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Effective dielectric properties of composite materials: The dependence
on the particle size distribution
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We have carried out numerical simulations on the effective transport properties of composites consisting of
well separated conductive spherical inclusions in an insulating matrix. The simulations show that the effective
permittivity depends markedly on the size distribution of the inclusions. Results are presented in a broad range
of filling factors and degrees of polydispersity. For a simple cubic lattice of identical spheres the calculated
values agree exactly with the analytical solution. The Maxwell-Garnett model has shown to describe well the
case of randomly distributed uniformly sized inclusions independently of the concentration, even at filling
factors up to 30%. With increasing degree of polydispersity the permittivity rises towards a limiting value close
to the Bruggeman result.
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I. INTRODUCTION where
Its roots going back to the work of Rayletghand Alep—e,)

X =

_sM-I—A(sp—sﬂ)' 2)

Maxwell? the theory of effective transport properties and
especially dielectric properties of composite materials has
known considerable development in recent times. In itselfgp, €, are the dielectric constants of the inclusions and the
this problem is very interesting, but it also finds direct appli-matrix, respectively, anflis the volume fraction of the par-
cation in the study of heterogeneous materials such as colicles. The depolarization factgk equals 1/3 in the case of
loids, porous media, magnetic liquids, ceramics, or artificialspheres, which is the shape we consider in the following. For
dielectrics. Our motivation has been the analysis of dielectri¢onducting inclusions at sufficiently low frequencigs|
spectra of composites, in order to derive information on the>|e,| holds and thux=1, so that
microstructure or on the properties of the dispersed
component:* Although we formulate our results in terms of o 1+2f
permittivity, they are valid for all generalized conductivities. Beff =€n™ 5 )

We focus on composites consisting of inclusions embed- .
tive properties at a given frequeneyare not only a function tory when the exact interparticle interactions are not impor-
of the properties of the component materials and of the fillfant, €.g., in the case of dilute dispersions or components of
ing factor, but also depend on shape and spatial distributiolPW polarizabilities. _
of the inclusions. Thus, an analytical solution of the problem The model that most often shows a good agreement with
can be immensely complicated. An exact analytical solutiorPXPerimental result¢e.g., Refs. 3,4,7)8is the one derived
for an arbitrary spatial configuration of well separated spheriby Bruggema
cal inclusions in a matrix has been presented in Ref. 5. The 13
effective permittivity is expressed in terms of dielectric prop- (Seff_ Sp) (8_u) —1—§ (4)
erties, sizes, and coordinates of the inclusions. In order to €,—&p/\ et '
calculate the permittivity one still needs the whole detailed ) , )
information about the microstructure. Thus, the complexity®" for conductive particles at low frequencies
of the problem is not directly reduced. Nonetheless, this ana-

lytical solution is an excellent tool to address the problem o= Eu )
through exact computer simulations as the ones we present eff (1—1)3
here.

The Maxwell-Garneft model was one of the first ap- This formula, known as the asymmetric Bruggeman or the
proaches to describe the permittivity of random compositesHanai-Bruggeman formula, is obtained assuming that the
In this mean-field model only an average induced dipole igMaxwell-Garnett model is exact at low filling factors and
taken into account for every inclusion. Higher multipole mo-then following an iterative procedure, adding a small fraction
ments are neglected. So, each particle is polarized as if pf particles at each step. Here, the percolation limit=sl.

were in an homogeneous effective field: This model is recognized as valid at least for not too high
filling factors and is often used for comparison with experi-
e—e |14 1 ix 1) mental data or results of simulations. For other models we
e ul =T A1—fx)" refer to Refs. 7,8.
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According to the above formulas, the effective permittiv- 12

ity of random cermets depends only ep, ¢, , andf. How- max =1
ever, in Ref. 7(p. 104 it is noted that measurements on 10} mX_5  x 1
systems with narrow size distributions tend to agree rathel max =11 =
with the Maxwell-Garnett than with the Bruggeman model. gl Maxwell - Garnett - i

