Consequently, we performed the experimen
temperatures 25 to 35 K using a continuous-flow cryos
Because the sample was mounted in the cryostat, it was
possible to make an accurate determination of the size of
pump and probe beams on the sample surface.

IV. RESULTS AND DISCUSSION

To test the theory discussed in Sec. II, we have mad
series of measurements with different pump pulse energ
In Figs. 2–5, we show the results of measurements ofDR(t)
for the first echo in the different samples, along with co
puter simulations to be described below. In each figure, d
with four different pump pulse energies are presented. N
that the vertical scale is in arbitrary units, but for a giv
sample the same scale is used for each of the pump p
energies. Figure 2 shows the data for Si at the temperatur
35 K. When the pump pulse energyQ is below 0.37 nJ,
changing the value ofQ changes only the amplitude of th
echo, but not the shape. For higher pulse energies, the f

e

y
e.

FIG. 2. First strain echo in a@100# Si sample. Results are la
beled by the energy of the pump light pulse. The solid line sho
the experimental data, and the dashed line indicates the results
a computer simulation. The experiment was performed at 35 K
2-4
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of the echo starts to deform. This deformation becomes m
significant asQ increases, and eventually a soliton separa
from the remainder of the pulse. For the other samples,
threshold pump energy for the formation of a soliton
lower. In MgO, multiple solitons appear at the highest e
ergy, and even for a pulse energy of 0.37 nJ a soliton
clearly separated from the main pulse. For all of the samp
the velocity of the solitons increase with increasing pu
power, as expected from Eq.~13!. The large number of soli-
tons seen in MgO is expected because of the very large v
of the nonlinear parameterC3 ~see Table II!.

To calculate the expected shape of the echo require
determination of the shape of the strain pulse that is ge
ated by the action of the pump light pulse, the modificat
of the shape of the strain pulse that occurs as it propag
through the sample, and a calculation of the change in op
reflectivity DR(t) that takes place when the strain pulse
enters the Al film.

Let Q be the energy in each pump light pulse,R the op-
tical reflectivity of the Al film, andA the area of the film tha
is illuminated. Then the energy absorbed per unit area12 is
Q(12R)/A. R was measured to be 0.77. The energy in
pump pulse is transferred to the free electrons in the Al fi
which diffuse very rapidly through the film before losin
their energy to the lattice.13 As a consequence, it is a goo
approximation to consider that the temperature riseDT of
the Al film is uniform throughout its thickness. The therm
stress in the Al film is14 s523BbDT whereB is the bulk

FIG. 3. First echo in a@100# MgO sample. Results are labele
by the energy of the pump light pulse. The solid line shows
experimental data, and the dashed line indicates the results fro
computer simulation. The experiment was performed at 30 K.
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modulus, andb is the linear expansion coefficient. Thus

s523~12R!
BbQ

AC
, ~21!

whereC is the specific heat per unit volume. Equation~21! is
strictly correct ifDT is small compared to the ambient tem
perature; however, if the ratio ofb to C is constant, Eq.~21!
holds even whenDT is comparable to the ambient temper
ture. For Al, the ratio ofb to C changes by only 10% ove
the temperature range 25 to 50 K.

Given the initial value of the thermal stress, it is the
straightforward to calculate the form of the strain pulse t
is launched into the sample. The detailed shape of this p
depends on the acoustic reflection coefficient at the interf
between the Al film and the sample. This coefficient is d
termined by the ratio of the acoustic impedance of the Al
the impedance of the sample@see Eq.~20!#. As an example,
we show in Fig. 6 the initial shape of the strain pulse gen
ated in MgO. The thickness of the Al film is 250 Å. A film o
this thickness generates a strain pulse with Fourier com
nents peaked around 120 GHz.

To calculate the form of the pulse after it has propaga
within the sample, we have time developed the strain us
the KdV equation@Eq. ~9!#. The values of the sound velocity
density, nonlinear elastic coefficient, and dispersion are lis
in Table II, and were taken from Refs. 15–18. In Fig. 6 w
show, for two different amplitudes of the initial pulse, th
form of the strain pulse when it reaches the far side of

e
a

FIG. 4. First echo in a@0001# SiO2 sample. Results are labele
by the energy of the pump light pulse. The solid line shows
experimental data, and the dashed line indicates the results fro
computer simulation. The experiment was performed at 32 K.
2-5
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H.-Y. HAO AND H. J. MARIS PHYSICAL REVIEW B64 064302
MgO sample. The pulse is then reflected at the interf
between the sample and theW film. This reduces the ampli
tude by a factor which for MgO is 0.50. We then continue t
time development using the KdV equation, and the res
obtained for the pulse when it returns to the Al film a
included in Fig. 6. In the simulation of the pulse propagatio
the effects of attenuation were included. It was assumed
the attenuation of the different Fourier components in
pulse varied asak2, with a a coefficient that varied from
sample to sample. Inclusion of the attenuation improves
agreement between the simulation and the data, primaril
the part of the pulse that arrived after the soliton com
nents. It is possible that in the experiment the attenua
does not occur in the bulk of the sample, but instead ar
from the roughness of the sample surface.

