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Effective dielectric properties of composite materials: The dependence
on the particle size distribution
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We have carried out numerical simulations on the effective transport properties of composites consisting of
well separated conductive spherical inclusions in an insulating matrix. The simulations show that the effective
permittivity depends markedly on the size distribution of the inclusions. Results are presented in a broad range
of filling factors and degrees of polydispersity. For a simple cubic lattice of identical spheres the calculated
values agree exactly with the analytical solution. The Maxwell-Garnett model has shown to describe well the
case of randomly distributed uniformly sized inclusions independently of the concentration, even at filling
factors up to 30%. With increasing degree of polydispersity the permittivity rises towards a limiting value close
to the Bruggeman result.
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I. INTRODUCTION

Its roots going back to the work of Rayleigh1 and
Maxwell,2 the theory of effective transport properties a
especially dielectric properties of composite materials
known considerable development in recent times. In its
this problem is very interesting, but it also finds direct app
cation in the study of heterogeneous materials such as
loids, porous media, magnetic liquids, ceramics, or artific
dielectrics. Our motivation has been the analysis of dielec
spectra of composites, in order to derive information on
microstructure or on the properties of the dispers
component.3,4 Although we formulate our results in terms o
permittivity, they are valid for all generalized conductivitie

We focus on composites consisting of inclusions emb
ded in an homogeneous matrix~cermet topology!. The effec-
tive properties at a given frequencyn are not only a function
of the properties of the component materials and of the
ing factor, but also depend on shape and spatial distribu
of the inclusions. Thus, an analytical solution of the probl
can be immensely complicated. An exact analytical solut
for an arbitrary spatial configuration of well separated sph
cal inclusions in a matrix has been presented in Ref. 5.
effective permittivity is expressed in terms of dielectric pro
erties, sizes, and coordinates of the inclusions. In orde
calculate the permittivity one still needs the whole detai
information about the microstructure. Thus, the complex
of the problem is not directly reduced. Nonetheless, this a
lytical solution is an excellent tool to address the probl
through exact computer simulations as the ones we pre
here.

The Maxwell-Garnett6 model was one of the first ap
proaches to describe the permittivity of random composi
In this mean-field model only an average induced dipole
taken into account for every inclusion. Higher multipole m
ments are neglected. So, each particle is polarized as
were in an homogeneous effective field:

«eff5«mS 11
1

A

f x

12 f xD , ~1!
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where

x5
A~«p2«m!

«m1A~«p2«m!
. ~2!

«p , «m are the dielectric constants of the inclusions and
matrix, respectively, andf is the volume fraction of the par
ticles. The depolarization factorA equals 1/3 in the case o
spheres, which is the shape we consider in the following.
conducting inclusions at sufficiently low frequenciesu«pu
@u«mu holds and thusx51, so that

«eff5«m

112 f

12 f
. ~3!

The Maxwell-Garnett model has been accepted as satis
tory when the exact interparticle interactions are not imp
tant, e.g., in the case of dilute dispersions or component
low polarizabilities.

The model that most often shows a good agreement w
experimental results~e.g., Refs. 3,4,7,8! is the one derived
by Bruggeman9

S «eff2«p

«m2«p
D S «m

«eff
D 1/3

512 f , ~4!

or for conductive particles at low frequencies

«eff5
«m

~12 f !3
. ~5!