McPhedran - McKenzie

From the theoretical side, Fat al have shown that the
Maxwell-Garnett formula is within the mean field approxi- <
mation rigorous to all multipole moments, as long as a *
spherically symmetric two-particle function describes the
spatial distribution of the particlé8.On the other hand, per-
forming numerical calculations, Barregd al'! could show
that the Maxwell-Garnett result fails for polydisperse sys-
tems. Despite the above experimental and theoretical result
there is neither a theoretical model nor a detailed numerica 0 0.1 0.2 0.3 0.4 0.5 0.6
investigation on howe ¢ depends on the degree of polydis- f
persity of the inclusions, let us say, on the width of the par- _ _ .
ticle size distribution. The derivation of the abovementioned _F'C- 1. The ratio of the effective permittivityey over the per-
mean-field approximations does not show in which rang{‘"ttw'ty of the matrlx% fqr an sc lattice of .conductlve spheres.
they are applicable. Meredith and Tob&kave proposed a umerical results taking into account multipole moments up to
: . Lma= 1,3,5,11,19 are compared with the Maxwell Garnett model as
universal formula for polydisperse systems, but the fact tha\;veII as with the exact results by McPhedran and McKenzie.

it does not depend on the degree of polydispersity is a con-
4 /471'2 di1o

tradiction in terms. The need for a systematic approach is
therefore clear. Our numerical investigations, a computer

implementation of the exact theoretical solution in Ref. 5, Celf™ Ep
show that the effective permittivity .+ depends on the par- 4
ticle size distribution in a surprisingly strong way. ™ N
PrISINgy STong way =eu 1+ 2 (G 1)#%8/3,-1). ®

Il. THE ALGORITHM Our simulations are based on this exact solution. A distribu-

In Ref. 5 Fuet al. consider a composite material consist- tion of particles is generated in a cubic shell, the side length
ing of spherical inclusions of permittivity; in a continuous ~ of which equals the distance between the electrodes. Periodic
matrix (cermet topology. The material of total volum& is  boundary conditions are imposed in the directions parallel to
placed between the plates of an ideal plane capacitor. TH&€ capacitor plates. The configuration matrix elements
plates are separated by a distadc@he authors express the G}, ™ are computed for each pair of particles and multipole
multipole moments developed by thh particle due to the  moments. The images and the periodic repetitions of each
interactions with other particles and their images, as a funcparticle are taken into accoufgee the Appendix It is pos-
tion of the particles’ dielectric properties;, radii «; and  sible to adjust the maximal ordels,., Mmay Of Multipole

spatial coordinates: moments considered. More importantly, the algorithm allows
simulations of different spatial configuratioferdered, ran-
/3 _1,j10 dom or nonrandom disordered, isotropic or anisotropic sys-
Qim= Eg (G DiimBj1Eo, (6) tems and different size distributions of spherical inclusions.

The dielectric properties of matrix and inclusions can be

where freely chosen, and the composite may even contain inclu-

sions of different permittivities and radii. The results that are

presented here were obtained at zero frequency for conduc-
, (7)  tive particles in a matrix of unit dielectric constant. In this
git2e, case Eq(7) becomes;;=a?. (Fore,#1 the results for the
) ) L effective permittivity can simply be scaled by a factoregf
and E, is the imposed electric field. The element goq Eq.(g)].) A det):;iled repor;tyfor other casis is to f(i%OW.
GJ.m (rij.&i,gj,1,1",;mm") of the two-dimensional con-
figuration matrixG is directly connected with the interaction
between the multipole momenin{) of theith particle atr;
and the momentl(m’) of the jth particle atr; . We denote In order to check the correct implementation of the algo-
rij=r;—r;. (The exact form ofG is given in the Appendix. rithm as well as the accuracy of our calculations we first treat
For details please refer to the original articl@hrough the a simple cubic lattice of identical spheres. This problem has
inversion ofG all the momentsy;,, are mutually dependent. been solved exactly in Refs. 13,14 while accurate measure-
Note especially the coupling of the dipole momeqig,to  ments are presented in Refs. 15,16. The results are presented
the higher multipole moments. Fet al. proceed to express in Fig. 1. The diagram shows the effective permittivity of the
the effective permittivity of the composite as follows: system as a function of the filling factor. The values pre-