When the pulse reaches the Al film, a part of it will b
reflected back into the sample and a part will enter the fi
The part that enters the film will then propagate back a
forth across the film. Each time it returns to the interfa
between the film and the sample, a part of the pulse will
retransmitted into the sample. The time varying strain in
Al film results in a change in the optical constants. From t
change, the change in the optical reflectivity of the film c
be calculated. To perform this calculation, we used stand
values for the optical constants of Al.19 We write the strain
derivative de/dh of the dielectric constant of Al as
ude/dhuexp(if). The magnitude of the reflectivity chang
DR(t) is proportional toude/dhu, but the shape ofDR(t) as
a function of time depends only on the phasef.

FIG. 5. First echo in a@0001# Al2O3 sample. Results are labele
by the energy of the pump light pulse. The solid line shows
experimental data, and the dashed line indicates the results fro
computer simulation. The experiment was performed at 35 K.
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Of the parameters that enter into the simulation,A,
ude/dhu, f, anda are not accurately known. The paramet
ude/dhu affects only the magnitude ofDR(t). Since, we do
not make an absolute measurement ofDR(t), the value of
ude/dhu is unimportant. The areaA over which the pump
beam strikes the surface of the sample inside the cryost
not accurately known. The initial amplitude of the stra
pulse is inversely proportional toA. When the energy of the
pump light pulse is small and nonlinear effects are unimp
tant, the value ofA does not have a significant effect on th
shape of the returning echo. However, for large pump ene
the echo shape is affected by the initial amplitude of
strain pulse, and so the choice of the value ofA becomes
significant. For this reason, we have chosenA so that the
simulation is in good agreement with the data for the high
pulse energy. The same value ofA was then used in the
simulations for lower pulse energy. In earlier picosecond
trasonic experiments with Al films,20 we have found that a
good fit to echo pulse shapes can be obtained withf53.95
radians, and this same value was used here. For each sa
the value ofa was chosen to give a best fit. Changes ina
primarily affect the rate at which the oscillations in the tail
the pulse shape decay, i.e., they do not have a large effec

e
a FIG. 6. Computer simulation of the shape of strain pulses pro

gating in MgO. The upper part of the figure shows~a! the initial
pulse entering the sample,~b! the pulse as it approaches the far si
of the sample, and~c! as it returns to the Al film. The scale for th
strain and distance is as indicated. In the lower part,~d!, ~e!, and~f!
show the propagation of a pulse of larger amplitude. The dista
scale is as indicated, and each division on the strain axis co
sponds to a strain of 531025.
2-6



e

ai

e
r
r

xi
na
.
ea

o

in

O

del
ral
be
e
uss-

that
nd
iton
ve-
en-

hat
ion.

ent
nk

EXPERIMENTS WITH ACOUSTIC SOLITONS IN . . . PHYSICAL REVIEW B64 064302
the shape of the soliton. If we setA5pr 2, we find that the
values ofA for the four samples correspond to radiir that lie
in the range between 10 and 13.7mm. Once the value ofA is
determined, the amplitude of the initial strain pulse is s
For example, withA having value corresponding tor
513.6 mm, a pump pulse energy of 0.37 nJ gives a str
amplitude in silicon of 3.531025.

It can be seen from Figs. 2–5 that the agreement betw
the simulations and the data is good, although not all featu
are accurately reproduced. Part of the discrepancy may a
from the use of a simulation in one dimension to appro
mate a three-dimensional problem. A full three-dimensio
simulation would require a significant computational effort21

As the strain pulse propagates into the sample, it will spr
laterally, and of course this diffraction is not considered in
one-dimensional simulation. For a Fourier component
wavelengthl and a source of radiusr, diffraction becomes
important after a propagation distance ofD;r 2/l. In the
experiments reported here, the radius of the source
;15 mm, and the wavelengths of the components mak
up the strain pulse are typically in the range 0.05 to 0.1mm.
Thus,D is between 2 and 4 mm. It can be seen from Table
that the effect of diffraction should be small for Si and Mg
s,
t o
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d
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g

II

~acoustic path less than 1 mm!, but significant for quartz and
sapphire~acoustic paths of 4 and 2 mm, respectively!. A
second effect that is neglected in the one dimensional mo
arises from the variation of the soliton amplitude with late
position within the area excited by the pump. The pro
beam has a radius of around 7mm, and is centered on th
pump beam. If we suppose that the pump beam has a Ga
ian profile with a radius to half intensity of 15mm, the sound
amplitude at a distance of 7mm from the center will be 14 %
less than at the center. This variation in amplitude means
the soliton amplitude will be slightly larger at the center a
so the soliton generated there will travel faster than a sol
generated away from the center. This spread in soliton
locities presumably has the consequence that the experim
tally measured soliton component should be somew
broader than is calculated in the one-dimensional simulat
We have not tried to apply a correction for this effect.
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