This formula, known as the asymmetric Bruggeman or
Hanai-Bruggeman formula, is obtained assuming that
Maxwell-Garnett model is exact at low filling factors an
then following an iterative procedure, adding a small fracti
of particles at each step. Here, the percolation limit isf 51.
This model is recognized as valid at least for not too h
filling factors and is often used for comparison with expe
mental data or results of simulations. For other models
refer to Refs. 7,8.
©2001 The American Physical Society05-1
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According to the above formulas, the effective permitt
ity of random cermets depends only on«p , «m , andf. How-
ever, in Ref. 7~p. 104! it is noted that measurements o
systems with narrow size distributions tend to agree ra
with the Maxwell-Garnett than with the Bruggeman mod
From the theoretical side, Fuet al. have shown that the
Maxwell-Garnett formula is within the mean field approx
mation rigorous to all multipole moments, as long as
spherically symmetric two-particle function describes t
spatial distribution of the particles.10 On the other hand, per
forming numerical calculations, Barreraet al.11 could show
that the Maxwell-Garnett result fails for polydisperse sy
tems. Despite the above experimental and theoretical re
there is neither a theoretical model nor a detailed numer
investigation on how«eff depends on the degree of polydi
persity of the inclusions, let us say, on the width of the p
ticle size distribution. The derivation of the abovemention
mean-field approximations does not show in which ran
they are applicable. Meredith and Tobias12 have proposed a
universal formula for polydisperse systems, but the fact t
it does not depend on the degree of polydispersity is a c
tradiction in terms. The need for a systematic approach
therefore clear. Our numerical investigations, a compu
implementation of the exact theoretical solution in Ref.
show that the effective permittivity«eff depends on the par
ticle size distribution in a surprisingly strong way.

II. THE ALGORITHM

In Ref. 5 Fuet al. consider a composite material consis
ing of spherical inclusions of permittivity« i in a continuous
matrix ~cermet topology!. The material of total volumeV is
placed between the plates of an ideal plane capacitor.
plates are separated by a distanced. The authors express th
multipole moments developed by thei th particle due to the
interactions with other particles and their images, as a fu
tion of the particles’ dielectric properties« i , radii a i and
spatial coordinates:

qilm5A 3

4p(
j

~G21! i lm
j 10b j 1E0 , ~6!

where

b i15
~« i2«m!a i

3

« i12«m
, ~7!

and E0 is the imposed electric field. The eleme

Gilm
jl 8m8(r i j ,« i ,« j ,l ,l 8,m,m8) of the two-dimensional con

figuration matrixG is directly connected with the interactio
between the multipole moment (lm) of the i th particle atr i
and the moment (l 8m8) of the j th particle atr j . We denote
r i j 5r j2r i . ~The exact form ofG is given in the Appendix.
For details please refer to the original article.! Through the
inversion ofG all the momentsqilm are mutually dependent
Note especially the coupling of the dipole momentsqi10 to
the higher multipole moments. Fuet al. proceed to expres
the effective permittivity of the composite as follows:
06420
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A4p

3 (
i

qi10

E0
D

5«mS 11
4p

V (
i j

~G21! i10
j 10b j 1D . ~8!

Our simulations are based on this exact solution. A distri
tion of particles is generated in a cubic shell, the side len
of which equals the distance between the electrodes. Peri
boundary conditions are imposed in the directions paralle
the capacitor plates. The configuration matrix eleme

Gilm
jl 8m8 are computed for each pair of particles and multipo

moments. The images and the periodic repetitions of e
particle are taken into account~see the Appendix!. It is pos-
sible to adjust the maximal ordersl max, mmax of multipole
moments considered. More importantly, the algorithm allo
simulations of different spatial configurations~ordered, ran-
dom or nonrandom disordered, isotropic or anisotropic s
tems! and different size distributions of spherical inclusion
The dielectric properties of matrix and inclusions can
freely chosen, and the composite may even contain in
sions of different permittivities and radii. The results that a
presented here were obtained at zero frequency for con
tive particles in a matrix of unit dielectric constant. In th
case Eq.~7! becomesb i15a i

3 . „For «mÞ1 the results for the
effective permittivity can simply be scaled by a factor of«m
@see Eq.~8!#.… A detailed report for other cases is to follow

III. THE SC LATTICE

In order to check the correct implementation of the alg
rithm as well as the accuracy of our calculations we first tr
a simple cubic lattice of identical spheres. This problem h
been solved exactly in Refs. 13,14 while accurate meas
ments are presented in Refs. 15,16. The results are prese
in Fig. 1. The diagram shows the effective permittivity of th
system as a function of the filling factor. The values p