(e1—8,)a’

Bin=

Ill. THE SC LATTICE
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sented have been tested for convergence and are accurate 30
to the fifth decimal point. There are different sets of points N
corresponding to calculations for different odd values of the 25 J 4
highest multipold ., taken into accounfisee Eq.(6)]. Due
to the symmetry of the cubic lattice, the multipole moments o |
with evenl do not contribute to the polarization. The results
are compared with exact values taken from Ref. 14. There is, ¢ |
absolute agreement between the analytical formula and ou
results. This remains true up to the highest filling factor of
f.=m/6~0.5236, where the spheres touch and the permittiv-

ity diverges(percolation limi}. In Ref. 14 there are also cal-
culations presented for multipolar moments witi¥ 0. The

authors point out that their contribution is very small and
attribute it to the arithmetical error rather than to a real ef-  ©
fect. Our calculations confirm this, giving zero contribution

up to the fifth decimal point. Note also that calculations with

I max= 1, i.e., taking only the interactions of the dipolar mo-  FIG. 2. Avolume distribution withr=1 andN=3998 as it was
ments into account, coincide for all filling factors with the used for a calculation. The dashed line is the theoretical log-normal
Maxwell-Garnett predictions. distribution. The inset focuses on the shaded part of the graph. In
the range ¢,,— dv/2,p,+dv/2] 26 particles are distributed homo-
geneously.

0 1 2 3 4 5 6 7
v (arbitrary units)

IV. RANDOM DISTRIBUTION

We generated distributions of particlésypically 5000
which were positioned randomly in space filling a cubic vol-
ume. The patrticle size distributions were log normal in vol-
umewv with varying width parametes (the standard devia-
tion of the correspondent normal distributjon

routines used in the main program were modifications of
routines found in Ref. 17. Simulations on monodisperse sys-
tems were also carried out, using the same positioning algo-
rithm. This algorithm fills the space in a uniform manner
with spheres, so that in the case of equally sized inclusions,
above a filling factor of 0.3 it is not any more possible to add
1 —In2(v/vg)/20? 9) further particles without overlap. For higher filling factors a
V2mov ' different algorithm has to be implemented, that would allow
even a random close packed distribution. Of course, there is
The median of the volume distribution, can be chosen no such restriction for polydisperse systems, where there is
arbitrarily since the dielectric properties do not change wheralways room for the smallest spheres added towards the end
the sample is scaled in size. Note that E3).is equivalentto  of the procedure.
a log-normal distribution of radii with a parametey= o/3. We have conducted extended simulations involving
Choosing a good algorithm to form the size distribution is ofhigher multipole moments, which have shown that these are
vital importance, since the computing capacity is restrictednot of great importance when considering random systems.
Simply using a random numbers generator to pick volumesn the case of monodisperse samples, for example, their con-
from a log-normal distribution gives a very poor approxima-tribution is less than 2% even for filling factors as high as
tion of the continuous distribution: even at particle popula-0.3. The higher the filling factor and the broader the distri-
tions as high adl=5000 this results to strong fluctuations of bution, the more important the higher multipoles become. In
the particle size distribution density. Of course, for such aany case, for the ranges band o treated here their contri-
configuration the simulation gives a value feg; which is  bution is much smaller than the effect of polydispersity
physically meaningful, but differs from the value corre- which is studied below. Thus, we present here calculations
sponding to a smooth log-normal distribution. Increasig that take account of the dipole moment only.
one should attain an always better approximation but this The results are subject to systematic errors originating
seems to happen &t too high for our computing capacity. from the unavoidably limited size of the sample. There are
We found that a satisfactory solution to this problem is to useerrors due to the high proportion of particles in the vicinity
a step function as the one presented in Fig. 2. Tleis is  of the electrodes compared to what is normally the case for
divided in elementslv. Then[Nf(v )] particles are homo- real material measurements. Furthermore, the homogeneity
geneously distributed in the regiow (—dv/2p,+dv/2]. of the spatial distribution is disturbed by not allowing the
For narrow distributions the elementhy may be equal, spheres to cross the cells boundaries. These errors have nev-
while for broader distributiongaboveo=1.5) it is recom- ertheless proved to be of little importance and can be ne-
mended to increasdv with increasing,,. Random coordi- glected. The main source of inaccuracy is the failure to re-
nates were attributed to each particle, starting from the bigproduce the continuous distribution with a limited number of
gest. In case of overlap with an already positioned particleparticles. In order to control the effect of the sample size we
new coordinates were chosen. As a consequence, there is performed simulations on samples of spheres having a log-
electric contact between neighboring particles. The algonormal distribution in volume, as described above, as a func-
rithms for the random distributions, as well as many of thetion of the total number of particleN. In Fig. 3 the calcu-

f(v)=

e
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FIG. 3. The convergence of the results with respect to the num-
ber of particles. The main factor of the error is the insufficiency of
small populations to approximate the continuous distribution.

FIG. 5. The ratice /e, at f=0.3 as a function of the widthr

of the log-normal volume distributiofEq. (9)]. For very narrow
and very broad distributions. /e, tends to values close to those
of the Maxwell-Garnett and the Bruggeman models, respectively.
lated permittivity values are shown for filling factée=0.3  The transition occurs in a range arouae 1.

and forc=2, 0=1, ando=0.1. Foroe=2, e.g., there is a

monotonous change of the calculateg; of about 5% be-  only on the filling factor, but also on the degree of polydis-
tweenN = 1500 andN=3500, but abov&l=3500 a limiting  persjty. Foro=2 it is well described by the Bruggeman
value seems to be attained, the calculated permittivity fluctormyla, while for o=1 it lies between this and the

tuating less than 3%. . _ Maxwell-Garnett result.

Already from Fig. 3 it is obvious that the permittivity | order to study the transition from one response type to
values depend on the size distribution width, expresseghe other, we performed simulations on systems with fixed
through the parameter. This is shown more clearly in Fig. filling factor (f=0.3) varying the width parameter of the
4. There the effective dielectric constant is plotted as a funcygiume distribution. The results are presented in Fig. 5 as a
tion of the filling factor for samples withr=2, o=1 and for  piot of the effective dielectric constant vs. The effective
monodisperse systems o{0). For comparison the gjelectric constant increases monotonously from values very
Maxwe_II-Gamett and Bruggeman_predictions are also plotyear the Maxwell-Garnett resultfr low o) and approaches
ted. It is evident that the monodisperse systems are accy jimiting value aso increases. This value is close to the
rately described by the Maxwell-Garnett formul@ithin - pryggeman result. Simulations at higherare necessary to
2%). Thepermittivity of polydisperse systems depends notgetermine whethek . remains constant. Such simulations

require a higher particle population in order to adequately

E—rvRo—— : represent thg part_icle volume di;tribution anq can be very

—-— Hanai-Bruggeman Vo time consuming, since the CPU time needed is roughly pro-
o=2 portional toN?.

3

o+

o=1
o=0 (monodisperse)

V. DISCUSSION

seﬁ/su

It is evident that the permittivityand correspondingly all
generalized conductiviti¢sof matrix-inclusion composite
materials shows a sensitive dependency on the size distribu-
tion. The Maxwell-Garnett model, which being a dipole ap-
proximation has been considered satisfactory for dilute sys-
tems only, describes adequately random monodisperse
. . . . s . ] systems even for filling factors as high as 0.3. The Brugge-
0 005 01 015 02 025 03 035 man model describes well the opposite limit of broad size

f distributions. In both these mean field formulas the effective

FIG. 4. The ratice /e, as a function of the filling factof for ~ PErmitlivity is independent of or, generally speaking, the
systems with random spatial distribution and log-normal volumeWidth of the size distribution. So, they can only give a satis-
distribution with differento [see Eq.(9)]. The Maxwell-Gamett  factory description whemle4/do—0, i.e., in the limiting
approximation describes accurately the results for monodispers@dses of very narrow or very broad distributidsee Fig. 5.
systems, while the results for broad distributiéwith o=2) agree It is nevertheless surprising how good the agreement be-
with the Bruggeman formula. The plot makes obvious the depentween the complicated calculations and these simple models
dence of the effective permittivity on the size distribution. is, especially keeping in mind that these formulas are derived
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without any assumptions whatsoever regarding the size digrocedure, such as the one followed by Bruggeman, might
tribution. (Note that Bruggeman only assumes a polydisperséake care of some of these effets.