FIG. 1. The ratio of the effective permittivity«eff over the per-
mittivity of the matrix «m for an sc lattice of conductive sphere
Numerical results taking into account multipole moments up
l max51,3,5,11,19 are compared with the Maxwell Garnett mode
well as with the exact results by McPhedran and McKenzie.
5-2



te
t

th

nt
lts
e
o
o
tiv
l-

nd
ef
n

ith
o-
e

ol-
ol
-

e

o
ed
e

a
la
of

e-

th
.
s

ig
cle
is
go
h

of
ys-
lgo-
er
ns,

dd
a
w
e is
e is
end

ng
are
ms.
con-
as
tri-
. In
-
ity
ons

ing
re

ity
for
eity
e
nev-
ne-
re-
of
we
log-
nc-

mal
. In
-
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sented have been tested for convergence and are accura
to the fifth decimal point. There are different sets of poin
corresponding to calculations for different odd values of
highest multipolel max taken into account@see Eq.~6!#. Due
to the symmetry of the cubic lattice, the multipole mome
with evenl do not contribute to the polarization. The resu
are compared with exact values taken from Ref. 14. Ther
absolute agreement between the analytical formula and
results. This remains true up to the highest filling factor
f c5p/6'0.5236, where the spheres touch and the permit
ity diverges~percolation limit!. In Ref. 14 there are also ca
culations presented for multipolar moments withmÞ0. The
authors point out that their contribution is very small a
attribute it to the arithmetical error rather than to a real
fect. Our calculations confirm this, giving zero contributio
up to the fifth decimal point. Note also that calculations w
l max51, i.e., taking only the interactions of the dipolar m
ments into account, coincide for all filling factors with th
Maxwell-Garnett predictions.

IV. RANDOM DISTRIBUTION

We generated distributions of particles~typically 5000!
which were positioned randomly in space filling a cubic v
ume. The particle size distributions were log normal in v
umev with varying width parameters ~the standard devia
tion of the correspondent normal distribution!:

f ~v !5
1

A2psv
e2 ln2(v/v0)/2s2

. ~9!

The median of the volume distributionv0 can be chosen
arbitrarily since the dielectric properties do not change wh
the sample is scaled in size. Note that Eq.~9! is equivalent to
a log-normal distribution of radii with a parameters r5s/3.
Choosing a good algorithm to form the size distribution is
vital importance, since the computing capacity is restrict
Simply using a random numbers generator to pick volum
from a log-normal distribution gives a very poor approxim
tion of the continuous distribution: even at particle popu
tions as high asN55000 this results to strong fluctuations
the particle size distribution density. Of course, for such
configuration the simulation gives a value for«eff which is
physically meaningful, but differs from the value corr
sponding to a smooth log-normal distribution. IncreasingN
one should attain an always better approximation but
seems to happen atN too high for our computing capacity
We found that a satisfactory solution to this problem is to u
a step function as the one presented in Fig. 2. Thev axis is
divided in elementsdv. Then@N f(vm)# particles are homo-
geneously distributed in the region (vm2dv/2,vm1dv/2#.
For narrow distributions the elementsdv may be equal,
while for broader distributions~aboves51.5) it is recom-
mended to increasedv with increasingvm . Random coordi-
nates were attributed to each particle, starting from the b
gest. In case of overlap with an already positioned parti
new coordinates were chosen. As a consequence, there
electric contact between neighboring particles. The al
rithms for the random distributions, as well as many of t
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routines used in the main program were modifications
routines found in Ref. 17. Simulations on monodisperse s
tems were also carried out, using the same positioning a
rithm. This algorithm fills the space in a uniform mann
with spheres, so that in the case of equally sized inclusio
above a filling factor of 0.3 it is not any more possible to a
further particles without overlap. For higher filling factors
different algorithm has to be implemented, that would allo
even a random close packed distribution. Of course, ther
no such restriction for polydisperse systems, where ther
always room for the smallest spheres added towards the
of the procedure.

We have conducted extended simulations involvi
higher multipole moments, which have shown that these
not of great importance when considering random syste
In the case of monodisperse samples, for example, their
tribution is less than 2% even for filling factors as high
0.3. The higher the filling factor and the broader the dis
bution, the more important the higher multipoles become
any case, for the ranges off ands treated here their contri
bution is much smaller than the effect of polydispers
which is studied below. Thus, we present here calculati
that take account of the dipole moment only.

The results are subject to systematic errors originat
from the unavoidably limited size of the sample. There a
errors due to the high proportion of particles in the vicin
of the electrodes compared to what is normally the case
real material measurements. Furthermore, the homogen
of the spatial distribution is disturbed by not allowing th
spheres to cross the cells boundaries. These errors have
ertheless proved to be of little importance and can be
glected. The main source of inaccuracy is the failure to
produce the continuous distribution with a limited number
particles. In order to control the effect of the sample size
performed simulations on samples of spheres having a
normal distribution in volume, as described above, as a fu
tion of the total number of particlesN. In Fig. 3 the calcu-

FIG. 2. A volume distribution withs51 andN53998 as it was
used for a calculation. The dashed line is the theoretical log-nor
distribution. The inset focuses on the shaded part of the graph
the range (vm2dv/2,vm1dv/2# 26 particles are distributed homo
geneously.
5-3
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lated permittivity values are shown for filling factorf 50.3
and fors52, s51, ands50.1. Fors52, e.g., there is a
monotonous change of the calculated«eff of about 5% be-
tweenN51500 andN53500, but aboveN53500 a limiting
value seems to be attained, the calculated permittivity fl
tuating less than 3%.

Already from Fig. 3 it is obvious that the permittivit
values depend on the size distribution width, expres
through the parameters. This is shown more clearly in Fig
4. There the effective dielectric constant is plotted as a fu
tion of the filling factor for samples withs52, s51 and for
monodisperse systems (s50). For comparison the
Maxwell-Garnett and Bruggeman predictions are also p
ted. It is evident that the monodisperse systems are a
rately described by the Maxwell-Garnett formula~within
2%). Thepermittivity of polydisperse systems depends n

FIG. 3. The convergence of the results with respect to the n
ber of particles. The main factor of the error is the insufficiency
small populations to approximate the continuous distribution.

FIG. 4. The ratio«eff /«m as a function of the filling factorf for
systems with random spatial distribution and log-normal volu
distribution with differents @see Eq.~9!#. The Maxwell-Garnett
approximation describes accurately the results for monodisp
systems, while the results for broad distributions~with s52) agree
with the Bruggeman formula. The plot makes obvious the dep
dence of the effective permittivity on the size distribution.
06420
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only on the filling factor, but also on the degree of polyd
persity. Fors52 it is well described by the Bruggema
formula, while for s51 it lies between this and the
Maxwell-Garnett result.

In order to study the transition from one response type
the other, we performed simulations on systems with fix
filling factor (f 50.3) varying the width parameters of the
volume distribution. The results are presented in Fig. 5 a
plot of the effective dielectric constant vss. The effective
dielectric constant increases monotonously from values v
near the Maxwell-Garnett results~for low s) and approaches
a limiting value ass increases. This value is close to th
Bruggeman result. Simulations at highers are necessary to
determine whether«eff remains constant. Such simulation
require a higher particle population in order to adequat
represent the particle volume distribution and can be v
time consuming, since the CPU time needed is roughly p
portional toN2.

V. DISCUSSION

It is evident that the permittivity~and correspondingly al
generalized conductivities! of matrix-inclusion composite
materials shows a sensitive dependency on the size dist
tion. The Maxwell-Garnett model, which being a dipole a
proximation has been considered satisfactory for dilute s
tems only, describes adequately random monodisp
systems even for filling factors as high as 0.3. The Brug
man model describes well the opposite limit of broad s
distributions. In both these mean field formulas the effect
permittivity is independent ofs or, generally speaking, the
width of the size distribution. So, they can only give a sat
factory description whend«eff /ds→0, i.e., in the limiting
cases of very narrow or very broad distributions~see Fig. 5!.
It is nevertheless surprising how good the agreement
tween the complicated calculations and these simple mo
is, especially keeping in mind that these formulas are deri