system in order to be able to reach the lifhit- 1, that is, to The dependence on the particle size distribution can be
fill the whole space with inclusions. This fact does not ex-intuitively understood as follows: The interaction between
plicitly enter his derivation ofeo4.) In most experimental the dipolar moments of the particleg is proportional to the
investigations, especially regarding materials for industrialquantity 1/ri3}, the inverse cube of their distandsee the
applications and microcomposites or nanocomposites, ona&ppendix. The interparticle distances decre#and thus the
deals with large size distributions. Monodisperse systems argapacitances between them increagith the polydispersity.
seldom encountered in practice and are rather difficult taConcluding, a formula which would describe the effective
prepare. Together with Fig. 5 this explains the success of thgermittivities of polydisperse systems, especially in the tran-
Bruggeman result in the analysis of experimental data owition range(aroundo=1), has to contain explicitly the par-
nonagglomerating systems. ticle size distribution.

Starting from their exact solutiofEq. (8)] Fu et al. have
shown analytically that the Maxwell-Garnett formula follows
in the mean field approximation, when a spherical symmetric
two-particle function is used to describe the spatial distribu- This work was supported by the European Commission
tion of the inclusions.However, Barrer&t al'! have shown under TMR Marie Curie Grant No. ERBFMBICT982913
that in the case of polydisperse systems the correlated flu¢A.S.) and by the DFG under Project No. Ni/49/33-1. We are
tuations of the induced dipole moments play a vital role andgrateful to the Institut fuElektrotechnik, UniversitaMagde-
cannot be neglected. They lead to higher interparticle interburg and especially to Dr. H. G. Krautiser, for the CPU
actions and thus to an increased permittivity. An iterativetime that was made available to us.
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APPENDIX

For the sake of completeness and convenience of the reader, we give here the form of the configuratidh. Métrito
not comment in detail, since this form is only slightly different from the one given in Ref. 5. The only difference is that
periodic boundary conditions in the plane parallel to the capacitor’'s electrodes are introduced. The central idea is that the
interaction with the periodic repetitions of the particles can be integrated in the interaction with their equivalent particle in the
main shell, just as it happens with the image particles in the treatment of Fu, Macedo, and Resca. Choosing ki index
count the images ané to count the periodic repetitions

Gl =58l8) 8T +(21+ 1) By Cl™ (r;—10), (A1)
where
Clr'nm’m—ri):; (— 1)U Hm FDkpl M’
X (rjex— 1) (1= 8l6280), (A2)
(ei—e,)la?
= lei+(I1+1)e, (A3)
and
[ Yr |’ — ’(rjxfk_rl) ! ’
Al (rj = Ti) = — e (CDhE
|rj§k_ri|
4a(l+1"+m=—m) (1 +1’—m+m’)! v
(A4)

8 21+ 1)21"+1)(21+21" + D)1 +m) (I —m) (I +m) (1 —m’)!

In the above relations  is the position vector of théth periodic repetition of th&th image of the particle. Apart from the
additional index¢ these are the expressions presented in Ref. 5.

Taking into account dipole moments only, for a sample with infinite dimensismghat images and periodic repetitions
need not be considergthis reduces to
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o a3 numberk,., Of image particles and,, Of periodical repeti-
Gl ™=6—(1- 5{)—3',(3co§0—1). (A5)  tions that are considered, according to the desired numerical
rij accuracy. These numbers are not the same for every particle
, pair, but depend on the strength of the interaction. Typically,
Thus, in this approximation, the tern®&( )i253;1E, inside  a few thousand images enter the calculation as well as peri-
the sum in Eq(6), is approximately proportional to rlf{. odic repetitions at distances up to 5-7 times the sample
In our implementation, suitable parameters determine theimensions.
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