-
f

e

se

-

FIG. 5. The ratio«eff /«m at f 50.3 as a function of the widths
of the log-normal volume distribution@Eq. ~9!#. For very narrow
and very broad distributions«eff /«m tends to values close to thos
of the Maxwell-Garnett and the Bruggeman models, respectiv
The transition occurs in a range arounds51.
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without any assumptions whatsoever regarding the size
tribution. ~Note that Bruggeman only assumes a polydispe
system in order to be able to reach the limitf→1, that is, to
fill the whole space with inclusions. This fact does not e
plicitly enter his derivation of«eff .) In most experimenta
investigations, especially regarding materials for indust
applications and microcomposites or nanocomposites,
deals with large size distributions. Monodisperse systems
seldom encountered in practice and are rather difficult
prepare. Together with Fig. 5 this explains the success of
Bruggeman result in the analysis of experimental data
nonagglomerating systems.

Starting from their exact solution@Eq. ~8!# Fu et al. have
shown analytically that the Maxwell-Garnett formula follow
in the mean field approximation, when a spherical symme
two-particle function is used to describe the spatial distri
tion of the inclusions.5 However, Barreraet al.11 have shown
that in the case of polydisperse systems the correlated
tuations of the induced dipole moments play a vital role a
cannot be neglected. They lead to higher interparticle in
actions and thus to an increased permittivity. An iterat
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procedure, such as the one followed by Bruggeman, m
take care of some of these effects.18

The dependence on the particle size distribution can
intuitively understood as follows: The interaction betwe
the dipolar moments of the particlesi , j is proportional to the
quantity 1/r i j

3 , the inverse cube of their distance~see the
Appendix!. The interparticle distances decrease~and thus the
capacitances between them increase! with the polydispersity.
Concluding, a formula which would describe the effecti
permittivities of polydisperse systems, especially in the tr
sition range~arounds51), has to contain explicitly the par
ticle size distribution.
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APPENDIX

For the sake of completeness and convenience of the reader, we give here the form of the configuration matrixG. We do
not comment in detail, since this form is only slightly different from the one given in Ref. 5. The only difference is
periodic boundary conditions in the plane parallel to the capacitor’s electrodes are introduced. The central idea is
interaction with the periodic repetitions of the particles can be integrated in the interaction with their equivalent particl
main shell, just as it happens with the image particles in the treatment of Fu, Macedo, and Resca. Choosing the ink to
count the images andj to count the periodic repetitions

Gilm
jl 8m85d i

jd l
l 8dm

m81~2l 11!b i l Clm
l 8m8~r j2r i !, ~A1!

where

Clm
l 8m8~r j2r i !5(

jk
~21!( l 81m811)kAlm

l 8m8

3~r j jk2r i !~12d i
jdj

0dk
0!, ~A2!

b i l 5
~« i2«m!la i

2l 11

l« i1~ l 11!«m
, ~A3!

and

Alm
l 8m8~r j jk2r i !5

Yl 1 l 8,m2m8
* ~r j jk2r i !

ur j jk2r i u l 1 l 811
(21)l 81m8

3F 4p~ l 1 l 81m2m8!! ~ l 1 l 82m1m8!!

~2l 11!~2l 811!~2l 12l 811!~ l 1m!! ~ l 2m!! ~ l 81m8!! ~ l 82m8!!
G 1/2

. ~A4!

In the above relationsr i jk is the position vector of thejth periodic repetition of thekth image of the particlei. Apart from the
additional indexj these are the expressions presented in Ref. 5.

Taking into account dipole moments only, for a sample with infinite dimensions~so that images and periodic repetition
need not be considered! this reduces to
5-5
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Gilm
jl 8m85d i

j2~12d i
j !

a i
3

r i j
3 ~3cos2u21!. ~A5!

Thus, in this approximation, the term (G21) i lm
j 10b j 1E0 inside

the sum in Eq.~6!, is approximately proportional to 1/r i j
3 .

In our implementation, suitable parameters determine
q

06420
e

numberkmax of image particles andjmax of periodical repeti-
tions that are considered, according to the desired nume
accuracy. These numbers are not the same for every par
pair, but depend on the strength of the interaction. Typica
a few thousand images enter the calculation as well as p
odic repetitions at distances up to 5–7 times the sam
dimensions.
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